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Abstract  
This thesis develops an approach to integrate evolutionary, cultural, and computational approaches to 
psychiatry in 4 chapters. The claim at the core of this thesis is that a principled holistic explanation of mental 
disorders would benefit from the integration of explanations in computational, cultural, and evolutionary 
psychiatry. The argument is presented through two models. The first model is presented in chapter 3, and 
functions as an ontology of mental disorders that integrates principles of evolutionary, cultural, and 
computational psychiatry. The second model is presented in chapter 4 and implements this integrative view 
with a computational model of major depressive disorder. The models that I propose are based on two 
important philosophical assumptions about active inference, the formal theory that underwrites them. First, 
the two models assume that active inference — and implicitly the free-energy principle — can be applied to 
the behaviour of non-living systems. Second, the models assume that the cognition and behaviour (e.g., 
action, perception, and learning) of living systems — such as modelled under active inference — have a formal 
equivalent in non-living systems. This allows us to apply the free-energy principle to the dynamics of systems 
that involve nonliving components such as enculturated humans embedded in a material environment. The 
first portion of this thesis contained in chapters 1 and 2 defends these two assumptions. The second portion 
of this thesis contained in chapter 3 and 4 presents the two models.  
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Thesis introduction 
 
“Here one may certainly admire man as a mighty genius of construction, who succeeds in piling an 
infinitely complicated dome of concepts upon an unstable foundation, and, as it were, on running 
water. Of course, in order to be supported by such a foundation, his construction must be like one 
constructed of spiders' webs: delicate enough to be carried along by the waves, strong enough not to 
be blown apart by every wind. As a genius of construction man raises himself far above the bee in the 
following way: whereas the bee builds with wax that he gathers from nature, man builds with the far 
more delicate conceptual material which he first has to manufacture from himself. In this he is greatly 
to be admired, but not on account of his drive for truth or for pure knowledge of things. When someone 
hides something behind a bush and looks for it again in the same place and finds it there as well, there 
is not much to praise in such seeking and finding. Yet this is how matters stand regarding seeking and 
finding "truth" within the realm of reason.”  
 
-- Truth and lies in an extra moral sense, Nietzsche  
 
This dissertation is an attempt at integrating three distinct ways of thinking about mental disorders in 
psychiatry: (i) as developmentally aggravated vulnerabilities understood as proximate causes shaped by 
ultimate, evolutionary causes; (ii) as behavioural patterns causing psychological distress and functional 
impairment configured at the subjective level and shaped by socio-normative causes; and (iii) as suboptimal 
inference of perception and action caused by lesioned or atypically learned model parameters. These three 
ways of thinking about mental disorders belong to three different approaches to psychiatry: the evolutionary 
approach, the cultural approach, and the computational approach.  
 
The central claim of this dissertation is that: A principled holistic explanation of mental disorders (i.e., an 
explanation based on a reasoning pattern that accounts for the dynamics of the mind understood as a system 
made of functionally related parts) would benefit from the integration of explanations in computational, cultural, 
and evolutionary psychiatry. I will defend that claim in 4 chapters, which correspond to four published and 
peer-reviewed articles.  
 
Within the context of this dissertation, however, these articles should not be seen as independent, but rather, 
as steps on my way to arguing the main claim of this dissertation. How this will be done will be clarified, both 
in this introduction, and at the beginning and end of each chapter, in the form of introductions and 
conclusions that join the narrative. I will use interim conclusions to pursue some of the discussions I could not 
pursue in the articles, or to respond to some of the recurrent problems my colleagues and mentors pressed 
me on, with respect to the overall project.  
 
Note that I wrote the four chapters of this dissertation in an order different from that of their presentation in 
this dissertation. I first wrote the 3rd chapter, then the 4th, the 2nd, and the 1st -- 3,4,2,1. The reason for this is 
simple. I wrote the chapters of this dissertation by first inquiring about the relevance of an integrative view of 
evolutionary, cultural, and computational psychiatry. This resulted in chapter 3. Then, I wanted to confirm 
whether such an integrative model could be implemented with the models of computational psychiatry. This 
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resulted in chapter 4. Finally, reflecting on my work, I asked whether the integrative view in chapter 3 was 
philosophically sound. This was the real challenge, which chapters 1 and 2 address. Here, I will also introduce 
the chapters in the wrong order, to help the reader follow the reasoning behind the evolution of my research 
project.  
 
Chapter 3, titled Integrating Evolutionary, Cultural, and Computational Psychiatry: A Multilevel Systemic 
Approach contains the negative (i.e., criticism) and positive (proposed alternatives) parts of my argument. 
Chapter 3 is a targeted literature review that frames the problem that motivates this dissertation; namely, that 
psychiatry lacks a unified, non-bio-reductionist and principled understanding of mental disorders that 
connects the many processes making up the mind, from culture to neurocognition and evolution. Describing 
that problem corresponds to the negative part of my argument. The positive part of my argument proposes 
the integration of the three principled approaches to psychiatry mentioned above into an Evolutionary, 
Computational and Cultural model of mental disorder (ECC).  
 
Before we continue, I should offer a word on the nature of the model presented in Chapter 3. I learned during 
my PhD that the word "model" for philosophers of science is a charged word (as are most words for 
philosophers). I also learned that there is a rich literature on what a model is (for a review, see Weisberg, 2013). 
However, I will not endeavour to situate the proposed model in the modelling literature in philosophy. To be 
frank, beyond the fact that this is not a philosophical question relevant to my project, the reason why I will not 
try to situate the proposed model in the philosophical modelling literature is that I am not entirely sure how 
best to characterize the type of model that is at the core of this dissertation. I suspect that it is closer to what 
George Engel's biopsychosocial model was meant to be (Engel, 1981); that is, a scientific ontology that 
organizes knowledge, and that can be extended to real-world applications in clinical practice.  
 
I am aware, however, that this is not a common way to think about the sort of model I am proposing in chapter 
3. The second model that I propose in chapter 4, and that implements the view developed in chapter 3 can be 
more easily defined. That model is a computational is a computational model based on the theory of active 
inference (Parr et al., 2022) — something that accounts for the functional relation between some parts that 
change over time and whose change can be represented numerically, as conforming to some equations, which 
can be written in the form of an algorithm, the running of which reveals features of the functional relations 
that would be otherwise hard to envisage. In that sense, the model is a computational model (Weisberg, 2013).  
 
Typically, these models are used to simulate the behaviour of a system, like the brain, and much of the 
modelling literature in philosophy on active inference is about figuring out what position we should adopt 
with respect to the relation between models and what it is they model; in particular, whether we should be 
realist, anti-realist, or pragmatic. But for what matters to this dissertation, the potential applications of the 
model in psychiatry. we do not need to resolve these problems because the model I propose is more than 
simply a computational model. Rather, it may be more desirable to read that model as a medical model, much 
in the way Engel intended it with his biopsychosocial model.  
 
I am also aware that in medicine, there is an equally complex — though more pragmatic — taxonomy of the 
types of models (Huda, 2019). For example, there are explanatory and aetiological models of diseases which 
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are used to explain the causes of the affliction and guide research and intervention, and there are models that 
underlie medical diagnosis, which are used to guide assessment, classification, the management of symptoms 
and the organization of care. One can also add institutional models of medicine, which define operations at 
the social and administrative level, thereby linking medicine with other domains of social activity like the law 
and economy.  
 
For Engel, a medical model (e.g., the biomedical model) is what underwrites all these activities within 
medicine. Thus, a medical model (i.e., conceptual model) is primarily a scientific ontology. In the terms of the 
tradition of the sociological and anthropological approach to science (Fleck, 1979; Kuhn, 1962; Latour, 2000; 
Pickering, 1995), a medical model in Engel's sense would be a thinking pattern born from a collective way of 
perceiving an object of inquiry and from the delineation of in-groups and out-groups through normative 
discourse formation, based on the sense of belonging to a scientific community. Such thinking patterns are 
reproduced through scientific education, rooted in material apparatuses and techniques, and implicitly shape 
conceptions of truths available to newcomers, and in the case of medicine, styles of clinical intervention. As 
Engel puts it: 

 
"How physicians approach patients and the problems they present is very much influenced by the 
conceptual models around which their knowledge and experience are organized. Commonly, however, 
physicians are largely unaware of the power that such models exert on their thought and behaviour. This 
is because the dominant models are not necessarily made explicit. Rather they become part of the fabric 
of education that is taken for granted, the cultural background against which they learn to become 
physicians. Their teachers, mentors, texts, the practices they are encouraged to follow, and even the 
medical institutions and administrative organizations with which they associate, all reflect the prevailing 
conceptual models of the era." (Engel, 1981, p. 101).  
 

Engel's biopsychosocial model is also a response to the problem of reductionism in biomedicine, which tends 
to exclude the person in assessments of potential causes of disorders. Engel’s biopsychosocial model adopts 
a systemic view of biology that views traits as existing in a "hierarchically arranged continuum" that goes from 
single cells to the biosphere (see fig. 1). For Engel, it is within such a model that scientific knowledge must be 
organized. The model proposed in chapter 3, and which is realized in chapter 4, can also be viewed as 
implementing the systemic view of biology that underwrites the biopsychosocial model. It should very much 
be viewed as a dynamic representation of what figure 1 presents (spanning scales or levels from the nervous 
system to social-cultural systems); dynamics that are tailored to the generation of specific symptoms 
characteristic of mental disorders. Although, as I said, I do not yet know exactly how to characterize the model 
on offer in chapter 3, I believe it could be described as (i) reporting an ontology and an epistemology of 
psychiatry — a conceptual model, that can influence practice and "become part of the fabric of education that 
is taken for granted" (Engel, 1981, p. 101); (ii) as a means of organizing knowledge; and (iii) as a practical guide 
to orient the way clinicians take care of their clients. The view of the biopsychosocial model as a scientific 
ontology that guides the formation of other models in medicine is the correct (or perhaps most forgiving) view 
of the model I propose in chapter 3. 
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Figure 1. For Engel, each level is a stable configuration that possesses unique dynamics and is part of the 
dynamics of the whole. The stability at each level is maintained by the relation between internal and external 
dynamics. Each level possesses boundaries that delineate it as part of the whole, and there is information flow 
across the entire biosphere (Engel, 1981).  
 
Chapter 4, titled Why depressed mood is adaptive: A numerical proof of principle for an evolutionary systems 
theory of depression applies the integrative evolutionary, cultural and computational approach, developed in 
Chapter 3, to provide a proof of principle for the Evolutionary System Theory of depression developed by Paul 
Badcock (Badcock et al., 2017). The Evolutionary System Theory of depression is itself an integrative approach 
of evolutionary and computational rationales in psychiatry and therefore highly compatible with the model 
developed in chapter 3.  
 
The proposed computational model in chapter 4 further integrates the sociocultural rationale to design a 
simulation of the symptoms of major depression. The model allows us to observe, in silico, the effects of 
various types of pharmacological and social interventions on the course of depressive illness. These 
simulations feed from the more general ontology developed in chapter 3. Thus, chapter 4 is not only a proof 
of principle of the evolutionary systems theory of depression, but also, in a sense, a proof of principle for the 
more general 'eco-socio-computational' way of thinking about mental illnesses that I attempt to develop in 
this dissertation.  
 
I should emphasize that the model of chapter 3 is different in nature than that of chapter 4. As we said, the 
model of chapter 3 is closer to what Engel had in mind with the biopsychosocial model. In turn, the model of 
chapter 4 is what people have in mind in computational psychiatry when they develop computational 
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phenotypes of mental disorders. The model of chapter 3 should be viewed as the theoretical motivation for 
developing the computational model of chapter 4. 
 
Chapter 2, titled Extended active inference: Constructing predictive cognition beyond skulls, is one of the two 
chapters that clarify and set the theoretical foundations for the model we develop in chapter 3. One of the 
theoretical foundations I needed was the claim that mind is spatiotemporally distributed, or 'extended', and 
that such extensions are constitutive of bona fide functions of the mind.  
 
Theoretically and from the point of view of its design, the model implemented in chapter 4 is motivated by the 
idea that individual minds cut across spatiotemporal scales. This is also the idea that the biopsychosocial 
model tries to implement, which is represented by figure 1 above. The mind is made of things beyond the brain 
(spatial scale), and its behaviour is shaped by phenomena that unfold over time scales longer (and shorter) 
than the lifespan of the individual (temporal scale). This means that interventions on mental illness can work 
by acting on different subcomponents of the mind, unfolding at multiple spatial and temporal scales.  
 
The interventions that return our simulated agent to normal functioning after an episode of major depression 
in chapter 4 works precisely in this way. They assume that the phenotype of depression ought to be modelled 
with parameters that are spatially distributed across internal and external components of the phenotype, and 
whose dynamics unfold at various temporal scales, from evolutionary (either fixated or more stable over 
development), to socio-environmental (slow changing parameters) and neurocognitive (fast changing 
parameters) processes. This modelling assumption had to be supported, theoretically, which again, is what 
Chapter 2 does for us in this dissertation.  
 
Chapter 1 is titled The free-energy principle: It's not about what it takes, it's about what took you there. 
According to the free-energy principle, any (living) system that exists over time and that can change over time 
will change to minimize its free-energy, where free-energy is a proxy for the (negative log) evidence (in 
Bayesian terms) of the model the system entails. The challenge with the free-energy principle is that many 
things have been said about it; things that left unclear would make my argument untenable. One of those 
things is the claim according to which minimizing free-energy is a sufficient criterion for defining what counts 
as a living system. Because I use the free-energy principle to model the behaviour of non-living entities — such 
desire paths and earthworm burrows, see chapter 2 — someone might think it follows that such entities are in 
fact alive. Indeed, it is often said in the literature on the free-energy principle that minimizing free-energy is 
the mark of life and cognition. However, I argue that this is incorrect. The free-energy principle, at best, gives 
a necessary criterion for life (i.e., every time you will see a living thing, that living thing will be minimizing its 
free-energy). But the inverse claim is not true (i.e., each time you see something minimizing free energy, this 
will be a living thing). The failure to recognize that minimizing free-energy is not a sufficient condition for life 
becomes a serious problem when one seeks to apply the free-energy principle to nonliving things. Chapter 1 
debunks the sufficiency claim often attributed to the free-energy principle and thus clears the way, pre-
emptively for chapter 2, which applies the free-energy principle to nonliving things into which the mind 
extends.  
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Chapter 1: The free-energy 
principle: It's not about what it 
takes, it's about what took you 
there 
Introduction to chapter 1 
 
The agenda of chapter 1 is twofold. First, the explicit goal is to debunk the idea that minimizing free-energy is 
a sufficient condition for life; what I will call the 'strong claim'. The second goal of chapter 1 is to give the reader 
a clear understanding of what free-energy is conceptually and computationally. Chapter 1 provides an 
example of free-energy minimization that is illustrated by a network that maps out the components involved 
in free-energy minimization. It will be useful to keep the visualization of the network in mind, as this network 
will be reproduced throughout the dissertation to unpack different dynamics.  
 
By debunking the strong claim, this chapter prevents a serious problem that one might think follows from the 
modelling strategy I employ in chapter 2, and which will be used — and referred to — in the rest of this thesis. 
The problem is that given that it is often assumed that minimizing free-energy is a sufficient condition for life 
and cognition and given that I will assume that free-energy minimization occurs in non-living entities, one 
might think that my position is that nonliving parts of the biosphere are alive in some sense. This is not the line 
of argument I want to pursue. I am not advocating for panpsychism or “pansentiencism”, nor do I think that 
inanimate things should be treated as living things.  

1 Introduction  
 
Sometimes, arguments in the literature on the free-energy Principle (henceforth FEP) give the impression that 
in order to be alive, viz. to count as a living system, one must minimize free energy. Such a claim does not 
straightforwardly apply to the free-energy principle, however, and this is what this chapter will demonstrate. 
Minimizing free-energy does not entail life. Rather, the argument is that if you are alive, it probably means that 
you have done something like minimizing your free energy, which is the (Bayes) optimal thing to do when your 
life depends upon solving complex inference problems. This is a subtle, but crucial point to getting the story 
straight. I shall call this the ‘entailment problem’; that is, the confusion in the entailment relation between 
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free-energy minimization and life. Here, the notion of entailment refers to the implication (i.e., first order 
logical property) between free-energy minimization and the fact of “displaying some life-related processes”.  
 
The entailment problem, it seems to me, stems from the fact that there are at least two types of claims one 
can conceive of when thinking about the relation between life and free-energy minimization. Or rather, about 
survival, and free-energy minimization; although, under the FEP, these appear to be synonymous. Minimizing 
free-energy is the process whereby one maintains one’s structural integrity in the face of environmental 
perturbations by revisiting one’s most probable organization of physiological states (Friston, 2013; Kirchhoff, 
2015). It is in that sense that minimizing free-energy is considered a condition for life. One can equate ‘survival’ 
with ‘life’, since one supposes the other under the FEP; ‘if I survived, it means that I maintained my structural 
integrity in the face of environmental perturbations’; ‘maintaining my structural integrity is what qualifies me 
as living.’ 
 
Now, it might be said that metamorphic organisms, despite not keeping their structural integrity, should be 
considered as living organisms. This was noted by Kirchhoff et al., 2018 and Clark, 2017 and others (Friston 
and Stephan, 2007; Andrews, 2022; Sims, 2021). From the point of view of the FEP, when considering such 
metamorphic organisms, it may be said that it is the lifecycle that corresponds to the thing whose integrity is 
maintained over time (e.g., over evolutionary time), not the specific form that the system takes at one stage of 
its development (e.g., the adult form of a frog). This casts the FEP within the realm of the process ontology (vs. 
substance ontology). Similarly, while it may be argued that life is a state instantiated by an organism at time 
‘t’ whereas survival is a process with duration (e.g., the endurance of life from t to t+1), under the FEP (from 
the perspective of process ontology), it is unclear whether these two notions — life and survival — really have 
a different referent. It might be argued that both life and survival both refer to an enduring process that 
advocates of process ontology would call ‘organism’ (cf. Dupré, 2020). While there is certainly a fuller 
discussion to be had concerning the correct unit of analysis for free-energy minimizing organisms and the 
meaning of life and survival under that theory, a critical discussion of these issues is beyond the scope of this 
chapter.   
 
The first type of claim on the relationship between life and free-energy minimization is a strong type according 
to which minimizing free-energy is a sufficient condition for life. This claim has been called the overly generous 
claim (Kirchhoff & Froese, 2017). Such a claim is attractive since it suggests that knowing what is involved in 
minimizing free-energy (e.g., possessing a Markov blanket) will inform us about what it takes to be alive. Such 
a strong claim would allow us to generalize the scope of the FEP to the full range of possible beings, and in so 
doing, it would allow us to predict which of those will pass the bar for qualifying as ‘living’; it would allow one 
to identify ‘what it takes’ to be alive from the point of view of the FEP.  
 
The second type of claim is a weak type according to which if a system is currently alive, it means that it 
minimized its free energy. Such a type of claim does not assume that the FEP is designed to set the bar for the 
sufficient conditions for life or meant to predict what things may or may not be alive. Rather, it limits the scope 
of application of the principle to beings that we think are alive, now, and enables us to know the necessary 
conditions under which those beings can be living – i.e., can actively resist the loss of structural integrity; ‘what 
took them there?’  
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In the primary literature on the FEP, we can often read passages that may be interpreted as making strong 
claims, such as “minimization of free-energy may be a necessary, if not sufficient, characteristic of 
evolutionary successful systems” (Friston & Stephan, 2007, p. 26), and “systems that do not minimize free-
energy cannot exist” (Friston, 2013, p.2). And so, people have reacted saying things of the sort “the right 
direction of explanation must go from minimizing free-energy to survival. Yet insofar as FEP implies a causal 
story about that direction of explanation, it appears to be wrong. On the one hand, minimizing free-energy 
cannot be sufficient for survival” (Klein, 2018, p. 12). Here, Klein advocates the impossibility of a strong claim 
in favour of the FEP. In the secondary literature, claims such as the aforementioned ones found in the primary 
literature have led some people to claim that the goal of the FEP is to discover the necessary characteristics of 
living systems, and that the free-energy minimization is an ‘imperative’ of life (Van Es, 2020). Here, one might 
argue that the terms ‘imperative’ and ‘necessary’ are correctly employed in the weak sense – i.e., in the sense 
of ‘if life, then free-energy minimization has occurred’ – but not a sufficient one, in the sense of ‘if free-energy 
minimization occurs, then life follows. But had the relation between life and free-energy minimization been 
correctly interpreted as merely necessary, some of the problems that van Es’ claim is meant to motivate would 
simply not apply. Indeed, although it is hard to find direct evidence of what I called the entailment problem in 
the literature, that problem often transpires through some of the challenges that motivate philosophers to 
write on the FEP.  
 
Take for instance the problem of scope, which is considered a serious problem among others by van Es. The 
scope problem refers to the danger of being over generous with applications of the FEP, out of fear of being 
overly generous with what we count as living (or as having a mind). Obviously, this is only a problem for 
someone who thinks that the FEP is meant to provide sufficient conditions for life (or mind). For instance, 
referring to a passage of Karl Friston’s seminal paper ‘Life as we know it’ (2013), Kirchhoff and Froese (2017) 
say that:  
 

“Strictly speaking, what Friston says here is that for any system to exist it must work to minimize free 
energy. This commits Friston to one of the following three implications. First, if free-energy minimization 
is sufficient for mentality, then every system has a mind, even if not all systems are alive. Second, if free-
energy minimization is enough for life and mind, then all systems that exist are both alive and mental. 
Finally, biological systems, like all other existing systems, need to work to minimize free energy. The last 
option states that free-energy minimization is not a property of only living systems, and as such sets up 
one of the two following implications. Either (option one) the FEP places mentality in a class of systems 
that includes but is not limited to living systems, and therefore veers towards some form of panpsychism. 
Or (option two) the FEP equates life-mind continuity with a view that sees life and mind nearly 
everywhere. […] . Our point is: given that the core concepts of non-cognitivist FEP—approximate 
Bayesian inference, ergodicity, Markov blankets and so on—can be applied to living and cognitive 
systems, on the one hand, and seemingly non-living and non-cognitive systems, on the other, there is a 
clear danger of these concepts being over-broad in their application, resulting in either seeing life and 
mind nearly everywhere or in the FEP lacking explanatory power when having to address the nature of 
life and mind and their relation to one another” (Kirchhoff & Froese, 2017, p. 10-11). 

 
There is no such danger associated with the FEP for the simple reason that it is not because a system minimizes 
its free-energy (and that system has a Markov Blanket) that that system is alive. Again, free-energy 
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minimization is not a sufficient condition for life (or mind). It seems to me that the problem of scope would 
only worry those who believe that the FEP makes a strong, sufficiency claim about the relation between life 
(or mind) and free-energy minimization.  
 
Other standard manifestations of what I call the entailment problem take the form of a critique of the 
‘testability’ and ‘tautology’ of the FEP, which would be worries for the strong claimers, and for people who are 
generally worried about the explanatory power of the FEP, as mentioned by Kirchhoff and Froese. I do not 
have the space to elaborate on this here, plus this has already been done (Colombo & Wright, 2018). Instead, 
in this chapter, I simply dissolve what I called the entailment problem by providing a numerical example of 
free-energy minimization in a hypothetical organism. I conclude with some brief epistemological remarks that 
may be of interest for those who worry about the explanatory power of the FEP. 
 
The proposed numerical example will clearly demonstrate why minimizing free-energy can generate both 
Bayesian adaptive and Bayesian maladaptive behaviour, leading to survival, or death, accordingly. The 
proposed numerical example demonstrates that minimizing free-energy is not sufficient for life – the strong 
claim. The proposed numerical example demonstrates the necessity claim; the idea that under the right 
conditions, remaining alive means that free-energy was minimized – the weak claim. The relevance of the 
weak claim should become apparent through the reading of the numerical example, which will show that 
under the right conditions, minimizing free-energy should allow the maintenance of structural integrity. 
Hopefully, this numerical example will appease those who want to raise worries, implicitly or explicitly, about 
the — non-existent — FEP strong claim, or about the apparently less interesting weak claim. 
 

2 Minimizing free energy: for better or worse 

2.1 Some conceptual distinctions between Bayes and 
the free-energy principle 
 
Bayesian approaches to animal behaviour propose that one can model organisms as representing their 
relation to environmental states using priors and a likelihood (McNamara et al., 2006). Let’s call those 
representations Bayesian ‘beliefs’. On the basis of those beliefs, organisms generate adaptive behaviour. 
Bayesian beliefs represent (i) the probability of environmental states, prior to observing an environmental 
signal (a.k.a. prior); and (ii) the relation between environmental states and observed environmental signals 
(a.k.a. likelihood). Bayes theorem, from which terms such as prior and likelihood come from, is typically 
expressed as an evidentiary relationship between some prior hypotheses (P(H)) and the observation at hand, 
or data (E): P(H|E) =[P(E|H)P(H)]/P(E).  
 
The free-energy principle is a Bayesian formulation of the manner in which organisms infer the posterior 
probability of their prior beliefs after having observed an environmental signal with a given likelihood, and in 
so doing infer some hidden, or unobserved variables. What stands for the ‘H’ are the unobserved variables 
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whose prior probability P(H) forms the hypothesis, and what stands for the ‘E’ are the sensory signals 
organisms receive (the data). Hence, it is often said that under the free-energy principle, organisms are viewed 
as embodying a ‘hypothesis’, a ‘belief’ or a ‘best guess’ about the cause of their sensations, or sensory signals 
they receive (Allen & Friston, 2016; Bruineberg & Rietveld, 2014; Friston, 2011).  
 
Under the FEP, the evidentiary relation explains the manner in which organisms self-evidence (Hohwy, 2016), 
where the ‘self’ means evidencing beliefs about oneself in the world. Because beliefs are embodied by the 
organism, and are thus the organism's own states, the uncertainty in the likelihood and the prior can be 
viewed as representing the uncertainty inherent to the biological apparatus (e.g., noise in the signal 
transmission across the nervous system), instead of the uncertainty of the world (e.g., fluctuations in states of 
the world generating the signals), as would be the case under typical Bayesian models. Under the FEP, 
uncertainty should thus be read as reporting a Bayesian ‘credence score’ over the organism’s own beliefs, as 
it reports the probability of a state or hypothesis relative to other possible hypotheses. In the case of the 
likelihood, the credence score is over sensory beliefs relative to states (e.g., ‘is this more probably warm or 
more probably hot?’). In the case of the prior, the credence score is over the hypotheses the organism 
entertains prior to sensing the water temperature (e.g., ‘am I probably in the ocean or in my bath?’). Of course, 
these beliefs, hypotheses, or best guesses are implicit and subpersonal, as they are meant to be realized by 
the organism’s (neuro)physiology. This begs another important question: are priors subjective or objective 
under the FEP?  
 
Initial priors can be of two kinds: (i) objective, or (ii) subjective. Objective priors are typically based on 
frequencies (e.g., priors that report distributions based on empirical data). When the frequencies are 
unknown, an equiprobable (flat) prior should be favoured. Objective priors thus conform to some rational 
constraints beyond Bayesian rationality. Subjective priors, in turn, refer to the psychological dispositions of 
the system of interest, or to the person specifying the system of interest (e.g., priors that report propositional 
attitudes). Subjective priors do not need to conform to constraints of rationality. The simple answer to the 
question of whether priors are objective or subjective under the FEP is that they are subjective. As we said 
above, they track the confidence of a system’s beliefs. We could thus carry on with that in mind.  
 
However, there is an interesting detail on that question that may be worth mentioning. Under the FEP, priors 
do not conform to rationality beyond the rationality of the inference per se, but nor are they rationally 
unconstrained. There is rationality beyond Bayesian rationality that comes from the way variational Bayes is 
embodied by the system (Hohwy, 2020). As we will see in detail later on, the inference of the posterior 
distribution requires finding an approximation to that posterior (denoted as ‘Q’ later on), which then becomes 
the prior used in the next cycle of inference. That approximate posterior determines what is embodied by the 
organism. The update having led to the subjective posterior at time t+1 operates by finding the subjective 
posterior that would best approximate the true subjective posterior distribution. The meaning of ‘best’ just is 
being close to 0 free energy. That true subjective posterior is that which one would find with exact Bayesian 
inference – more on this later, and crucially never exists. Hence it is sometimes said that it forms only a 
reference point to perform the inference (Ramstead, Kirchhoff and Friston, 2019).  
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The rational constraint over the priors is the fact that the approximate subjective posterior ‘Q’ (or future prior) 
will not only be Bayesian, but also will always be the ‘best guess’ relative to what the true posterior ought to 
be. In short, under the FEP, even though priors refer to psychological states of the system, updates of the 
system make those priors an approximation of what they ‘should’ have been, had the prior been updated with 
exact Bayes. Thus, it might be said that priors under the FEP cut across the objective / subjective dichotomy. 
They are subjective while satisfying a rational constraint mandated by the existence of the system per se.  

2.2 The numerical example   
 
The numerical examples below operating under the following scenario (see fig. 1). Consider an organism that 
infers whether an external event A or B took place. For the organism, A and B are part of the class R and form 
the representations by the organism of the external events represented by A or B. A and B are inferred when 
receiving a chemical signal part of the class S, which can be alpha or beta. 
 
We assume that before observing any signal, the probability of A is p, and the probability of B is 1-p. Given the 
environment in which the organism finds itself, the probability of observing a signal alpha under A is m, and 
the probability of observing beta under A is 1- m. We assume that p is equal to .8, and that m is equal to .7. The 
opposite applies to B. We stipulate for the sake of the numerical example that representing A when receiving 
alpha, or B when receiving beta leads to survival, and that the opposite leads to death. Because inference is 
biophysically realized, representing, or inferring A or B could also be interpreted as producing a metabolic 
response (not necessarily an action) to alpha or beta. Heuristically, the reader can assume that we simply 
stipulate that inferring B when sensing alpha or A when sensing beta is a maladaptive metabolic response that 
prevents from maintaining structural integrity. The prior probability P(R) and the likelihood P(S|R) can be 
visualized as follows:  
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Assuming that the internal computation that our organism performs conforms to Bayes theorem (McNamara 
et al., 2006; Okasha, 2013), computing the posterior probability of A or B relative to the environmental signal 
and representing the most likely state amounts to selecting the state with the highest posterior probability. Let’s 
infer the posterior probability of A after observing, say, alpha. To do this, we would apply Bayes theorem as 
follows:  
 

 
Eq. 2 takes the prior probability of A, which is .8, and multiplies it by the likelihood of A under signal alpha, 
which is .7, in order to get the joint probability of A and alpha, which is .56. In order to find the posterior 
probability, one must divide this joint probability by the marginal distribution, which is simply the sum of the 
joint probability for A and B under signal alpha, respectively; or alternatively, the prior for B times the 
likelihood for B under alpha, plus the prior for A times the likelihood for A under alpha. Exact Bayesian 
inference yields a posterior probability of .9032 for state A after having observed the signal alpha (and a 
posterior of .0968 for B, since the posterior distribution must sum to 1). This means that after seeing alpha, an 
exact Bayesian organism would have represented A with ~90% confidence, and thus would have survived. 
 
With exact Bayesian inference, one uses the marginal distribution to find the posterior probability. This 
assumes that the organism could sum over the probability of outcomes under both A and B. However, it is 
unclear whether living systems have sufficient computational power to accomplish that (Bogacz, 2017; 
Friston, 2009). For instance, following our numerical example, the signal alpha might have been caused by 
environmental states A,B,C,…, each of which would have an analogue internal state A,B,C represented by the 
organism. Thus, the likelihood modelled by the organism might look like this:  
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Under exact Bayesian inference, all the probabilities in eq. 3, for all states under the observation of interest 
(e.g., alpha) should be summed over. Doing this will often be computationally intractable, as the organism will 
entertain multiple different causal representations (e.g., A,B,C…) for the same observation (e.g., a red 
sensation that might have been caused by a red ‘shoe’, red ‘car’, red ‘traffic light’, red …). This problem 
underwrites what is referred to in the literature on the free-energy principle and predictive processing as the 
black box problem (Clark, 2013), the solipsism problem (Hohwy, 2016), or the seclusion problem (Wiese & 
Metzinger, 2017).  
 
In order to bypass this problem, the FEP models the inference process (e.g., of A or B) performed by organisms 
as approximate Bayesian inference. Approximate Bayesian inference bypasses the direct evaluation of the 
likelihood and the marginal distribution when inferring the posterior probability. Note that in biology, similar 
methods became popular through work in population genetics on the genealogy of DNA sequences (Sunnåker 
et al., 2013; Tavaré et al., 1997). The central claim of the FEP is that changes leading to behavioural and 
(neuro)physiological responses in living systems conform to a form of approximate Bayesian inference known 
as variational Bayes (Beal, 2003; Friston, 2005, 2013; Parr & Friston, 2018).   
 
Now, building on the numerical example above, the following numerical example shows that one can infer the 
posterior probability for A by minimizing free energy; and with the same inference process and the same 
likelihood, one can find a posterior that gives high confidence to B. Given that representing A when observing 
alpha leads to survival, and representing B when observing alpha leads to death, the following numerical 
example will demonstrate that minimizing free-energy is not a sufficient condition for life, as it can lead to the 
exact opposite -- death.  
 
Note that the scope of the following numerical example is deliberately limited. The goal is to demonstrate that 
minimizing free-energy can lead to maladaptive inference when performed with the wrong priors, all things 
being kept fixed. If the priors are allowed to update, the inference should lead to adaptive behaviour. This is 
an important point to which we will come back below. Adaptivity is guaranteed by the extent to which the 
priors match the environmental constraints, more than by the nature of the machinery employed to perform 
the inference (e.g., free-energy minimization or exact Bayes). That being said, the machinery that allows the 
inference will play an important role in allowing priors to match environmental constraints. The following 
example of free-energy minimization is provided in the sole purpose of supporting our response to the 
entailment problem. The goal is to give a formal intuition as to why minimizing free-energy is not sufficient for 
life understood as the preservation of structural integrity. By no means should the following numerical 
example be viewed as an exemplar of the manner in which free-energy minimization operates, 
mathematically. The following numerical example simply illustrates the concepts engaged in this chapter and 
does not provide a complete understanding of the mathematical apparatus of the FEP. Technical readers 
should refer to Buckley et al. (2017) and Bogacz (2017), or Smith et al. (2021). 
 
Free-energy ‘F’ is defined as follows:  
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Eq.4 says that free-energy on the left side of the equation is equal to the (negative) sum of the log ratio of an 
approximation to the posterior for A and B (Q(R)) and the joint probability of those states and signal ‘alpha’ 
(P(R, alpha)), multiplied by the approximate posterior (Q(R)). Minimizing free energy, from the perspective of 
eq. 4, just means finding the approximate posterior Q(R) that will yield the F that is the closest to 0 on the left 
side of the equation. Q(R) corresponds to the proposal, recognition, or approximate posterior density 
sometimes referred to in the literature on the FEP. It is that Q(R) that is embodied by the organisms -- not to 
confuse with the P(R,alpha), which would be the joint distribution, or generative model (Ramstead et al., 2019).  
 
Above, using exact Bayesian inference, we had to divide the joint probability of A and alpha by the marginal 
distribution. Recall that here, we want to remain agnostic concerning the marginal distributions to which we 
do not have access. We can find the posterior under such constraints by asking, ‘what approximate posterior 
Q(R) gives me the least F’? The answer to that question is the approximate posterior Q(R) that will be the 
closest to the true posterior. 
 
We know from exact Bayes that the true posterior probability of A given alpha (P(A | alpha)) is .9032, meaning 
that after observing alpha, our exact Bayesian organism represented state A with ~90% confidence. Now, let’s 
assume that our organism operates under variational Bayes, and that it indeed represented A with the same 
level of confidence. What would have been its free energy? This can be computed as follows:   

 
Eq. 5 tells us that the free-energy of an organism with an approximate posterior equal to the true posterior 
would be .4780; or put another way, minimizing free-energy down to .4780 means representing A with a level 
of confidence of ~90%. Now let’s imagine an organism that would have inferred P(A | alpha) with a probability 
of .0968, which we know is far from the true posterior:  
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Eq. 6 tells us that an organism that would have represented B with ~90% confidence after seeing alpha would 
have had a free-energy of 2.2792, which is higher than .4780. Based on the current scenario (i.e., B when 
receiving alpha leading to death), the organism with the higher free-energy would have died. Hence, one might 
be tempted to agree with the claim that minimizing free-energy is sufficient, if not necessary for survival. 
Indeed, when comparing eqs. 5 and 6, minimizing free-energy – i.e., finding the approximate posterior that 
yields the free-energy closest to 0 – guarantees survival, whereby the opposite guaranteed death.  
 
However, minimizing free-energy leads to survival only under the right conditions, that is, if the organism has 
the right prior beliefs, and the right joint probability, accordingly. Let’s imagine the same scenario, with the 
same likelihood and success conditions, but with inverted prior beliefs. This is conceivable, for instance, if an 
organism inherits maladaptive prior beliefs (Richerson, 2018). Let’s imagine that our organism has inherited a 
maladaptive, inverted prior: 

 
Eq 7. Simply inverts the prior probability we started with in eq.1. and shows the consequence for exact 
Bayesian inference. With the same likelihood, but an inverted prior, an exact Bayesian organism would have 
represented state B with ~.63% confidence after seeing alpha; and thus, would have died. As you might suspect 
it, the same applies to a free-energy minimizing organisms:  
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Eq. 8 tells us that when observing alpha, representing B with ~.63% confidence yields a free-energy of .9676, 
which is closer to 0 than 1.1094. This means that an organism minimizing its free-energy would have 
represented B instead of A when observing alpha. In the current scenario, this is fatal. Hence minimizing free-
energy per se does not entail life; not under the wrong prior. In fact, it can perfectly well entail the exact 
opposite. And so, it should be clear that claims according to which free-energy minimization provide sufficient 
conditions for life should not be interpreted as such. There is no logical consequence that goes from 
minimizing free-energy to life understood as maintaining one’s structural integrity.  
 

 
Figure 1. Right panel.: Visual representation of an organism inferring the cause of the observation that it 
makes. The ensuing beliefs are assumed to complement the external cause of the observation. Here, the 
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organism observes the outcome ‘alpha’, and on the basis of its prior and likelihood (i.e., sensory beliefs) finds 
the posterior value of its beliefs. Given that behaviour is formally equivalent to inference in our simple 
organism, inferring ‘A’ as the right beliefs about the most probable cause of observation means biophysically 
representing ‘A’. There is no action involved in our example. The likelihood and the prior are assumed to ‘map’, 
heuristically, onto the physiology of our organisms – the prior being some sort of storage of knowledge, and 
the likelihood being the sensory belief. In more biologically realistic descriptions of behaviour, which require 
a discussion of active inference, behaviour is the result of a different inference process – that of an action policy 
(under discrete models). This involves more priors, namely, about the transition between hidden states and 
often about preferred sensory outcomes. Action then is distinguished from inferring hidden states. It is about 
inferring another hidden variable, which is the policy. Left panel: The first line represents the organism, 
formally, as a joint distribution obtained by multiplying the prior and the likelihood (which is biophysically 
implemented). This joint distribution can also be viewed as a ‘generative model’, or model of the manner in 
which sensations are caused by external states. Inferring the posterior probability, based on that joint 
distribution or generative model, allows the organism to respond adaptively and to generate for itself the right 
sensation. Indeed, one must distinguish the sensory input (e.g., alpha or beta) from the generated sensation 
by the organism. The second and third lines represent the prior and the likelihood, formally. The fourth line 
represents the possible Bayesian algorithm that could be used. The fifth line presents variational free-energy 
minimization that selects the approximate posterior density (Q(A)). 

2.3 free-energy on a wing and a prior?  
 
Although free-energy minimization is not sufficient for life, the numerical example above suggests that there 
might be an entailment relation that goes the other way around: if you are alive, it might very well because 
you did something like minimizing free energy. That entailment relation is that which corresponds to the weak 
version of the life-free-energy entailment relation. Indeed, in our numerical example (eq. 5 and 6), minimizing 
free-energy led to survival under the right (prior) conditions; and it seems fair to assume that from a Bayesian 
point of view, minimizing free-energy (or performing a similar form of approximate inference) is what 
organisms do. This makes the FEP an interesting epistemic principle for researchers interested in 
development. In a reverse engineering fashion, if we observe a free-energy minimizing organism that is still 
living at the time that we observe it, we can trust that it has good enough priors to remain alive; and if we 
observe that that organism behaves maladaptively, we have good reasons to doubt the viability of its current 
priors. The goodness of priors, of course, rests on the extent to which priors match the sort of challenges the 
organism is currently exposed to (e.g., if you represent ‘B’ when sensing ‘alpha’, you die, and so a good prior 
is a prior that makes you represent A more often than not – has higher credence on A). The consequence of 
this is that one can bring the sufficiency claim back into the game if one assumes that the organism is endowed 
with adaptive prior beliefs.  
 
When equipped with the right prior beliefs (i.e., the priors that represents accurately the states that are 
conducive to survival), one can get closer to the idea that minimizing free-energy may be sufficient for life; i.e., 
that it is all you need to be qualified as living, or as maintaining your structural integrity under the free-energy 
principle. The point here is that the choice of prior, whether under Bayesian or approximate Bayesian regimes 
is the real concern, since the entailment relation between life and the FEP entirely depends on the adaptivity 
of those priors. Assuming that priors are genetically inherited, the entailment relation between the FEP and 
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life will be predicated on evolutionary processes. Interestingly, some have argued that the adaptivity of priors 
can also be guaranteed by free-energy minimization operating at the population level, as a form of natural 
selection (Badcock et al., 2019; Constant, Ramstead, et al., 2018; Friston, 2010, 2013; Friston & Stephan, 2007; 
Hesp et al., 2019; Ramstead et al., 2017; Sella & Hirsh, 2005). To make sense of this, simply imagine that instead 
of modelling an organism with states A and B minimizing free energy, we are modelling a population with 
different genotypic states AA Aa aa, each having a prior probability, and each being more or less likely under 
observable environmental patches. Minimizing free-energy at the population level would allow natural 
selection to converge on the Bayesian gene pool distribution, that is, the approximate posterior distribution 
for genotypes that is the closest to the true posterior distribution under reproductive observations. This means 
that inherited genotypic priors sampled from the approximate posterior distribution at the genotypic level 
should be well tuned to the environmental pressures that have caused the reproductive success (i.e., 
observations). By extension, individuals having received the most probable genotype will have genotypic 
priors that provide the right prior conditions for successful behaviour (e.g., representing A when observing 
alpha).  
 
However, even such a multiscale free-energy minimization rationale does not guarantee that organisms with 
the right inherited priors won’t undergo somatic mutations, or simply neural lesions that would change the 
distribution of inherited priors, therefore biasing free-energy minimization over development towards faulty 
inference, death and the inability to maintain structural integrity.  

3 Future direction: free-energy minimization as a 
historical scientific principle? 
 
The dissolution of the entailment problem puts us in a good position to move on to another related difficulty 
in the philosophical literature on the FEP, which is, this time, of an exegetical kind. If minimizing free-energy 
is not sufficient for life or survival, how should we interpret statements such as “the minimization of free-
energy may be a necessary, if not sufficient, characteristic of evolutionary successful systems” (Friston & 
Stephan, 2007, p.428)?. I conclude with an epistemological remark on the meaning of that statement.  
 
The FEP on its own is a principle, namely, a foundation for reasoning about things (e.g., living things). In this 
chapter, we approached the FEP as such. However, the FEP can also be read more broadly as a research 
program that uses FEP reasoning patterns to generate scientific hypotheses. This involves implementing FEP 
reasoning into a theory called active inference, which is routinely used to study various cognitive functions 
(for a review see Da Costa et al., 2020). As a research program, the FEP can be used to generate statements 
that are normative in the strong sense. Such statements can be tested using scientific standards for hypothesis 
testing (Smith et al., 2020; 2021). 
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As a reasoning pattern, the FEP can be used to generate postdictive statements (cf. Friston et al., 2017)1. 
Accordingly, FEP reasoning might be interpreted as a principle akin to those found in postdictive sciences 
(a.k.a. historical sciences) like geology, palaeontology, archaeology, or any science that deals with 
irreproducible causes (Cleland, 2002). Postdictive scientific statements are concerned with what ‘must have 
been the case’, instead of ‘what will be’ the case. A statement such as “the minimization of free-energy may 
be a necessary, if not sufficient, characteristic of evolutionary successful systems” is probably such a 
postdictive statement. That statement should be interpreted as claiming that free-energy minimization must 
have occurred if a system is evolutionarily successful – not the other way around. Nonetheless, this is an 
interesting statement because if free-energy has occurred, the system in question can be modelled as if it 
possesses the features allowing for free-energy minimization (e.g., a Markov Blanket). One can then start 
inquiring about whether those features help us understand the sort of dynamics implemented by the 
(neuro)physiology of the system, in a predictive fashion (e.g., with the FEP as a research program). Hence, it is 
sometimes said that the FEP, as a foundation for reasoning, is a ‘guide to discovery’ (Ramstead et al., 2017).  
 
According to Cleland (2002), historical scientific methodology enables scientists to generate historical 
hypotheses about the best causal explanation for some observations, based on the accumulation of evidence 
about the causal structure that might have led to those observations (e.g., evidencing the asteroid-impact 
hypothesis of dinosaurs’ extinction using fossil records of asteroid’s impact). In historical sciences, an 
‘investigator’ starts by observing some puzzling traces, or the effects of a cause in the distant or proximal past. 
The investigator then postulates some hypotheses about the cause of the observed effects. Testing a historical 
hypothesis then just means accumulating more traces to evidence one of the competing historical 
hypotheses. These new traces are ‘smoking guns’, which are meant to shift the ‘balance of probability’ towards 
one of the competing hypotheses. A historical hypothesis is defined by the pattern whereby it is evidenced and 
by its ability to account for those smoking guns with a unifying and compelling causal story.  
 
FEP reasoning yields historical hypotheses because it operates a historical evidentiary pattern and provides a 
compelling unifying causal story. It operates a curious evidentiary pattern, though, because it assumes that 
both the investigator and the thing under investigation conform to that evidentiary pattern. That pattern is 
free-energy minimization, per se. For instance, for the organism in our numerical example, the hypotheses 
were A or B. The smoking guns were the sensory observations ‘alpha’ or ‘beta’. The (self)evidencing activity 
whereby the organism ‘tested’ those hypotheses were biophysically realized variational Bayes using the 
sensory observation to evidence the hypotheses about itself (e.g., A; B). Then, as a person who used the free-
energy principle in the numerical example above, the puzzling trace for which I was seeking a causal 
explanation was the survival of the organism. That was my observation. The causal story or hypothesis for that 
observation under the conditions we imposed to our simulated organism was the free-energy principle, the 
inference over which led me to write the chapter you are reading at the moment. That chapter functioned as 
sensory evidence for my hypothesis (e.g., when writing down the number and seeing they were adding up). 

 
1 It is important to note that the FEP includes processes other than free-energy minimisation. It also includes expected free-
energy minimisation (and generalised free-energy minimisation, (Parr & Friston, 2019)). While minimising free-energy 
endows the organism with postdictive inference, minimising expected free-energy endows the organism with predictive 
inference. This is due to the simple reason that the outcomes and states involved in the inference process under expected 
free-energy minimisation are in the future, not the present. Effectively, this means that inferring one’s beliefs about states of 
the world means inferring what will most likely be seen under those beliefs, and under a given sequence of action to be 
engaged (i.e., action policy).  
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And that chapter is the observation that you are using to evidence your hypotheses concerning the claim I set 
at the start of the chapter, namely, that free-energy minimization is not sufficient for life. Fidel to the unifying 
grip of hypotheses in historical sciences, the free-energy principle is meant to account for all of that – you, me 
and the organism under study, in a unifying fashion.  
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Conclusion to chapter 1 
 
The two lessons of chapter 1 are that: (i) free-energy minimization is not sufficient for life, and (ii) that the 
choice of priors (and likelihood) is always at the core of Bayesian theories of cognition, including active 
inference and the free-energy principle. The priors that organisms are endowed with will not always guarantee 
that free-energy minimising behaviour will always be adaptive (in the sense of yielding positive health, 
survival, or reproductive outcomes). This will be the case even if the priors were selected through a process 
also conforming to free-energy minimization (or Bayes’ Rule). This perspective on Bayesian inference leading 
to suboptimal, maladaptive behaviour, or simply the inability to form as a living entity, will be important to 
keep in mind, as this is the starting assumption of the conception of mental disorders that will interest us in 
computational psychiatry: mental disorders result from typical Bayesian inference that leads to maladaptive 
behaviour.  
 
One thing I should stress, which might not have been clear enough from chapter 1, is that free-energy 
minimization is simply meant as a mathematical redescription of behavior2. For instance, in figure 1 of chapter 
1, “expressing A” or “expressing B” just means “minimizing free energy” in a system endowed with the ability 
to express A or B. For that reason, it makes no sense to refer to free-energy minimization as a “condition for” 
life. Positing that free-energy minimization is a condition for life assumes, implicitly, counterfactual scenarios 
wherein one might fail to minimize free-energy and therefore fail to meet the condition for life. One does not 
fail to minimize free energy, any more than one fails to “conform to gravity”, or that water streams fail to 
“conform to Navier-Stokes equations”. Colin Klein in his 2018 treatment of the FEP is right when claiming that: 
 

“to talk about an organisms’ expectations of the world is not to propose that there are specific, concrete 
things which play a causal role in driving behavior. Rather, talk about minimization of free-energy and 
an organisms’ expectations is meant to be something like a description of how whole organisms behave 
… the point is not to describe mechanisms but rather the overall dynamic of a system.” (Klein, 2018, 
p.2251). 

 
Klein is equally right in claiming that the free-energy principle is not a satisfying explanation of life and 
behavior. “Appeal to apparent tautologies should trouble you. For whatever tautologies do, they don’t explain 
why things happen. At best, they give us reason to believe that something is the case” (Klein, 2018, 2252). The 
free-energy principle gives us a good reason to believe that something is the case; that “something” being 
living things like us. As I argued in chapter 1, implementations of the free-energy principle under the theory of 
active inference – which is the modelling approach used in chapters 3 and 4 – are really what do the 
explanatory work. Klein is right again when saying that:  
 

“it is worth keeping in mind that FEP is a starting point from which one might develop explanations, and 
that its defense would ultimately rest on the empirical adequacy of detailed models which spring from it. 
Simplicity does not count in its favor, for FEP is simple in the way that friction-free planes and infinite 
populations of bunnies are simple: that is, a deliberate simplification, which buys scientific fruitfulness at 
the cost of literal truth.” (Klein, 2018, p.2553). 

 
2 Some authors take FEP to be empty of empirical content (Andrew, 2022). 
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The free-energy principle is indeed not concerned with the literal truth. It is after truth, “within the realm of 
reason”3. The free-energy principle is not meant to tell us what is “good” and “bad” for organisms, or what 
they “should” be doing to remain alive; hence, Klein is – this time, almost -- right when saying that: 
 

“minimizing free-energy cannot be necessary for survival either. I think this fact is often obscured by the 
contrast cases authors choose when they explicate FEP: the options are either being happy and healthy 
or else hurtling towards the bottom of the sea. But there is a large grey area between the two: life mostly 
requires getting by well enough, most of the time. Yet FEP places an austere set of constraints on 
organisms: they must minimize free energy, and so resist change, in some way that approximates 
optimality. We know humans aren’t optimal, though. We can’t be. We die.” (Klein, 2018, p. 2252). 

 
The FEP places no constraints on organisms. Again, it is not an attempt at prescribing conditions for anything. 
Klein explained it beautifully himself. The FEP is just a tautology that is there to convince you that certain 
things are the case. Because that tautology comes with a mathematical formalism, it also tells you where you 
might want to start your inquiry if you want to develop mechanistic accounts of behavior that are consistent 
with that tautology. I understand that many philosophers have given the impression that under the FEP, 
organisms “must minimize free energy, and so resist change, in some way that approximates optimality”. But 
this is wrong. Rather, under the FEP, it “must be the case that organisms minimized their free-energy if they 
resisted change — or rather underwent changes consistent with their life history — from t-1 to t (i.e., if we can still 
observe them). However, nothing guarantees that minimizing free-energy will lead to life and survival at t+1. 
Minimizing free-energy cannot be a sufficient condition for survival or for life. However, minimizing free-energy 
will be a necessary condition of life and survival. That is, it is not because one minimizes free-energy that one 
will survive and live. Again, if that were to be the case, one would live forever. Rather, the claim of the FEP is 
that whatever happens next will have been driven by free-energy minimization. Once convinced that this may 
be true “within the realm of reason”, one can start confidently leveraging the free-energy principle to develop 
computational models such as those of active inference. In the next chapter, I look at how one may apply the 
free-energy principle to non-living systems, hoping to convince the reader that models derived from the FEP 
can also be meaningfully applied to modelling environmental components.  

 
3This is a good time to revisit the introductory quote. I view the “truth within the realm of reason”, in reference to Nietzsche, as 
distinct from the “literal truth”, in the sense that it is not about what things are, or about how they work, but rather about one’s 
own conviction about whether things are or work. Truth within the realm of reason obtains when uncertainty over one’s 
credence about things is brought to a minimum. This is what happens when thinking about tautologies. Tautologies are true 
in the sense that we cannot conceive of them being false, even though this may mean that, nor can they ever be literally true.  
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Chapter 2: Extended active 
inference: Constructing 
predictive cognition beyond 
skulls 
Introduction to chapter 2 
 
Chapter 2 is titled “Extended active inference: Constructing predictive cognition beyond skulls”. Explicitly, 
chapter 2 is an attempt at providing a computational understanding of extended cognition, such as originally 
developed by Andy Clark and David Chalmer in "The Extended Mind" (Clark & Chalmers, 1998). To do so, we 
employ active inference and the free-energy principle to describe the processes whereby cognitive extensions 
are constructed over developmental and evolutionary time. We leverage views in cognitive niche theory, 
which studies the organism's niche as providing the organism with ‘instrumental intelligence’ (i.e., the ability 
to create and maintain cause–effect models encoded in the layout of the niche, which guide fitness influencing 
behaviour). In line with extended mind theory, we propose that cognitive extensions are predicted and 
predictable states of the niche, which support the performance of certain cognitive tasks.  
 
From the point of view of active inference and the free-energy principle, this brings niche construction on a 
par with standard cognitive functions like action, perception and learning, which are all geared towards the 
optimization of the organism’s generative model, allowing the performance of cognitive tasks. This chapter 
thus argues that cognitive niche construction can be studied as a cognitive function and that cognitive niche 
construction can be viewed as a process of constructing, optimizing, and leveraging cognitive extensions, 
which are the result of ‘uploading’ some cognitive aspects of functions to the environment, to create a 
“coalition” between world and brain.  Uploading is the process that characterizes what we have termed 
extended active inference. As I discuss in chapter 2, uploading is a stronger version of what is known as 
cognitive “off-loading” in the theory of the extended mind. The concept of “uploading”, as the term suggests, 
implies that the uploaded cognitive function is effectively installed in the environment, which involves 
creating a new function taken onboard by the environment, and that can be leveraged by the agent to perform 
cognitive tasks otherwise difficult if not impossible to accomplish.   
 
 
Chapter 2 offers a formal and conceptual model of how the material environment comes to encode prior 
beliefs about organisms through cognitive uploading, and how those beliefs extend into the material 
environment and support cognitive functions. Crucially, the claim here is that organisms will become 
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dependent on these functions over evolutionary time, as they will provide survival and fitness advantages 
shaping future generations. In Chapter 4, the model of symptoms of depression and intervention we propose 
is based on this modelling strategy.  

1 Introduction  
 
This chapter reviews generic predictive approaches to niche construction to propose a specific model of 
cognitive niche construction under active inference. We clarify the mechanics of some important components 
of the cognitive niche that have yet to be addressed under active inference; namely, the functional and 
psychological components. We then argue for a view of extended active inference (henceforth, EAI) based on 
our model of cognitive niche construction. This introduction provides a definition of the key concepts we refer 
to in this chapter and outline of the proposed argument. 

1.1 Concepts 

1.1.1 The cognitive niche  
In cognitive science, cognitive niche construction can be viewed as a form of instrumental intelligence 
whereby organisms “create and maintain cause–effect models of the world as guides for prejudging which 
courses of action will lead to which results” (DeVore & Tooby, 1987, p. 2010). For instance, juvenile Capuchin 
monkeys zero in on stones proper to nut-cracking activity by relying on traces left behind by experienced 
Capuchins. Residues are left on sites where successful nut-cracking activity took place, which indicates to 
newcomers that stones found on those sites are suitable for nut-cracking (Fragaszy, 2011). Traces, stones, and 
dispositions to social learning here form the ingredients of the cognitive niche as a cause-effect model.  
 
The concept of the cognitive niche employed in cognitive science refers to the concept of the developmental, 
“ontogenetic niche” (West & King, 1987). The concept of the developmental niche asks a set of questions 
different from that of the selective niche (Stotz, 2017); it asks a question about “not what’s inside the genes 
you inherited, but what the genes you inherited are inside of” (Stotz, 2010, p.1). This set of questions is 
especially interesting to study the epigenetic and behavioural sources of variations upon which selection can 
act. In turn, the concept of the selective niche is well suited to study the manner in which selection pressures 
are transformed by organisms. In evolutionary biology, the cognitive aspect of the cognitive niche refers to the 
effects of the developmental niche on variations that relate to cognitive functions (Stotz, 2010).  
 
The concept of the cognitive niche we refer to here is a sort of hybrid between the concepts of the selective, 
developmental and cognitive niches. However, even though we rely on these parallels to make our argument, 
a detailed analysis of these is beyond the scope of this chapter. The set of questions that fall within our scope 
relate to the computational function of cognitive extensions, and the (developmental and intergenerational) 
process whereby this computational function emerges. For instance, from an evolutionary point of view, the 
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concept of the cognitive niche that interests us will focus on the evolution of cognitive extensions per se (in a 
manner akin to cumulative cultural evolution (Mesoudi & Thornton, 2018)). 
 
The niche we consider here is made of niche construction outcomes directly relevant to an organism’s 
activity—for example, extended phenotypes having fitness enhancing impacts (Dawkins, 1982) and “external 
niche inheritance” such as energetic and informational resources (Odling-Smee, 2007). External inheritance 
can secure the reproduction of organisms’ life cycle over developmental time—for example, for beaver kits—
while causing ecological cascades for other species receiving that inheritance (e.g.,  through modified 
communities). We do not include in the cognitive niche outcomes and ecoevolutionary feedback that drive 
evolution by either negatively impacting development (e.g., “negative” niche construction outcomes like 
feces), or by being “ecological cascades” that can force the exploration of the adaptive landscape (Odling-
Smee, Laland, & Feldman, 2003).  
 
The cognitive niche is sometimes studied as a psychological habitat, and sometimes as a functional habitat 
(cf., Bertolotti & Magnani, 2017). The psychological habitat refers to the set of organisms-niche relations that 
offer organisms relevant action (and perception) possibilities, also known as affordances (Gibson, 1979). The 
functional habitat is the set of resources that support species-specific tasks (e.g., foraging, or language and 
communication in humans (Clark, 2006; Whiten & Erdal, 2012)). This means that one must define the functional 
habitat on the background of the organism’s phenotypic dispositions; for example, books are part of the 
functional habitats of humans because of humans’ ability to read, but they are not part of the beavers’ 
functional habitat. The psychological and functional habitats can be part of the same overall physical habitat. 
They simply differ in terms of their explanatory scope. The former explains psychological aspects of the 
organism’s experience, such as perception, whereas the latter explains how the organism will rely on the niche 
to perform some task (e.g., foraging).  

1.1.2 Active inference 
 
Contemporary “predictive” theories of cognition include well-known theories such as predictive coding (Rao 
& Ballard, 1999), the Bayesian brain (Knill & Pouget, 2004), predictive processing (Clark, 2013) and the 
predictive mind (Hohwy, 2013), ecological enactivism (Bruineberg, Kiverstein, & Rietveld, 2016), and active 
inference. Active inference, in particular, is commonly used to account for cognitive phenomena such as 
action, decision-making, and environmental navigation (Kaplan & Friston, 2018).  
 
Active inference assumes that an organism must entertain minimally uncertain “causal” models—that can 
generate effects from their causes—of the probabilistic relation between relevant types of events. Uncertainty 
is an information-theoretic notion that relates to Shannon information. Shannon or self-information can be 
quantified by measures such as surprise and entropy. Surprisal  is a measure of unlikeliness that a 

random variable  takes a value , given a model m of how  was generated; that is, . In 

turn, entropy  is the expected or weighted average of surprise over time. Crucially, the negative of 

surprise is also known as log model evidence or marginal likelihood . This means that minimizing 

surprisal (i.e., self-information) corresponds to maximizing model evidence; which has been referred to as self-

ℑ(x)

X x X ℑ= − lnP(x |m)

S = E[ℑ(x)]

lnP(x |m)
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evidencing (Hohwy, 2016). Self-evidencing over time also means minimizing uncertainty or entropy. For 
instance, an equal probability such as .5 and .5 of observing an outcome (e.g., before any 

observation (e.g., before flipping a coin) entails a state of full uncertainty (or maximum entropy). The 
observation of an occurrence (e.g., after having flipped the coin) entails a full disambiguation or maximum 
information gain. Put another way, one defines the information gained after observing an outcome in terms 
of the amount of uncertainty that is resolved. Hence, a shorthand for the notion of self-evidencing is 
uncertainty reduction. From the standpoint of a physicist, the resolution of uncertainty corresponds to the 
tendency of lifelike systems to resist the second law of thermodynamics—or strictly speaking, the fluctuation 
theorems that apply to open systems—by placing an upper bound on their entropy or disorder.  
 
According to active inference, to survive and reproduce when facing environmental stressors, organisms must 
entertain minimally uncertain models of the relation between sensory inputs they receive (e.g., “scent”) and 
the possible environmental causes having generated these inputs (e.g., “predator”; or “mating partner”). 
Organisms must also model the probability of transitions among causes in the world (e.g., “predator 
approaching”) relative to possible actions their physiology permits (e.g., “I can fly”; and “I can’t swim”). In line 
with models of Bayes optimal foraging (Okasha, 2013), minimizing uncertainty in such causal, predictive, or 
generative models involves updating probabilistic mappings or Bayesian beliefs (a.k.a., learning and 
perceptual inference), and selectively sampling sensory inputs expected under these beliefs (a.k.a., action).  

1.1.3 The extended mind  
 
The extended mind approach to cognition (Clark & Chalmers, 1998) claims that cognitive processes can be 
offloaded to (i.e., reallocated to), or extended through (i.e., transformed into) components that reach beyond 
the system’s internal states (e.g., brain states). The notion of offloading refers to the use of physical action and 
artefacts to manage the cognitive demand of information processing (for a review see Risko & Gilbert, 2016). 
Extended mind theorists suggest that the realization base of some cognitive processes (i.e., states that realize 
a given cognitive process) come to include reliable, accessible external states of the niche (e.g., the cellphone 
that functions as extended memory for recalling phone numbers (for a review see Kirchhoff & Kiverstein, 2019).  

1.2 Outline  

1.2.1 Current limitations 
 
Some have drawn links between the cognitive niche construction perspective and the notion of uncertainty 
minimization in active inference and implicit self-evidencing. For instance, simulation studies have shown that 
by changing the material layout of the niche in a way that mirrors the causal models of the organism, 
organisms shape their sensory array in a way that is congruent with learned generative models, which entails 
more efficient reduction of uncertainty over development (Bruineberg, Rietveld, Parr, van Maanen, & Friston, 
2018). 

X ={head;tail}
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The mirroring, or synchronization that obtains between organisms and their niche has various feedback 
consequences over evolutionary time. For instance, some proposed that organisms can install in the niche 
cues that invite action with high epistemic value. Epistemic value relates to the ability of an action to resolve 
uncertainty—through the selection of actions that solicit the right sort of sensations for resolving ambiguity 
(e.g., looking under the streetlight or reading an instruction manual, Friston, Rigoli et al., 2015). Through 
external niche inheritance, salient cues with high epistemic value can be passed on as ecological legacies to 
guide the epistemic foraging of future generations (Constant, Bervoets, Hens, & Van de Cruys, 2018). 
 
The process whereby organisms install epistemic cues in their environment provides a suitable mechanistic 
account of the notion of instrumental intelligence in cognitive niche theory. However, the mechanics of the 
functional and psychological dimensions of the cognitive niche remain unexplored in the literature on 
predictive processing approaches to cognitive niche construction (for interesting discussions of related 
functions see Bruineberg & Rietveld, 2014; Clark, 2013; Fabry, 2017; Ramstead, Veissière, & Kirmayer, 2016).  

1.2.2 The argument 
 
In Section 2, we unpack the functional and psychological dimensions of the cognitive niche under active 
inference. We argue that the cognitive niche—understood as an externally realized cause-effects model—can 
be modelled as a form of externally realized “shared” generative model that is leveraged and optimized by 
organisms to perform action related adaptive cognitive functions (e.g., decision-making, navigation, foraging). 
The optimization and leveraging of this shared generative model, through action and perception, is what we 
call extended active inference (henceforth EAI).  
 
We argue that one can study cognitive niche construction under EAI as a bona fide cognitive function in the 
game of uncertainty minimization, alongside standard functions studied by active inference, such as active 
sensing and learning. Formally, cognitive niche construction thus construed is geared towards uncertainty 
minimization, thereby qualifying as a cognitive function under active inference. The functional and 
psychological aspects of the cognitive niche directly follow from our formalization of EAI (see Figure 2). We 
conclude Section 2 by presenting two case studies that illustrate the view of cognitive niche construction as a 
cognitive function.  
 
In Section 3, we explain the relation between EAI, the original approach to the extended mind (Clark & 
Chalmers, 1998) and the diachronic approach (Kirchhoff, 2012, 2015). When viewed as a cognitive function, 
cognitive niche construction under active inference allows an epistemological extension of the boundaries of 
cognition (cf., Kirchhoff & Kiverstein, 2019). Building on Section 2, we argue that the coalition between brain(s) 
and world that obtains through cognitive niche construction—operate through a process of cognitive 
uploading (Constant, Ramstead et al., 2018). Cognitive uploading is akin to the notion of cognitive offloading 
in the original theory of the extended mind (Clark & Chalmers, 1998).  
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In contrast to the traditional notion of offloading, the notion of uploading refers to the (i) creation of novel 
cognitive functions (ii) that are taken on board by the cognitive niche per se; not merely managed by the niche. 
The uploaded cognitive functions, in contrast to off-loaded ones cannot immediately be reintegrated to skull-
bound processes only. This is so because, as we will see, uploaded cognitive processes become “glued” to the 
organism over developmental and evolutionary time. A function is “offloaded” when individual agents re-
structure their worlds so as to minimize internal processing costs and/or increase reliability. A function is 
uploaded when social and technological change means it is now taken care of by the niche rather than the 
individual. For example, most agents now store their phone numbers using smartphones rather than bio-
memory. So, the whole “number storage” function (unlike the whole “remember X” function) has been 
assimilated into the niche. The niche into which the function has been uploaded can then be passed on to 
future generations for them to leverage, share and finesse that function.  

The original notion of the extended mind applied, in principle, to both these kinds of cases. But the distinction 
is formally helpful and speaks to different webs of agent-world dynamics that evolve and alter on different 
spatiotemporal scales; the notion of offloading speaking to time scales spanning individual-level dynamics 
unfolding over real time and (neuro)developmental time scales, and the notion of uploading speaking to 
individual and group-level dynamics unfolding over developmental and intergenerational time scales. 
Uploading is a stronger species of offloading. EAI formalizes these dynamics as emergent properties of 
cognitive niche construction. Novel cognitive functions produced through cognitive uploading can result from 
gene-culture coevolutionary dynamics that “glue” organisms to those functions performed by the “trusted” 
niche. Uploading under EAI emphasizes the trade-off, over evolutionary and developmental time, of the 
deployment of on-board (neuro)biological functions for on-board (socio)environmental ones, thereby 
allowing metabolically efficient, though niche bound adaptive behaviour that may be favoured by selection.  
 
Crucially, cognitive uploading endows external states of the cognitive niche with the ability to track 
regularities otherwise impossible to track, because they are often too complex to be learned by individual 
organisms. We frame affordances as uploaded proxies that track those complex causal regularities.4 Thus, 
consistent with the theory of diachronic cognition (Kirchhoff, 2015), the notion of uploading can further be 
viewed as the process whereby agents produce cognitive extensions that gain independence from the specific 
individuals having produced them. Uploading differs from offloading in that the uploaded cognitive task 
comes to be shared by other agents. This allows the production of non-individual specific cognitive extension 
affording action tracking more complex regularities.  

2 The functional and psychological niches under active 
inference 
 

 
4 Note that here we are concerned with a Gibsonian notion of affordances understood as action possibility directly 
perceivable in the environment. For a discussion of niche construction and pragmatic and epistemic affordances relative to 
mental representation of action—for example Cisek (2007) and Friston et al. (2012)—see Linson, Clark, Ramamoorthy, and 
Friston (2018). 
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Active inference explains perception and learning as processes that conform to an optimization process 
known as variational inference (Beal, 2003) The motivation for modelling uncertainty minimization in terms of 
variational inference relates to the sort of perceptual, or rather, inferential challenges faced by living systems 
such as humans. We have no direct access to the causes of our sensations, nor is there a one-to-one mapping 
between causes and sensations (Clark, 2013; Hohwy, 2016; Wiese & Metzinger, 2017); for example,  a red 
sensation might be generated by a red traffic light, a red car, or a red jacket. These kinds of ill-posed inference 
problems can only be solved by appealing to prior beliefs or experience to resolve ambiguity or uncertainty; 
hence, the appeal to schemes such as approximate Bayesian, or variational inference. 
 
Variational inference is a ubiquitous mathematical description of (Bayesian) belief updating that describes the 
formation of perceptual hypotheses that explain our sensations. Variational inference rests on a probabilistic 
generative model. A generative model is a probabilistic statement about a set of unobserved (hidden) 
variables (i.e., causes) and observed sensations (i.e., consequences), which represents an organism’s 
predictive, or causal model of the world. A generative model is usually expressed in terms of a likelihood and 
a prior term:  
 

          (1) 

 
The likelihood corresponds to the probability of sensations  (e.g.,  “dry”, or “wet”) given priors about the 
state of the world  (e.g.,  “inside a burrow”, or “outside a burrow”). The prior corresponds to the probability 

of conditions, or causes, generating the sensation (e.g., “being in or out of a burrow”), before making a sensory 
observation. Using variational inference, one can invert the likelihood in equation (1) to approximate the 
posterior probability of causes  once a sensation has been sampled. This involves the minimization of 

a bound on the unexpectedness of sensations (a.k.a., surprise)—called free energy—with respect to the 
approximate posterior, known as variational density. This density is associated with (i.e., assumed to be 
encoded by) internal (e.g., brain) states  of the organism: 

 

       (2) 

 
In equation (2), the variational density becomes a posterior belief’ about the causes of sensations (e.g., “was I 
in a burrow or outside a burrow , given sensations of wetness ”). This inverse mapping—from causes to 

effects—corresponds to inferring the causes of sensations. In variational inference, approximating the true 
posterior can be described in terms of minimizing the free-energy functional : 

 
         (3) 
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In equation (3), this minimization has two consequences: (i) The functional becomes a tight upper bound on 
the unexpectedness of sensations (a.k.a., surprise); (ii) the minimization renders the variational posterior a 
good approximation to the true posterior. This follows because a Kullback-Leibler divergence  is always 
non-negative. This means, , with equality when the divergence has been eliminated

. Formally, variational inference converts an inference problem into an 

optimization problem as articulated by equation (3) (see Figure 1 for a summary).  
 
Assuming that the organism’s brain embodies the variational density, variational updates5 ensure brain states 
encode a posterior belief about the true distribution of sensory causes and contingencies in the world, and—
by the same token—the organism learns Bayes optimal priors about cause-sensation relationships. This is 
usually associated with experience-dependent plasticity (Friston, 2010). Hence, taken together, the dynamics 
described in equation (2) explain perception and learning as an optimization process, in which expectations 
about hidden states of the world and their relationships to each other (and sensations) are minimized with 
respect to free energy.  
 
This optimization unfolds over several timescales. Neurophysiological states that underwrite inference 
change quickly (on a timescale of milliseconds). Neuronal connections that learn contingencies change over 
minutes to hours, via experience-dependent plasticity. Finally, the functional architectures that entail the 
generative model change over a neurodevelopmental timescale of months to years, as the phenotype 
becomes a sufficiently good model of its (encultured) cognitive niche (compared with the good regulator 
theorem (Conant & Ashby, 1970)).  
 
Finally, in active inference, organisms are viewed as possessing priors about expected or preferred outcomes 
of action. This simply means that actions are selected if they bring about expected outcomes, while being 
geared towards minimizing expected surprise (i.e., uncertainty) about the future (Friston et al., 2014). Hence, 
in active inference, motor (and autonomic) functions work hand-in-hand with a perceptual inference to 
resolve uncertainty through the active sampling of salient, uncertainty reducing sensations, while allowing for 
preferred, unsurprising outcomes (green box, Figure 1). 

 
5 Variational updates are a ubiquitous form of Bayesian belief updating. In this paper, “beliefs” are used in the sense of belief 
updating and belief propagation; namely, non-propositional probability densities. 

D
F(s,µ) ≥ − ln p(s)

F = − ln p(s)⇒ D = 0⇒ qµ (η) = p(η | s)
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Figure 1 Action, perception, and learning under active inference. 
 
The basic formalism corresponds to optimizing a free-energy functional of sensations and expectations 
encoding beliefs about hidden states of the world . This functional can be expressed as energy minus 

entropy—by analogy to free-energy in statistical physics. Various rearrangements of the free-energy functional 
can be used to formalize various cognitive phenomena; namely, action in the green box (triangle indicator), 
and perception in the purple box (star indicator). Upper panel: Sensations  and action  are the quantities 
that couple internal states’  to external, hidden states in the environment . The  operator refers 

to variational updates—for an introduction to variational inference in relation to other inference schemes (e.g., 
expectation maximization) algorithms (Beal, 2003). External states are described in terms of equation of 
motion that include random fluctuations . Purple box: Perception optimizes internal states. The 
mathematical formulation of free-energy corresponds to equation (3) in the text. Green box: Action minimizes 
the free-energy bound by increasing the accuracy of sensations; for example, by selectively sampling expected 
sensations. Note that action does not consider posterior beliefs in the Kullback-Leibler divergence. This 
reflects the fact that action can only change free-energy by changing sensory inputs. When choosing among 
different actions, the free-energy is minimized with respect to “counterfactual” outcomes by taking the 
expectation of free energy, under future outcomes, given the action being evaluated. In this instance, 
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maximizing expected accuracy is equivalent to minimizing ambiguity. Similarly, minimizing expected 
complexity minimizes risk; defined as the divergence between predicted and preferred outcomes. 

2.1 The cognitive niche  
Changes in brain states and functional architectures optimize organisms generative (i.e., causal) model of the 
causal structure of their cognitive niche. Interestingly, one can use the variational formalism to model and 
study changes in an environment, or external states, in the same way one does for experience dependent 
learning in the brain (Bruineberg et al., 2018; Constant et al., 2018). We now show how this formal symmetry 
yields a view of cognitive niche construction as a form of environmental “learning” about the organisms 
hosted by the environment. On this view, organisms effectively “teach” the environment what actions they 
should expect (i.e., construct externally realized causal models of the effects of action—where action, from the 
point of view of the environment now becomes a sensory datum).  

The environment is the generative process that is modelled by the generative model entailed by the 
phenotype. However, in virtue of the mathematical symmetry imposed by a Markov blanket (that separates 
internal and external states) (see Friston, 2013; Ramstead, Badcock, & Friston, 2018; Clark, 2017; Kirchhoff, 
Parr, et al., 2018), the environment can also be construed as a generative model of its denizens, who now 
becomes the processes generating outcomes for the environment. In other words, the external or 
environmental states play the dual role of generating outcomes for organisms, while also encoding 
probabilistic “beliefs” about organismal processes. We will see that one can treat the environment as inferring 
the cause of the “sensations” it receives from being acted upon by its denizens.  

We do not claim that the formal symmetry between brain and niche dynamics entails a symmetry in construal. 
Rather, we employ the notion of symmetry epistemically, as a modelling “analogue” (cf., Figdor, 2018) to make 
sense of niche dynamics as learning dynamics under active inference. The notion of symmetry is merely an 
assumption that allows us to write the formal model (Figure 2) presented in this section. The added value of 
our model, as it pertains to this chapter, is to provide a mechanistic basis for the psychological and functional 
aspects of the cognitive niche. The model on offer is readily implementable in silico simulations of active 
inference, thereby yielding potential novel avenues for empirical research on cognitive niche construction and 
extended cognitive science. 

Formally, what counts as a sensation in the environment are the physical actions of organisms. Then, causes 
of sensations can be modelled as the priors of the organism having given rise to action (i.e., niche sensations) 
(Ramstead, Constant, et al., 2019). Just as for the photon that hits the retina—thereby generating a sensory 
input leading to Hebbian learning in the brain—one can model the action of the organism encoding traces of 
behavioural regularities in the environment. What counts as Bayesian priors in the environment are the 
probability mappings between action and the organism’s prior about action (Figure 2). Effectively, this closes 
a circle of causality; in which the niche and phenotypes are trying to learn about each other to minimize their 
joint free-energy or surprise. An inevitable consequence of this is that the niche and its incumbents become 
mutually predictable—in both directions of fit—so that the joint niche-phenotype system can be regarded as 
jointly self-evidencing. 
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Take for instance the phenomenon of desire paths. Pedestrians often leave traces in parks as they cut through 
the grass on their commute. Over time, these traces might become deeper, thereby telling newcomers this 
trail is likely to lead to outcomes preferred by the people having carved the paths; namely, people like me, 
who prefer or predict the same sorts of things. In so doing, desire paths encode mappings between possible 
actions and outcomes (e.g., “if I follow this path, I will find the café”). These mappings can have different 
degrees of reliability. At first, they may be ambiguous, as multiple shallow traces may encode different 
alternative action-outcome mappings of equal prior probability  (e.g., “this path may take me to the 

café”). As a path becomes more salient, it will further attract pedestrians who desire to cut through the park 
to reach the café, which will further consolidate the trail. Over time, assuming that people indeed find the café, 
the path will encode traces reducing uncertainty about the way to the café.  
 
By analogy to perception and learning in equation (2), one can formalize cognitive niche construction as a 
minimization of free-energy from the point of view of the niche (see also Figure 2): 
 

       (4) 

 
Equation (4) has the same form as equation (2), but with internal (sensory) and external (active) states 

switched around. This means that the variational density  is taken under the external states , not 

internal states of the organism , and surprise is relative to organisms’ actions. Equation (4) shows that 

casting changes in environmental states as self-evidencing makes the variational density—encoded by the 
states of the niche—a good approximation to the posterior probability over the internal states of its organisms, 
having observed their actions. Put another way, under this extended form of self-evidencing, the material 
layout of the niche will look as if it “learns” about organismal “beliefs” causing preferred action, in the same 
way as organisms’ learn about environmental causes generating sensations.  
 
Clearly, we are not limiting this interpretation to desire paths; in principle, any aspect of the niche can be 
subject to this interpretation—including cognitive, cultural and any other deontic states of the world, that is, 
states that tell an agent what action to select (Constant, Ramstead, Veissière, & Friston, 2019). Language itself 
may be considered as a kind of meta-level niche construction—a tool that allows the rapid emergence and 
adaptation of locally relevant niches (Lupyan and Clark, 2015)—as when someone says “the café” is under the 
awning across the street.  
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Figure 2 Cognitive niche construction and extended active inference. 
 
As in Figure 1, internal states and action change to minimize free-energy based on sensations and internal 
states. Coincidentally, antisymmetric processes unfold in the niche. The key point in the figure is that all the 
quantities in the purple box that describe internal dynamics are inverted in the beige box—describing niche 
(i.e., external) dynamics. From the point of view of the niche, the action of the organism  is a “sensation”, 
sensations of the organism are “actions”, and internal states of the organism  are “external states”. Beige 

box (square indicator): Cognitive niche construction as environmental “teaching” makes the environment 
free-energy a bound on environmental surprise. Environmental surprise here is the unexpectedness of an 
organism’s action—or the negative log probability of encountering a particular action. This can be read as a 
mathematical description of affordance. In bounding surprise, the variational density of the environment ends 
up reflecting the most probable states of the organism, given that organism’s behaviour. The expression in the 
beige box is reproduced in equation (4). 

2.2 The psychological niche  
 
As mentioned in the introduction, proponents of the psychological niche view the niche as a set of affordances 
(Rietveld & Kiverstein, 2014). In our model, the niche’s free-energy bounds the surprisal of an organisms’ 
action, and therefore can be viewed as an evidence bound on the probability of an observed action, averaging 
over an organisms’ priors and preferences.6 As expressed in equation (4), changes in the physical states of the 
niche (e.g., the production of niche construction outcomes) will optimize a bound on the surprisal of 

 
6 Mathematically, model evidence is also known as a marginal likelihood. This is because the evidence involves an averaging 
or marginalisation over the causes of some data; here, the datum is the action of an organism that is sensed by the niche. 
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organisms’ action, which corresponds to the (negative) affordance of an action on the environment. By 
analogy with the creature-centric formulation of free energy, affordance just is the (log) evidence provided by 
an action for the niche’s generative model of the active creatures it is trying to learn about.  
 
Modelling the dynamics of a niche with the formalism in equation (4) allows us to derive a formal notion of 
affordances that is built into the variational formalism. Our formal interpretation supports the view according 
to which affordances are organism-specific action probabilities (Bruineberg & Rietveld, 2014; Tschacher & 
Haken, 2007) whose gradients drive niche construction, via a joint (i.e., extended) minimization of variational 
free energies. Importantly, our model clarifies the manner in which the concept of affordance may be 
implemented in in silico simulation studies and empirical research under active inference, as it makes this 
notion readily implementable with the freely available simulation routines employed in active inference 
research (see the various DEMOs of the Statistical Parametric Mapping 12, MATLAB toolbox at, 
fil.ion.ucl.ac.uk/spm/software/spm12/). Artificial data acquired from in silico simulations of affordance 
production and leveraging could then be compared with empirical data (cf., Mirza et al., 2019; Cullen et al., 
2018) to test hypotheses about EAI as an emergent property of cognitive niche construction under active 
inference (e.g., in a foraging or navigation task). 
 
The notion of extended active inference or self-evidencing reflects the extensive aspect of free energy; namely, 
the free-energy of two systems (i.e., organism and niche) is just the sum of their respective free energies, 
conditioned upon the (i.e., sensory and active) states they share (Bruineberg et al., 2018). The psychological 
niche can thus be viewed as a state space of invitations to act, with peaks and valleys that correspond to the 
most and least probable (and thereby adaptive) actions given the priors and phenotypic preferences of 
organisms “like me” having constructed the niche in first place.  

2.3 The functional niche 
 
Active inference assumes that cognitive functions are in the game of optimizing an organism’s generative 
model about the cause of its sensations. This amounts to minimizing free-energy or maximizing model 
evidence through variational updates (i.e., perception—purple box Figure 1), and to the selective sampling of 
expected sensory information (i.e., action—green box Figure 1). We now argue that cognitive niche 
construction (beige—box Figure 2) can be framed as a cognitive process, as construed by active inference, that 
optimizes an organism’s generative model vicariously as part of an extended process of self-organization or 
self-evidencing. Niche and organisms can be meaningfully studied as trying to optimize their respective 
models of each other.7  

 
7 It might be argued that as this process unfolds, brains really do (due to their telos) alter so as to fit the world but that it 
merely appears as if the world alters so as to fit the brain. If I press my punch into the wax, it may seem odd to depict the wax 
as actively modelling my punch. However, if I consider the wax in relation to my hand, my hand in relation to the letter, the 
letter in relation to the mailman, the mailman in relation to the postal service, and the postal service in relation to my friend to 
whom my sealed letter is destined—all of which, just like the wax, are external states to my brain, attributing to that entire 
ecology the ability to engage in something like active modelling—as well as a deep hierarchical structure—starts to become 
more tenable (Ramstead et al., 2019). The point here is that neither of the internal or external (sub)components of the brain-
wax system exist in isolation. “Oddness” arises when considering the wax as isolated from its embedding, just like oddness 
would arise from considering the motility of a single dendrite in isolation from the rest of its neural ecology. We do not have 
more space to elaborate on this argument. All that matters for our current purposes is the availability of an essentially 
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The take-home message of Section 2  is illustrated in Figure 2; namely, one can study the niche as the 
organism’s generative process, or a generative model of the organism—in the sense of DeVore and Tooby 
(1987, p. 2010)—that implicitly learns about organismal priors and preferred behaviour. This explains why 
resources encoded by acting on the functional niche come to cue or afford adaptive action. As argued above, 
resources in the cognitive niche cue actions that were selected by conspecifics in the past. Once learned, 
cues—conveyed as affordances—gear the organism towards selecting actions that will tend to be adaptive 
(more often than not), relative to the task that entailed the carving of the niche in first place. Task specific, 
adaptive actions thus just are actions that bring about sensory information that are expected under the sort 
of priors and preferences that constitute the phenotype of organisms “like me” (Constant, Ramstead, et al., 
2018; Friston, 2010).  

2.4 Case study  
 
In this subsection we unpack the view of cognitive niche construction as a cognitive function through a well-
known case study in niche construction theory: The phylogeny of freshwater kidneys in common earthworms 
(Lumbricus terrestris). We take this case study as an illustration of the way earthworms optimize their 
generative model by encoding reliable cause-effect relationships in their environment. We then provide some 
examples of the effect of cognitive niche construction as a cognitive function in humans by focusing on a 
discussion of spicing in food preparation.  
 
Common earthworms are phylogenetically related to aquatic freshwater worms. Freshwater worms have 
kidneys that remove excess water from their body. This trait is consistent with aquatic environmental 
conditions but far from being adaptive for terrestrial life conditions, as water is limited, and water 
conservation should be the norm. Thus, all things being equal—in the world of natural selection—common 
earthworms should have evolved water-balance organs that favour water conservation. However, common 
earthworms still have roughly the same freshwater kidneys as their ancestors. A plausible explanation for this 
is that the niche construction undertaken by earthworms might have tipped the balance in evolution. By 
constructing—and inheriting—semi-aquatic environments like moist soils, common earthworms might have 
softened selection pressures on water-balance organs (Satchell, 1983; Scott Turner, 2009). Put another way, 
the niche became part of common earthworms’ solution space to the challenge of having water removing 
organs in dry environments. The niche then allowed economies of “evolutionary money” to be spent on 
biological adaptations (e.g., selecting for water conserving organs); thereby explaining, in part, the 
evolutionary trajectory having led to the current phenotype.  
 
In the parlance of active inference, the niche of common earthworms functions to inform a predictive (or 
generative) model of the relation between states of the world (e.g.,  “in a burrow”, or “outside a burrow”) and 
sensory outcomes (e.g., “wetness”, or “dryness”), cueing earthworms about relevant cause-effect 
relationships (Christopoulos & Tobler, 2016). The networks of burrows that generations of earthworms 

 
symmetric formalism within which to model processes of mutual modelling between agents and their niche, which reflects 
genuine, relevant, and perhaps more easily conceivable forms of mutual adaptation. 
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constructed (and inherited) came to afford adaptive action in the sense that engaging them most likely led to 
locations affording a priori preferred level of wetness. In other words, cognitive niche construction outsourced 
the computation of adaptive action to the environment per se. Calling on recent numerical analyses and 
theoretical treatments of active inference in decision-making, we speculate that a consequence of this is that 
earthworms could simply rely on the action afforded by the niche to avoid computing action that would fulfil 
their evolutionary (prior) preferences for wet soil, which would soften selection on water balance organs.  
 
Cognitive niche construction here operates through (i) the increase in performance enabled by the 
outsourcing of the computation to the niche and (ii) the absence of an adaptation due to niche construction. 
First, constructing cognitive niches so as to make them more predictable (i.e., navigable) enables the organism 
to reduce model complexity8 by constraining the variety of sensory causes that the organism has to entertain 
(Sengupta, Stemmler, & Friston, 2013). This allows the enhancement of performance for exploitative, fitness 
related behaviour (Friston et al., 2016). Indeed, tracking the potential causes of sensations in a constantly 
fluctuating world is costly as it requires to entertain multiple counterfactual priors (e.g., “will I end up in a wet 
environment if I move left, right, up and, down, etc.?”). Outsourcing the computation of these counterfactuals 
to the niche can be expected to increase performance in terms of both thermodynamic and inferential 
efficiency. Second, the enhancement of performance may be reflected in more efficient reaction times during 
exploitative behaviour, which would favour the reproduction of a phenotypes that call on the predictability 
afforded by the niche.9  
 
In earthworms, the circular causality over developmental and evolutionary time scales between the 
optimization of generative models through environmental modifications and the coupling to those 
environmental modifications over evolutionary time—may explain the softening of selection on things like 
water absorbing organs. This may be viewed as a form of developmental constraint on selection; that is, the 
strategy of outsourcing the computation became locked-in, because of the advantaged it provided, yet, to the 
cost of a phenotype that would heavily rely on this strategy (e.g., a phenotype that would not possess the right 
kidney). The phylogenetic trajectory of earthworms exemplifies the phenomenon of cognitive uploading 
discussed in the introduction of this chapter. Uploading here, operates through the saving on metabolic 
resources through the reliance on epistemic cognitive extensions that take on-board functions such as 
planning, which is typically internally realized. Over multiple generations, this comes at the cost of becoming 
“evolutionarily glued” to those cognitive extension. Put bluntly, cognitive niche construction smartens the 
world of the earthworm, so that its physiology can remain dumb yet optimal in peace (Clark, 1998).  
 
The example of the earthworms speaks to the fact that characteristic behavioural patterns or components of 
phenotypes (extended or else) will emerge from the construction of the cognitive niche and its impacts on 
evolution and development. Cognitive uploading could also allow one to formalize the computational 
architecture of the human phenotype. For instance, the inheritance of epistemic resources over evolutionary 

 
8 Complexity here, is used in the technical sense of statistical complexity or complexity cost. Model evidence (i.e., negative 
free energy), is expressed as accuracy minus complexity. This means that self-evidencing is necessarily optimized when 
accurate model predictions are maintained with minimum complexity (see equation (1)). 
9 Technically, this is expressed in terms of a variational principle of least action. In other words, the imperative for self-
evidencing is to minimize the time average of free energy, where this time average is known in physics as an action (not to 
be confused with the action associated with acting on the niche). 
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time and the re-enactment of the practices invited by these resources over development underwrites the 
phenomenon of tradition; understood as learned a new behaviour supported by socio-cultural practices 
(Fragaszy & Perry, 2003). In humans, traditions and associated artefacts undergo processes of cultural 
evolution (Boyd & Richerson, 1988), which enable intergenerational groups to converge on adaptive 
repertoires of tools, technologies, rituals, and so forth, that have been filtered by generations of conspecifics 
(for a review, see Laland, 2018).  
 
Evolved traditions enable the success of complex cognitive tasks, while leaving the structure of the causal 
models — to which the success of these tasks relate — unbeknownst to the agent (Fragaszy, 2011). In his book, 
The secret of our success (Henrich, 2015), Harvard anthropologist Joseph Henrich provides a series of such 
simple examples in which traditions track cause-sensation relationships, otherwise impossible to track; 
thereby securing adaptive low-cost behaviour. One such example is the use of spices in food processing. Spices 
generally have no nutritional value and are often made of aversive active ingredients. Yet, many humans use 
them abundantly because some of those active agents turn out to kill foodborne pathogens present, for 
instance, in widely consumed food like meat; something that is generally unknown to people having acquired 
and reproducing the practice, yet that is highly beneficial to them. Traditions of spicing per se come to model 
hidden causes whose structure could not be discovered by individuals alone over their lifespan. In the spirit of 
Henrich’s reflection, culture makes us smart.  
 
From the point of view of cognitive niche construction as a cognitive function under active inference, spicing 
traditions are intergenerational group-level strategies to track the complex multidimensional causal 
relationship between spices, active agents, foodborne pathogens, and meat consumption behaviour, which 
supports the reproduction of the behavioural phenotype. Spicing traditions thus can be viewed as encoding a 
generative process constructed by multiple generations about what compound is deleterious to what 
pathogen, and what pathogen is deleterious to humans, and what spices should be consumed. Enculturated 
agents, then, become coupled to this generative process which secures adaptive food processing.  
 
Crucially, it is the generative process embodied by the tradition per se that tracks this complex causal 
relationship, not individual agents. In responding to affordances (a.k.a., epistemic cues of least improbable 
action engaged by conspecifics; cf., Figure 2) such as those offered by artefacts of traditions, organisms like us 
manage to succeed implicitly in tasks for which causal models are too complex and too costly to be taken on-
board. Tradition endows individuals with the ability to read into deep hidden causal regularities. In a 
scaffolded fashion (cf., Sterelny, 2010), the structure of extended cognition is explained formally in terms of 
intergenerational learning dynamics in the generative process produced by generations of niche constructing 
agents (i.e., people participating and reproducing the tradition), and by the enculturation of individuals’ 
generative models through the learning of the epistemic cues (a.k.a., affordances) in the generative process.  

3 Extended active inference 
 
Over developmental time, smartening the world through cognitive niche construction operates through 
processes akin to that of cognitive offloading, such as studied by the extended approach to cognition. From 
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the perspective of active inference, cognitive niche construction brings the notion of offloading a step further. 
As we have seen with the earthworm and food preparation examples, cognitive uploading through cognitive 
niche construction entails outsourcing the inference over future outcomes to epistemic cues of the niche 
(a.k.a., affordances). Thus, through niche construction, organisms manage to upload self-evidencing 
processes directly to the structure of the generative process.  
 
Uploading entails more than relying on physical action and artefacts to support, or help carry out, cognitive 
functions. The evaluation of expected surprise drives action selection. Self-evidencing refers to the process of 
minimizing the bound on surprisal (a.k.a., negative log model evidence) through perception (optimizing the 
bound) and action (minimizing the bound) (cf., Figure 1); hence cognitive uploading through cognitive niche 
construction outsources part of the computation of self-evidencing processes (those relating to action). Put 
simply, cognitive uploading helps agents to minimize the bound on surprise.  
 
In the remainder of this chapter, we explain the manner in which the above formalism grounds EAI and 
generalizes two varieties of claims on extended cognition; the original approach to the extended mind (Clark 
& Chalmers, 1998) and its recent reinterpretation as diachronic cognition (Kirchhoff & Kiverstein, 2019). We 
show how EAI supports the theory of the extended mind by providing mechanistic explanation of well-known 
concepts such as the parity principle, functional isomorphism, epistemic action, and diachronic cognition. We 
do not engage the many debates surrounding the varieties of extended cognition. This is well beyond the 
scope of this chapter. Rather, the hope is to provide future researchers with a formal apparatus to make 
progress in these debates by showing how the varieties of claims on extended cognition may be formally 
expressed in EAI; a lingua franca of sort such as summarized in Figure 2.  

3.1 The extended mind under EAI 

3.1.1 Parity principle under EAI 
 
The original theory of the extended mind decomposes into three features. The first is a parity principle. The 
role of the parity principle in the theory of the extended mind is to first help us to conceive of the view of the 
mind as being extended into external vehicles; the parity principle is “a mean of freeing ourselves from mere 
bio-chauvinistic prejudices” (Clark, 2005, p. 2). The parity principle states that:  
 

If … a part of the world functions as a process which, were it done in the head, we would have no 
hesitation in recognizing it as part of the cognitive process, then that part of the world is … part of the 
cognitive process. (Clark & Chalmers, 1998, p. 8)  

 
If we agree that the function performed by an external state during a cognitive task would qualify as a bona 
fide cognitive function “were it done in the head”, then that external state in question ought to be considered 
as potentially an integrative part of the cognitive architecture of the cognitive system. This principle is 
vindicated by the formalism of EAI presented in this chapter; as we have shown, the description of the 
dynamics underlying learning in the generative process are formally equivalent to the learning in the 
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generative model. Of course, one must consider the part of the generative process that is coupled to the 
generative model through cognitive niche construction. 

3.1.2 Functional isomorphism under EAI 
 
The parity principle entails the second feature of the theory of the extended mind, which is the notion of a 
potential functional isomorphism between some internal and some external states (Sutton, 2010). Functional 
isomorphism stresses that internal and external states have to be seen as equivalent with regard to the basic 
properties of cognition. For instance, under certain conditions, a notebook might very well play the same 
coarse-grained functional role, or epistemic function than biological memory implemented by patterns of 
neuronal connections in the brain. When looking for coarse-grained parity between internal and external 
cognitive resources, it has been suggested that external resources should meet the requirements of “glue and 
trust” so that the resource is available when needed (like bio-memory) and not subject to constant agentive 
scrutiny—to ensure it is working as it should (again, like bio-memory). 
 
From the point of view of EAI, the trust condition is guaranteed by the uploading process whereby the agent 
learns to engage epistemic cues of the generative process. This entails trading-off on-board neurocognitive 
functions for on-board environmental ones. The benefit is the increased performance, though at the cost of 
increased dependence on the environment. The glue condition is guaranteed by the increased performance 
that underlies the uploading. For instance, the earthworm is “glued” to its inheritance of burrows and moist 
soil because of the constraints burrows and soils have operated on earthworm’s phylogeny. We can imagine 
how an individual would become “glued” to her environment in a similar fashion, though over developmental 
time scale. For instance, we can imagine an individual that would carve out a path on her commute, and over 
time, come to heavily rely on that path to arrive to the office on time. The short cut may free up her schedule 
enough for her to get used to stop at the café to grab a quick espresso during her commute. Then, the 
individual might stop buying coffee for her kitchen; this would surely simplify the planning of her weekly stop 
at the grocery store anyway. This, however, would come at the cost of sticking to her path and the espresso it 
affords. In this hypothetical scenario, the trade-off that glues the individual to her environment is instantiated 
by the acquisition of a habit whose robustness relies on (un)learned states of the generative model and 
learned states of the generative process.  

3.1.3 Epistemic action under EAI 
 
The original theory of the extended mind argues that the environment on which cognitive agents rely enables 
them to perform epistemic actions (Clark & Chalmers, 1998). Epistemic actions are defined as actions that ease 
or optimize cognitive tasks by reducing the memory load required to perform a task (space complexity); by 
simplifying the computational processing procedure (time complexity); by minimizing the probability of error 
outcomes (success probability) (Kirsh & Maglio, 1994). A notebook, for instance, can be viewed as supporting, 
and easing the task of, say, making it to your multiple appointments throughout the week, as it will encode 
relevant information like addresses (i.e., save on space complexity), provide a structure like a schedule for 
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knowing when your appointments are, and how best to coordinate them (minimizes time complexity), and 
will probably increase your chances of making it on time (increase success probability). These intuitions are 
formalized by the process of uploading from the point of view of EAI, but in addition, by accounting for the 
relation between all these advantages. Space complexity corresponds to reduced numbers of counterfactual 
scenarios that one has to model, which naturally entails minimizing the probability of errors (i.e., the more 
complex the generative model is, the more likely it is to overfit), and by the same token increase performance 
in terms of time complexity of computation.  
 
Another (complementary) way to view the picture of extended minds under EAI is to note that neutrally 
supported estimations of salience (a.k.a., expected surprise) help select actions that can purposefully roll in 
cognitive operations flowing through bio-external resources. That rolling in can be internally instigated (e.g., 
as when I retrieve my smartphone to ensure I do not miss my flight). My purposeful rolling in can also be cued 
by the external resources themselves (e.g., if I set an alarm for two hours before the flight). In that case, the 
drive or readiness to act to minimize my uncertainty (or to increase the precision of my beliefs about the time) 
will reduce, as my expectation about future surprise, or salience will decrease (e.g.,  “I will not feel the urge to 
keep verifying the time at short intervals because I will know when to access my phone”). Here, salience is 
managed by the cell phone, as trustworthy information is made reliably available.  Crucially, the internal flux 
of precision (i.e., uncertainty in my beliefs) is resolved by the externally structured flow of epistemic (i.e., 
salience minimizing) action that serves to improve the long-term fit between my actions and my goals, as well 
as the cost of computing these long-term goals. Temporary coalitions of internal and external resources are 
thus recruited in the same way as are temporary purely inner coalitions, which likewise emerge as varying 
patterns of effective inner connectivity controlled by fluctuating precision and salience estimations (see Clark, 
2016, Chapters 8 and 9).  
 
As we will see below, both the long-term built environment and the cultural milieu further scaffold this 
process, nesting our individually extended minds inside larger co-constructed niches that likewise extract, 
flag, and cue optimal (i.e., expected free-energy minimal) action. 

3.1.4 Diachronic cognition under EAI 
 
The diachronic perspective casts cognitive systems as extended, not only in terms of their spatial realization, 
beyond the spatial scales at which the agent exists but also in terms of its temporal realization, to (legacy) 
scales that cognition occupies historically, and in the context of cultural practices in the here-and-now. 
Cognitive assemblies are formed and maintained diachronically, beyond the local organism-centered 
boundaries of individuals (Kirchhoff, 2012, 2015, 2018; Malafouris, 2015; Stotz, 2010). Cognitive assemblies are 
decentralized systems, or networks of human-and-nonhuman agencies (Latour, 1993), whose constitutive 
causal relationship depends upon self-organized processes distributed across the network they constitute (cf., 
Figure 2 for a simple environment-organism system).  
 
The standard example used to explain diachronic cognition is that of the Elizabethan theatre companies 
(Tribble, 2005). Tribble explains how players of the Elizabethan theatre companies during the 16th century 
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would manage to perform multiple different plays per week without being able to rehearse due to time 
limitations. The ability of the actors to memorize how to perform plays depended on patterned sociocultural 
practices mediated by material artefacts populating the stage (e.g., stage doors, playing platform, plots, and 
scripts), and a cross-generational apprenticeship system (Sutton, 2010) allowing the (re)acquisition of the 
skills necessary to leverage the informational structure afforded by the augmented stage.  
 
Under EAI, this allows the environment to learn shared preferences and narratives under the form of epistemic 
cues but only to the extent they are preserved by organisms acting on that environment. Each member of the 
theatre company engages the diachronic assembly as a generative process from the stance of their generative 
model. For each individual, other people and artefacts come to encode affordances that indicate what action 
will be successful because of the ongoing uploading of epistemic cues to the generative process through the 
apprenticeship practice. As in the earthworm case study discussed above, learning how to leverage these cues 
allows each individual to limit the complexity of their generative model, thereby enhancing performance (e.g., 
memory recall, reaction times, etc.) and allowing patterned, low-cost action selection.  

4 Concluding remarks 
 
The model of cognitive niche construction proposed in this chapter offers a formal apparatus for the study of 
non-brain-based factors in cognition. This chapter argued that cognitive niche construction could be viewed 
as a bona fide cognitive function. Then, we sketched some examples of how this model could be used to give 
a formal grip to theories of the extended mind and diachronic cognition.  
 
The point stressed in this chapter was that cognitive niche construction can be studied as a shared cognitive 
function enabling organisms to track—often implicitly and at low cost—cause–effect relationships otherwise 
difficult, if not impossible to track; notably, relationships wherein the hidden causal structure is highly volatile, 
or wherein the hidden causal structure is too complex to be learned solely based on sensations available to 
the biological sensory apparatus of a single phenotype. From the point of view of extended active inference, 
all cognitive functions are in the game of tracking causal regularities, and there is no principled reason to 
restrict this process to the boundaries of skin, skull, or even individual agents.  
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Conclusion to chapter 2 
 
The goal of chapter 2 was to show formally that one can study the way in which the material world changes 
over time — its behaviour — in the same way that one can study how nervous systems change under the free-
energy principle. In the same way that living organisms perceive, act and learn by minimizing free energy, 
nonliving things (consistently acted upon) can ‘perceive’, ‘act’ and ‘learn’ by having their free-energy 
minimized through organisms’ actions. Of course, the meaning of perception, action and learning here denote 
their formal referent under the free-energy principle. I am aware that this is a strong claim; especially if you 
(still) think that minimizing free-energy is a sufficient condition for life, as often seems to be the case. If 
minimizing free-energy is a sufficient condition for life, and the material environment minimizes free energy, 
should we consider the material environment as being alive? No, we shouldn’t, or at least, this is not a question 
that we can settle with the free-energy principle. This is the problem chapter 1 was designed to avoid.  
 
Again, I am not advocating for panpsychism, nor am I making any ontological claim. And in the same way, 
when I talk about perception, action and learning of the environment, I do not use those terms as denoting a 
first-person, subjective experience. Rather, these denote very general computational processes that can be 
described by free-energy minimization. Depending on their scale (e.g., in the biosphere of fig. 1 in the 
introduction), perception, action and learning will be attributes of systems that are more or less complex, with 
different material implementations, which we can imagine will account for the richness of those processes at 
those different scales. Again, the ultimate goal of this dissertation is to come up with a model of mental 
disorders that allows one to take seriously the relation between all the levels of the biosphere (cf. fig. 1, 
introduction). To achieve that, one needs a vocabulary to talk about the processes underwriting the behaviour 
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of the systems at each level. free-energy minimization under active inference may be viewed as such a 
universal vocabulary.   
 
While talk of perception, action and learning by the environment is simply a way to denote processes that may 
have a counterpart across the biosphere, there is a genuine distinction between those systems that I failed to 
emphasize in chapter 2. This distinction was raised multiple times by my colleagues and mentors, notably by 
Laurence Kirmayer, and only recently did I manage to understand its role in the model presented in chapter 2. 
That distinction, as presented by Prof. Kirmayer, is that living agents will asymmetrically act on the 
environment relative to the way the environment will act on them. The symmetry and asymmetry are with 
respect to the relation of living agents with their environment and the relation of an environment with the 
living agents it hosts. Individual agents can modify the environment according to some goal, plan or 
intentions, whereas the environment cannot modify the agent that way. That is the asymmetry. Put more 
simply, an agent has the kind of autonomy that is realised by the capacity to plan, whereas the environment 
does not plan in the sense of active inference. I think that this is correct. However, the story requires more 
nuance.  
 
At the level of the group, actions can lack goal orientedness while appearing organized. For instance, nobody 
“plans” to carve out a desire path in urban public parks. When considering a group of agents embedded in an 
environment, one can recover symmetry (i.e., the idea that both directions in the relation lack intentionality), 
as arguably a group can act in a decentralized fashion, without its action having to be intentional (i.e., goal 
oriented). My point is that individuals, taken as a group, do not necessarily have more intentionality than the 
environment they are part of, and so, under some descriptions, individuals can be viewed as acting on their 
environment in the same way that their environment is acting upon them. In chapter 2, I was interested in 
symmetrical relations between organisms and their environment. Symmetry can be broken again if the group 
of agents organizes – e.g., as a unified community (e.g., a urban public park city committee), or a social 
institution (e.g., the Legislator). The actions of that group can then be treated as that of a single individual. In 
that case, the asymmetry (i.e., the idea that one direction in the relation will be intentional, and the other not) 
between the group and its environment might be recovered.  
 
Entities in a complex system will exist as individual entities, as groups of entities, and as organized groups of 
entities. Moving across the different scales of a complex system will involve treating entities differently; either 
as unified and equipped with the ability to take goal directed actions, or as disunified and lacking the ability 
to take goal directed actions. Across and within levels, there will be many relations possible (see fig. 2).  In 
figure 2, the symmetrical relation discussed in chapter 2 is represented as the relation between “A” and “e” 
(Aßàe). “A” represents an environment within a group of environments “E” made of different environments 
“A” and “B” (e.g., one of many ant nests). In turn, “e” represents an environment made of individuals ‘a’ and 
‘b’ (e.g., individual ants in their nests). The relation between organisms and their environment discussed in 
chapter 2 is a relation “across scale” between “A” and “e” (Aßàe, figure 2).  
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Figure 2. Relations within and across scales in a 2-level system. Circles represent units at the scale of 
interest, and rectangles represent environments including those units. Capital letters correspond to higher 
scale units and environments. The schematic shows the environment 'A' (e.g., a forest) within which one can 
find individuals 'a' and 'b' (e.g., birds), which grouped together form the population in their environment 'e'. 
The environment ‘e’ can itself be a unit ‘A’ at the higher scale. There exist relations within and across scales. 
Symmetrical relations can obtain across scales when considering the ensemble at the scale below (e.g., 
Aßàe). Asymmetrical relations across scales are between an individual (or an ensemble treated as such) and 
the ensemble it is part of at the level above (or same level) (e.g., aàe and aàA). The key point is that an agent 
that we assume is endowed with intentionality will be able to enter in an asymmetrical relation with the 
environment (e.g., an individual bird “a” influencing its environment “e=A” aàe). Symmetrical relations are 
also possible between a group of organisms in their environment (e.g., “a” and “b” within “e”) and that same 
environment when envisaged at the scale above (e.g., “A”). Symmetrical relations are characterised by an 
absence of intentional action on both sides, and allow us to account for self-organized phenomena like desire 
paths without postulating intentionality.  
 
Between levels, other relations exist, such as that between a single individual in a group and her environment 
at the level above (e.g., aàA in figure 2). Such a relation does not need to be symmetrical, for in such a relation 
an individual can interact asymmetrically with her environment by imposing environmental transformations 
that suits the individual’s needs and by refusing immediate feedback from the environment. Such an 
asymmetrical reading of the relation between an individual and her environment is useful when trying to 
account for person level phenomena (e.g., when asking questions about developmental processes of a single 
individual such as neuroplasticity in relation to the individual’s cultural embedding). Then, by scaling down 
on that same individual, and by focussing on existing populations within that individual (e.g., bacteria 

a be

A BE

Scale below

Scale above
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populations) and on the individual as being defined as a set of such relations, one can then return to a 
symmetrical perspective that allows one to inquire on subpersonal phenomena (e.g., the microbiome on sleep 
patterns of the individual).  
 
Considering the individual as a set of symmetrical and asymmetrical relations is central to the selection of 
efficacious interventions in Psychiatry. If one assumes that the problem at hand involves an asymmetrical 
relation (e.g., the relations between neurodevelopmental trajectories and the person’s social embedding), one 
might opt for an intervention centered on the intentionality of the actors involved in the problem (e.g., 
psychotherapy). In turn, if one assumes that the problem rests on a symmetrical relation, one might prefer an 
intervention that involves actors operating at the subpersonal level (e.g., pharmacotherapy). To get a full 
picture of the person's situation, one will have to scale up or down and across and within scales to integrate 
other factors into the diagnosis, so as to find the optimal management strategy. Within such a multiscale 
perspective, inquiring about any component of the entire system requires one to start by identifying the within 
and between scale relations that characterize the person. In adopting a person centric approach to psychiatry, 
for instance, a clinician might want to start by inquiring about the symmetry breaking relation between the 
person and her environment (e.g., the way individual life choice and experience contributes to marginalizing 
an individual in each cultural environment, and how the marginalization may contribute to sustaining a given 
affliction).  
 
I recognize that all this is rather vague and general, but the point here is to stress the importance of moving 
across scales in our scientific or clinical inquiries to make sure that we are operating within the relations in the 
biosphere that correspond to the problem at hand. Symmetrical and asymmetrical thinking is at the core of 
the reasoning under a multiscale model (e.g., the biopsychosocial model), even when adopting a person-
centric approach (e.g., the person centric approach in psychiatry). Knowing when one is dealing with a 
symmetrical or asymmetrical problem, that is, a problem for which the solution will be found by intervening 
on intentional or nonintentional relations is central to working within a multiscale perspective, such as that 
which we propose in the following chapter.   
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Chapter 3: Evolution, Culture 
and Computation in 
Psychiatry: An integrative 
perspective 
Introduction to chapter 3 
 
Chapter 3 is titled Evolution, Culture and Computation in Psychiatry: An integrative perspective. Explicitly, 
chapter 3 details the problem that motivates this dissertation, which could be summarized as the problem of 
a lack of a mechanistic understanding of the biopsychosocial model in psychiatry (e.g., in figure 1). To remedy 
that problem, chapter 3 proposes the integration of the evolutionary, cultural, and computational approaches 
to psychiatry. These are all multiscale approaches grounded in principled, functional, and mechanistic 
understandings of mental disorders. Evolutionary, cultural and computational approach are thus all 
interesting candidates for implementing the biopsychosocial model. However, each approach comes with its 
own disciplinary commitments, which appear to limit its ability to cover the full range of processes involved 
in the biopsychosocial model. We call this the problem of disciplinary boundaries.  
 
The integrative model of chapter 3 is meant as a solution to the problem of disciplinary boundaries. As 
mentioned in the introduction of this dissertation, the model we propose in chapter 3 should be viewed (i) as 
the prototype of an integrative scientific ontology for psychiatry (i.e., a conceptual model that shapes 
education and practice based on principles of evolutionary, cultural, and computational psychiatry); (ii) as a 
framework to organize seemingly disparate knowledge that all matter for understanding mental disorders 
(e.g., by providing a lingua franca to talk about phenomena across scales, which is one of the roles of 
computational psychiatry); and (iii) as a practical guide to orient the way clinicians engage their client (e.g., by 
clarifying the different thinking patterns one can employ to make sense of mental disorders as entities).  
 
Implicitly, Chapter 3 functions as the targeted literature review of this dissertation. This literature also fosters 
the simulation we present in chapter 4, which is an example of the sort of research output one can produce 
when operating under the model, or ontology, we turn to next.  Chapter 3 also shows how active inference and 
the free-energy principle to model the relation between clinical interactions and institutions. 
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1 Introduction 

1.1 The problem of disciplinary boundaries 
  
Most of contemporary psychiatry assumes that gene–environment interactions over the course of 
developmental trajectories contribute to the aetiology of mental disorders (Adams et al., 2016). These 
trajectories depend on processes at multiple levels, including epigenetic, neurophysiological, behaviours and 
interpersonal interactions, which are embedded in larger systemic social contexts. Our currently limited 
knowledge about such interactions is a challenge for efforts to ground diagnostic nosology and clinical 
practice in a mechanistic understanding of the relations between multiple levels that constitute the complex 
pathways to mental disorders (Henriques, 2011). The aim of this chapter is to advance an integrative 
perspective that bridges three theoretical domains in psychiatry, which taken together, promise a 
mechanistic10 understanding of the systemic processes and trajectories that underwrite psychopathology: 
evolutionary psychiatry, cultural psychiatry, and computational psychiatry. 
  
Over the last 40 years, evolutionary, cultural, and computational psychiatry has each developed theoretical, 
empirical, and clinical approaches to psychopathology. Although representing different conceptual models 
and research methodologies, all three approaches aim to advance non-reductionist, mechanistic, and 
multilevel account of the pathways to mental disorders. As the name suggests, evolutionary psychiatry 
endeavours to explain mental disorders in terms of the evolutionary and genetic origins of the phenotypic 
traits (Stevens & Price, 2015). Cultural psychiatry emphasizes the role of culturally mediated social practices in 
development and the circular causality between illness behaviour and social context (Tseng, 2001). Finally, 
the emerging field of computational psychiatry studies failures in decision-making and dysfunctional 
behaviour using multi-level computational models (Friston et al., 2014). 
  
Despite some recent exceptions (Badcock et al., 2017; Constant et al., 2021), each approach has remained 
largely siloed. This lack of dialogue results from institutional and conceptual difficulties in crossing 
disciplinary boundaries (Kirmayer, Worthman, & Kitayama, 2020b). Disciplinary boundaries are the 
consequence of particular research histories and traditions but also reflect specific scientific ontologies 

 
10 In this paper, we use a folk concept of mechanism — of the sort that any typically trained psychiatrist would have in mind in 
clinical case formulation. In this context, a mechanistic approach may be loosely defined as one that analyses the causal 
processes that produce a given (psychiatric) outcome, through reference to constituent components and their interactions. 
There is an important debate in the philosophical literature about the precise nature of mechanism (Machamer et al., 2000; 
Nicholson, 2012; Rosenberg, 2020). Our previous work on the embodied and situated human brain is aligned with a neo-
mechanistic perspective in the philosophy of science (e.g., Bechtel, 2009; Craver, 2006; Glennan et al., 2021; Rosenberg, 
2018), which explains the properties, functions, and behavior of a system by examining the properties and activities of its 
various subsystems and their interactions. Here, a mechanism can be described as a structure (or a stabilized process) 
within a system that performs a function via its component parts, their various operations, and their organisation, thereby 
contributing to global function in one or more ways. According to previous work on the hierarchically mechanistic mind 
(Badcock, Friston, Ramstead, et al., 2019) consistent with the present approach, the human phenotype is produced by 
causal mechanisms that span both spatial scales (e.g., genes, cells, tissues, organs, the body, and the broader social and 
physical environment), as well as temporal scales (ranging from evolutionary/intergenerational processes, through to 
developmental influences, and mechanisms that operate in real-time biopsychosocial contexts) (Kirmayer, Worthman, & 
Kitayama, 2020). In short, this multilevel theory describes human phenotypes in terms of the biopsychosocial processes that 
operate within and across different spatiotemporal scales, and in this sense, it is both mechanistic and hierarchical. 
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(Latour, 2000). Ontologies underwrite research agendas(Hacking, 1995), which reflect researchers’ beliefs 
about what questions science should address and what kinds of answers are satisfying (Kuhn, 1962), and that 
lead researchers to operate under different ‘thought styles’ (Fleck, 1979). Disciplinary ontologies require that 
researchers become skilled at using specific methods, which render measurable and ontologically “real” or 
conceivable certain dimensions of the object of inquiry (Pickering, 1995). By the same token, due to 
constraints of time and resources, commitments to disciplinary ontologies also limit researchers’ skills and 
impede the study of certain dimensions of phenomena and may make them invisible or even inconceivable. 
The result then is progress on some fronts but lack of attention to other, possibly crucial, facets or dimensions. 
This effect of disciplinary ontologies is especially concerning in the context of psychiatry, which is concerned 
with human problems that clearly involve multiple processes that affect physiology, behaviour, and 
experience (Kendler et al., 2020). Advancing an integrative perspective, requires some way to move beyond 
these disciplinary blinders. We propose that unifying cultural, evolutionary and computational psychiatry can 
enable significant strides towards an integrative view. 

1.2 The scope of the integrative perspective 
 
This chapter starts with an overview that lays out some assumptions and methodological strategies employed 
in evolutionary, cultural, and computational psychiatry (§2). We will not discuss evolutionary, cultural or 
computational psychiatry in their entirety. Rather, we focus on key aspects of these approaches—mainly 
modes of reasoning about mental disorders—that could be merged through an interdisciplinary way of 
thinking about mental disorders.  
 
Key aspects of evolutionary psychiatry  
 
With respect to evolutionary psychiatry, we will focus on adaptationist reasoning about pathological mental 
traits, which can be distinguished from population genetics thinking (Keller & Miller, 2006). Adaptationist 
reasoning in evolutionary psychiatry emphasizes the role of natural selection when making sense of mental 
traits observed in clinical settings (Grunspan et al., 2018); population genetics thinking may be viewed as a 
research-driven attempt at explaining changes in the genetic makeup of a population and the preservation of 
alleles that contribute to certain mental disorders (Keller & Miller, 2006). The distinction between population 
genetics thinking and what we call adaptationist thinking can be framed more generally in terms of what some 
historians have identified as the distinction between the modern synthesis and the ethological perspective 
(Adriaens & De Block, 2010). This division is interesting in that it carves out two interconnected questions 
about mental disorders that are approached with distinct reasoning patterns. The ethological perspective 
asks, "How can we understand mental disorders as traits that have evolved in humans and other animal 
species to serve certain functions?" and seeks answers based on the relation between phenotype (e.g., 
behaviour) survival value and fitness. In turn, the modern synthesis perspective asks, "How can we explain the 
preservation of alleles underlying mental disorders in a population?" and seeks answers based on a wide array 
of evolutionary mechanisms, including, though not limited to, the logic of survival and fitness under natural 
selection (e.g., drift, mutations, gene flow). The extension of the modern synthesis—the extended evolutionary 
synthesis (Laland et al., 2015) —suggests supplementing the mechanisms of evolution with channels of 
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inheritance and processes that are external to the organism (e.g., cultural inheritance, niche construction and 
development). The adaptationist rationale—on which we focus—can be assimilated to the ethological 
perspective. 
 
Key aspects of cultural psychiatry  
 
With respect to cultural psychiatry, we will focus on how cultural context may shape mental disorders through 
a variety of intra- and interpersonal feedback loops, including what Hacking has termed “the looping effect of 
human kinds” (Hacking, 1995). Cultural psychiatry studies the ways in which culture and social context shape 
the aetiology (causes), phenomenology (experience), clinical presentation (expression), and trajectory of 
mental disorders (Kirmayer & Ryder, 2016). This includes the person’s own modes of self-construal and the 
responses of others, which draw from cultural narratives, models and metaphors. Taken together these 
constitute the ontology of a mental disorder. Although this will not be our focus here, it is important to note 
that cultural psychiatry also leverages the notion of culture to orient clinical assessment, treatment, and 
prevention (e.g., situating illness experience in its social and cultural context to identify the significance of 
cultural expressions of distress and their impact on the course and outcome of mental health 
problems)(Kirmayer, 2005). Cultural psychiatry also emphasizes self-reflexive practice, through studies that 
reveal the cultural assumptions the institutions of psychiatry itself (e.g., ethnocentric biases) that may affect 
mental health research and clinical practice as well as illness experience (Kirmayer, 2018; Young & Breslau, 
2016). 
  
Key aspects of computational psychiatry  
 
With respect to computational psychiatry, we will focus on the rationale of modelling psychiatry. 
Computational psychiatry involves the use of algorithmic methods to model and analyse clinical and 
behavioural data (Gauld et al., 2021). This includes two broad, though interrelated lines of work in 
computational psychiatry: (i) data-driven computational psychiatry, involving the use of artificial intelligence 
and machine learning with large datasets (“big data”) to develop more precise characterizations of patients 
that have some predictive validity in relation to treatment response and course of illness; and (ii) theory-driven 
computational modeling, which develops biologically plausible accounts of neural processing that can explain 
particular forms of psychopathology (Huys et al., 2016). The focus here will be on the latter approach, which 
aims to understand the mechanisms of psychiatric disorders by constructing computational models. 
  
Our proposed integration of cultural, evolutionary and computational psychiatry aims to show how 
adaptationist thinking and the social-cultural notion of looping effects can be integrated using the methods 
of modelling psychiatry. To illustrate the potential of this integration, we describe a generic model for the 
study of mental disorders that inherits principles of evolutionary and cultural psychiatry (§3). The hope is that 
the resulting Evolutionary Computational Cultural (ECC) model will exemplify the interdisciplinary approach 
we advocate. The end of part three illustrates an application of this model using the clinical example of Major 
Depressive Disorder (MDD). 
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2 Evolution, Culture and Computation in Psychiatry 
 
The difference in disciplinary ontologies poses a central theoretical challenge for collaboration among 
evolutionary, cultural and computational psychiatry. How can we think through the ideas of the evolutionary 
approach in computational terms; of cultural ideas in evolutionary terms; or computational ideas in cultural 
terms? What do we need to know to map one theoretical construct onto the other and what concepts and 
relations require special attention? This process of inter-theoretic mapping needs to start with a general 
understanding of principles employed in evolutionary, cultural and computational psychiatry. We will 
consider adaptationist thinking, the ontology of mental disorders, and modelling psychiatry. 

2.1 Evolutionary psychiatry 
  
Medicine often employs functional models of health and diseases based on principles of human physiology. 
These models indicate how the body is supposed to function. Pathology can then be identified as a disruption 
or impairment of this function (Boorse, 1982). For instance, we assume that the heart is designed to pump 
blood; and this is why, no matter the cause, congestive heart failure may be confidently described as a 
malfunction (Nesse, 2007; Schwartz, 2007). Although efforts have been made to define mental dysfunction in 
a similar way (Wakefield, 1992b, 2005), this effort has been impeded by the fact that the human mind has 
multiple functions that depend on adaptive context.  Attempts to characterize brain function are intensively 
debated (Montague et al., 2012). One consequence of this lack of clarity about the functions of mind and brain 
is difficulty in distinguishing between disorders and protective responses (Nesse, 2007). For instance, we know 
that congestive heart disease is a disorder and that fever is a protective response, because the former can be 
said to result from a failure of a function of the heart (e.g., pumping blood), whereas the latter reflects a 
functional biological response to infection (Nesse, 2007). 
  
Evolutionary psychiatry has sought to address this limitation by exploring plausible functions of mind and 
brain against the backdrop of human evolution. By applying the principles of evolutionary biology and 
psychology, evolutionary psychiatry aims to provide a basis to distinguish normal and pathological mental 
functioning, based on the notion of adaptive fitness (Nesse, 1999). This leads to a view of mental disorders as 
'harmful dysfunctions' (Wakefield, 1992a). As will be detailed below, in the account of mental disorders as 
‘harmful dysfunctions’, the dysfunction refers to the functional aspect of the proximal mechanism (e.g., 
regulation of dopamine signalling), whereas the failure is defined in terms of discrepancies with respect to the 
way that mechanism ought to function from an evolutionary point of view (e.g., regulation sufficient to enable 
an adaptive response to the environment). In turn, the ‘harmful’ component refers to value-laden terms that 
are often qualifiers of the disorder (e.g., autistic individuals’ “lack of motivation”). Note that for Wakefield, the 
distinction between the dysfunctional and the harmful brought with it putative problems that would need to 
be addressed in a more fully developed version of his approach. 
  
The problems that surround Wakefield’s concept of mental disorder are at least twofold (Faucher & Forest, 
2021). First, there is the problem of identifying the evolutionary adaptive process against which the 
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dysfunctional mechanism can be evaluated: this has been termed “the problem of evolutionary function.” 
Second, there is the problem of the scientific validity of the notion of ‘harmful’, which is generally recognized 
to be, at least partially, socially and historically contingent. Indeed, according to the view of harmful 
dysfunction theory, although value-laden qualifiers are an essential part of the definition of mental disorders, 
the study of their functional role is difficult to assimilate to a purely evolutionary view. Yet, as argued by 
cultural psychiatry, unpacking the meaning of “harm” and other evaluative qualifiers is essential since 
psychiatric disorders are both biological and social constructs always occur in particular cultural contexts. 
This article will focus on the latter problem. In section 2.2, integrating a cultural approach will allow us to 
address this problem by providing a more complete view of the mechanisms of mental disorders that explicitly 
incorporates humanly constructed contexts and corresponding social interactions. 
  

2.1.1 Defining mental disorders with proximate and 
ultimate thinking 
  
Evolutionary psychiatry proposes a research heuristic for the study of mental ill-health, organized around the 
question of “why did evolution leave us with traits that make us vulnerable to mental disorders?” (Graves et 
al., 2016). This framework integrates proximate (e.g., developmental) and ultimate (i.e., evolutionary) levels 
of causation when defining mental disorders (for a summary see: Bateson & Laland, 2013). Sciences that study 
proximal mechanisms typically answer questions of the form ‘how does it work?’, (e.g., ‘how does experience-
dependent neuroplasticity operate?’), whereas sciences that study ultimate causes answer evolutionary 
questions of the form ‘why does it work?’; (e.g., ‘why has experience-dependent plasticity been preserved 
throughout human evolutionary history?’) (Kenrick, 2001). 
  
Evolutionary psychiatry defines mental disorders as dysfunctions of adaptive systems (or consequences of 
adaptive systems that are maladaptive in a new niche or context), and explains disorders in terms of 
vulnerabilities aggravated by developmental demands. Note, however, that this type of explanation remains 
controversial (Varga, 2012). Some mental disorders have been viewed as adaptive dysfunctions, that is, as 
adaptations per se (e.g., psychopathy as an adaptive strategy from a game theoretic point of view (Murphy, 
2005)). In this review, we will not pursue the view of mental disorders as adaptive dysfunctions. Rather, we will 
focus on explanations in terms of aggravated vulnerabilities. The integration of proximate and ultimate causes 
allows evolutionary psychiatry to study the impact of evolutionary pathways on the nature of mental disorders 
and their expression over the lifespan. The proximate part of this view describes the workings of the specific 
mechanisms underlying the development of pathology and their expression in symptomatology, suffering or 
functional impairment. Conversely, the explanation in terms of ultimate causes involves relationships 
between mechanisms and traits (and their associated vulnerabilities) that are conserved over evolutionary 
history (Nesse, 2017). In short, integrating proximate and ultimate causes allows evolutionary psychiatry to 
explain psychiatric conditions from the point of view of vulnerabilities stemming from phylogenetically old 
traits (Del Giudice, 2014). 
  



 63 

Proximate and ultimate thinking in psychiatry tends to operate under two interrelated modes of evolutionary 
thinking: adaptationist and population genetics. Of course, the distinction between evolutionary influences 
that constitute proximate and ultimate causes is made for epistemological reasons. A more fine-grained 
assessment of causality would consider phenomena across multiple spatiotemporal scales, ranging from 
biochemical to evolutionary, including the scales of individual developmental trajectories and of the 
coevolution of the human brain and our cultural niches (Kirmayer et al., 2020a). The strategy of dividing 
causality into proximate and ultimate causes allows us to distinguish phenomena about which we can 
meaningfully ask questions like "Why has it evolved to work that way?" from phenomena about which we 
would better ask "How does it work?". For instance, ultimate causes may capture phenomena that unfold on 
a historical timescale or longer for which answers to "how" questions will likely remain uncertain (e.g., "What 
were the exact mechanisms at play in the evolution of this population?"), and for which the response to a 
"Why" question may be preferred (e.g., "What principles of evolution can explain why this feature might 
emerge?"). 

2.1.2 Adaptationist thinking 
  
One popular strategy for the study of evolutionary pathways to mental disorders is the adaptationist approach 
(Troisi, 2006), which relies on the notion that evolution selects for functions that improve reproductive 
success. Evolution favours the replication of variations that lead to reproductive success (fitness). Since 
differential reproductive success is correlated with being adapted to environmental stressors, the genetic 
material passed onto offspring should lead to phenotypic traits that will be adapted, or well ‘designed’, to 
respond to these stressors in offspring (Houston et al., 1999). As applied in evolutionary psychiatry, 
adaptationism relies on the idea that vulnerabilities are shaped by Darwinian selection. Typically, it is not that 
natural selection selects ‘for’ disorders (e.g., viewing disorders as affording some fitness advantages) (Nettle, 
2004). Rather, ultimate causes must be viewed as shaping genetic traits that may be expressed as suboptimal 
traits or vulnerabilities under certain proximate, developmental conditions (Nesse, 2017). Put another way, 
the maintenance of  “any suboptimality [or vulnerability] of a part is explained as its contribution to the best 
possible design for the whole” (Gould & Lewontin, 1979, p. 586). Again, the question is not "how do genes that 
predispose to a mental disorder provide a selective advantage?" (Nesse, 2011), the answer to which would 
explain why mental disorders exist; nor is the question directly, "how do genes that predispose to a mental 
disorder persist?", the answer to which would explain why some mental disorders continue to exist. Rather, 
the question is "why are we vulnerable to some mental disorders?", the answer to which explains the clinical 
presentation of the mental disorder in the current context. This is important because explanations in 
psychiatry should be explanations of mental disorders, not only explanations of their underlying biology. As 
we will see with cultural psychiatry, mental disorders are entities configured at the level of human agency and 
subjectivity. Inquiring how aspects of a person's biology make that person vulnerable to a mental disorder is 
usually more immediately relevant to clinical practice than exploring the evolutionary origin of that biology.  
  
Darwinian rationales have been used to explain different pathways to mental disorders in terms of the 
maintenance of vulnerabilities in human evolutionary history (ultimate cause) enabled by developmental 
context (proximate cause). Box 1 summarizes some of the popular rationales in adaptationist accounts of 
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medicine in general. Darwinian rationales have been applied to explaining mental disorders such as anxiety, 
phobic, delusional, stress-related and depressive disorders among other mental health problems (Durisko et 
al., 2015; Karasewich & Kuhlmeier, 2020; Troisi, 2020; Tsou, 2021). Importantly, all of these approaches assume 
the embeddedness of the individual in a larger systemic context. For instance, following a Darwinian rationale, 
the social risk hypothesis of depression (Allen & Badcock, 2003, 2006; Badcock et al., 2017) argues that 
normative symptoms of depression—triggered by social uncertainty—form an adaptive biobehavioral strategy 
that might have been selected to ensure the re-stabilization of individuals' social networks. Here, depression 
is thought to reduce socio-environmental volatility via three broad classes of action: it increases an 
individual’s cognitive sensitivity to social risks; it reduces her propensity to engage in social behaviours with 
uncertain outcomes; and it promotes social signalling behaviours to elicit interpersonal support and defuse 
competitive encounters (e.g., reassurance seeking). When these responses fail to alleviate social stress (e.g., 
signalling fails to increase interpersonal support), depressive symptoms endure, and the individual can spiral 
into more severe and persistent distress that is recognized as clinical depression. To account for the 
prevalence of depression in a given population, from an epidemiological perspective, one could couple the 
social risk hypothesis with an evolutionary mismatch rationale (see Box 1) to explain why depression may 
increase in a society in which people tend to have sparse human social networks. 
 
Box 1. Adaptationist Explanations for Psychopathology 

Mismatch: Vulnerabilities may emerge from differential rates in evolution that generate mismatches 
between the cultural developmental environment and evolutionarily old dispositions (e.g., disordered 
eating patterns leading to obesity, because of humans’ tendency to seek energy-rich, sugary and fatty foods 
that were scarce in our ancestors’ environment but that are now abundant) (Raubenheimer et al., 2015). A 
mismatch happens when the rate of change of environmental stressors exceeds the rate of change of 
individuals’ adaptation. Depending on the scale at which the mechanism of adaptation lags behind, a 
mismatch will either be defined as developmental – i.e., a body-environment mismatch (Bateson, 2001); or 
evolutionary – i.e., a genotype-environment mismatch (Bourrat & Griffiths, 2021; Riggs, 1993). 
Developmental mismatches are assumed to impair realized fitness (i.e., individuals' reproductive success), 
whereas evolutionary mismatches are assumed to impair the ability to achieve expected fitness (i.e., the 
sum of reproductive success weighted by fitness across all possible environments). 
 
Constraints: Constraints on selection arise when the cost of adapting a vulnerability through natural 
selection is higher than the cost of preserving that vulnerability in the population. For instance, the cost of 
delivering human infants through the pelvis, although painful and often dangerous, does not outweigh the 
cost of reengineering the birth canal (Nesse, 2017). ‘Rule of thumb’ logical reasoning outweighs its cost in 
terms of logical errors (Mercier & Sperber, 2017); and Huntington’s disease has a limited cost since its 
symptoms do not appear before the age of child-bearing (Nesse, 2002). 
 
Trade-offs:  Trade-offs also favour the selection of vulnerabilities understood as defenses, according to 
‘smoke detector’ explanations (Nesse, 2001). Smoke detector explanations apply in cases where it is more 
cost efficient to select for genes that result in traits likely to trigger false alarms than to fail to detect threat 
(e.g., predator, or fatal pathogen). For instance, acute sensitivity to anxiety provoking situations increases 
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the success of fight or flight responses (and thereby contributes to reproductive success), but it increases 
vulnerability to social anxiety disorders. Similarly, fever is a defense against infection (Kluger, 1979) but it 
may increase to the point of causing seizures. 

2.1.3 Limits and prospects of adaptationist rationales 
  
Adaptationist accounts explain mental disorders in terms of the vulnerabilities of systems that evolved to 
serve an adaptive function (e.g., depressive symptoms are an adaptive vulnerability whose function is to 
reconsolidate social networks but that can spiral into maladaptive responses). This makes an explicit link 
between normal functioning and pathology and provides a rationale for research with animal models that 
involve similar biobehavioral systems (Kirmayer & Crafa, 2014); hence the ties of adaptationist thinking with 
the ethological perspective. Adaptationism has been critiqued, however, on methodological and conceptual 
grounds (Tsou, 2021), among others, on the fact that traits may persist and lead to vulnerabilities through 
processes other than selection (Gould, 1991). Indeed, there are many cases that cannot be explained solely 
based on Darwinian thinking. For instance, disorders such as schizophrenia, bipolar disorder, eating disorders, 
and obsessive-compulsive disorder are known to impair reproductive success (Keller & Miller, 2006). All things 
being equal in the world of natural selection, genetic variants predisposing individuals to such disorders (e.g., 
genetic vulnerabilities) should have been eliminated from the gene pool long ago. To explain pathways to 
mental disorders based on traits that have no obvious adaptive value, evolutionary accounts of mental 
disorders can go beyond the adaptationist narrative by appealing to other population-level phenomena. 
  
Explanations based on population genetic thinking provide a complement to Darwinian explanations (for a 
review see: Keller & Miller, 2006). For instance, processes of balancing selection can maintain multiple 
variations of alleles in the same gene (i.e., polymorphism) whose net fitness effects balance each other out, 
depending on the genetic or environmental context (Zhang & Hill, 2005). Balancing selection requires that all 
the alleles involved have roughly equivalent fitness, and that some mechanisms countered the normal loss of 
these alleles due to drift. A good example of a balancing selection process is frequency-dependent selection, 
where the fitness of some unit (e.g., allele AA) or trait depends on its frequency in a population (e.g., the hawk-
dove situation (Sigmund & Nowak, 1999)). Frequency dependent selection might explain the maintenance of 
allelic susceptibility to psychopathy, as people with psychopathy would gain a fitness advantage in a 
population where the allele is rare and becomes disadvantageous when frequent because of anti-cheater 
vigilance (Mealey, 1995; Nettle, 2004, 2006). Like adaptationist rationales, rationales from population genetics 
explain the persistence of dysfunctional genetic variations (e.g., vulnerabilities to illness) that would normally 
impair evolutionary success. This provides evolutionary psychiatry with a functional model of mental health 
and disease based on biological principles. It is important to note that there are many other population 
genetics models that can explain the persistence of harmful variations (Keller & Miller, 2006). The example of 
balancing selection is introduced here to warn against overly simplistic adaptationist stories, which are often 
difficult to test. That said, adaptationist accounts can provide satisfying explanations for some mental 
disorders. Crucially, adaptationist rationales point to the likelihood that many mental disorders are based on 
otherwise adaptive functions (Grunspan et al., 2018). These rationales can lead to rethinking medicalization 
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or conventional psychiatric nosology by acknowledging the close links between adaptive strategies and 
pathology (Troisi, 2005). 
  
There are also limitations to the adaptationist approach that are external to it. As the logic of evolutionary 
biology goes, proximate causes acquire explanatory value in so far as they relate to ultimate causes, which are 
located in evolutionary history. However, in many instances, this history refers to the emergence of human 
beings in an evolutionary environment of adaptation quite different from our current environments. 
Evolutionary explanations either appeal to vulnerabilities that arose because of this evolutionary history or 
focus on discrepancies between past environments, to which we were well adapted, and current contexts, 
which pose new challenges (cf. Box 1). New challenges in current contexts, however, are dependent upon 
sociocultural features like cultural practices, values and social institutions, whose causal contribution to 
mental health should be considered (Kirmayer & Young, 1999). Moreover, humans have been co-evolving with 
our socially constructed environments for millennia (Kirmayer et al., 2020a). Thus, half of the story is missing 
here. As we will see next, cultural psychiatry provides a concept of mental health consistent with evolutionary 
thinking, which can provide a mechanistic account of the social systemic embedding of mental health and 
illness. 

2.2 Cultural psychiatry 
  
Cultural psychiatry acknowledges the influence of multiple processes in establishing the boundaries between 
the normal and the pathological in biomedical science and clinical practice (Kirmayer & Crafa, 2014). However, 
it insists that any perspective must acknowledge context dependence; that is, the influence of socio-
normativity of the local cultural contexts. This is crucial to produce definitions of mental disorders that have 
a grip on clinical practice. Moreover,  cultural psychiatry argues that evolutionary history itself is shaped by 
current cultural concerns and dominant ideologies that may obscure the nature and range of human 
functioning in health and illness (Canter, 2012; Rose & Rose, 2010). Accordingly, for cultural psychiatry, an 
evolutionary perspective must consider the social normativity that underlies the use of evolutionary principles 
to define the normal (functional) and the pathological (dysfunctional) (e.g., the manner in which values of a 
local ethnomedical practice shapes illness experience and thereby themselves move the boundaries of the 
normal and the pathological (Kirmayer & Young, 1999; Murphy & Woolfolk, 2000). 
  
Cultural psychiatry does not endorse a radical social relativism, which would discount any effort to recognize 
mental disorders across cultures. Mental disorders are not simply social constructions; they are fundamentally 
biological. But cultural psychiatry insists that human (neuro)biology is itself fundamentally social — 
neurodevelopment and adult functioning involves the embedding of the individual in a socially constructed 
niche and larger interactional systems that are configured by cultural knowledge and practices (Kirmayer, 
2006).  Recent human evolution has involved cultural-biological coevolution, so that even our thinking about 
mental disorders in evolutionary terms must engage with the impact of humanly constructed worlds on the 
structure and function of our brains. Moreover, changes in these social and cultural systems happen faster 
than evolutionary changes creating potential discrepancies between functional systems and current adaptive 
demands. The key questions for cultural psychiatry then are not only those that relate to the way in which the 
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social world shapes the experience, definition of, and response to mental disorders, but equally how social 
contexts and interactions contribute to the underlying mechanisms and developmental trajectories of 
disorders: that is, how and when mental disorders are constituted by processes that reflect their social 
systemic embedding. 
  
It is hard to see how one could disagree with the holistic view of mental health proposed by cultural psychiatry. 
Yet, historically, these claims have been given mostly lip service, as bio-reductionism still appears to run deep 
in psychiatry. To understand the project of cultural psychiatry, we must take a short glance at the recent 
history of psychiatry and the concept of mental disorder it has employed. 

2.2.1 Historical overview of bio-reductionism 
  
The operationalization of diagnostic categories ushered in by DSM-III in 1980 aimed to provide a taxonomy 
useful for clinical assessment that could also guide research aimed at identifying discrete disorders, each with 
its own aetiology, mechanisms and symptoms (First, 2012). Categorical approaches were born from a 
“biomedical” approach to research and practice that focused on the proximal, biological factors at play and 
their associated phenotypes (Compton & Guze, 1995; Mayes & Horwitz, 2005). The categorical approach of the 
DSM-III and its successors emerged against the background of already ongoing arguments for a broader 
biopsychosocial approach to assessment (Engel, 1981; Guillemin & Barnard, 2015). On the biopsychosocial 
view, the illness must be understood in terms of a multilevel hierarchy from molecules to behaviour. This 
affords a conceptual space that accommodates clinical observations in the real-world contexts of disorders 
(Bolton & Gillett, 2019). However, the hope of characterizing disorders in terms of underlying (biological) 
mechanisms and the lack of appreciation of the causal effects of systemic social processes has undercut 
integrative approaches(e.g., Ghaemi, 2009, 2010). 
  
The current Research Domain Criteria (RDoC) developed by the United States National Institute of Mental 
Health reflects the emphasis on biological correlates, as it doubles down on neuroscientific research, with the 
hope of formulating disorders in terms of their (mostly neural) phenotypes and/or measurable 
(neuro)biological traits (Insel, 2014). Despite the integration of behavioural and phenomenological (e.g., 
through self-reports) units of analysis, the RDoC framework remains largely bioreductionist (Kirmayer & Crafa, 
2014). In emphasizing biological research, the RDoC relies heavily on evidence derived from animal models. 
Unfortunately, we have no animal models of many distinctive components of human experiences relevant to 
mental health and illness, such as narrativity, morality, racism, political violence (Paris & Kirmayer, 2016). 
Reductionism thus is bound to operate with a stripped-down biology that emphasizes brain circuitry over 
psychological functions and systemic social processes. This makes it difficult for psychiatry to advance its goal 
of a mechanistic understanding of all the components that make up the gene-brain-person-environment 
pathway to explain mental disorders.  Importantly, RDoC criteria do not have immediate clinical utility, as their 
role has been mostly to motivate “omics” research. Omics can lead to novel treatment that target the 
biological components of mental disorders (Morris et al., 2022), but, as the currently struggles of the 
psychiatric institution with the “translational gap” suggests – i.e., the difficulty in translating scientific models 
into efficacious clinical models (Seigle et al., 2019) – such research has been largely unsuccessful. Cultural 
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psychiatry seeks to move towards a concept of mental disorder that remains mechanistic and functional while 
accommodating culture and context. 

2.2.2 Towards a non-reductionist concept of mental 
disorder 
  
The concept of disorder in psychiatry refers to behavioural patterns that cause psychological distress and 
functional impairment, and only indirectly to the failure of biological mechanisms. It describes a situation 
configured at subjective, phenomenological, psychological and social systemic levels (Kirmayer & Young, 
1999). Mental disorders are inherently value-laden and shaped by socio-normative causes — e.g., the way we 
identify the harm resulting from mental ill-health — as much as they are caused by biological causes. 
  
In considering distinctions between health and pathology, cultural psychiatry raises an additional difficulty: 
namely, giving a scientific account of ‘harmful’. We need to identify and test the mechanisms by which 
judgments themselves, understood as objects of language, become consequential for individuals' functioning, 
well-being, social status, etc. Institutional discourse shapes illness experience, which means that we need a 
functional account of how individual and institutional discourse influence the mind, and how the mind comes 
to affect institutions. In the notion of 'Harmful dysfunction', the harmful and the dysfunctional must be given 
equal scientific consideration. 
  
Accordingly, cultural psychiatry defines mental disorders: (i) pragmatically, as conditions treated by the 
discipline of psychiatry, or corresponding local healing practices; (ii) normatively, relative to the conceptions 
of the normal and the pathological given by local medical traditions and practices; and (iii) ontologically, as 
having bodily, psychological, or social systemic causes (Kirmayer, 2018). In employing cross-cultural and 
ethnographic methods, cultural psychiatry can work out the pragmatic and normative aspects of mental 
illnesses (e.g., assessing the manner in which individualism in Western culture impacts health and well-being 
(Eckersley, 2006, 2011; Kirmayer & Ban, 2013; Kirmayer & Bhugra, 2009). Here we focus on the ontology of 
mental disorders but recognize the fact that the category of pathology is a moving target influenced by 
language and culture. Although this remains a challenge, cultural psychiatry captures the moving aspect of 
ontology using the theory of the looping effects of human kinds, developed by Hacking (1995, 2000). We 
believe that one can leverage the mechanics of looping effects of human kinds to think about a scientific study 
of the ‘harmful’ in Wakefield’s concept of mental disorder. 
  
Kinds are epistemological notions that refer to conceptual classes used to classify, sort or discriminate 
different objects (Hacking, 1995). Natural kinds, for instance, classify objects that undergo efficient causality, 
in the sense that when they are acted upon, those objects conserve the same set of properties. However, 
objects classified as humankinds, such as mental disorders, do not only undergo efficient causality; they 
undergo practical causality—that is, they change their behaviour by virtue of the act of being classified or 
labelled. This means that kinds are desirable, or undesirable to the people whose behaviour fall under their 
classification (Hacking, 1995). It is because they are value laden (that is, they depend on the values assigned 
to them through social practices) that humankinds are endowed with a causal power different from that of 
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natural kinds. For instance, if N is a natural kind, and Z is an object of the natural kind N, classifying Z as an 
element of N has no causal effect on Z (Hacking, 1995). For instance, if ‘atom’ is a natural kind, calling an ‘atom’ 
‘hydrogen’ has no causal effect on hydrogen as an atom. What might change is the way the classifier would 
engage with hydrogen. The same applies to human kinds (e.g., if I call Denis ‘autistic’, it will change the way I 
engage with him). However, while classifying ‘atom’ as ‘hydrogen’ changes only the behaviour of the classifier, 
classifying Denis as autistic also changes Denis’ behaviour.  In contrast to the atom, Denis can become aware 
of his classification and may change his behaviour accordingly. Denis might make less effort, or lose 
motivation to engage socially because of self-perception and self-evaluation based on his understanding of 
the classificatory label, or because of his internalization of the stereotypes and social stigma applied by his 
social partners (Jaswal & Akhtar, 2018). These proximal interactional effects are, of course, embedded in larger 
systemic social processes and structures that are major determinants of health and illness (Alegría et al., 2018; 
McAllister et al., 2018). 
  
Categories of mental disorders are about people and the criteria they are based on often reference behaviours 
that are value laden. In turn, our categories of people, their character and values are all culturally shaped 
(Hacking, 1985; Kirmayer, 2007). This leaves the ontology of any given mental disorder open to change as a 
function of local cultural changes in norms, conceptual categories, and epistemic practices. For instance, as 
diagnostic activity and treatments may recognize certain configurations of experience and affliction, clients 
may access new ways to interpret their experience, thereby yielding corresponding clinical presentations that 
reinforce the clinician’s impression of the validity of the category (Kirmayer, 2018). 
  
Looping effects may entail a shift from one locus to another, such as in cases of somatization, where the 
affliction may start as a social experience, and then become psychological, bodily, and then social again. 
Somatization is found across cultures (Kirmayer & Young, 1998) and appears to reflect basic 
psychophysiological processes that are shaped by culturally specific ways of life and modes of illness 
experience. These modes of illness experience are culturally patterned ways of expressing bodily and 
psychological afflictions that reflect cultural models (Kirmayer & Sartorius, 2007). Cultural models are stable 
discursive and expressive styles of illness experience encoded in individuals’ cognitive schema, embodied 
practices, interpersonal interactions, discourses, and social institutions. It is these cultural models that lie at 
the interface of individuals and larger social world to mediate the looping interaction between somatic and 
emotional/psychological distress (Kirmayer & Ramstead, 2017). Looping effects in cultural models are 
promising candidates for a mechanistic account of the harmful, in Wakefield’s definition of mental disorder as 
harmful dysfunction.  

2.2.5 Prospects for an ecosocial model of mental health 
 
Cultural models point to a concept of mental disorder that recognizes the causal power of social labelling of 
behaviour and experience as harmful and aligns more generally with the biopsychosocial approach that 
recognizes individual cognitive and adaptive processes are embedded in larger systemic social contexts 
(Bolton & Gillett, 2019). Cultural psychiatry situates the open-ended looping ontology of mental disorders in 
an ecosocial model of mental health (Kirmayer, 2015), which—much like recent multilevel approaches in 



 70 

psychology (Badcock, 2012; Badcock, Friston, & Ramstead, 2019; Badcock, Friston, Ramstead, et al., 2019) and 
cognitive anthropology(Veissière et al., 2020)—assumes that humans are part of a hierarchically organized, 
dynamic social ecosystem that includes the brain, the body, and the social and physical environment 
(Hutchins, 2010). This means that psychopathological entities may involve dysfunctions not only in their 
subcomponents (e.g., neuroatypicalities; bodily impairment; dysfunctional social milieu), but in the system 
dynamics that bind these components together (Borsboom et al., 2019). These dynamics include feedback 
regulatory processes and mutually causal looping effects that can amplify or self-sustain a psychopathological 
state (Kirmayer, 2015). 
  
The ecosocial model of mental health gives explicit attention to the systemic embedding of human biology 
and psychology by drawing links or loops between our self-descriptions (as ill or well) and interactions with 
the brain, body, and society. It encourages us to consider the multiple forms of systemic social process that 
give rise to human experience in sickness and in health. In so doing, cultural psychiatry aims to lay bare not 
only the constructs, norms and constraints that constitute mental disorder as a social reality, but also the 
cognitive and social interactional processes that may be aetiological factors, part of basic mechanisms of 
psychopathology, and determinants of illness course and outcome. The resultant models of pathology trace 
the circuits of the mind, which reside not only in the brain but in the social world. However, although well 
framed to advance an integrative approach, the ecosocial model of cultural psychiatry, in its current form, 
remains mainly a narrative description of the mechanisms at the interface between external levels of 
causation (e.g., socio-material systemic processes) and internal (e.g., brain-based) levels of causation, making 
it difficult to operationalize in empirically testable models (Smoller & Stein, 2018). To remedy this, we next 
consider ways to implement looping dynamics—that undergird the ecosocial model—within the formalism of 
computational psychiatry.  

2.3 Computational psychiatry 
  
As a domain of clinically applied research in psychiatry, computational psychiatry is primarily motivated by 
recognition of the shortcomings of current psychiatric nosology in providing diagnostic categories that predict 
treatment response and outcomes and that are linked to mechanistic explanations of disorder (Corlett & 
Fletcher, 2014). However, computational methods also allow us to build models of biological processes that 
are systemic—that is, they can model networks of many interconnected components and reveal the resulting 
dynamics. This has proved a powerful approach in systems biology at many levels and, in particular, in efforts 
to understand how embodied and embedded and extended neural networks can give rise to cognition, 
behaviour, and experience in health and illness. 
  
In this section, we focus on an approach to theory driven modelling in psychiatry known as active inference 
(Da Costa et al., 2020; Friston, FitzGerald, et al., 2017; Parr et al., 2022). Active inference has been proposed as 
a general framework for understanding the computational processes that underlie cognition and adaptation, 
which essentially involve prediction of sensory inputs and the effects of actions. This approach understands 
mental disorders in terms of failure to infer or represent causes of sensations in the world based on Bayesian 
beliefs, and to act accordingly (Corlett & Fletcher, 2014). 
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Under active inference, mental disorders are defined and modelled in terms of a failure of cognitive functions 
such as (i) perceptual inference and (ii) adaptive behaviour as action planning. Within the terms of our current 
discussion, active inference can be viewed as seeking an explanation of proximate causes of dysfunctions, 
where dysfunctions should be understood as suboptimality of perception and action (Parr, Rees, et al., 2018). 
The question active inference asks is: Assuming that the brain operates optimally from a Bayesian point of 
view (i.e., it always performs Bayesian inference), how is it that the brain can generate suboptimal behaviour? 
This question is close in nature to that of evolutionary psychiatry: if natural selection optimizes organisms’ 
adaptation, how is it that natural selection can generate suboptimal phenotypic traits (e.g., vulnerabilities)? 
In both cases, the answer is that suboptimality is the outcome of an optimization process that has ‘gone 
wrong’ given the developmental, environmental, or social-contextual conditions under which the 
maladaptation emerged. For evolutionary psychiatry, things can go wrong, for instance, because of a 
mismatch between the environment of evolutionary adaptation and contemporary social contexts. For 
computational psychiatry, the optimization process goes wrong when something happens to the priors 
involved in the cognitive machinery, because of lesions, autoimmune, neoplastic, infectious, or 
neurodevelopmental anomalies, alterations in neurochemical or neuromodulatory processes,  or changes in 
brain circuitry that may be a result of environmental interactions and learning histories. However, drawing 
from the arguments of cultural psychiatry, this circuitry may involve systemic processes that extend beyond 
the brain. We will explore those processes in section 2.3.3 below. 

2.3.1 Computational phenotypes 
 
The theory of active inference allows one to produce computer models of pathological and healthy brain 
functions to study the effects of various kinds of interventions (mostly psychopharmacological). These models 
are meant as coarse-grained maps of the brain that translate neuronal architectures (i.e., synaptic 
connectivity) into parameters, and brain dynamics into belief updating schemes and learning algorithms that 
update model parameters. Models can be altered in ways that correspond to lesions or interventions and the 
resultant artificial analogues to behaviour can be safely studied in silico (Benrimoh et al., 2019; Parr, Benrimoh, 
et al., 2018). Of course, the models are inevitably simplified versions of neurobiological systems. When the 
parameters of these models reproduce psychiatric phenomenology, they constitute computational 
phenotypes: in other words, they provide analogues of pathological neural phenotypes (Montague et al., 
2012). Under active inference, computational phenotypes are generative statistical models that employ 
Bayesian principles. Crucially, these generative models comprise priors—at many levels—which characterize 
a particular individual or psychiatric cohort (Adams et al., 2016; Benning, 2015). The models are called 
generative because they generate observable consequences from unobservable causes. On this view, the brain 
is in the game of inverting or fitting a generative model to her sensory data; namely, inverting the mapping 
from causes to consequences to infer unobservable states of affairs in the world from their sensed 
consequences. 
  
Active inference—in theory-driven modelling psychiatry—assumes that the neural processes underlying 
perception involve inference via the inversion of a generative model (for a discussion of inference under 
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generative models and classification under discriminative models, see: Ng & Jordan, 2002). A generative model 
is simply the joint probability over the causes and consequences that is usually factorized into a likelihood 
(i.e., the probability of some sensory consequences, given their causes) and prior beliefs (i.e., the prior 
probability of some causes or hidden states before seeing sensory data). 
  
Active inference assumes that the brain embodies a generative model of its sensory impressions. Sensory 
impressions correspond to sensory data (e.g., the activity of wavelength selective photoreceptors), and 
inference corresponds to the inferred cause of the data (e.g., a color). If priors in the generative model are apt 
to represent the world, the inference about the causes of the data will provide an accurate account of those 
data in terms of causes, as simply as possible (technically, with minimal complexity; namely, the difference 
between prior and posterior beliefs). Suboptimal perceptual inference can arise because of a functionally 
impaired system (e.g., a lesioned brain), or poorly learned priors (e.g., lack of appropriate training experience 
or a change in circumstances). Generative models instantiated by the brain are highly complex. They are 
universally composed of hierarchically organized priors (e.g., they contain priors about low-level causal 
patterns and higher-level abstractions) that are parameterized to reflect the dynamic structure of the world 
that they are meant to recapitulate. 
  
Inferring the causes of sensations is but one component of the overall task that the brain has to accomplish. 
The other key task is to select actions that make inference as efficient as possible. Within the context of 
modelling brain functions, a generative model will include prior beliefs about transitions between among 
states of the world (e.g., moving from ‘my side of the street’ to ‘the other side’), given allowable actions (e.g., 
‘go forward’; ‘go backward’, etc.). The imperatives for action selection are the same as those for perceptual 
inference; namely, to maximize the marginal likelihood of sensory data, under the generative model. The only 
difference is that for policy selection, this likelihood is averaged over the outcomes predicted under the policy 
in question. The generative model thus can also infer the best course of action, or action policies (i.e., 
sequences of plausible actions). In short, active inference assumes that, along with many other functions, 
perception and action are processes of inference in the brain. 
  
An advantage of using computational phenotypes to study psychopathology is that one is forced to give an 
explicit mathematical description of the dynamics of the pathological functions to phenotype the disorder 
(Corlett & Fletcher, 2014) (e.g., the neurocognitive process underlying false perceptions, like delusions and 
hallucinations). Computational phenotyping of this sort simply entails adjusting the priors of the generative 
model to maximize the likelihood of a particular subject’s behaviour or choices (Friston & Penny, 2011; 
Stephan et al., 2009). Generative models can further simulate psychophysics and neurophysiology (e.g., 
reaction times and neuromodulatory responses) associated with the hypothesized belief updating 
mechanisms underlying the pathological function (Parr et al., 2022).  

2.3.3 Computational phenotypes beyond the brain 
 
Reflecting the longstanding interest in modelling neural circuitry, active inference is compatible with the 
aspirations of the RDoC and shares some of the RDoC’s assumptions, namely: that pathology can be 
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understood in terms of circuitry dynamics that adversely affect computational functions, which, typically, 
subserve adaptive behaviour. Both the RDoC scheme and computational psychiatry borrow from a wealth of 
experimental work that delineates the different ways in which the brain’s processing can go wrong. In recent 
years, in the hope of adopting a more ecosocial perspective on modelling human cognition, research under 
active inference has attempted to identify the computational-sociocultural structure of mental disorders. This 
work has been cashed out in terms of theoretical models and simulation studies of organism-environment 
interactional behaviour (Bruineberg et al., 2018; Constant, Bervoets, et al., 2018; Constant et al., 2019; 
Constant, Ramstead, et al., 2018; Friston & Frith, 2015; Kaplan & Friston, 2018; Ramstead et al., 2019; Ramstead 
et al., 2016). Enlarging the scope of computational phenotyping, these studies have considered the manner in 
which organisms leverage their environment to support various cognitive functions and forms of social 
interaction (e.g., communication, social and situated learning, social conformity, cooperative decision-
making, joint action, joint attention, etc.)(Veissière et al., 2020). 
  
Conceptually, the ecosocial reading of computational phenotypes is licensed by the fact that the notion of 
phenotype encompasses levels that reach far beyond the brain (Badcock, 2012; Badcock, Friston, & Ramstead, 
2019; Badcock, Friston, Ramstead, et al., 2019; Ramstead et al., 2018, 2019). For instance, a beaver dam is the 
product of the beaver’s behaviour. This behaviour determines the beaver’s survival and reproductive success; 
thereby becoming a target for selective processes. The ensuing combination of agents and their niche is 
known as an ‘extended’ phenotype (Dawkins, 1982). An agent can also enter into a coalition (or conflict) with 
its biotic environment, thereby forming a ‘joint’ phenotype, wherein no single party owns the phenotype, such 
as the health state of a parasite host (Queller, 2014), or, presumably, a shared, patterned cultural practice 
finessed through cultural evolution driving gene-culture co-evolution (Henrich, 2015; Kirmayer et al., 2020a). 
Ecosocial computational phenotypes rely on such an extended notion of phenotype to model systems beyond 
individual brains. This, of course, requires translating the ontology of Bayesian neurocomputation (e.g., prior 
likelihood and inference) to that of human ensembles. 
  
The general idea behind this translation is simple. Just as the brain engages in inference by inverting a 
generative model of the cause of its sensations, the environment—and the agents it includes—can be regarded 
as inferring the cause of the sensory impression the environment receives. From the perspective of the 
environment, the sensory impressions are the agent’s actions. Of course, such an anthropomorphic way of 
talking about the environment is only meant to set up the computational modelling. For instance, a chair may 
be viewed as providing a series of action possibilities (also known as affordances in ecological psychology 
(Gibson, 1979; Rietveld & Kiverstein, 2014)), each of which yields different agents and context-dependent 
probabilities. A seat will have a greater probability to elicit the ‘sitability’ action policy than the ‘standability’ 
action in, say, a conference room. In this sense, the chair may be viewed as classifying the action ‘sit’ under 
the category, or the cause for the ‘agent wanting to sit’. These probabilities are consolidated by histories of 
agent-environment interactions (e.g., design and construction of the chair, the position of the chair in the 
room, etc.). 
  
With such a perspective, one can make sense of the many cognitive functions the external world plays for an 
individual (Constant et al., 2020) and the manner in which typical and atypical cognition may constitutively 
depend upon those external functions (Constant, Bervoets, et al., 2018). For instance, we know that perceptual 
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cues guide the acquisition of many cognitive capacities central to normal functioning in social interaction. The 
production and coordination of perceptual cues such as gestures and uttered narratives guide joint attention 
during offspring caregiver interaction, and are known to support the acquisition of functions such as folk 
psychology (which allows a sort of “mind reading” of the states and intentions of others), autobiographical 
memory, and narrative practices (Fivush & Nelson, 2006; Hutto, 2012; Nelson & Fivush, 2004; Vasil et al., 2020). 
The failure of the acquisition of such functions is among the popular—although contentious—explanations of 
the social symptoms of autism (Baron-Cohen et al., 1985; McDonnell et al., 2017). By framing internal and 
external functions under a single joint phenotype, an ecosocial computational phenotype can explain in a 
principled fashion (i.e., based on Bayesian principles) the formal relationship between neurocomputational 
phenomena such as learning and attentional impairments (e.g., Lawson et al., 2014; Van de Cruys et al., 2014), 
ecological features such as perceptual cues (Constant, Bervoets, et al., 2018), and culturally patterned looping 
dynamics (Bolis et al., 2017), such as those that characterize interactions between autistic individuals and 
clinicians or caregivers (Jaswal & Akhtar, 2018). 
  
The inclusion of non-neural factors in theory driven modelling psychiatry allows one to explain the constitutive 
role of the environment in mind and cognition. This holds the promise of a mechanistic view of mental 
disorders that can include the computational role of social context and cultural factors. The same approach 
can be used to model the embodied nature of cognition: namely, the innermost ecology of mind being the 
brain in the body, which is embedded in the tool-using, interpersonally communicating person that 
participates in a socially constructed (and populated) niche. The Evolutionary, Cultural, and Computational 
(ECC) model we consider next brings together the ecosocial reading of computational phenotypes presented 
above with the adaptationist rationale of evolutionary psychiatry. 

3 Evolutionary Computational Ecosocial phenotyping 
  
In section 2, we reviewed the main motivations and principles of evolutionary, cultural, and computational 
psychiatry. Our aim was to familiarize the reader with the three approaches and their respective modes of 
explanation and modelling strategies (see summary table 1). In this section, we pursue the integration of 
cultural and computational psychiatry by supplementing the notion of ecosocial computational phenotypes 
with an evolutionary interpretation of the structure of generative models. This furnishes an Evolutionary, 
Cultural, Computational (ECC) model of mental disorders. To illustrate how the ECC model might be applied, 
we will propose a reading of Major Depressive Disorder (MDD) that articulates the manner in which 
evolutionary and cultural factors can be integrated into a computational narrative to explain symptoms of 
MDD. 
  
Before we continue, we should highlight an important distinction. Evolutionary and cultural approaches to 
psychopathology differ from computational psychiatry in that they both start with assumptions about the 
potential underlying causes of psychiatric phenomena, while the computational approach can remain 
agnostic. To the extent that computational modelling is based on a theory of how the brain works (or, at 
another systemic level,s how social interactions work), it may also make assumptions about causality. 
However, computational modelling can be used simply to provide a model of observed relationships (i.e., 
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input/output mappings) with no presumption that the model describes the actual mechanisms mediating 
those relationships). When modelling attempts to describe how the brain actually works, the computational 
model will usually be underwritten by specific evolutionary or socio-cultural accounts of function which have 
direct consequences for and constraints on the model. The distinction overall is between computational 
models of the brain as specific ontological theories and computational models as a generic toolkit to capture 
dynamics that may be instantiated in diverse ways on different substrates. This is precisely one of the ongoing 
debates around active inference in modelling psychiatry. How much does such modelling assume or entail 
about the brain as opposed to simply being a flexible framework for (re)describing observed relationships? 
This is an open debate that we cannot settle here but we note that there are a range of possibilities related to 
the theoretical or empirical basis for structural relationships that are built into the computational model 
(rather than those than emerge by virtue of its dynamics). 
 
Put another way, theories about psychiatric phenomena in evolutionary and cultural psychiatry aim to 
account for the specific aetiological, phenomenological, and nosological relations between observed 
symptoms and their underlying causes—and associated syndromes—by drawing from specific accounts of 
human (pre)history, development, and current social contexts, whereas computational psychiatry can be used 
to model symptoms by incorporating a variety of possible underlying causes. In that sense, computational 
psychiatry constitutes a flexible method to analyse psychiatric disorders, rather than a substantive theory of 
their ontology or aetiology. 
  
The upshot of this is that computational psychiatry, or computational phenotyping under active inference, 
furnishes a way to integrate, within a single coherent and principled framework, a variety of theories about 
psychiatric phenomena. The ECC approach should not be viewed as a single implementable computational 
model, but rather, as a description of the variety of priors one could use to parameterize computational 
phenotypes that conform to the principles of evolutionary and cultural psychiatry. For a simulation study of 
such a computational phenotype see (Constant et al., 2021). 
  
Table 1. Modes of Explanation and Modelling Strategies 

  
Discipline and Mode of 
Explanation 

  
Focus with respect 
to Wakefield's 
definition 

  
Conception of mental disorders 
  

  
Modelling 
strategy 

Evolutionary 
psychiatry 
(selected account of 
function and Darwinian 
rationales) 

The concept of 
dysfunction 

Developmentally aggravated 
vulnerabilities understood as 
proximate causes shaped by 
ultimate causes  

Darwinian 
rationales (cf. 
Box 1) 

Cultural psychiatry 
(looping effects of 
human kinds, impact of 
self-construal, and 

The concept of the 
harmful 

Behavioural patterns causing 
psychological distress and 
functional impairment configured at 
the subjective level, and shaped by 

Ecosocial model 
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ecosocial systemic 
models) 

socionormative interactions, and 
cultural affordances  

Computational 
psychiatry 
(active inference and 
ecosocial phenotyping 
in theory drive 
modelling psychiatry) 

The concept of 
dysfunction; 
potential to model 
how harm and 
dysfunction interact 

Suboptimal inference of perception 
and action caused by lesion or 
atypically learned model paramters 

Computational 
phenotyping 

3.1 Evolution and culture in ECC 

3.1.1 Evolution in ECC 
  
The ecosocial reading of computational phenotypes can be supplemented with an evolutionary 
interpretation. Internal priors of a generative model can be viewed as targets for selection; they can be studied 
as (epi)genetic, structural, or adaptive priors (Friston, 2010; Friston & Stephan, 2007). Adaptive priors are 
endowed by evolution and have been geared towards adapting the individual to the ancestral environment. 
They can be contrasted with (empirical) priors which are learned over developmental time via experience-
dependent neuronal plasticity. 
  
From a modelling perspective, the consequence of this is that adaptive priors will exert a strong top-down 
influence over empirical priors that can be learned, and thus over behaviour and neurophysiology. For 
instance, our prior preferences for energy-rich food can be viewed as an innate prior that will be paired with 
the learned empirical prior beliefs about the probability of finding energetic resources in the current 
environment (Richerson, 2018). Such an adaptationist rationale as applied to priors is useful for designing 
pathological generative models under the views of mismatch theory, constraints and trade-offs argued by 
evolutionary psychiatry.   

3.1.2 Culture in ECC 
  
With respect to culture, we have seen that those states external to the generative model representing the 
environment, can be modelled in terms of priors and likelihoods, and thus the environment could itself be 
read as learning about its denizens. This view underwrites the ecosocial interpretation of computational 
phenotypes. Culture is defined as shared knowledge, practices, values, and institutions that constitute the 
way of life of a group of individuals or community (Kirmayer, 2018). From a computational perspective, culture 
may thus be modelled as the calibration (viz. practice) between the priors, likelihood, and agents constituting 
the environment (viz. institutions) and the priors, likelihood and sensations making up the agents themselves 
(viz. knowledge and values)(Constant et al., 2019; Ramstead et al., 2016; Roepstorff et al., 2010; Veissière, 2016; 
Veissière & Stendel, 2018; Veissière et al., 2020). 
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The calibration of generative models is mediated by the exchange of sensory cues generated by the 
environment and actions generated by the agent. Over time, this exchange should attune the generative 
model of the agent to her environment (Constant, Ramstead, et al., 2018; Ramstead et al., 2019; Veissière et 
al., 2020). Cultural models such as those construed by cultural psychiatry (i.e., the stable discursive and 
expressive styles of illness experience encoded in cognitive schema, practices, and social institutions) may 
thus be viewed as illness-specific calibrations of agents and world’s generative models, which consolidate 
through ecosocial looping dynamics. 

3.1.3 Mechanism and function in ECC 
  
The ECC considers model parameters that reflect biological (and cultural) phenomena caused by proximal 
factors (e.g., mechanisms) and ultimate factors (e.g., functions). This distinction between proximate and 
ultimate factors, as discussed earlier, is one of the ways in which evolutionary psychiatry tries to understand 
“why evolution left us with traits that make us vulnerable to mental disorders.” The taxonomy of priors 
described in this section—i.e., adaptive priors, vs. empirical and environmental or cultural ones—could be 
misconstrued as promoting a false dichotomy between proximate and ultimate causes: adaptive priors are 
meant to reflect the species’ evolutionary history (its phylogeny), while empirical priors are meant to reflect 
the way an organism learns its environment over development (its ontogeny). This way of thinking is 
problematic, however, because it suggests an overly simplistic way to think about adaptation and 
development. 
  
In particular, the notion of adaptive priors used here might be misread as meaning an "innate" prior, a 
consequence of our evolutionary history, which is a controversial notion that certainly cannot cover many of 
the kinds of priors relevant to psychiatric disorders. In our model, adaptive priors are distinguished from 
purely learned, empirical or developmental priors. Historically, the folk concept of innateness has often 
conflated notions that reflect distinct and often irreconcilable biological realities (Griffiths, 2002). Those 
notions include (i) developmental fixity (i.e., the idea that an innate trait is ‘hard to change’); (ii) species nature 
(i.e., the idea that an innate trait is ‘universal’), and (iii) intended outcome (i.e., the idea that an innate trait is 
‘there by design’). Appealing, either implicitly or explicitly, to such a folk essentialist way of thinking in science 
runs the risk of unjustifiably importing conclusions based on findings in one domain of biology into another 
disjoint domain (e.g., "because this trait is universal, it must be there by design, and because it is there by 
design, it will not change over development")(Griffiths, 2002). It is precisely these risks that the kind of 
computational phenotyping proposed here contends with, as it integrates model parameters that are meant 
to reflect ‘adaptive’ versus ‘learnable’ traits. 
  
The ECC, however, circumvents the problem of folk essentialism because the notion of an adaptive prior 
simply refers to a temporal scale of organization relative to a scale of interest. An adaptive prior is one that 
performs an evolutionary function (for a review of the notion of function, see: Christie et al., 2021) and for that 
reason, it is reliably transmitted to individuals from one generation to the next (e.g., the hierarchical structure 
and plasticity of the developing brain)(Badcock, Friston, & Ramstead, 2019). By contrast, an empirical prior is 
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limited to (or learned during) the life span of the system of interest (e.g., a given connection pattern among 
neurons), and may not be passed on to subsequent generations. Of course, this implies that social systems or 
niches and cultural contexts that may have temporal duration beyond the life of an individual—and that are 
passed on exogenetically to the next generation—may also contribute scales of organization relevant to 
explaining psychopathology (Kirmayer et al., 2020a). 
  
Thus, adaptive priors are typically ‘hard to change’ (that is, appear to be developmentally fixed) may simply 
be ‘slow to change’; hence, developmental fixity does not suppose a "species’ nature", as that trait may change 
over phylogenetic time. Universality just refers to the fact that the adaptive prior will be spread across a 
population for a period extending beyond the individual life span of the members of that population. It 
denotes the phenotypic synchrony among individuals sharing the adaptive prior within a given 
(intergenerational) timeframe. Finally, the notion of ‘design’ refers to the evolutionary function of the trait and 
is manifested by the top-down influence that the adaptive prior will exert on empirical priors (e.g., 
computationally, for one update at the adaptive level, there might be multiple updates at the empirical level).  
  
At this juncture, it is worth noting that the ECC approach outlined here appeals to a multiscale model of the 
human brain, called ‘the hierarchically mechanistic mind’, which explains cognition and behaviour by 
integrating active inference with Tinbergen’s four questions in biology (i.e., adaptation, phylogeny, ontogeny, 
and mechanisms)(Badcock, Friston, & Ramstead, 2019; Badcock, Friston, Ramstead, et al., 2019). According to 
this perspective, understanding the computational processes that underlie human action and perception 
requires an integrative approach that captures the evolutionary, developmental, and real-time dynamics that 
govern them. By incorporating both adaptive and empirical priors in a single modelling approach, the ECC 
presents an empirically viable avenue to help researchers unpack the complexities of Tinbergen’s four 
questions. We suggest, therefore, that our modelling approach might not only be of interest to researchers in 
psychiatry, but also to those in the human and biological sciences more broadly.   

3.2 Major Depressive Disorder under the ECC 
  
Common targets of computational phenotyping include schizophrenia (Benrimoh & Friston, 2020), autism 
(Friston, 2017) and Major depressive disorder (MDD) (Huys, Daw, et al., 2015; Huys, Guitart-Masip, et al., 2015). 
Evolutionary (Darwinian) and cultural mechanistic explanations have already been proposed to account for 
the symptoms and syndrome of depression (Allen & Badcock, 2006; Badcock et al., 2017). 
  
Computational psychiatry models the core symptoms of MDD (e.g., diminished drive, loss of energy, 
anhedonia) in terms of computational failings in the evaluation of long-term utility reward functions, a.k.a. the 
evaluation of secondary utility (Huys, Daw, et al., 2015). Secondary utility relates to the value of stimuli whose 
reward causal structure is complex and spatiotemporally extended (e.g., the reward value of accumulating 
money). On the other hand, primary, biological, or ‘hedonic’ utility –as opposed to secondary, ‘anticipatory’ 
utility –relates to reward that is a proxy for reproductive success and survival (e.g., avoiding pain; seeking 
energy rich food) (Huys, Daw, et al., 2015), thereby relating to adaptive priors and preferences that (under 
adaptationist assumptions) have increased reproductive success in the past. This is consistent with 
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evolutionary approaches to mood disorder arguing for the adaptive value of low mood rather than MDD per se 
(Allen & Badcock, 2003, 2006; Badcock et al., 2017). 

3.2.1 Pessimistic priors 
  
One computational pathway to understanding MDD as a dysfunction of long-term reward evaluation is the 
acquisition of pessimistic priors that entail biased learning of environmental states. The main function of 
priors—in a generative model—is to disambiguate the sensory information the system receives, in order to 
perform successful inference and select adaptive action. For instance, as per our problem of indirect 
perception, one cannot directly infer the mood of another person solely from the sensory information that 
person's face affords. Rather, one must take into account some high-level assumptions about the person’s 
behaviour over time (e.g., "she is usually a smiling person, but now her smile must mean something different 
because of what I said yesterday"). 
  
In other words, priors always bias the way we treat incoming information, and consequently, the way one 
selects action towards future sampling of the environment (e.g., “perhaps I should avoid talking to her as I’m 
sure she will reject me”). In MDD, priors biasing such model-based decision-making are priors that tip the 
balance towards pessimistic inference, thereby leading to systematic pessimistic thoughts (a.k.a., a negative 
thinking bias,(Teasdale, 1983). For instance, MDD patients form negative sentences more frequently and faster 
than healthy controls, when presented with optimistic and pessimistic options (e.g., in the scramble sentence 
test)(Hindash & Amir, 2012; Rude et al., 2003). As we will see next, pessimistic thoughts may interact with 
depressive rumination, and lead to the downward depressive spiral of negative expectations and self-
evaluation, anhedonia, social withdrawal, and the suppression of reward-approach behaviour characteristic 
of MDD. This is explained in terms of the autodidactic installation of pessimistic priors. 

3.2.2 Reinforcing pessimistic priors 
  
Many symptoms of depression are commonly experienced by healthy individuals and become a target for 
psychiatric MDD diagnosis only when they become enduring and lead to clinically significant functional 
impairment. Therefore, any account of depression should explain the maintenance of MDD symptoms over 
time. Another role of priors is to guide attention towards sensory cues deemed informative, given these same 
priors (Feldman & Friston, 2010), a.k.a., self-evidencing (Hohwy, 2016). Explicitly engaged, or endogenous 
attention, for instance, can be viewed as a form of internal action (Brown et al., 2013; Edwards et al., 2012; 
Limanowski & Friston, 2018; Parr & Friston, 2019) that assesses the relevance of information, sometimes in a 
biased fashion (Hohwy, 2013; Paton et al., 2012; Hohwy, 2013; Paton et al., 2012). In MDD patients, aversive 
events invoke more recurrent and persistent cognitive processing. For instance, depressed patients gaze 
longer at negative stimuli: i.e., stimuli or information about negative outcomes (Caseras et al., 2007) and spend 
more time examining them (Kellough et al., 2008). They also report less positive emotion in response to 
positive images and more arousal to aversive images (Sloan et al., 1997). Sustained endogenous attention over 
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negative stimuli suggests that aversive events are considered informative, that is, disambiguating with respect 
to pessimistic priors (Huys, Daw, et al., 2015). 
  
Recurrent sampling of negative information necessarily entails reduced sampling of positive information 
(Huys, Daw, et al., 2015); the sampling of information being one of the two ways in which one learns and update 
priors—our bias that drives appraisal of the world (the other being the pruning, or synaptic homeostasis, that 
underlies structure learning (see: Friston, Lin, et al., 2017 and Tononi & Cirelli, 2006). Ongoing learning based 
on negative information is characteristic of the inability to inhibit rumination, defined as the tendency to focus 
on one’s depressive state, along with the causes, meanings, and consequences of one’s depression (Nolen-
Hoeksema, 1991). Interestingly, rumination is often motivated by the belief that ruminating will bring insights 
into how to solve the cause of rumination (Lyubomirsky & Nolen-Hoeksema, 1993). 
  
The maintenance of MDD symptoms may be explained by the looping effect that underlies the autodidactic 
learning of pessimistic priors, when considered from the point of view of the computational machinery of the 
brain embedded in the social world. The loop is simple: pessimistic priors bias attention and learning, which 
biases active sampling towards rumination and exogenous negative information that confirm the pessimistic 
prior (i.e., self-evidences it), thereby leading to the consolidation of this pessimistic prior over time (i.e., 
minimization of uncertainty based on information that confirms the prior) (Huys, Daw, et al., 2015). Exogenous 
negative information propagates in the social world through public discourse as depression becomes an 
increasingly popular diagnostic label, and characteristic idioms of distress are used by sufferers to frame their 
experience and guide their attention towards that which conforms to these idioms (Kirmayer et al., 2017). In 
so doing, institutionally sanctioned negative exogenous information shapes the way one attends to one's own 
experience, body, and sensations, thereby reinforcing those priors’ beliefs about one's illness.   
  
Indeed, depressive patients are able to leverage and apply emotion regulation strategies to tackle their 
affliction when they are instructed to do so, but have difficulties selecting such strategies on their own (Ehring 
et al., 2010). This speaks to the role of the social environment in the maintenance of MDD. It further speaks to 
the need to model computational looping effects of depression under ECC, not only in terms of learning and 
action selection dynamics in the generative model, but also in terms of environmental dynamics that feed 
back into learning to influence subsequent action selection. 

3.2.3 Pessimistic priors and adaptive priors 
  
We have seen that the general mechanism that underwrites MDD may be the maintenance and reinforcement 
of a pessimistic prior. From a behavioural point of view, the sampling of negative information and rumination 
reinforces the pessimistic prior. In return, the pessimistic prior further orients the person towards actions that 
will sample negative information, which accounts for the downward spiral characteristic of MDD. From a 
cultural point of view, the spiral may be consolidated through pathological cognition. This process is driven 
by endogenous and exogenous attention: because of pessimistic beliefs, the person attends to negative 
stimuli, and in return, negative stimuli that confirms the pessimistic beliefs become increasingly available in 
her environment, social niche or cultural context. In effect, the diagnostic category becomes an organizing 
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framework for experience that exerts its own effects in the cycles that constitute depressive cognition 
(Kirmayer et al., 2017)11.  Of course, this is not the only (or main effect) of culture, which also creates social-
structural conditions of adversity and modes of adaptation that engender the vicious cycles of depression 
(Kirmayer & Jarvis, 2007). 
  
From an evolutionary point of view, given the survival value of being able to rapidly attend to potentially 
threatening information (Dijksterhuis & Aarts, 2003), the learning of a pessimistic prior can be further 
precipitated by a predisposition to seek negative stimuli, or evidence that will confirm the source of such 
pessimism. This predisposition can be modelled as a prior preference for the source of negative stimuli. This 
was demonstrated by Constant and colleagues (2021) in a computational study of the pathogenesis of MDD. 
They simulated a ‘social’ two-armed bandit scenario, in which the player had to decide which of two social 
partners to visit. Each partner afforded a level of reward from low to high, and an associated level of 
uncertainty over whether the visit would afford a high or a low reward. This setting was meant to reflect 
uncertainty in environmental contingencies, corresponding to the changing mood of social partners. At the 
outset, the synthetic agent performed the task adaptively and learned optimistic beliefs, until an adverse life 
event—that increased social volatility—perturbed social contingencies. Learned optimistic beliefs then shifted 
to pessimistic beliefs, as the agent kept receiving low reward when approaching social partners believed to 
afford high reward. As the simulation unfolded, expected utility went down, and eventually, the agents 
stopped engaging altogether, thereby evincing severe social withdrawal and low expected utility 
characteristic of MDD. Crucially, to reach the MDD state, the agent had to be endowed with a fixed prior 
preference for high social reward that would incentivize her to keep exposing herself to social partners, despite 
continued negative evidence (or outcomes). From an ECC point of view, the fixed prior preference played the 
role of an adaptive prior, which, under normal circumstances, fosters social interactions. However, under 
abnormal circumstances, for instance, when social volatility increases and persists, the same adaptive prior 
will generate behaviour that engenders low mood and eventually MDD. Accordingly, the pathogenesis of MDD 
in Constant et al. (2021) could be read under the mismatch rationale discussed above. Importantly, this 
computational study exemplifies our ECC approach by showing how evolutionary and empirical priors that 
reflect current social-cultural contexts can interact to produce generative models, characteristic of psychiatric 
disorder.       

4 Concluding remarks: towards an integrative systemic 
view of mental disorder 
  
In this chapter, we have entertained a trialogue between three approaches to psychiatry: evolutionary, 
cultural, and computational. We have focused on themes central to these approaches, such as adaptationist 
thinking, looping effects, and generative models in computational phenotyping. We have suggested a way to 
merge these perspectives under an Evolutionary Cultural Computational (ECC) model that characterizes the 
extended phenotype of the individual in context. The goal of this exercise was to exemplify an ecosocial 

 
11 This kind of looping effect provides a key illustration of how a social-cultural perspective enriches the evolutionary 
computational model. 



 82 

computational model of mental disorders that harmonizes the constructs of evolutionary, cultural, and 
computational psychiatry, integrating their respective systemic views into a systemic model. 
  
While we believe the ECC approach provides a framework for integrating diverse perspectives in psychiatric 
theory and research, it has a number of important limitations. The ECC approach puts few constraints on 
theory building and an ECC computational model will only be as accurate as the evolutionary and cultural 
models that inform it. Computational models are technically challenging and require specific training to 
conduct analyses, which not be part of the background of those with the requisite expertise in evolutionary or 
cultural psychiatry. As a method of building hypothetical models, the validity of ECC cannot be directly tested. 
Ultimately, its validity rests on its scientific and practical utility for generating new models. That said, the 
performance of any one ECC model can be compared again competing models and real-world data to confirm 
or refute simulation outcomes. Translating computational models to psychiatric practice presents its own 
challenges, which might be met by developing diagnostic and assessment tools that allow practitioners to use 
client data to predict the course of illness in different social contexts or under different treatment 
conditions.         
  
Despite those limitations, we believe that there are several ways in which the proposed ECC model can 
contribute to psychiatric theory, research, and practice. active inference models in computational psychiatry 
are meant to function as heuristic descriptions of the brain. Based on these heuristics, one can simulate 
pathological behaviour and test, in silico, various interventions that mimic the effects of pharmacological 
agents, psychotherapy, social interventions, or other treatments on model parameters to examine the 
potential efficacy of this treatment to return the agent to ‘normal’ functioning. Such modelling can suggest 
the sensitivity of illness trajectories to particular types of intervention and the potential interactions among 
multiple interventions. 
  
Because the ECC model considers evolutionary and cultural parameters, in silico testing of an ECC model may 
provide new insights into the potential efficacy of interventions in more ecologically valid contexts (e.g., for a 
simulation study applying an ECC model to depression, see: Constant et al., 2021). ECC phenotyping methods 
can be used to simulate specific kinds of suboptimal perceptual inference (e.g., the misinterpretation of a 
social partner’s intention) that may be associated with psychiatric disorders by considering the influence of 
parameters reflecting the neural, developmental, evolutionary, and social dimensions of a phenotype. ECC 
phenotyping methods can also be used to identify clinically relevant phenotypes by fitting simulations to large 
datasets harvested from a range of different contexts, including: data drawn from interactions in shared 
environments such as social media platforms (which would reflect the manner in which people engage in a 
shared generative process); data drawn from psychophysics (e.g., eye tracking and response time data); and 
imaging or EEG data (which would reflect the impact of individuals’ generative models on behaviour). Using 
standard methods for Bayesian model comparison (e.g., Bayesian model reduction (Friston et al., 2016, 2018), 
researchers could compare ECC phenotypes in terms of their model evidence, each emphasizing different 
components of the phenotype. 
  
Finally, returning to the problem of disciplinary boundaries discussed at the outset, the ECC model—
understood as a multidisciplinary platform to integrate diverse approaches to psychiatric phenomena 
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through the same computational model—could allow practitioners with various backgrounds to see how their 
perspectives can connect and converge; thereby enriching each other's ways of thinking about psychiatric 
disorders. Indeed, the goal of the ECC is to allow researchers and clinicians consider how phenomena like 
adaptation can contribute conceptually to an understanding of culture, and vice versa, that is, how cultural 
context and meaning shape the exigencies and outcomes of adaptation in health and illness. The human mind 
is a complex structure with nested levels of organization and boundaries that reflect our cultural co-evolution 
and varied forms of social life. If we are to come to grips with the difficulties in adaptation and functioning that 
are the domain of psychiatry, we must develop tools that capture such complexities. 
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Conclusion to chapter 3 
 
One worry that I had when I started this project was that there wouldn’t be one coherent way to discuss 
evolutionary, cultural, and computational psychiatry all at once. I feared that combining these approaches — 
by foregrounding what they share — would lead to a combinatorial explosion of problems; each approach 
having its own series of problems, which, when piled up, would likely create new problems. Hence, I had, under 
the advice of my mentors, notably of Paul Griffiths, to let go of some discussions that were central to the 
approaches taken individually. One of those problems is the problem of evolutionary function in evolutionary 
psychiatry. In chapter 3, this problem is briefly introduced as one of the two problems faced by the concept of 
mental disorders as harmful dysfunctions in evolutionary psychiatry. The problem is that of finding an 
evolutionary standard against which to evaluate dysfunctionality. There are typically two types of accounts to 
solve the problem of evolutionary function. The first is the biostatistical account, and the second is the selected 
effect account (Griffiths & Matthewson, 2018). These are sometimes called the "non-aetiological" and 
"aetiological" accounts (Schwartz, 2007). To conclude this chapter, I would like to revisit that problem in more 
details.  
 
The biostatistical account (Boorse, 1977) articulates three criteria to trace the boundary between the normal 
and the pathological: (i) physiological function, or the ability to contribute to fitness; (ii) the reference class 
within the species (e.g., defined by age group and sex); and (iii) statistical normality, or frequency in the 
distribution of the trait in the reference class (Giroux, 2015). The biostatistical account is not historical, as the 
physiological function refers to the ability of the trait to contribute to current and future survival and 
reproductive success. The biostatistical account does not need to rely on the idea that the trait has been 
designed for a certain purpose (which it would fail in the case of a pathology), nor, consequently, does it need 
to appeal to a comparison with the population-level fitness. To evaluate its first criterion (i.e., does the trait 
fulfil its physiological goal?), all the biostatistical account uses is a comparative analysis of net fitness (i.e., 
realized) between the putatively pathological trait and its most frequent configuration or expression in the 
reference class (criteria 2 and 3). For a critical analysis see (Matthewson & Griffiths, 2017). 
 
Conversely, the selected effect account of function (Godfrey-Smith, 1994; Griffiths, 1993; Millikan, 1984) 
evaluates the normality of a trait in terms of proper functioning. A proper function of a trait is that which 
produces an effect for which the trait gained a competitive advantage in terms of reproductive success in the 
past (i.e., was selected for), thereby explaining its current frequency in the population. The selected account 
is historical in the sense that to make a claim about the normal and the pathological, one must consider the 
manner in which a trait performed its function in the past, and in so doing, explain the current frequency of 
that trait. If the trait is such that it would perform its function in a suboptimal fashion (in the environment in 
which it has been designed to operate in) compared to the (weighted average) fitness at the level of the 
population, then, the trait is normatively described as dysfunctional or pathological. Assuming that a trait has 
been designed by natural selection to perform a certain function, failing to perform that function is sufficient 
to claim that that trait is pathological.  
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The model we present in chapter 3 sits well with the selected effect account, and thus should underwrite the 
way one selects adaptive priors to parameterize an ECC model.  
 
Under the selected effect account, pathologies must be studied in light of the multiple factors involved in the 
developmental pathway that leads to the pathological state of affairs—a pathway whose function is 
characterized by the assumption of evolutionary design. Accordingly, under that view, functional failure may 
be due to a broken biological mechanism, but also to environmental conditions that are ‘abnormal’ relative 
to the context within which the trait was designed to operate (that is, selected for). Alternatively, functional 
failure may simply be due to finding oneself in an inhospitable environment – which might not be abnormal 
(i.e., unusual) as per the biostatistical account, but nonetheless deleterious to functional performance. 
Functional failure may also ensue because of the lack of developmental experiences required for the normal 
developmental trajectory expected under the sort of life cycle the agent has been designed to follow 
(Matthewson & Griffiths, 2017). The selected account thus admits many ways in which a function can fail, the 
diagnosing of which requires an evaluation of the current and past environment. It equally admits the 
possibility that a trait that may initially look statistically pathological might in fact function normally (i.e., as 
per its designed), though under abnormal environmental conditions (e.g., as in the case of mismatch).  
 
Under the selected effect view, the 'naïve' evolutionary rationale (Kirmayer & Young, 1999) is simply employed 
as a backstory to make sense of why the trait we observe now strikes us as pathological, given the person's 
affliction. The evolutionary rational functions as an epistemic standard (e.g., a position from which to start 
thinking) that forces us to think backward through the evolutionary history of the trait to make sense of how 
the trait operates now. Accordingly, the selected effect account does not need to refer to evolution (i.e., 
survival and fitness) as a norm to account for the dysfunctional nature of a trait and requires an assessment of 
the context (e.g., cultural context) to evaluate dysfunctions. Conversely, the evolutionary rationale under the 
biostatistical view takes reproductive success and survival as normative standards (e.g., criteria for cut-offs to 
distinguish pathology) that license assessments of dysfunction limited to current observations.  
 
Chapter 4 will present a model of symptoms of normative depression and intervention that can be viewed as 
implementing the conceptual model proposed in chapter 3. Crucially, it should be noted that the evolutionary 
rationale that we follow to parameterize the model — that of the Evolutionary System Theory of Depression — 
aligns with the selected effect account, not the biostatistical account. This rationale does not describe 
normatively what makes depression a disorder from an evolutionary point of view, but rather allows one to 
make sense of why certain responses to current environmental contexts may lead to affliction characteristic 
of major depressive depression, despite these responses being possibly adaptive under different contexts. 
While this may sound like a rather abstract theoretical preference, opting for a selected effect account over a 
biostatistical perspective would have very concrete implication in terms of fitting the evolutionary prior 
parameter to a clinical population in the context of an empirical study seeking to reproduce our simulated 
results.  
 
Under a biostatistical view, assuming that the parameterization of the evolutionary prior is what precipitates 
the individual into a state of normative depression, the sampled clinical population for the study would have 
to be selected based on criteria that would reflect pathological simulated parameters: in the example we will 
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present, these have to do with degrees of preference for social partners. More generally,  this requires defining 
what a pathological parameter is in the first place, which brings us back to the line drawing problem. 
Conversely, under a selected effect account, which allows for non-normative evolutionary thinking about 
mental disorders, one would not need to define a depression-specific parameterization of the evolutionary 
prior. Rather, one could provide a generic model whose development leads to symptoms of depression due to 
a normal evolutionary prior that operates under abnormal environmental conditions that ought to be 
modelled as well, which is what we do in Chapter 4. Empirically testing such a model would not require one to 
look for selection criteria reflecting some arbitrarily defined pathological parameterization of the evolutionary 
prior. Rather, it would require selecting the population based on criteria that reflect the way empirical (i.e., 
entirely learnable) priors can yield pathological outcomes, e.g., based on the psychosocial background of the 
person. 
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Chapter 4: Why Depressed 
Mood is Adaptive: A Numerical 
Proof of Principle for an 
Evolutionary Systems Theory 
of Depression  
Introduction to chapter 4 
 
Chapter 4 is entitled Why Depressed Mood is Adaptive: A Numerical Proof of Principle for an Evolutionary Systems 
Theory of Depression. Chapter 4 provides a simulation study of anhedonia and social withdrawal, which are 
features of depressed mood associated with normative depression. Explicitly, the proposed simulation is 
meant to work as a proof of principle for the evolutionary systems theory (EST) of depression proposed by my 
colleague and mentor, Paul Badcock. The EST of depression suggests that normative depressive symptoms 
result from the spiralling of normal responses to an increase in social network uncertainty (e.g., decreased 
reliability of partners' expected availability); responses which, under normal environmental circumstances, 
should increase interpersonal support via social signalling. The simulation induces severe depression in the 
simulated agent and returns the agent to normal mood via synthetic social and pharmacological 
interventions.  
 
Implicitly, the simulation of chapter 4 functions as a "proof of principle" for the implementation of the model 
developed in chapter 3; a proof that concrete research outputs can be generated based on the ECC conceptual 
model of chapter 3. As mentioned in the introduction, the model of chapter 3 is a conceptual model that can 
serve as a means of organizing knowledge so as to guide scientific practice. In chapter 4, the proposed model 
of the EST of depression results from organizing knowledge and modes of reasoning in evolutionary, cultural, 
and computational approaches to psychiatry in order to observe, in silico, theoretical claims of the EST. 
Following chapter 3, the model of chapter 4 simulates the causes of pathological depression as 
developmentally aggravated vulnerabilities viewed as a proximate cause and as behavioural patterns causing 
psychological distress through looping interactions with the environment and as atypically learned model 
parameters. The return to normal mood, then, is achieved by returning the model parameters to values that 
would yield healthy behaviour.  
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1 Introduction 
 
It has recently been proposed that depressed mood reflects an adaptive, socially risk-averse psychobiological 
strategy that preserves social relationships (i.e., inclusion) when there is evidence for maladaptive instability 
in interpersonal exchanges (Badcock et al., 2017). This perspective follows an evolutionary systems theory 
(EST) of human biobehaviour called the hierarchically mechanistic mind, which combines insights drawn from 
research in psychology with the computational resources borrowed from the theory of active inference in 
theoretical neurobiology (Badcock, Friston, & Ramstead, 2019). This model rests on two fundamental claims. 
The first conforms to the theory of active inference in theoretical neurobiology by suggesting that the brain 
comprises hierarchically organized neurocognitive mechanisms that reduce the dispersion or decay of our 
sensory and phenotypic states—by generating action-perception cycles that minimize surprising exchanges 
with the world. The second claim ensues from an embodied perspective on neural form and function—that 
accommodates the broader evolutionary, developmental, and real-time processes that act on human 
phenotypes. The implication here is that to understand a phenotypic trait, we need approaches that 
synthesise findings from diverse fields of inquiry to explain both why that trait is adaptive, along with how it 
emerges from the nested dynamics across different timescales. In this spirit, the current study provides proof 
of principle for the EST of depression, using simulations of active inference. We conclude by discussing the 
clinical implications of our model. 
 
Our proof of principle integrates two major schools of thought. The first is rooted in evolutionary psychological 
approaches to depression, rallied around the social risk hypothesis (SRH) proposed by Allen and Badcock 
(Allen & Badcock, 2003). Psychological symptoms of depression include feelings of sadness, emptiness, and 
hopelessness, along with systematic disinterest in activities (i.e., anhedonia), feelings of worthlessness, and 
inappropriate guilt. Typically, a diagnosis of depression is made when symptoms have been present for at 
least 14 days (American Psychiatric Association, 2013). Two important symptoms of depression are anhedonia 
and social withdrawal: the latter is commonly observed in depression as a clinical correlate of anhedonia, but 
is not a formal criterion (Buckner et al., 2008). Evolutionary models of depression explain the maintenance of 
genetic vulnerabilities to depressive symptomatology in terms of the selective advantage of these 
vulnerabilities in ancestral environment (R. M. Nesse, 1990)i.  
 
The adaptive properties of depression are thought to be restricted to the relatively transient, normative 
depressed mood states that we all experience from time to time, while more severe manifestations, like those 
observed in major depressive disorder, reflect a dysregulation of our species-typical capacity for mood 
variation (Nettle, 2004). The SRH suggests that depressive symptoms might have been selected as a strategy 
that prevents the deterioration of interpersonal relationships. Low mood reduces one’s propensity for social 
risk-taking, and increases implicit signalling for social support, which reduces competitive encounters (see 
box 1 for background). Clinical depression occurs when this sequence becomes maladaptive; specifically, 
when it does not lead to a resumption of normal mood. This may be due to neurobiological or psychological 
deficits that maintain increased sensitivity to social instability, or to instabilities or the absence of support in 
the proximal environment towards which the depressed individual reacts. The increased sensitivity to social 
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instability constitutes the basis of the neurocognitive processes leading to depressed mood, upon which 
selection can act (for a review see (Badcock, Friston, Ramstead, et al., 2019)). 
 
Box 1 Evolution and depression 

There are three general classes of evolutionary models of normative depressed mood. The first of these – 
resource conservation views – claims that depressive symptoms, such as learned helplessness, are a 
response to a low positive reward rate and insufficient control over reward and punishment (Randolph M. 
Nesse, 2000)ii, and unobtainable incentives or goals (Klinger, 1975). Low appetitive functions (e.g., 
anhedonia) allow the individual to fine-tune resource allocation by precluding investment in poor pay-off 
activities. The second class refers to the social competition model, which claims that social status (e.g., rank 
and position in the social group) positively correlates with access to resources that enhance reproductive 
success. Depressive symptoms such as social withdrawal remove the individual from conflicts and other 
status-impairing situations that would negatively impact their social rank (Gilbert, 1997; Price, 1967). The 
third, attachment model claims that given the delayed maturation of human infants (Hrdy, 2011), offspring 
survival necessitates intensive parental and alloparental investment. Behaviours designed to maintain 
proximity to caregivers are instigated when significant affectional bonds are threatened. In the face of 
precarious interpersonal relationships, depressive symptoms should promote help-seeking and inhibit 
exploratory behaviour and risk-taking, thereby maintaining relationships with the proximal familial 
environment, while avoiding the deterioration of current social bonds (Ingram et al., 1998). Standing alone, 
it has been argued that these models cannot account for the full scope of the depressive phenotype (Allen 
& Badcock, 2006). Darwinian models do not provide an explanation of the underlying mechanisms upon 
which selection can act. For instance, how is ‘resource reallocation’, ‘preventive withdrawal from the social 
environment’, or ‘familial bond strengthening’ implemented mechanistically? This is a problem, since the 
unit of selection is never a complex behavioural trait, but rather some (epi)genetic dispositions to express 
such traits. The Social Risk Hypothesis (SRH) was proposed to provide a solution to these issues and has 
since been developed into a neurobiologically plausible and empirically tractable mechanistic explanation 
for depressive phenomena (Badcock et al., 2017). According to this view, normative levels of depressed 
mood reduce the probability of deleterious social outcomes via three broad classes of action: (1) depression 
increases individuals’ cognitive sensitivity to environmental cues of social risk or instability; (2) it reduces 
their behavioural propensity for social risk-taking; and (3) it generates signalling behaviours (e.g., 
reassurance seeking, crying, gaze aversion) that attract social support and defuse aggressive or competitive 
encounters. 

 
The second root of our simulation centres upon formal, testable models of depressive phenomena that borrow 
from the principles of computational psychiatry (Huys, Guitart-Masip, et al., 2015). Accordingly, a key aspect 
of the work reported in this paper is the attempt to model social inference – as it relates to the phenomenology 
of depression – from first principles. This is challenging, because of the many aetiological factors that 
underwrite the psychopathology and pathophysiology of depression. We try to formalize the normative 
aspects of depression as a Bayes optimal response to inference in the prosocial world, while considering both 
social and pharmacological interventions. To our knowledge, this is the first modelling work that addresses 
the interaction between social factors and pharmacotherapy within the same formalism. In this sense, the 
simulations reported here also provide a proof of principle for a model of the effects of drug treatment on 
neuronal computations that underlie belief updating and behaviour in depression. In brief, we make three 
basic assumptions that allow us to characterize the effect of drug treatment on social inference and 
subsequent behaviour. First, both inference and learning conform to the same (ideal Bayesian observer) 
principles of active inference; namely, belief updating and experience-dependent plasticity both optimize a 
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variational free-energy bound on (log) model evidence or marginal likelihood (Friston et al., 2016). Second, 
pharmacotherapy motivates neuromodulatory effects that, computationally, change the precision of sub-
personal probabilistic beliefs (i.e., prior beliefs about states of affairs in the world or likelihood mappings 
between causes and consequences) (Parr et al., 2018). Finally, one cannot ignore the reciprocal coupling 
between an agent and her (prosocial) environment when modelling interpersonal exchanges. This requires an 
explicit consideration of how environmental (prosocial) contingencies respond to an agent’s behaviour 
(Badcock et al., 2017) (see box 2 for background). Here, the embedded aspect of interventions on the social 
environment (Bruineberg et al., 2018; Constant et al., 2018) was modelled by an increase in social reliability 
following patterns of behaviour that can be construed as social signalling. Our hope was to show that 
functional responses to social adversity use the same inferential mechanisms seen in pathological depression 
– and that psychopathology can be remediated by a combination of social support and drug therapy.  
 
Box 2 Computation, inference and depression 

Computational phenotyping is a method in computational psychiatry to test hypotheses about the 
neurophysiology of mental disorders to inform nosology and suggest treatment approaches (Corlett & 
Fletcher, 2014). A computational phenotype refers to the set of measurable features of an agent; often 
described in terms of the ‘priors’ and ‘likelihood mappings’ of a generative model used by subjects for 
perception and decision-making (Schwartenbeck & Friston, 2016). The associated parameters of generative 
models show variation across the population upon which selection acts (Montague et al., 2012). This formal 
approach to phenotyping effectively reduces the phenotype to some formal priors – or prior beliefs – that 
personalize a (generative) model that people use to predict and interact with their (physical, physiological, 
prosocial or cultural) econiche. These interactions are usually cast in terms of (Bayesian) belief updating 
under a generative model that characterizes a given phenotype. Computationally, prior probability 
distributions can take numerous forms (e.g., normal, Dirichlet, delta). This form depends on the state space 
being modelled (e.g., discrete, as in this paper, or continuous). Priors can also have different ‘temporal’ 
scales, relative to the scale at which (Bayesian) belief updating unfolds. ‘Adaptive priors’ are sculpted by 
evolutionary processes and become encoded over the course of ontogeny in the physiology and functional 
architectures of the brain; that is, they emerge from interactions between priors that are ‘empirical’ and 
‘evolutionary’. Empirical priors are learned over development (e.g., learned distribution of food patches), 
while evolutionary priors function as initial conditions that shape the learning of empirical priors (e.g., a 
prior preference for energy-rich food) (Friston, 2010).  Technically, empirical priors arise whenever there is 
a hierarchical generative model. Empirical priors are the constraints offered to a lower level, from a higher 
level. When hierarchical models are inverted, empirical priors become informed by (empirical) data. 
Simulating belief updating – under a generative model – allows researchers to produce synthetic, in silico 
measurements (e.g., psychophysical and physiological responses) of the sort that are usually studied in real-
world empirical contexts. The generative model can be manipulated by inducing artificial lesions in 
likelihood mappings, or by simulating pharmacological treatment that generally changes the priors (Parr et 
al., 2018). In so doing, one can generate artificial data in the context of a task that can be used in empirical 
studies. One can then test hypotheses by comparing artificial responses with participants’ empirical data 
(Cullen et al., 2018). The symptoms of depression are thought to relate to deficits impacting long-term 
reward evaluation through the acquisition of ‘pessimistic’ priors that entail negatively biased learning of 
environmental states (Huys, Daw, et al., 2015). Priors should reflect unambiguous beliefs about the world, 
as well as beliefs about the relation between environmental states and observed outcomes. For instance, 
we cannot directly infer the mood of another solely from the sensory impressions of that person's facial 
expression. Rather, we must consider some prior assumptions about the person’s behaviour and outcome 
probability over time (e.g., she usually smiles a lot, but she is not smiling today, so it is likely that something 
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is awry). These are empirical priors. In depression, empirical priors biasing decision-making tip the balance 
towards pessimistic inference, thereby leading to systematically pessimist thoughts. For instance, 
depressive patients form negative sentences more quickly and frequently than non-depressed controls, 
when presented with both optimistic and pessimistic options (e.g., in the scramble sentence test) (Hindash 
& Amir, 2012; Rude et al., 2003). The simulations offered in this paper try to capture this belief-based 
phenomenology by using synthetic agents and active inference – a generic framework for (active) Bayesian 
inference and planning. 

 
Our numerical proof of principle is based on active inference for discrete states, using (Markovian) generative 
models (Friston, Parr, et al., 2017) – see method section. We present a series of simulations based on an 
augmented version of a two-armed bandit game from economics, in which the agent has to choose between 
a risky or safe social engagement (Schwartenbeck et al., 2019). The augmentation involved offering the agent 
with a cue option that indicates whether the risky arm is low-risk or high-risk (i.e., it indicates the social 
context); this contextual state alternates every other trial. Narratively, the cue corresponds to social media 
that provides information or evidence that reduces uncertainty about the prevailing social context. This 
means that healthy agents will systematically sample the cue to make an informed decision. As they sample 
their social environment, agents will learn the probability of reward afforded by choosing one of the two arms. 
Narratively, this relates to checking people’s availability before choosing among social options. 
 
Based on the learning process characteristic of active inference, agents exposed to social adversity (e.g., 
rejection by social partners) will learn the likelihood of being rejected. We simulate different phenotypes, with 
and without social support and pharmacotherapy, which reshape the agent’s (pessimistic) prior beliefs. Our 
numerical analyses speak to how pharmacotherapy and social support – triggered by social signalling on 
social media – allows the agent to regain a normal mood. Depending on the type of intervention (social, 
pharmaceutical, or the lack thereof), the agent typically experiences a phase of low mood, and either spirals 
into persistent depression (anhedonia and social withdrawal), or returns to various levels of normal 
functioning. We will quantify the responses of our synthetic agent in terms of task performance and associated 
synthetic mood (i.e., expected reward under a given action policy) and behaviour (action selection).  

Our two-arm bandit social decision-making task (see Figure 1) involves choosing among three social 
engagement options, which vary in their risk. The first is a ‘safe’ option, but with low social preference (going 
to a well-known friend, Rudolph, who you know can be engaged with 100% success, but won’t provide the 
most fulfilling interaction). The second, ‘risky’ option has a high preference (going to see a new popular 
student, Caroline, whom you do not know, but were told is a lot of fun), but is risky because Caroline often 
forfeits, and the agent is averse to failed social encounters. On a ‘good day’ the agent has a 75% chance of 
successfully engaging Caroline, but on a ‘busy day’, only a 25% chance of catching her. The third, ‘socially 
epistemic’ option yields a null cost: under this option, the agent can turn to social media, to see if Caroline is 
having a ‘busy day’. Each trial, or day, involves three time steps, the second of which is the one where the agent 
can check the epistemic cue.  

To characterize prosocial and emotional inference that might underwrite depression, we considered belief 
updating and subsequent behaviour under 8 different conditions – in a three-way factorial design involving 
the following factors: social adversity, social support, and pharmacotherapy (see table 1).  
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Table 1 Interventions 

Baseline The agent performs the social decision-making task in the absence of any 
adversity over a period of 64 days.   

Severe depression We induce social adversity on the 28th day by changing the uncertainty of social 
outcomes. The agent is now rejected by Rudolph (always) and by Caroline on a 
‘bad day’. On a good day, the odds are inverted, such that Caroline is likely to 
afford a negative outcome. In other words, there is a flip in contingencies of the 
social environment.  

Social support We introduce social support on the 30th day, which reduces uncertainty about the 
outcomes of social encounters – and therefore resolves social adversity. This is 
modelled as an increase in Rudolph and Caroline’s reliability, which is increased 
when the agent forages for information on social media. Narratively, this could be 
interpreted as the agent signalling (implicitly or explicitly) to Caroline and 
Rudolph that they should be more consistent. Recovery thus depends on the 
sensitivity of the social environment and on how often the agent consults social 
media.  

Pharmacotherapy First-line pharmacotherapy typically employs either selective serotonin or 
norepinephrine reuptake inhibitors, and sometimes mixed serotonin or 
norepinephrine reuptake inhibitors (e.g., venlafaxine and duloxetine); the latter 
usually being used in patients who do not respond to serotonin reuptake 
inhibitors (Harmer et al., 2017). We simulate two types of synthetic 
pharmacotherapy: one motivated by serotonin and the other by norepinephrine. 
We assume, based on (Harmer et al., 2017), that serotonin upregulates prior 
expectations about initial states (i.e., increases the perceived probability of 
Caroline showing up), whereas noradrenaline introduces uncertainty about state 
transitions. Noradrenaline entails an overall loss of precise belief-updating during 
planning, a loss which underwrites the exploration of states that may lead to 
social reward. Condition 3 involves both noradrenaline and serotonin, condition 4 
noradrenaline only, and condition 5 serotonin only. 

Social support and 
pharmacotherapies 

Condition 6 involves social support and both antidepressants; condition 7 
involves support and noradrenaline only; and condition 8, support and serotonin 
only. 
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Figure 1. Narrative description of the social decision-making task. Over 64 days, the challenge is to maximize 
social encounters with Caroline. The agent has two moves (Caroline and Rudolph are both absorbing states, 
meaning that once the agent reaches them, it must stay there). For instance, on the first move, the agent can 
solicit information about Caroline’s availability by going on social media, and then, on the second move, 
decide where to go.  

2 Methods and materials 
 
Active inference is a Bayesian framework that only uses local information (i.e., there is no external supervision) 
for belief-updating, in order to ensure biological plausibility. Markov Decision Processes (MDPs) can be used 
to simulate how agents infer which discrete hidden states (s) of the world provide the best explanation of 
observed sensory outcomes (o), under a given generative model. To generate predictions of sensory 
outcomes, an agent needs prior expectations about initial hidden states (an initial state prior, D), how states 
generate sensory outcomes (sensory mapping, A), and how states evolve over time (state transitions, B). The 
agent can infer states of the world by minimizing the discrepancy between predicted and observed outcomes 
(a.k.a., variational free energy), or equivalently, by maximizing Bayesian model evidence. For mathematical 
details, see (Parr & Friston, 2017). 



 101 

 
When expectations of hidden states are conditioned upon the agent’s plan or policy (as encoded in the policy 
dependent B matrices), one has a generative model of action (see Figure 2). Without an external referee to say 
what is right or wrong, the agent will need to: (i) predict her course of action, based on the succession of states, 
expected under each policy; and (ii) select her action based on (posterior) beliefs about the best policy. To that 
end, we equip the agent with (self-referential) prior beliefs that are biased towards policies with stronger 
expected model evidence or, equivalently, lower expected free energy, G.  
 
Mathematically, expected free-energy can be decomposed into pragmatic and epistemic components for any 
given policy. On the one hand, pragmatic value (i.e., exploitation) biases policy selection towards obtaining 
preferred sensory outcomes (evolutionary prior preferences, C), much like utility in reinforcement learning. 
On the other hand, epistemic value (i.e., exploration) biases policy selection towards the (expected) 
minimization of uncertainty about states of the world (a.k.a., artificial curiosity).  
 
Uncertainty can be over beliefs about current hidden states or model parameters (as quantified in free-energy 
F) or over beliefs about future hidden states and their associated outcomes under a given policy (as quantified 
in expected free-energy Gπ). In active inference, the latter guides action selection and can be decomposed in 
three distinct sources of uncertainty: (i) expected ambiguity, or anticipated uncertainty about hidden states 
(e.g., “how certain will I be about Caroline’s mood, given that I check social media?”), (ii) expected risk, or the 
anticipated uncertainty about whether future outcomes will align with preferences C (e.g., “how certain will I 
be that I obtain preferred outcomes, given that I visit Caroline?”), and (iii) the anticipated uncertainty about 
Dirichlet parameters of the likelihood mapping A (e.g., “how much might I learn about state-outcome 
mappings if I visit Rudolf?”) (Kaplan & Friston, 2018). Each of these sources of uncertainty can be manipulated 
directly with interventions on the model. Here, we focus on direct intervention on salience—via serotonergic 
and noradrenergic manipulation of initial states and state transitions—and on the indirect manipulation of 
extrinsic value via the manipulation of social observations, or outcomes (fig. 2). Thus, in our simulations, our 
agent will have a double incentive for social engagement: (i) fulfilling preferences for positive social outcomes; 
and (ii) the natural drive towards resolving her uncertainty over the various beliefs she has about the social 
world (c.f., curiosity about a new acquaintance). Crucially, it is this double incentive that we exploit to 
formalize the behavioural dynamics envisaged by the EST of depression; the first incentive relating to 
‘evolutionary’ prior preferences for high social reward, and the second incentive relating to ‘developmental’ 
learning.  
 
We limit the notion of social engagement to face-to-face encounters with Rudolph or Caroline. 
 
The software to simulate belief updating and action selection, based on the specification of any generative 
model (as the one specified in Figure 2), is freely available as part of the academic software SPM; specifically, 
the Matlab routine spm_MDP_VB_X.m (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/).  
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Figure 2. Computational description of the decision-making task. The generative model and generative 
process of our decision-making task. Open circles represent random variables (hidden states and policies), 
filled circles represent the outcomes, squares represent model parameters (e.g., likelihood A, empirical priors 
B, D, G, and the evolutionary prior C). The generative model is shown in the upper part of the figure, while the 
process generating outcomes is shown in the lower part. The generative model and process are coupled 
through the same outcomes (o) and actions (u), where outcomes are used to infer hidden states and policies 
– and action is sampled from policies to change the states that are being inferred. States of the generative 
model are denoted by ‘s’ while states of the generative process are denoted as ‘s_bar’. The generative model 
is a joint probability distribution over outcomes and hidden states, which can be decomposed into factors. 
Factors are conditional densities (categorical: Cat; or Dirichlet: Dir) that make up the priors and likelihood of 
the generative model. Priors that depend on random variables, such as hidden states and policies, are 
empirical priors (e.g., priors that are learned at a given hierarchical level or time scale). Priors that do not vary 
on this time scale are initialised as evolutionary priors (e.g., C). These are log preference vectors that rank the 
desirability of associated outcomes. Lower-case a and b correspond to matrices of concentration parameters 
for A and B respectively. The process whereby outcomes are generated decomposes into a series of belief 
updates: (i) Policy selection: the sequence of actions (i.e., plan or policy) is inferred under prior beliefs that the 
most likely policy minimizes expected free-energy (G); (ii) Inference about future states depends on state 
transitions encoded by the transition matrix (B) and the likelihood (A); (iii) Inference about outcome: the policy 
– with respect to the probability transitions – generates probabilistic outcomes at each time point. The 
likelihood of each outcome is encoded in the likelihood matrix (A), which attributes the probability of each 
possible outcome to each possible state; and (iv) Action: the agent selects the most likely action under 
posterior beliefs about policies. The green arrow highlights the circular causality that results when the 
generative model and process are coupled through outcomes and ensuing action. The process generating 
outcomes triggers the message-passing, under the generative model, which entails the evaluation of a policy, 
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from which actions are selected. Actions change states in the generative process and a new outcome is 
generated. Thus, the cycle of perception and action continues. Learning corresponds to updating the 
concentration parameters that underwrite posterior beliefs about the likelihood of the sensory matrix (A). 
Each exchange with the environment is accumulated by concentration parameters. This accumulation 
encodes the probability of outcomes, given hidden states – enabling the agent to learn about environmental 
contingencies (and the social environment to change in response to the agent's actions). The generative 
model and process can be defined for any scenario. The icons in the upper panel refer to changes in the 
generative model induced by (simulated) pharmacotherapy, or by changes in the generative process afforded 
by social adversity and support. These changes are described in the next figure. For a detailed description of 
the update equations and underlying theory, see (Friston, Parr, et al., 2017). 
 
The generative model and process used to simulate social inference – and ensuing changes in depressed mood 
– are described formally in figure 2. In brief, this setup considers 5 (observable) outcomes: an outcome that 
sets the scene for a social choice (e.g., being at home), three levels of social reward (low, moderate and high), 
and an epistemic cue that reports the current context (this is a ‘Go’ or ‘no-Go’ social context) that determines 
Caroline's availability.  
 
Outcomes are generated by two kinds of external states called hidden factors. The first is the context with the 
two levels pertaining to Caroline's availability. These hidden states are not under the agent’s control. 
Conversely, transitions among the states of the second factor reflect the agent’s choice or policy, with four 
levels; i.e., home, Rudolph, Caroline, social media. The two factors interact to generate outcomes. Specifically, 
the context (Caroline’s availability) determines whether the social media state generates an (epistemic) 
outcome that is ‘go’ or ‘no-go’. Put simply, this means the agent can choose to find out whether Caroline is 
available or not—or contact her directly—or not. The context alternates every other day, meaning that the 
context-sensitive outcome available to the agent changes every other day. 
 
Given some observations, the agent can predict outcomes under a set of plans or policies, given her beliefs 
about (policy-dependent) transitions among different states. The policies are: (1) home to home; (2), home to 
Rudolf; (3) home to Caroline; (4) home to social media; (5) Rudolf to Rudolf; (6) Caroline to  Caroline; (7) social 
media to home; (8) social media to Rudolph; (9) social medial to Caroline; (10) social media to social media. 
This enables her to evaluate the expected free-energy of each policy – and use the expected free-energy as 
prior beliefs to form posterior beliefs, given what she has already observed. An action is generated by selecting 
the most likely action from the resulting posterior. And so, the cycle of perception and action continues. Notice 
that the coupling between the agent and the world is mediated by observable outcomes and action. The 
interventions corresponding to the conditions above can be modelled, either by changing the prior beliefs of 
the agent (about initial conditions, likelihoods or state transitions), or by changing the prosocial world in a 
way that responds to her choices. 
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Figure 3: This figure details the likelihood and prior transition probabilities for our generative model of 
prosocial exchanges. The variables pertaining to the generative model are shown in light blue boxes, while the 
corresponding parameters of the generative process (i.e., the social world) are shown in light pink. The states 
and outcomes in this model are generated under two contexts pertaining to Caroline's availability: available 
or not available. For ease of visualization, we have shown context-sensitive outcome likelihoods. In other 
words, there are six potential outcomes, but we have conditioned the epistemic (‘go’ and ‘no-go’) outcome on 
the context (to generate five outcomes). This simplifies the graphics and is licensed by the fact that only the 
epistemic outcome is context-sensitive. The top-left section corresponds to the contingencies during the 
initial exchanges (days 0-28) and corresponds with the narrative description in Figure 1. The adverse life event 
on the 28th day amounts to Rudolph and Caroline (on a good day) now yielding negative outcomes, and 
Caroline, even on a good day, affording negative outcomes. Adversity happens when the agent is sensitive to 
(i.e., prone to learn) the social environment. We implemented this by reinitializing the counts over the sensory 
prior beliefs of the agent (a). Social adversity and support are modelled by changing the precision or reliability 
of social outcomes in the generative process – in response to social signals. This is a subtle aspect of this 
model; namely, the generative process or social environment responds adaptively to the agent’s behaviour. 
As of the 30th day (for the conditions involving social support), we implement social support by adding counts 
(+10) to the likelihood of the environment counts (+10) for the cells corresponding to the mappings ‘Rudolph 
and positive outcomes’, ‘Caroline good day context and positive outcome’, and ‘Caroline busy day context 
and negative outcome’. The n_i corresponds to the number of times the agent visited the location a_i. The 
increase in counts has the ultimate consequence of driving the probability mapping in the (A) of the generative 
process towards and beyond their initial values more. A ‘+10’ is added to the cells every time the agent solicits 
the epistemic cue (i.e., social media). This implements the social signalling characteristic of adaptive low 
mood. Pharmacological interventions on the 35th day include the following: Serotonin provides an optimistic 
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bias by changing prior beliefs about the initial states, in favour of the ‘Go’ context (from .5;.5 to .99;.01). 
Noradrenaline decreases the precision of the transition probability matrices B (i.e., it increases uncertainty 
about future states), which leads to a gradual accumulation of uncertainty about unvisited states. Through 
the expected ambiguity component of expected free-energy G, it tends to motivate exploratory behaviours. 
The agent continues to learn the state transition after we administer noradrenaline.  

3 Results  
We used belief updating to simulate perception, action, and learning under different levels of social adversity, 
support and antidepressant treatment (i.e., pharmacologically induced changes in prior beliefs about states 
and contingencies). The results of these simulations are summarized in Figures 4-6. Behavioural outcomes and 
choices were assessed using the criteria listed in Table 2. In what follows, we described the responses to 
different scenarios or conditions in turn. 
 
Table 2. Synthetic diagnostic criteria  

Symptoms of 
normative 
depression 

Anhedonia 
 

Intensity 

When the expected utility or reward is below the 95% 
confidence interval of the (healthy) control condition. Our 
subject experiences a lack of pleasure and disinterest in 
(prosocial) activities – of an intensity that a healthy 
phenotype experiences only about once every 20 days. 

Duration 

When the intensity criterion is met for multiple consecutive 
trials. Narratively, the subject experiences a lack of 
pleasure and disinterest in (social) activities – lasting many 
days. 

Social 
withdrawal  

Policies that do not lead to an encounter with social partners (see 
Figure3)  
1: Stay home, stay home (starting point, Figure 1) 
4: Stay home, go to social media 
7: Go to social media, go back home  
10: Go to social media, stay on social media  
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Table 3. This table provides a summary of results in terms of the percentages of days post-adversity (out of 
36) during which the synthetic subject met the subjective criteria for anhedonia in terms of intensity (expected 
utility below the threshold) and duration (two or more consecutive days) and the behavioural criteria for social 
withdrawal. 

  Anhedonia Social withdrawal 

Intensity criterion: 
expected utility below 
95% CI 
(% of 36 days post-
adversity*) 

Duration criterion: 
2 or more consecutive 
days 
(% of 36 days post-
adversity*) 

Behaviour criterium: 
selected policy 1,4,7, 
or 1 
(% of 36 days post-
adversity*) 

CONDITION 1 
Severe depression 

100% 97% 61% 

CONDITION 2 
Adaptive mood  
(social support) 

6% 3% 0% 

CONDITION 3 
Serotonin 

19% 19% 81% 

CONDITION 4 
Noradrenaline 

53% 53% 75% 

CONDITION 5 
Serotonin and noradrenaline 
combined 

61% 61% 50% 

CONDITION 6 
Social support and serotonin 
combined 

6% 0% 
 

0% 

CONDITION 7 
Social support and 
noradrenaline combined 

44% 31% 22% 

CONDITION 8 
Social support and serotonin 
and noradrenaline combined 

6% 25% 47% 

*Starting the first day after the adverse event (day 29th) 
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3.1 Baseline  
 
0 Baseline (figure 4): The first 28 trials are equivalent across all simulations. In the absence of adversity, the 
agent skilfully responds to contextual changes by shifting between action policies that yield a (risky) high 
social reward and a (safe) moderate social reward. After the 7th trial, the agent always engages epistemic 
policies; foraging on social media first, followed by exploitative behaviour resulting in positive or negative 
outcomes. Before the 7th trial, the agent is still learning her prior beliefs about social partners and figuring out 
what policy will best suit her preferences; hence the different policies (6,9,8,4, see figure 4, bottom right for a 
visual description of each policy). After the 23rd day, the agent misreads the situation: Caroline was having a 
good day, but the agent perceived a negative outcome (e.g., by misinterpreting Caroline’s behaviour during 
the encounter). The expected utility remains high overall (above the baseline; the pink line), and crucially, 
there are no consecutive days of anhedonia. Figures 5 and 6 use the same format as the upper panel in Figure 
4 to show the effects of various interventions on social adversity and support, with or without pharmacological 
interventions. 
 

 
Figure 4. Baseline. Top panel: The upper images show the posterior expectation of each of 10 policies (see 
method, Figure 2) as they evolve from day to day (64 in total). The small circles in the upper part of these panels 
indicate the observed outcomes (context in the first panel, and outcomes in the second). The context changes 
every other day. The pragmatic value of these outcomes is shown as a (black) bar chart in the second panel. 
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The lower panel describes the interventions that depend on the condition, and the symptoms, which are: (i) 
anhedonia when pragmatic value or reward (black bars) is below the pink bar over multiple days (duration, 
black shaded rounded rectangles), and (ii) social withdrawal, expressed by policies 1,4,7, and 10. The lower 
left panel provides a legend (upper) and a graphical description of the policies (lower).  The intensity 
component of anhedonia corresponds inversely to the expected utility of a policy, or the extent to which it will 
yield preferred outcomes. Narratively speaking, this amounts to expecting socially rewarding outcomes when 
engaging a certain action. The intensity component of anhedonia is thus defined as low appetitive action. We 
assume that normal levels of appetitive action correspond to the expected utility experienced on most days, 
for a healthy (baseline) agent (pink line). The duration component of anhedonia corresponds to the number 
of consecutive days. A normative assessment of anhedonia thus would involve 14 consecutive days, as is the 
case in the condition of severe depression below. 

3.2 Severe depression, social support, serotonin and 
noradrenaline 
 
1 Severe depression (figure 5, upper left quadrant): The agent experiences social adversity on the 28th trial 
(i.e., a rejection from Rudolph and Caroline), and has no social support (i.e., her signalling has no effect on 
Caroline and Rudolph). The adverse life event entails ongoing exposure to negative outcomes. The increase in 
exposure to negative outcomes is caused by a change in the generative process, which now yields 0% chance 
of generating a mildly rewarding outcome at the Rudolph state (previously 100% chance), and a 100% chance 
of generating a negative outcome at that same state. In addition, there is now a 0% chance of a positive 
outcome and a 100% chance of a negative outcome at the Caroline state during the no-go context (busy day), 
and the probability of Caroline yielding a positive outcome on a good day has been inverted. Now, even on a 
good day, Caroline only affords a 25% chance of a positive outcome (see adversity on the 28th day, fig. 3). 
Importantly, the adverse life event affects both the generative process (making bad outcomes more likely for 
Caroline, and unavoidable for Rudolph), and the generative model by resetting the concentration parameters 
to their initial values (as they were at trial 1). The motivation for reinitializing the counts is primarily to sensitize 
our agent to novel outcomes. This sensitization rests on the fact that learning slows down with the 
accumulation of concentration parameters (e.g., during the first 27 days). Because the agent’s generative 
model reverts to its initial settings, the agent expects to obtain positive outcomes at Caroline’s on her good 
days, for some time after the adverse life event. This explains why our agent keeps selecting policy 9, which 
leads to Caroline, on multiple days (8 days) after the adverse event.  
 
In our simulation, such a manipulation does not map onto a biological process that we would have aimed to 
reproduce in silico. It is simply an artefact of the design. Narratively, it may be said that it simulates the 
awareness of a change in social context caused by a functional forgetting in short-term memory (i.e., from trial 
1 through 28) reinstating the agents initial memory parameters (i.e., at trial 1). This leads to an increased 
sensitivity to the novel social environment. In this particular sense, the resetting of concentration parameters 
is arguably consistent with the phenotype of depression. Early childhood adversity is a risk factor for 
depressive disorder by sensitizing the individual to proximal environmental stressors later in life —e.g., making 
the agent more likely to undergo parameter reset after an adverse life event (Starr et al., 2014) and memory 
disruptions and negative biases are commonly associated with depression—e.g., acquiring negative bias 
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based on the learning of pessimistic expectations after adverse life events (Dillon & Pizzagalli, 2018). A 
simulation explicitly aimed at studying the impact of functional forgetting on treatment course could either 
systematically vary the depth of forgetting or use hierarchical models to allow forgetting to emerge naturally 
from learning and inference of higher-level contextual states (Hesp et al., 2021).  
 
Occasionally, the agent experiences a negative outcome when Caroline was supposedly having a good day (as 
indicated by the Go cue). This occurs on average about 25% of the time, because outcomes are generated from 
the likelihood mapping in Figure 3, which shows there are intrinsic uncertainties in the mapping from 
Caroline’s mood to positive or negative outcomes (25% chance of failure on Caroline’s good days, 75% chance 
of failure on Caroline’s bad days). On average, the agent will get a dissatisfying outcome 25% of the time the 
agent visits Caroline on a good day, because of the constitution of the likelihood mapping (figure 3). The agent 
is not misinterpreting the cue. It is Caroline that exhibits intrinsic variability. 
 
The agent persistently evinces a low mood, below baseline (i.e., intensity of anhedonia). 14 days after the 
adverse live event, the agent shifts to a social withdrawal policy (4). This is caused by acquiring a pessimistic 
likelihood about the outcomes afforded by Caroline and Rudolph. Without intervention, the pessimistic 
likelihood is successively reinforced.  
 
2 Social support (figure 5, upper right quadrant): In this scenario, the agent experiences adversity on day 
28 but is provided with social support 2 days later (i.e., her social signalling changes Caroline’s and Rudolph’s 
behaviour). Following this, the agent’s mood recovers, relative to the baseline condition. This is because 
Caroline becomes more reliable and the agent is certain that Caroline will show up on a good day, and not on 
a busy day. This scenario corresponds to what is expected under both the social risk hypothesis and our EST 
of depression. When the environment is adaptive (i.e., responsive), low mood causes the agent to regain 
typical functioning – via social signalling. Note that social support failed in simulations where the support was 
delayed by more than 2 days. After 2 days without support, the pessimistic beliefs become too robust, and no 
amount of social support is enough to reshape the prior. When the support comes too late, the agent spirals 
into severe depression. Of course, the critical period of intervention of 2 days depends on the parametrisation 
of the generative model. Under different parameter values, the critical period could be extended. This speaks 
to the importance of the timing of social interventions to effectively interrupt and revert the learning of the 
pessimistic likelihood. More formally, the adaptive response comes from a change in the likelihood of the 
generative process (see fig. 3), which by generating certain outcomes, leads to a learning of the likelihood 
matrix. This learning assigns high probabilities to the mappings between the Rudolph state and the high social 
reward (instead of the moderate social reward), between the Caroline state and the high social reward on the 
‘go’ context, and between the Caroline state and the low social reward on the ‘no go’ context.  The behavioural 
manifestation of the social intervention is a return to the correct policy, given the context, namely 8 and 9. We 
now consider the therapeutic effects of pharmacotherapy in the absence of social support. 
 
3 Serotonin (figure 5, lower left quadrant):  
 
Serotonin upregulates prior expectations over the ‘go’ state at the beginning of the trial (D). The intervention 
based solely on serotonin precludes consecutive days of low mood. However, social withdrawal remains 
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(policy 1). Given that the agent receives no social support, the likelihood of receiving negative outcomes from 
Rudolph on either day is still 100%. The likelihood remains pessimistic after the social adversity on the 28th 
day; hence the best move for our agent is to stay at home (policy 1), despite the serotonergic bias on beliefs 
over the go context. 
 
Administration of serotonergic antidepressants induces very strong expectations of Caroline having a ‘good 
day’, which had the (unintended) side-effect of countering our agent’s epistemic drive. The agent experiences 
multiple bad outcomes between the moment of the adverse life event and the beginning of the 
pharmacotherapy, even on good days. The consequence of this is that the expected utility of good days 
reduces as the agent is left with neither an epistemic nor a pragmatic drive—and opts to stay at home instead. 
This slightly counter-intuitive effect of serotonergic pharmacotherapy underscores the clinical relevance of (1) 
the timely administration of antidepressants (e.g., before further negative associations become dominant), (2) 
the support of antidepressants with other types of interventions (i.e., this effect does not occur when 
combined with social support in our simulations), and (3) the further investigation of potential ways to model 
and predict the (side-)effects of antidepressants. 
 
4 Noradrenaline (figure 5, lower right quadrant): Noradrenaline gradually increases uncertainty about 
future states (i.e., increases uncertainty in the transition B matrices), which underwrites a loss of precise belief-
updating during planning—and motivates exploratory behaviours, through the expected ambiguity (in G). This 
is reflected in figure 5 (lower right quadrant, top panel) showing imprecise beliefs over policies 1 to 10.  
Noradrenaline intervention engenders several days of low mood after administration, which are generally 
associated with social withdrawal (policy 7). There is a combination of withdrawal policies (1,4,7), and 
uncertainty over these policies; e.g., the agent sometimes ends up going to Caroline and receiving a negative 
outcome (e.g., day 42). Episodes of anhedonia and social withdrawal are short, but present nonetheless, which 
suggests that the agent is still depressed. We next turn to the effects of combining pharmacotherapy with 
social support by repeating the above conditions in the setting of a responsive social context. 
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Figures 5. Responses to intervention. This figure uses the same format as the upper panels of Figure 4. 
Interventions are indicated by the solid lines (red line: social adversity; blue line: social support; orange line: 
pharmacotherapy). The plots report the simulated responses to social adversity (red lines in all quadrants), 
and the remedial effects of social support (blue line in the second quadrant). Quadrants with orange lines show 
the corresponding effects of pharmacotherapy (serotonin or noradrenergic). The four treatment conditions 
show the same behaviour over the first 28 days as the baseline scenario. This figure reports the results of 
conditions 1 to 4.  

3.3 Combined interventions  
 
Computationally, social support, serotonin, and noradrenaline operate the same way as described above, 
whether they are administered individually or combined. What changes are the behavioural effects. To 
understand these novel effects, we must pay attention to the temporal structure of the depressed system (i.e., 
the coupled generative model and process). Social support will be the first intervention to impact the 
generative model (the agent part of the system) by generating the outcome on the basis of which inference 
and learning operate. Serotonin will act first by influencing initial states (D), and finally noradrenaline will act 
by influencing policy planning (through B).  The selected policy, if it involves going to the social media state, 
will influence the probability of outcomes in the generative process (see 30th day, fig. 3), which will then loop 
back into the generative model to influence inference and learning.  
 
5 Serotonin and noradrenaline combined (figure 6 lower left quadrant): After the pharmacotherapy on 
day 35, the agent experiences episodes of anhedonia at regular intervals. However, these are characterized by 
perceived negative social encounters with Caroline, not social withdrawal. According to the specifications of 
our simulation, this means that the agent does not meet the requirements for severe depression (i.e., 
anhedonia and withdrawal criteria). The agent alternates between policies 1, 2, and 3, which do not involve 
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going to social media. This is arguably because serotonin promotes an optimistic bias, meaning that no 
information foraging is required (e.g., going on social media). 
 
6 Social support and serotonin (figure 6, lower left quadrant): In this condition, there is no withdrawal and 
overall, the mood states are non-depressed (above baseline). This condition combines an optimistic bias with 
an increase in social stability, yielding high certainty about the reception the agent will receive from Caroline 
and Rudolph. Since beliefs about policy-dependent state transitions remain the same, there is no need to 
explore. On Caroline’s good days, the agent approaches Caroline, and on her busy days, the agent engages 
Rudolph. Note, however, that the agent remains uncertain about which policy to pursue, and compared to the 
scenario combining noradrenaline, serotonin, and social support, the agent never engages pragmatic policies 
(e.g., 6). 
 
7 Social support and noradrenaline (figure 6, lower right quadrant): This condition yields a variety of 
responses, and some short episodes of low mood. These are sometimes caused by social withdrawal (e.g., 
days 64,63), and sometimes by high risk-taking (e.g., day 60), expressed by policy 6. The exploration of the 
policy space in this scenario is driven by the slow decrease in precision over the transitions (B matrices), 
coupled with an increase in social partners’ reliability. 
 
8 Social support and serotonin and noradrenaline combined (figure 6, upper right quadrant): The agent 
experiences adversity but has social support and access to pharmacotherapy. This scenario largely precludes 
social withdrawal and consecutive days of anhedonia, and the agent is highly optimistic. Almost on every 
occasion, the agent engages policy 3 (i.e., wait, then approach Caroline), which explains mood episodes below 
baseline. Otherwise, the agent engages policy 2 (i.e., wait, then approach Rudolph). Low mood is characterized 
by risk taking, not social withdrawal. Moreover, for the first time, the agent engages policy 6, which is a 
pragmatic policy (i.e., going directly to Caroline). This speaks to the effect of noradrenaline, which motivates 
the agent to disambiguate (future) states that are deemed uncertain, while the few days of withdrawal speaks 
to the serotonergic bias manifest when Caroline is on a bad day. Note that the epistemic character of a policy 
concerns the extent to which it disambiguates uncertain transitions. Now, uncertain transitions might be 
transitions between non epistemic ‘states’, that is, states that provide go/no-go outcomes (i.e., if I know where 
the cue is and where the cue leads, but I do not know if my current location leads to a reward, I will explore 
this latter transition first, especially if I believe I am in a ‘go’ context, which is what the serotonergic bias does). 
Hence this condition involves epistemic policies—as in disambiguating behaviour—without these policies 
soliciting epistemic cues.  
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Figures 6. Responses to pharmacotherapy and social support. This figure uses the same format as Figure 4 
and 5. Here, we report the responses to the final three conditions; namely, responses to serotonin and 
noradrenaline and combinations of drug treatment (yellow line), after social support (blue line). 

4 Discussion  
 
Using active inference, we have reproduced (artificial) anhedonia and social withdrawal to provide a 
numerical analysis of the EST of depression. We specified a generative model, involving multiple components 
that conspired to generate context-sensitive responses to social uncertainty; particularly, the prior 
preferences for socially rewarding outcomes (e.g., encounters with Caroline). Our results provide support for 
our hypothesis that depressed mood reflects an adaptive response to interpersonal adversity. Following an 
adverse life event, our synthetic agent resolved interpersonal uncertainty via social signalling, thereby 
alleviating her depressed mood. Except for scenarios involving social support, all the conditions we simulated 
resulted in an above-average duration of episodes of anhedonia and social withdrawal, speaking to 
unresolved uncertainty. Crucially, we do not claim that depressive psychopathology is adaptive. Indeed, 
unlike our ‘social support’ condition, the ‘severe depression’ scenario proved to be maladaptive, characterized 
by unresolvable episodes of low mood and social withdrawal. This may either occur when signalling is 
defective (e.g., due to personality difficulties, rendering a person unable to deliver the appropriate signals), or 
when it fails to be received (e.g., cues provided by someone who is socially isolated).  
 
A key aspect of simulations similar to ours is the explicit and formal modelling of the aetiological factors that 
underwrite the selection of, or inference about, prosocial behaviour; ranging from Bayesian belief updating 
(i.e., perceptual inference), through to experience-dependent plasticity (i.e., perceptual learning), and to the 
social and encultured responses of the environment. The active inference framework has an explicit (neuronal) 
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process theory, which could allow future studies to simulate the selective effects of neuromodulatory 
interventions on the encoding of precision or uncertainty, and its consequences for the agent’s social 
behaviour. Having a complete model of (aberrant) social inference means that in the future, one could 
simulate neuronal processes that lend themselves to empirical measurement. Studies along these lines could 
simulate dopamine responses in order to provide qualitative predictions that could be tested with functional 
magnetic resonance imaging, e.g.,(D’Ardenne et al., 2008; Schwartenbeck et al., 2015). In this setting, 
dopamine responses are usually associated with updates to the expected precision of Bayesian beliefs about 
the policy in play (see Appendix E in Friston, FitzGerald, et al., 2017; Sales et al., 2019) 
 
In our simulations, we allowed uncertainty over contingencies to decrease every time the agent referred to 
social media. Narratively, this could be interpreted as the agent signalling (implicitly or explicitly) to Caroline 
and Rudolph that they should be more consistent in order to provide more support (e.g., by manifesting 
discontent or by sharing emotional state on her social media feed). Note that this does not imply any 
qualitative change in prosocial responses; it simply corresponds to an increase in the consistency or reliability 
of responses that may or may not be affiliative. Computationally, this amounts to repairing the environment, 
such that the prior beliefs of a phenotype are fit for purpose. In other words, the (social) environment changes 
to match the prior beliefs of its incumbents; thereby reversing the suboptimality implicit in maladaptive 
depression. Recovery then depends on the sensitivity of the subject’s social environment and on how often 
she consults social media. Here, the positive effect of combining pharmacotherapy with social support is 
thought to be attributable to the optimistic bias associated with serotonin (Harmer, 2008; Harmer et al., 2017), 
coupled with the effect of noradrenaline, which motivates the exploration of states associated with rewards 
(Aston-Jones & Cohen, 2005).  
 
Given the parametrization of our subject, the best intervention was the combination of social support and 
serotonin, while the worst outcome—in terms of social withdrawal—was the intervention with serotonin alone 
(see results table). How these two interventions work together in real participants remains open to question. 
Computationally, serotonin provides an optimism bias while social support confirms that bias by returning 
the social environment to its normal setting (i.e., the setting matches the non-pessimistic expectations of the 
agent). However, when social support is lacking, serotonin leads to repeated, failed social encounters and 
social isolation. It is unclear whether serotonergic antidepressants are direct mood enhancers. Rather, it is 
suggested that antidepressants work by augmenting positive emotional processing, which then has positive 
effects on other psychological factors (Harmer et al., 2009). Our simulation results highlight this more complex 
systemic interaction between the psychosocial and neurocognitive aspects of depression and stresses the 
importance of social support. Indeed, social support in older adults is known to have alleviating, bidirectional 
effects on symptoms of depression and anxiety. Social disconnectedness appears to predict perceived 
isolation, which itself predicts higher depressive symptoms, and vice versa (Santini et al., 2020). Adolescents 
who self-report higher perceived social support at age 19 are less likely to show depressive symptoms one year 
later (Scardera et al., 2020), and reviews emphasize the significant protective effects of perceived emotional 
and instrumental support, as well as social network diversity in the general population (Santini et al., 2015). 
The strength of the positive effect of social support, of course, rests on the subject-specific parametrization, 
which we can expect to vary across real subjects. For instance, we initialized our subjects as ‘blank slates’ with 
respect to state transitions. However, this would be expected to vary across participants based on their 
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individual experiences and development. This may also vary based on the volatility of the (prosocial) 
environment prior to the occurrence of social adversity. Again, our proposal is a proof of principle, and is only 
meant as a general portrait of what is feasible, when considering the social environment in computational 
phenotyping.   
  
Our results speak to the Darwinian models of depression synthesized by the Social Risk Hypothesis (SRH) (cf. 
box 1). Following the attachment model, simulated agents – displaying anhedonia and social withdrawal – 
inhibited social risk-taking under social uncertainty. Following the social competition hypothesis, the adverse 
life event reduced social uncertainty by producing social withdrawal. Consistent with the resource 
conservation model, after the adverse event, the agent progressively returned to Caroline, so long as the agent 
knew exactly when to approach her. From the point of view of the SRH, the explanations of the attachment 
model, the social competition model, and the resource conservation model are all grounded in the dynamics 
we simulated. The dynamics we simulated were the increase in social uncertainty leading to behavioural and 
psychological symptoms that either lead to depression—when the social environment is not responsive—or 
to the restabilization of the social network—when the social environment is responsive. The Evolutionary 
System Theory (EST) of depression, which is the recent neurocomputational reinterpretation of the SRH, 
frames the adaptive mood dynamics integrated by the SRH as an attunement dynamic between evolutionary 
adaptive priors (here prior preferences), plastic developmental priors (here B and a likelihood A), and a social 
environment (here a generative process). These would have been selected to conspire to generate adaptive 
symptoms of depression in order to trigger social network re-stabilization (ex. condition 2); social network 
stability having been crucial to evolutionary success throughout human history (see box 1). When the social 
environment fails to respond to the social signalling represented by depressive symptoms, the behaviourally 
adaptive pessimistic beliefs that produced this signalling spirals into the maladaptive beliefs, characteristic of 
depressive illness. 

5 Conclusion: future directions  
 
Simulation studies such as ours can be used to simulate both the symptoms and underlying processes of 
inference in silico. Note, however, that our generative model only had one level. By adding levels to the 
generative model, as in hierarchical (deep) active inference (Friston, Parr, et al., 2017), one could further fine-
tune these affective dynamics. For instance, one could keep lower-level preferences fixed, reflecting their 
evolutionary origins, while allowing learning in higher-level preferences to change as a function of life 
experiences (e.g., learning to prefer Rudolph’s underwhelming calm over Caroline’s extravagance). 
Furthermore, generative models — of the kind used above — can be fitted to individual and population level 
clinical data; involving some general-purpose tasks related to a disorder of interest (e.g., social decision-
making in depression), thereby yielding a novel avenue for computational phenotyping, prognosis, and 
diagnostic nosology. The idea here is that clinicians could then predict psychiatric trajectories in specific 
individuals, when conditioned on different available treatment options. The latter could then be used to 
generate a prognosis and course of treatment tailored for any client, which we believe is perhaps the most 
exciting promise of generative modelling in clinical psychiatry.  
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However, before achieving this, there are many conceptual and technical limitations to overcome, which 
chiefly relate to the treatment of clinical data using computationally meaningful generative models. 
Behavioural measurements such as hits and misses and associated social withdrawal can be measured in 
experimental designs that track behaviour in a decision-making task, with a given narrative (e.g., based on 
vignettes of real-life scenarios). The challenge lies in fitting individual and environmental initial conditions for 
both the generative model and generative process (see method, Figure 3). For instance, assuming that 
preferences are endowed by (encultured) evolution, one should provide a reliable estimate of population-level 
preferences for social encounters. Then, one should assess the degree of precision of empirical priors and 
measure the expected utility for each action policy. Crucially, in order to implement the effect of social 
support, one could also gather and translate information about environmental responsivity. This could be 
done via task-specific questionnaires (e.g., on a Likert scale, how desirable is an encounter with Rudolph 
versus Caroline? How reliable do you consider Caroline? Etc.). Alternatively, these questions could be 
answered by data captured by various technologies. Smartphone-based, passive sensing technologies, which 
can capture behavioural data (e.g., distances travelled, exercise, sleep, social media activity) and 
psychological data (e.g., affective tone of text entered), might help in this regard (Sapiro et al., 2019). More 
generally, the specification of environmental components might be achieved by using various local cultural 
factors (e.g., cultural norms) regarding the responsivity to idioms of distress; i.e., culturally specific ways of 
expressing illness experience (Kirmayer & Young, 1998). 
 

In short, to achieve clinical utility, generative models of depression should summarize the client’s 
neurocognitive disposition to learning as well as her social situation, in terms of the environmental 
responsivity to her signalling. The role of the clinician, then, would be to map the evolutionary (e.g., adaptive 
priors), neurocognitive (e.g., empirical priors), and social (e.g., environmental responsivity) portrait of specific 
clients in terms of a generative (phenotypic) model – a Computational Evolutionary Social assessment of sorts. 
This opens a novel avenue for research, which attempts to quantify both generative models and processes, by 
bringing together the expertise of cultural, evolutionary, and computational psychiatrists and psychologists. 
If such an approach proves reliable – and robust predictions can be made regarding the course of illness 
experience and optimal treatment options – using computational (social and neurocognitive) phenotyping to 
improve psychiatric assessment, diagnosis, and tailored interventions might become commonplace. 
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Conclusion to chapter 4 
 
A theoretical problem that my mentors, Paul Griffiths and Paul Badcock, brought up multiple times with the 
simulation of chapter 4 was the lack of "developmental" parameters, or the fact that what we called 
"evolutionary" or "adaptive" priors should be in fact priors that are also learnable. For instance, Paul Badcock 
proposed that the entire model itself should be viewed as "evolutionary". At first, I could not see why this view 
should be favoured, and so, I resisted and suggested that the evolutionary component of the model remained 
this one prior preference. Now, with more perspective on the model, I think that Paul was right. It is the entire 
architecture of the model that should be the "evolutionary" prior (although it includes both priors and 
likelihood). And the generative process — the social environment — should probably be viewed as the 'cultural' 
counterpart of the process, driving gene-culture coevolutionary dynamics (e.g., by allowing the selection of 
culture-characteristic priors over multiple generations of models, whose development would be driven by 
environmental observations characteristic of the host generative process). A subset of priors should be 
"empirical", that is learnable over development, and the architecture of the model (e.g., the fact that a prior 
does exist or not in the model) should be viewed as an evolutionary fixation (e.g., a genetic prior). 
Theoretically, this would be one way to respond to the problem raised by Paul Griffith, who encouraged me to 
think about what a developmental prior would look like in the model of chapter 4.   
 
Another discussion I would have liked to have, but that would have been outside of the scope of this paper, 
was the discussion of the relation between the practice of engineering such a multi-scale simulation and the 
healing practice in psychiatry. From an engineering point of view, the main challenge was to induce 
pathological behaviour by manipulating external parameters while being able to return the model to normal 
functioning via internal and/or external parameters. Because of the complex interactions between the various 
internal and external parameters of the model, it was a challenge to return the agent to normal mood, as I had 
to find the right timing and order of interventions, both social and pharmacological, each acting at various 
spatiotemporal scales (e.g., fast-changing neural parameters and slow changing social parameters) – note 
that a more clever coder would certainly have taken the time to find a way to automatize (e.g., amortize) that 
process.  
 
At any rate, it is worth noting that this was not only a theoretical problem that spoke to potentially important 
clinical implications when working with a multiscale conceptual model. From an engineering point of view, 
for me, as the person running the simulation, finding the right tuning of parameters that would allow me to 
induce the behaviour corresponding to the synthetic depression criteria and to find the right timing for 
interventions was a challenge. Happily, enough, I did not have to worry too much about the consequences of 
my "synthetic clinical decision" with the model, as I could test the impact of various orders of interventions 
without having to worry about the impact on a human. Moreover, I could test all the different interventions, 
individually, or combined. I honestly do not know how I would have managed to find the right interventions if 
I had needed to consider the consequences of those on a real person.  
 
It was brought to my attention by my supervisor Prof. Kirmayer that my experience with the modelling pointed 
to “a crucial challenge but also a potential benefit to modelling” (personal communication). As Prof. Kirmayer 
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put it, “Models are sensitive to parameter choices—and in the absence of relevant empirical studies, 
parameters are often chosen more or less arbitrarily. The positive implication is that, by studying the effects 
of parameter variation (including magnitude and timing) we can discover features of system dynamics. This 
could have real value in understanding why interventions do not work (as expected) and how we might 
intervene more effectively (e.g., with multiple, timed or staged interventions)” (personal communication). I 
could not agree more with Prof. Kirmayer’s view. The choice of the manipulations in the study had to be 
informed by the empirical literature on depression. The goal was not to claim that the intervention truly 
mimics the action of serotonin in the brain. Rather, the goal was to guide my decisions on what parameters to 
manipulate so as to move the model in one direction or the other, under the assumption that that model could 
capture some of the essential dynamics underwriting symptoms of depression.   
 
This engineering challenge reflects the reason why mental disorders such as depression are so difficult to treat, 
and perhaps why their recurrence rate is so high (Burcusa & Iacono, 2007); because mental disorders are 
multiscale moving entities whose parts can change both quickly and slowly and are functionally related to one 
another. A move in one direction of a part may entail the movement of another part in another direction. 
Hence, the psychiatric treatment itself is a process that the clinician must embark on together with the person, 
and that forces the clinician to think about system dynamics and the way these contextualize the outcomes of 
trial-and-error interventions characteristic of practice in psychiatry. One way to appreciate the value of the 
model presented in chapter 4 is as an additional tool that psychiatrists may use to inform or complement their 
decisions during this trial-and-error process.  Accordingly, the goal of the sort of model proposed in chapter 4 
was not to provide a “literally true" map of depression, which would probably be impossible. Rather, the goal 
was to start developing a tool that could one day accompany clinicians in the healing process. For instance, 
such a model could support the clinicians in their prioritization of interventions within level and across level 
dynamics, based on their understanding of which of the multiscale parameters may appear to contribute most 
to the disorder at hand.  

Thesis conclusion 
 
In this dissertation, I sought to integrate three distinct ways of thinking about mental disorders that belong to 
three distinct approaches to psychiatry: the evolutionary approach, the cultural approach and the 
computational approach. To do so, I proposed an integrative model of the three approaches in chapter 3, 
which was based on some assumptions that were derived from the discussions in chapters 1 and 2. The first 
assumption was that it would be valid to extend to non-living entities the principle at the core of the 
computational approach underwriting the model of chapter 3 — the free-energy principle (chapter 1). The 
challenge was to extend the free-energy principle to non-living entities without having to commit to the idea 
that such non-living entities are in fact living. To justify this, I argued that the free-energy principle was not a 
sufficient condition for life and cognition; hence one could perfectly well apply the free-energy principle to 
non-living entities without committing to the view that these entities are living, in some sense. The lesson is 
that if one is to inquire about what life-related processes are, it may be worth doing this under the auspices of 
the free-energy principle. However, it is not because one uses the free-energy principle that one is inquiring 
about life-related processes.  
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The second assumption was that one could extend applications of the free-energy principle to non-living 
entities by attributing to both living and non-living entities the same general ability to 'learn' from each other, 
'perceive' one another, and 'act' to shape one another's ‘perception’. The defence of this assumption was 
central to our project in chapter 3, which was in part to extend the free-energy principle to model the 
behaviour of medical clinical interactions and institutions. The view of learning, perception and action as 
inference processes in Chapter 2 yielded a symmetrical and asymmetrical view of human-environment 
interactions that would provide a mechanism for the manner in which scales in multilevel models of human 
behaviour can bind together and become dependent on one another, while allowing for independent 
dynamics at each scale. I suggested that asymmetrical interactions between scales yield unstable patterns at 
the level below (e.g., an individual in relation to her environment), whereas the accumulation of such 
asymmetrical interactions by multiple individuals "alike" at the level above would yield stable patterns at the 
level above (e.g., the stability of intergenerational passing of tradition that guarantees survival or reproductive 
success, and upon which individuals depend). The concepts of symmetry and asymmetry in a multiscale 
system and the stable and unstable patterns they suppose can guide us when attempting to explain the 
behaviour we observe at a given scale. One should expect symmetry and stability in a scale-to-scale relation 
(e.g., one should expect fidelity in the reproduction of certain alleles in a population over generations), and 
asymmetry and instability in the relation between an entity within its own scale and the scale above (e.g., 
germline mutations from parents to offspring creating variations in the same population).  
 
Finally, in chapter 4, we presented a model of depressed mood and normative depression by implementing 
the model presented in chapter 3.  It is important to note that in this dissertation, even though I have been 
talking about one model, there are two models at play. The first is the one developed in chapter 3 — the ECC 
model, which is, as we proposed in introduction, something like a conceptual model for psychiatry — a medical 
model, like the biopsychosocial model. Such a model can play various roles. It can orient education by 
providing a set of core principles that can be taught to undergraduate students, e.g., as with evolutionary 
medicine (Grunspan et al., 2019); it can orient research by integrating various bodies of knowledge as we did 
in chapter 3; and it can shape clinical practice by helping the clinician to "consider information from all 
systems’ levels and the possible relevance and usefulness of data from each level for the patient's further 
study and care" (Engel, 1981, p. 101). The second model discussed in this dissertation is that of chapter 4. That 
model can be viewed as the sort of research output that we can expect under the conceptual model developed 
in chapter 3.  
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i The Evolutionary System Theory (EST) reading of depression as resulting from an aggravated vulnerability having provided selective 
advantage is one possible evolutionary reading. As Nesse (2019) put it: “Every trait or gene that makes an organism vulnerable to 
disease poses an evolutionary mystery. The old answer was that there are limits to what natural selection can do—for instance, 
eliminating all mutations. That is one important kind of explanation, but the central insight of evolutionary medicine is that there are 
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also at least five other evolutionary reasons why we are vulnerable to diseases” (Nesse, 2019, p.34). The reasons behind the 
maintenance of vulnerabilities underwriting major depression are most probably more complex than the simple fact that “they might 
have provided a selective advantage”. These reasons, for instance, may, and in fact, should include, as Nesse suggests, the evolutionary 
rationales described in chapter 3. According to Nesse (2019): “Genes or traits associated with some diseases provide advantages and 
disadvantages that influence natural selection. However, proposals about the utility of diseases themselves, such as schizophrenia, 
addiction, autism, and bipolar disorders, are wrong before they start. The correct question is Why did natural selection shape traits 
that make us vulnerable to disease? Such vulnerabilities need an evolutionary explanation using some combination of these six 
factors.” (Nesse, 2019, p.41); the “six factors” being the evolutionary rationales summarized by Nesse (2019), some of which overlap 
with the ones described in chapter 3 of this dissertation. In chapter 4, the simpler, naïve account is used because it allows us to 
implement the EST of depression in a simple computational model. Within the context of this dissertation, chapter 4 functions as a 
“proof of principle” for the evolutionary, cultural, and computational approach developed in chapter 3. That proof of principle is about 
whether one could develop a sound computational model of psychiatric phenotypes reflecting dynamics that conform to principles of 
evolutionary, cultural, and computational psychiatry. The proposed model in chapter 4 is most certainly miles away from the “literal 
truth”. But this should not be surprising. The work in chapter 4 is very much exploratory.  
 
ii See end note 1.  


