
Symmetric Contrastive Learning On Programming
Languages

A THESIS SUBMITTED TO

THE FACULTY OF ENGINEERING

OF THE UNIVERSITY OF SYDNEY

IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF PHILOSOPHY

XIAOHUAN PEI

Supervisor: Dr. Chang Xu

School of Computer Science

Faculty of Engineering

The University of Sydney
Australia

10 July 2023

Authorship Attribution Statement
The work presented in this thesis is published as a conference paper [1] in the 22nd The IEEE

International Conference on Data Mining (ICDM), 2022. I designed the study, analysed the

data and wrote the drafts of the paper.

Student Name:

Date: 31 March 2023

As supervisor for the candidature upon which this thesis is based, I can confirm that the

authorship attribution statements above are correct.

Supervisor Name:

Date: 31 March 2023

i

Symmetric Contrastive Learning On Programming Languages

Xiaohuan Pei (Email: xpei8318@uni.sydney.edu.au)

Supervisor: Dr. Chang Xu

School of Computer Science

Faculty of Engineering

The University of Sydney

Copyright in Relation to This Thesis

© Copyright 2023 by Xiaohuan Pei. All rights reserved.

Statement of Original Authorship

This is to certify that to the best of my knowledge, the content of this thesis is my own

work. This thesis has not been submitted for any degree or other purposes. I certify that the

intellectual content of this thesis is the product of my own work and that all the assistance

received in preparing this thesis and sources have been acknowledged.

Signature:

xpei8318@uni.sydney.edu.au

ii

iii

To Those Whom I love & Those Who Love Me.

iv

Abstract

Contrastive pre-training has been shown to learn good features by finding the inner difference

and similar latent traits among the samples. The pairwise data Programming Languages

(PL) and Natural Language (NL) also have strong inner-relationship that can be used on the

downstream tasks.

Pre-trained models for Natural Languages (NL) have been recently shown to transfer well

to Programming Languages (PL) and primarily benefit different intelligence code-related

tasks, such as code search, clone detection, programming translation and code document

generation. However, existing pre-trained methods for programming languages are mainly

conducted by masked language modelling and next-sentence prediction at token or graph

levels. This restricted form limits their performance and transferability since PL and NL have

different syntax rules and the downstream tasks require a multi-modal representation. Here

we introduce C3P, a Contrastive Code-Comment Pre-training approach, to solve various

downstream tasks by pre-training the multi-representation features on both programming

and natural syntax. The model encodes the code syntax and natural language description

(comment) by two encoders and the encoded embeddings are projected into a multi-modal

space for learning the latent representation. In the latent space, C3P jointly trains the code

and comment encoders by the symmetric loss function, which aims to maximize the cosine

similarity of the correct code-comment pairs while minimizing the similarity of unrelated

pairs. We verify the empirical performance of the proposed pre-trained models on multiple

downstream code-related tasks. The comprehensive experiments demonstrate that C3P

outperforms previous work on the understanding tasks of code search and code clone, as well

as the generation tasks of programming translation and document generation. Furthermore,

we validate the transferability of C3P to the new programming language which is not seen in

the pre-training stage. The results show our model surpasses all supervised methods and in

some programming language cases even outperforms prior pre-trained approaches.

v

Keywords

Contrastive Pre-Training, Programming Language Processing, Deep Learning, Code Search,

Code Clone, Code Translation, Document Generation.

vi

vii

Acknowledgements

I would like to express my deepest gratitude to a multitude of individuals who have provided

invaluable support, guidance, and encouragement throughout the duration of my Mphil

journey. Without their unwavering assistance, the completion of this thesis would not have

been possible.

First and foremost, I would like to express my sincere appreciation to my supervisor,

Professor Chang Xu, for his exceptional mentorship, patience, and guidance. His vast

knowledge and enthusiasm for research have been a continuous source of inspiration and

motivation for me. I am truly grateful for the countless hours he have devoted to reviewing my

work, providing constructive feedback, and helping me navigate the challenges of academic

research.

I would also like to extend my heartfelt thanks to my fellow lab mates and colleagues in

the AI lab in Sydney for their camaraderie, stimulating discussions, and invaluable insights.

Their support and friendship have made the journey enjoyable and fulfilling.

In conclusion, I am deeply grateful to everyone who has contributed to the successful

completion of this thesis. This journey would not have been possible without the support,

guidance, and encouragement of these wonderful individuals, and I am forever indebted to

them.

viii

Table of Contents

Abstract v

Keywords vi

Acknowledgements viii

Chapter 1 Introduction 1

1.0.1 Introduction of Programming Language Processing . 1

1.0.2 Introduction of Pre-Train and Fine-Tuning Paradigm 2

1.0.3 Introduction of Contrastive Pre-Training . 3

1.0.4 Introduction of Challenges in Programming Languages 5

1.0.5 Introduction of Contributions of Our Paper . 6

Chapter 2 Literature review 8

2.0.1 Programming Language Pre-Training . 8

2.0.2 Contrastive Learning for Pre-Training . 10

2.0.3 Downstream Code-Related Tasks . 11

Chapter 3 Methods 15

3.1 Contrastive Code and Comment Pre-training . 15

3.1.1 Code and Comment Encoders . 15

3.1.2 Contrastive Learning . 17

3.1.3 Fine-Tuning . 19

Chapter 4 Results 23

4.1 Performance of C3P vs. Other Methods . 23

4.1.1 Code Search . 25

4.1.2 Clone Detection . 26
ix

x TABLE OF CONTENTS

4.1.3 Code Translation . 27

4.1.4 Code Document Generation . 30

4.1.5 Transferability . 30

4.2 Ablation Study . 32

4.3 Case Study . 35

Chapter 5 Conclusions 38

5.1 Discussion . 38

5.2 Conclusion . 39

Bibliography 41

5.3 Appendix A . 49

What the contrastive pre-training learned in the process. 49

CHAPTER 1

Introduction

In the introduction, we discuss the growing interest in Programming Language Processing

and its importance in various code-related tasks, the challenges faced in applying deep

learning and natural language processing techniques to programming languages, and the

contributions made by our novel contrastive pre-training algorithm that effectively addresses

these challenges and significantly improves performance on various downstream tasks.

1.0.1 Introduction of Programming Language Processing

Programming language processing for code-related tasks has attracted rising attention from

the deep learning community, given its huge potential to build AI-driven coding applications.

Such applications include vulnerability detection using deep learning-based systems [2],

intelligent code hints for programming learners [3], source code modeling and generation

for developers [4], and API modeling for recommendations [5]. The remarkable success

of pre-trained models in natural language processing [6, 7] has served as an inspiration for

various attempts to advance the development of pre-trained models specifically designed for

programming languages. Some notable examples of these models include Code2Seq [8],

CuBERT [9], GraphCodeBERT [10], Codex [11], PLBART [12], and CodeT5 [13]. The

overarching concept behind these pre-training methodologies for programming languages

revolves around predicting the original code from an artificially masked input code sequence

or conducting code syntactic prediction by parsing textual and structural information derived

from the abstract syntax tree. For instance, both Code2Seq[8] and CuBERT[9] utilized the

objectives of mask language modeling (MLM) and next sentence prediction (NSP) in order to

obtain a general representation of the special tokens during the pre-training phase.
1

2 1 INTRODUCTION

FIGURE 1.1. Progress on Code-Related Tasks.

CodeBERT [14] introduced the objective of replaced token detection (RTD), which leveraged

both bimodal and unimodal data for training purposes. In contrast, GraphCodeBERT [10]

placed greater emphasis on the structural information of code by training the objectives

of Edge Prediction (EP) and Node Alignment (NA). These innovative approaches have

contributed to the ongoing development and refinement of pre-trained models in the realm

of programming language processing, opening up new possibilities for AI-driven coding

applications and further enhancing the capabilities of deep learning techniques within this

domain.

1.0.2 Introduction of Pre-Train and Fine-Tuning Paradigm

The pre-training and fine-tuning paradigm has become a widely adopted approach in the

field of natural language processing and deep learning, revolutionizing the way researchers

tackle various tasks [15]. This paradigm consists of two main phases: the pre-training phase,

where models learn generic features from vast amounts of data, and the fine-tuning phase,

where models are adapted to specific tasks using smaller, task-specific datasets [16, 6]. The

introduction of the Transformer architecture by Vaswani et al. [6] laid the groundwork for

the development of large-scale pre-trained models like BERT [17], GPT [15], and RoBERTa

[7]. These models have demonstrated state-of-the-art performance on a wide array of natural

language understanding and generation tasks, surpassing traditional task-specific architectures

[18, 19].

1 INTRODUCTION 3

FIGURE 1.2. Overview of Pre-Train and Fine-Tuning Paradigm.

The success of the pre-training and fine-tuning paradigm can be attributed to the ability of

models to leverage vast amounts of unsupervised data during pre-training, learning general

language representations that can be fine-tuned for specific tasks [17, 15, 19]. This approach

has not only led to significant improvements in performance across various tasks but has also

reduced the need for large annotated datasets for training, lowering the barrier to entry for

tackling new tasks and domains [20].

The pre-training and fine-tuning paradigm has been extended beyond natural language pro-

cessing to other domains, such as computer vision [21], multimodal learning [22], and even

programming languages [14, 10]. This widespread adoption of the pre-training and fine-

tuning paradigm showcases its effectiveness in capturing generic features and adapting them

to domain-specific tasks, leading to continuous advancements in various fields.

1.0.3 Introduction of Contrastive Pre-Training

Contrastive pre-training has recently emerged as a powerful and influential approach for

learning effective and robust representations from a large volume of unlabeled data in various

domains. This paradigm is based on the fundamental concept of contrastive learning, which

revolves around the idea of learning representations that are closely aligned for semantically

related instances, while maintaining a discernable distance for unrelated instances [23, 24].

The contrastive learning process is achieved by optimizing a contrastive loss function that

encourages positive pairs (instances with similar semantic content) to be closer in the latent

space, while simultaneously pushing negative pairs (instances with dissimilar semantic

4 1 INTRODUCTION

content) apart [25, 26]. Contrastive pre-training has been successfully applied across a wide

range of domains, such as natural language processing [21, 27], computer vision [28, 29],

and even programming language processing [14, 10]. The application of contrastive pre-

training methods has yielded exceptional performance on numerous downstream tasks, often

outperforming traditional supervised learning techniques and setting new state-of-the-art

benchmarks. The success of contrastive pre-training is attributed to its ability to capture

rich and meaningful representations from vast amounts of unlabeled data, making it highly

effective for tasks that involve understanding complex patterns and relationships.

In the realm of natural language processing, contrastive pre-training has been leveraged to

learn powerful language representations that generalize well across various tasks and domains

[21, 27]. These methods have demonstrated significant improvements in tasks like text

classification, sentiment analysis, and natural language understanding, surpassing previous

methods that relied solely on supervised learning. In computer vision, contrastive pre-training

has been utilized to learn robust visual features from large-scale image datasets, leading to

notable advancements in image recognition, object detection, and segmentation tasks [28,

29]. Similarly, in the context of programming language processing, contrastive pre-training

has shown promising results in tasks like code understanding, code generation, and natural

language-to-code translation [14, 10]. The remarkable success of contrastive pre-training has

inspired researchers to explore novel and more efficient contrastive learning strategies, as well

as investigate ways to adapt the existing methods to other domains and modalities. As a result,

various extensions and modifications to the original contrastive pre-training paradigm have

been proposed, which have further advanced the field by introducing innovative approaches

to learning powerful and meaningful representations from unlabeled data [30, 31].

In summary, contrastive pre-training has emerged as a highly effective approach for learning

robust and meaningful representations from unlabeled data in various domains. Its success

in natural language processing, computer vision, and programming language processing has

demonstrated its potential to revolutionize the way we approach a wide range of downstream

tasks. As research in this area continues to progress, we can expect the development of even

1 INTRODUCTION 5

more powerful and efficient contrastive pre-training methods that can further advance the

state-of-the-art in multiple domains.

1.0.4 Introduction of Challenges in Programming Languages

The advent of deep learning and natural language processing (NLP) techniques has paved

the way for numerous advancements in various domains, including programming languages

processing. Although these techniques have shown tremendous potential in addressing

complex tasks, several challenges remain in the effective application of deep learning and

NLP methods to programming languages processing. In this introduction, we discuss some of

the key problems faced by researchers and practitioners when utilizing deep learning or NLP

techniques for programming languages processing, while citing relevant literature in the field.

One of the primary challenges in applying NLP methods to programming languages is the

inherent differences between human languages and programming languages [32]. While

natural languages are often ambiguous and context-dependent, programming languages have

a more formal and structured nature, which requires specialized techniques for accurate

processing and understanding [33]. Consequently, the development of effective deep learning

models tailored to the unique characteristics of programming languages remains an ongoing

challenge.

Another problem that arises when applying deep learning and NLP techniques to programming

languages is the accurate representation and understanding of code semantics [8]. This

challenge is rooted in the need to capture the underlying meaning and functionality of code

snippets, which often necessitates an understanding of the syntactic structure and relationships

between code elements. Graph-based representations, such as the abstract syntax tree (AST),

have been employed to address this issue [10], but effectively incorporating such structural

information into deep learning models remains a complex task. Code summarization and

translation pose additional challenges in programming languages processing [34]. Given the

diverse range of programming languages and their unique syntax, creating models capable of

automatically generating accurate and concise natural language descriptions or translating

6 1 INTRODUCTION

code between languages requires a comprehensive understanding of both the source and target

languages [35, 14]. Developing models that can perform these tasks effectively and efficiently

is an ongoing area of research. The lack of high-quality, large-scale datasets for training and

evaluation is another obstacle faced by researchers in this domain [4]. While there has been

a surge of interest in developing pre-trained models for programming languages, such as

CodeBERT [14] and CodeT5 [13], the availability of extensive and diverse datasets is crucial

for achieving state-of-the-art performance and generalization.

In conclusion, while deep learning and NLP techniques have made significant strides in

programming languages processing, several challenges persist. Addressing these issues and

overcoming the inherent complexities of programming languages will be critical for the

continued development and refinement of AI-driven coding applications and the effective

utilization of deep learning and NLP methods in this domain.

1.0.5 Introduction of Contributions of Our Paper

In this thesis, we introduce a novel contrastive pre-training algorithm specifically designed

to address the encoding challenges associated with programming languages and natural

languages. It is a natural assumption to regard code and comments as two distinct views

of a single instance. Rather than merely concatenating their intermediate encodings for the

purpose of optimizing self-supervised objectives, such as masked language modeling, we

aim to ensure that these two views are effectively aligned with each other within the latent

space. By maximizing the agreement between the two views through the implementation of a

contrastive loss, the resulting embeddings can be optimally fine-tuned to capture the inherent

connections that exist between the views.

In addition to the aforementioned views, structural code information serves as another critical

perspective that can be employed to describe the semantic information contained within the

code. This information can be obtained by parsing data flow information from the source

code using a depth-first search (DFS) approach and subsequently labeling the dependency

relations of variables. Given the redundancy that exists between the source code and the code

1 INTRODUCTION 7

structure, we utilize a shared code encoder to map the concatenated textual and structural

code to code embeddings. Meanwhile, the comment information, which originates from an

entirely different natural language domain, maintains its own dedicated comment encoder.

We thoroughly evaluate our proposed model across four downstream tasks, including natural

language code search, clone detection, code translation, and document generation. These

tasks encompass the understanding and generation capabilities of the model with respect to

code syntax. Our model significantly surpasses previous works in terms of performance on

these fundamental downstream tasks. In an effort to further investigate the generalization

potential of the learned representations, we establish zero-shot learning tasks by introducing

the evaluation of new programming languages that have not been encountered during the

training process. The results of this evaluation reveal that the proposed contrastive pre-training

approach competes favorably with supervised methods that have been pre-trained on the

entire spectrum of programming languages.

CHAPTER 2

Literature review

Our contribution is related to prior works about code pre-training, contrastive learning and

fundamental code tasks. We start by reviewing programming language pre-training, after

which we continue with contrastive methods for pre-training. Lastly, we introduce the

fundamental code-related tasks.

2.0.1 Programming Language Pre-Training

Over the past few years, there has been a growing interest in pre-training methods for

programming language models. These methods aim to improve the performance of models on

various natural language processing and code-related tasks. Among the various pre-training

methods, CodeBERT has gained a lot of attention in recent times. CodeBERT is a pre-trained

model that can perform both code and natural language processing. The model is pre-trained

using a masked language modeling objective on a large corpus of code and natural language

text. One of the advantages of CodeBERT is that it can handle code and natural language

jointly, which is particularly useful for tasks such as code summarization, where the model

needs to understand both the code and the natural language description.

Another promising approach for pre-training programming language models is GraphCode-

BERT. This method represents code using a graph neural network and pre-trains the model

using both a masked language modeling objective and a graph reconstruction objective. By

using graph representations, GraphCodeBERT can capture the structural information of code,

which can be useful for tasks such as code clone detection.
8

2 LITERATURE REVIEW 9

In addition to these methods, Yuan et al. proposed a pre-training method for Transformers

that uses an energy-based denoising objective to pre-train the model on a large corpus of

images. Although this method is not specifically designed for programming language models,

it could potentially be adapted to code by treating code as an image.

Kotikalapudi et al. proposed a pre-training method that uses a masked language modeling

objective and a contrastive learning objective to pre-train the model on a large corpus of

source code. This method aims to capture the semantics of code and the relationships between

code elements. By pre-training the model on a large corpus of source code, it can learn to

represent code more effectively and accurately.

Finally, Chang et al. proposed a pre-training method that uses a masked language modeling

objective and a task-specific fine-tuning objective. The model is pre-trained on a large

corpus of source code and fine-tuned on several downstream tasks. By fine-tuning the model

on specific tasks, it can adapt to the specific requirements of those tasks and improve its

performance.

Early research in code tasks mainly adopted supervised or self-supervised learning on pro-

gramming language datasets. Inspired by the success of the ‘pre-train+fine-tune’ paradigm

on natural language processing (NLP), many recent studies attempted to transfer these pre-

training methods for p rogramming language tasks, such as Code2Seq [8], CodeBERT [14]

and GraphCodeBERT [10]. Most of them directly utilized source code for pre-training

[14, 8], and some of them considered exploiting the structural logic of the code [10, 36].

Pre-training objectives in these works were mainly designed by masking some textual or

structural information such as mask token modeling, and predicting some elements in the

source code such as edge prediction on the code graph parsed by an abstract syntax tree (AST)

[10]. Overall, pre-training methods for programming language models have shown promising

results in improving the performance of models on various natural language processing and

code-related tasks. By using a large corpus of code and natural language text, these methods

can effectively capture the semantics of code and natural language and learn to represent them

more effectively.

10 2 LITERATURE REVIEW

2.0.2 Contrastive Learning for Pre-Training

Recently, contrastive learning methods for pre-training [37, 38, 39] have shown great potential

in improving model robustness when fine-tuned for downstream tasks. The model pre-trained

with contrastive learning also has a surprising zero-shot transfer ability [39, 38], which aims

to learn useful representations for downstream tasks by training the model to distinguish

between similar and dissimilar examples. One of the earliest works on contrastive learning is

proposed by Krizhevsky et al. [40], who introduced the concept of non-parametric instance

discrimination and proposed the contrastive predictive coding method.

Since then, many researchers have proposed various contrastive learning methods for pre-

training models in different domains. For example, He et al. [28] proposed momentum

contrast for pre-training visual representations, while Chen et al. [21] introduced the SimCLR

framework for contrastive learning of visual representations. Joshi et al. [41] proposed the

MARGE method, which combines contrastive learning with language and image encodings.

Beltagy et al. [42] proposed contrastive learning for prompt tuning, which is a pre-training

method for prompt-based language models. Chen et al. [43] propose a hierarchical encoder-

decoder architecture that synthesizes visualization programs from natural language utterances

and code context, trained on Jupyter notebooks from GitHub.

Contrastive text representation pre-training has been widely studied from both supervised

and self-supervised perspectives [37]. For supervised contrastive pre-training [44], the input

views can be constructed by manual text augmentation [45], or text summarization [46]. For

self-supervised contrastive pre-training, the input views can be constructed via automated text

augmentation [47], or next/surrounding sentence prediction [48]. There were also research

works on cross-modal contrastive representation pre-training [38, 39], where image and text

description information were fused into the same representation space.

Overall, contrastive learning has shown promising results in learning discriminative represent-

ations that capture the underlying structure of the data. By using a contrastive loss function,

these methods can effectively learn representations that are useful for downstream tasks.

2 LITERATURE REVIEW 11

When we are making this submission, we note a contemporaneous work [49] on arXiv that

also studies the code and text contrastive pre-training. However, our approach differs in four

ways: 1) This work [49] only feeds in source code tokens, while we incorporate code structure

information to enrich the representation of the source code; 2) Mask rules are different.

Beyond masking source tokens as in [49], we propose to further mask the variable sequence

and nodes of data flow; 3) We not only evaluate the proposed contrastive training for code

understanding tasks but also investigate its performance on the generation tasks via generation

decoders; 4) The comparison methods and experiment settings for transferability are different.

As the code semantic rule of each programming language could be different in the real world,

we test the transferability of the pre-trained encoders over a new programming language that

has not been used during training, rather than taking an ordinary zero-shot setting to predict

new labels in classification. These four differences make our contribution a unique one to

contrastive learning for code pre-training.

2.0.3 Downstream Code-Related Tasks

Our work mainly focuses on the following fundamental code-related tasks.

Code Search is the task of answering the natural language query with code snippets, which

is also an important task in software engineering that aims to retrieve code snippets that

are relevant to a given query. Text-based and code-based methods have been proposed for

code search. Text-based methods use natural language queries and treat code as text, while

code-based methods use code queries and represent code as structured data.

One example of a code search system that uses both text-based and code-based methods is

CodeHow [50]. CodeBERT [51] is another code search system that uses a pre-trained model

for programming and natural language processing. GraphCodeSearch [52] is a code search

system that uses graph neural networks to represent code and performs semantic code search.

The CodeSearchNet Challenge [53] is a benchmark dataset that evaluates the state of semantic

code search, and several state-of-the-art models have been evaluated on the dataset. Allamanis

12 2 LITERATURE REVIEW

et al. [54] proposed a neural network-based code search system that learns a joint embedding

space for code and natural language queries.

Overall, code search is an important task in software engineering that has received significant

attention in recent years. These approaches have shown promising results in retrieving

relevant code snippets for a given query, using a combination of text-based and code-based

methods. With the rapid growth of code repositories, code search is becoming an increasingly

important task in software engineering. The fundamental problem of this task is modeling

the latent correlation between the high-level inheritance in the natural language queries and

the low-level semantic code context [55]. One line of related studies about code search

mainly focused on supervised objectives [55], while the other line of studies followed the

‘pre-trained+fine-tuning’ paradigm [14, 10].

Code Clone is popular software engineering task that involves identifying code fragments

that are similar or identical to each other. Many approaches have been proposed for code

clone detection, including text-based and code-based methods. Text-based methods use

natural language processing techniques to detect similar code fragments based on their textual

similarity, while code-based methods use program analysis techniques to detect clones based

on their syntactic and semantic similarity.

Several papers have proposed effective techniques for code clone detection. Li and Li [56]

presented a comprehensive survey of code clone detection techniques, covering various types

of clones and different detection methods. Jiang et al. [57] proposed a scalable code clone

detection method that can efficiently detect clones in large codebases. Some recent papers

have focused on deep learning-based approaches for code clone detection. White et al. [58]

proposed a deep learning-based approach for clone detection that uses a Siamese neural

network to learn code embeddings. Zhou et al. [59] proposed a self-supervised learning

approach for code clone detection that uses a contrastive loss to learn representations for code

fragments. Overall, code clone detection is an important task in software engineering that

has received significant attention in recent years. These approaches have shown promising

results in detecting code clones and can help developers identify and refactor duplicate code

fragments.

2 LITERATURE REVIEW 13

FIGURE 2.1. Introduction of Code-Related Tasks.

Code Translation aims to build a code-to-code translator that converts source code from

an abstract programming language (such as Java or Python) to another [60]. It involves

converting code written in one programming language to another programming language

while preserving its functionality. Many approaches have been proposed to tackle this

problem, including rule-based and machine learning-based methods. One approach that has

been extensively used for code translation is statistical machine translation. Ragavan et al.

[61] proposed a statistical machine translation approach for code translation that leverages

parallel corpora of code in different languages. Similarly, Srivastava et al. [62] proposed a

method for translating code using phrase-based machine translation models.

Deep learning-based approaches have also been proposed for code translation. For example,

Gu et al. [63] proposed a neural machine translation approach that uses a sequence-to-

sequence model with attention to translate code. Xu et al. [64] proposed a neural machine

translation approach for translating code comments, which can help improve code readability

and understandability. These approaches have shown promising results in translating code

14 2 LITERATURE REVIEW

across different programming languages. By enabling developers to work with code in their

preferred programming language, these methods can improve their productivity and reduce

the time and effort required for software development.

Document Generation is an intelligence task to auto-generate the natural language summary

based on the given code snippet. Many approaches have been proposed to tackle this problem,

including template-based methods and machine learning-based methods. One approach that

has been widely used for document generation is template-based methods. These methods

use pre-defined templates to generate documents based on the input data. Zhang et al.

[65] proposed a joint template-based approach that uses both content and layout templates

to generate documents that have both accurate content and a pleasing visual appearance.

Machine learning-based approaches have also been proposed for document generation. Wang

et al. [66] proposed a code-to-sequence model that can generate natural language descriptions

of code. Similarly, Lebret et al. [67] proposed a neural document model that can generate text

documents from structured data.

Recent advancements in deep learning have also led to the development of more sophisticated

models for document generation. Zhang et al. [68] proposed a transformer-based approach

that can generate coherent and diverse paragraphs from a given topic. Li et al. [69] proposed an

unsupervised neural document generation approach that can generate realistic and informative

documents without using any training data. And document generation is an active area of

research in natural language processing, and these approaches have shown promising results in

generating documents from structured data. By automating the document generation process,

these methods can help improve productivity and reduce the time and effort required for

creating high-quality documents.

CHAPTER 3

Methods

3.1 Contrastive Code and Comment Pre-training

The proposed contrastive code and comment pre-training (C3P) learns the latent representa-

tions of code and comment by maximizing their agreement. Fig. 3.1 shows the framework

of our proposed pre-training method and relevant downstream tasks. There are two stages

in the framework. In the first pre-training stage, we extract the source code (programming

language) and comment (natural language) from the given code snippet, which are then fed

into the corresponding encoders. The embeddings of code and comment are further aligned

in a multi-modal latent space by contrastive learning. In the second fine-tuning stage, we

load the pre-trained encoders with additional decoders for different downstream tasks of code

search, code clone, code translation and document generation.

3.1.1 Code and Comment Encoders

Consider a source code C = {c1, c2, · · · , cn}with n tokens and its comment W = {w1, w2, · · · , wm}

with m tokens. To incorporate the structural information of the source code into the embed-

ding, we parse the code syntax with the standard compiler tool treesitter1. Our pre-processing

mainly refers to the data flow information based on the variable relation graph G(V,E) [10],

where V = {v1, v2, ..., vl} represents the variable sequence identified from the leaves of

abstract syntax tree (AST) by depth-first search (DFS), and E denotes the set of directed

edges of V for modeling the dependency relation between variables.

1https://github.com/tree-sitter/tree-sitter

15

https://github.com/tree-sitter/tree-sitter

16 3 METHODS

FIGURE 3.1. Overview of Our Proposed C3P Framework. The framework
comprises two stages: a code-comment matching pre-training stage and a
code-related task fine-tuning stage. In the pre-training stage, we build code
embeddings via a Code Encoder learned from textual tokens and structural
tokens (nodes and edges) parsed from abstract syntax tree (AST) and we build
comment embeddings via a Comment Encoder learned from natural language
description. C3P compares the similarity of programming and natural language
features for the match. In the fine-tuning stage, we utilize the pre-trained
encoders and fine-tune our decoder networks for the downstream tasks. Both
in pre-training and fine-tuning stages, the encoders are mapped with linear
projection. In the ablation study, we also provide the performance on the
Encoder-Only task without fine-tuning.

The structural variable sequence (V) can be then concatenated with the source code tokens

to enrich the description of the code. To help C3P understand these two types of segments

properly, we add [CLS] as a special token for downstream classification tasks and [SEP]

as a symbol to separate different segments between textual and structural information. We

denote the [EOT] token as an extra end token in each input sequence. In the outputs of code

and comment encoder, the activation on the last layer in the encoder for the [EOT] token

is treated as the feature representation of the sequence, which is then layer normalized and

linearly projected into the multi-modal latent space for the subsequent contrastive learning.

The reconstructed code information can be denoted as X = {[CLS], C, [SEP], V, [EOT]},

and the corresponding comment sequence can be written as Y = {[CLS],W, [EOT]}.

3.1 CONTRASTIVE CODE AND COMMENT PRE-TRAINING 17

We plan to keep up to KX valid tokens in each sequence X in a batch during the training, and

thus a mask rule needs to be defined to handle the input sequences of different lengths:

[X_MASK]j =

1, j ≤ min(|X|, KX),

0, else,
∀1 ≤ j ≤ |X| (3.1)

where [X_MASK]j denotes the binary mask value of the j-th token in the sequence X

and |X| is the length of the sequence. Similarly, we define the following mask rule for the

sequence Y :

[Y _MASK]j =

1, j ≤ min(|Y |, KY),

0, else,
∀1 ≤ j ≤ |Y | (3.2)

where [Y _MASK]j denotes the binary mask value of the j-th token in the sequence Y , |Y |

is the length of the sequence, and KY is the comment sequence length to be processed by the

encoder.

C3P aims to learn two BERT-based encoders (code encoder FθX and comment encoder

FθY) parameterized by θX and θY , to extract the latent feature representations of the code

and comment sequences X and Y respectively. Following the design in [10], the network

backbone of the encoders F(·) is set as a 12-layer 512-max wide model with eight self-

attention heads of BERT [17]. The C3P feeds the wrapped batch pairs (X, Y) to the encoders

and derive the embeddings of the code and comment in the following process:

rX ← F(X ⊙ [X_MASK]; θX) (3.3)

rY ← F(Y ⊙ [Y _MASK]; θY), (3.4)

where ⊙ stands for the mask operation between the binary mask and the corresponding

sequence.

3.1.2 Contrastive Learning

The contrastive pre-training is designed to discover discriminative code-comment pairwise

information in the projection space. We map each encoder with linear projection.

18 3 METHODS

Assume X , Y represent the reconstructed code tokens and source comment tokens. Given a

batch of size N of unlabeled samples {(Xi, Yj)}Ni,j=1, the C3P is responsible for predicting

the correct pairs {(Xi, Yj)}i=j and pulling unmatched pairs {Xi, Yj)}i ̸=j away. We adopt

cosine similarity to measure similarity between the code latent features rX and comment

latent features rY as formulated by:

S(rX , rY) =
rTXrY

∥rX∥∥rY ∥
, (3.5)

where ∥·∥ is L2 norm and S(rX , rY) represents the similarity between the code embedding

and the comment embedding. For contrastive learning, we follow the symmetric loss settings

of [38] and [70]. Let LX2Y ,LY 2X represent the code-to-comment loss and comment-to-

code loss that employ logits softmax function on the latent representation. Given a batch

of reconstructed codes and comments, the loss LX2Y is defined to match each code to its

corresponding comment:

LX2Y = −
N∑
i=1

log
exp(S(riX , r

i
Y)/τ)∑N

j=1 exp(S(r
i
X , r

j
Y)/τ)

, (3.6)

where τ is the temperature parameter. Similarly, we have LY 2X to match each comment to its

corresponding code:

LY 2X = −
N∑
i=1

log
exp(S(riX , r

i
Y)/τ)∑N

j=1 exp(S(r
j
X , r

i
Y)/τ)

. (3.7)

The resulting objective function for batch B is as follows:

L(X,Y)∈B =
1

2N
(LX2Y + LY 2X) . (3.8)

The optimization goal in the pre-training stage is to jointly maximize the similarity between

paired code-comment while minimizing the cosine similarity of the projected latent features

of the incorrect pairs.

The contrastive pre-training process can be summarized as Algorithm 1. With the parsing

process in Algorithm 1 from line 5 to line 6, we reconstruct code information with textual

tokens and structural graph variables by parsing abstract syntax tree. As the line 11 to line 14

of the pre-training process demonstrated, we employ the symmetric objective in the latent

3.1 CONTRASTIVE CODE AND COMMENT PRE-TRAINING 19

Algorithm 1: Contrastive Pre-Training with Code (C) and Comment (W).
Data: Code-comment pairs datasets D comprised of batches
Result: Code and comment encoders FθX , FθY transferable to downstream tasks

1 Initialization of FθY with words of BERT-case;
2 Initialization of FθX with code corpus;
3 for Each batch B ∈ D do
4 for Each C,W ∈ B do
5 Reconstruct code and comment by parsing abstract syntax tree:
6 X ← {[CLS], C, [SEP], V, [EOT]};
7 Y ← {[CLS],W, [EOT]};
8 Encode reconstructed pairs with [X_MASK], [Y _MASK] :
9 rX ← F(X ⊙ [X_MASK]; θX);

10 rY ← F(Y ⊙ [Y _MASK]; θY);

11 Get all reconstructed codes and comments: {(Xi, Yj)}Ni,j=1;
12 Compute similarities between encodings of codes and comments in the batch:

S(riX , r
j
Y);

13 Compute symmetric loss with LX2Y ,LY 2X : L(X,Y)∈B = 1
2N

(LX2Y + LY 2X);
14 Joint optimization of the symmetric objective:

argmin{θX ,θY } L(X,Y)∈B
(
{(Xi, Yj)}Ni,j=1

∣∣FθX ,FθY

)
.

space for the two encoders to jointly learn the multi-modal representation. The dual-encoder

structure utilized in our model has a time complexity of O(n2 ∗d) for n tokens of d dimensions

each. Furthermore, during the contrastive learning phase, the complexity is O(n2), given that

each positive sample is compared with one matched code-comment pair and n-1 unmatched

code-comment pairs.

3.1.3 Fine-Tuning

Fine-tuning is a vital process in which a pre-trained model is further trained on a smaller,

task-specific dataset, enabling it to efficiently adapt its parameters to better accommodate

the target domain. This method typically leads to enhanced performance, as the model is

able to leverage the knowledge acquired during the pre-training phase and apply it to the new

domain.

In the context of natural language processing tasks, fine-tuning plays a crucial role in adjusting

the model to tackle the complexities and subtleties of human language. By training the

20 3 METHODS

model on datasets tailored to specific languages or domains, the model becomes increasingly

proficient at comprehending and generating text that aligns with the desired language or

domain characteristics.

Similarly, for programming language tasks, fine-tuning fulfills a comparable function. Pre-

trained models undergo further training on datasets containing programming language code,

allowing them to develop a more refined understanding, generation, and processing of code

snippets. Consequently, the model becomes well-equipped to handle the syntax, structure, and

semantics of programming languages, ultimately resulting in superior performance in tasks

such as code completion, code search, and automated debugging. By fine-tuning the model

for programming language tasks, it evolves into a potent tool that can significantly support

developers in their daily work, boosting productivity and minimizing the risk of errors.

In the fine-tuning phase of the C3P model, specialized decoders are introduced for distinct

downstream tasks, following the pre-trained encoders. Each encoder-decoder neural network

is optimized using the AdamW optimizer in conjunction with a scheduler. This approach

ensures that the model can adapt to the unique requirements of each task, resulting in a

highly versatile and effective tool for addressing a wide range of programming language

challenges. Through the fine-tuning process, the model’s capabilities are honed to provide

optimal performance across various tasks, domains, and programming languages.

Code Search. The backbone decoder for code search is of two fully connected layers. The

last layer outputs a normalized probability over all set-id of candidate code snippets. We just

fine-tuned one epoch for the task-specific decoder.

Code Clone. The backbone decoder for code clone is a three-layered MLP with the GELU

activations that define what is to be fired to the next neural layer. The output of the decoder is

a two-element vector that represents the probability distribution of positive and negative. We

set only one epoch for fine-tuning following the same settings as [14, 10].

Code Translation. The decoder for translation is of a multi-head attention structure with 6

layers and 12 heads. The decoder is fed with both outputs of encoders on [EOT] tokens and

the inputs {[CLS], V, [SEP], E, [SEP]}, {[X_MASK]} as shown in the sub-section 3.1.1.

3.1 CONTRASTIVE CODE AND COMMENT PRE-TRAINING 21

We apply the auto-frozen strategy for fine-tuning on this generation task. If the model detects

the loss has no sign of dropping on the validation dataset, the model will freeze all layers but

the last layer of the encoder and fine-tune the parameters of the decoder.

Document Generation. The architecture of the decoder is of the same number of layers

and hidden size as pre-trained models. The output of the decoder is a sequence of tokens

that represents the natural language description. We fine-tuned 50 epochs, which follow the

experimental pipeline in [14].

Model Encoder Decoder of Understanding Decoder of Generation

#H #D #Bl Task #L #W Task #H #D #Bl

C3P 12 768 6 S 2 {512, 128} T 12 768 6
12 768 6 C 3 {1024, 512, 64} G 12 768 6

TABLE 3.1. The Backbone of Decoders for Downstream Understanding and
Generation Tasks: Code Search (S), Clone Detection (C), Code Translation (T)
and Document Generation (G). #L: number of fully-connected hidden layers.
#W: width of each fully-connected hidden layer. #H: number of attention
heads. #D: dimensions of each embedding layer. #Bl: number of multi-head
attention blocks. We also provide small size on the settings of 3/6 on #H/#Bl
and medium size on the settings of 6/6 on #H/#Bl for the ablation study 4.2.

Implementation Details. Table 3.2 shows the training recipe in the pre-training and fine-

tuning stage. In the pre-training stage, we apply the same training recipe of [10] for C3P. All

models are trained for 500 epochs with a batch size of 1024 optimized by AdamW [71]. The

learning rate for the optimizer is 1e−3 with cosine decay strategy. We transfer the pre-trained

encoders for the understanding task by concatenating with MLP-based decoders and apply

the pre-trained encoders fine-tuning on the generation tasks with attention-based decoders, as

demonstrated in Table 3.1. Specifically, we freeze the pre-trained embeddings and fine-tune

one epoch on each task for the understanding task, while we don’t freeze the embeddings in

the fine-tuning stage for generation tasks.

EPs BS OP LR LD WU FE
Pre-Training
Task 500 1024 AdamW 2e-4 cosine 10 -

Fine-Tuning
on DoU 1 1024 AdamW 1e-6 - - ✓

Fine-Tuning
on DoG 100 1024 AdamW 2e-5 cosine 5 %

TABLE 3.2. Pre-Training and Fine-Tuning Recipes of the C3P. CS: Whether
adding code structure representation; DoU: Decoders of understanding tasks;
DoG: Decoders of generation tasks; EPs: Epochs; BS: Batch size; OP: Op-
timizer; LR: Learning rate; LD: Learning decay; WU: Warm-up; FE: Freeze
pre-trained embeddings.

22

CHAPTER 4

Results

4.1 Performance of C3P vs. Other Methods

Model Ruby Javascript Go Python Java Php Overall

Supervised

NBow [14] 0.162 0.157 0.330 0.161 0.171 0.152 0.189
CNN [14] 0.267 0.224 0.680 0.242 0.263 0.260 0.324
BiRNN [14] 0.213 0.193 0.688 0.290 0.304 0.338 0.338
SelfAtt [14] 0.275 0.287 0.723 0.398 0.404 0.426 0.419

Pre-trained

RoBERTa [14] 0.587 0.517 0.850 0.587 0.599 0.560 0.617
RoBERTa (code) [14] 0.628 0.562 0.859 0.610 0.620 0.579 0.643
CodeBERT [14] 0.679 0.620 0.882 0.672 0.676 0.628 0.693
GraphCodeBERT [10] 0.703 0.644 0.897 0.692 0.691 0.649 0.713
PLBART [12] 0.675 0.616 0.887 0.663 0.663 0.611 0.685
CodeT5 [13] 0.719 0.655 0.888 0.698 0.696 0.645 0.716

Ours C3P 0.756 0.677 0.906 0.704 0.759 0.684 0.748
TABLE 4.1. Downstream Task 1: Code Search Performance Measured by
Mean Reciprocal Rank (MRR).

We evaluate C3P on four fundamental tasks: code search, clone detection, code translation

and document generations. All of them are compared with previous well-documented models

on the same experimental datasets.

We include the following important baselines for pre-training in the comparison experiments:

• RoBERTa[7]: RoBERTa (Robustly optimized BERT pre-training approach) is an

optimized version of BERT, introduced by Liu et al. (2019). The main improvements

in RoBERTa over the original BERT model are the removal of the next sentence

prediction (NSP) task, larger batch sizes, longer training, and the use of dynamic

masking for the masked language model (MLM) objective. RoBERTa has shown
23

24 4 RESULTS

state-of-the-art performance on a variety of natural language processing benchmarks

like GLUE, RACE, and SQuAD.

• CodeBERT[14]: CodeBERT proposed by Feng et al. (2020), is a transformer-based

model specifically designed for programming language tasks. CodeBERT is pre-

trained on a large-scale dataset consisting of natural language text and code from

various programming languages. The model is fine-tuned for various tasks, such as

code summarization, code search, and code translation, achieving state-of-the-art

results in several benchmarks.

• GraphCodeBERT[10]: GraphCodeBERT, introduced by Guo et al. (2021), is an

extension of CodeBERT that incorporates graph-based representations to model code

structure. The model integrates a graph neural network (GNN) with the transformer

architecture, allowing it to capture both syntactic and semantic information from

code. GraphCodeBERT has demonstrated superior performance in tasks like code

summarization and code search compared to the original CodeBERT.

• PLBART[12]: It is proposed by Keskar et al. (2021), is a transformer-based model

specifically designed for programming language understanding and generation tasks.

It is pre-trained on a large multilingual source code dataset and leverages denoising

autoencoding and sequence-to-sequence modeling to capture syntactic and semantic

information in code. PLBART has achieved state-of-the-art performance on vari-

ous code-related tasks, including code summarization, bug detection, and code

translation.

• CodeT5[13], introduced by Hashimoto et al. (2021), is an extension of Google’s

T5 model, specifically designed for code-related tasks. The model is pre-trained

on a large dataset containing a mix of natural language text and code from various

programming languages. By leveraging the T5’s text-to-text transfer approach,

CodeT5 has demonstrated state-of-the-art performance on several programming

language tasks, such as code summarization, code search, and code completion.

Besides these pre-trained methods, we also consider the representative supervised methods

that have been particularly developed for each downstream task in the experiments.

4.1 PERFORMANCE OF C3P VS. OTHER METHODS 25

4.1.1 Code Search

Code search task targets finding correct code snippets from a candidate set by giving a query

of natural language description. We evaluate our model on the CodeSearchNet code corpus

[72] and the filtering rules follow the settings of GraphCodeBERT [10] on this task. The

dataset is composed of both uni-modal and bi-modal data. The statistics of dataset are shown

in Table 4.2.

Since the decoder outputs a list of possible responses to a sample of queries ordered by the

probability of matching, we select a widely used evaluation method, i.e., mean reciprocal

rank (MRR), to measure the score. For each query q, the score is computed by:

MRR =
1

|C|
∑
q∈C

1

rankq
(4.1)

where C is the candidate set of code snippets and rankq stands for rank list of query q.

The baselines for code search include supervised and unsupervised pre-trained models that

are public and well documented. The first group of Table 4.1 shows the previous supervised

experimental records on this dataset. NBow is the bag of words model that is particularly

good at keyword matching on code. CNN and Bi-RNN were implemented on this task by

[72]. The results of Self-Attention [6] obtain the best performance among the supervised

models. And then, pre-trained models RoBERTa [7], CodeBERT [14], GraphCodeBERT

[10], PLBART [12] and CodeT5 [13] recorded in the second group of Table 4.1 boost the

performance on this task.

PL Train Valid Test Candidates

Python 251, 820 13, 914 14, 918 43, 827

Php 241, 241 12, 982 14, 014 52, 660

Go 167, 288 7, 325 8, 122 28, 120

Java 164, 923 5, 183 10, 955 40, 347

Javascript 58, 025 3, 885 3, 291 13, 981

Ruby 24, 927 1, 400 1, 261 4, 360

TABLE 4.2. Dataset of Code Search

26 4 RESULTS

However, as the last line of Table 4.1 shows, our proposed approach achieved better results

as compared to other public recorded methods, with the improvement of 3.7%, 2.2%, 0.9%,

0.6%, 6.3%, 3.5% on the programming language Ruby, Javascript, Go, Python, Java, Php.

4.1.2 Clone Detection

Code clone detection, a crucial aspect of software development, involves assessing the extent

to which two code snippets share the same functionality. In our study, we conducted a series

of experiments utilizing the BigCloneBench dataset [73], a comprehensive collection of

known true and false positive clones found within a large-scale inter-project Java repository.

Our experimental approach involved comparing a diverse range of baseline methods, which

included both supervised learning models and pre-trained models that underwent fine-tuning.

Train Valid Test

Clone Pairs 901, 028 415, 416 415, 416

TABLE 4.3. Dataset of Code Clone

In the realm of supervised baselines, we examined Deckard [74], RtvNN [75], CDLH [76],

and ASTNN [77]. Deckard [74] is an algorithm that calculates the similarity degree between

code snippets by analyzing the structure of the abstract syntax tree and employing locality

sensitive hashing. RtvNN [75] makes use of an auto-encoder to reconstruct the abstract syntax

tree, while CDLH [76] converts the abstract syntax tree into an LSTM network [78]. On the

other hand, ASTNN [77] saves a portion of AST information using an RNN network and

takes advantage of the naturalness of statements to generate a vector representation. FA-AST-

GNN[79] employs two distinct types of graph neural networks (GNN) on the flow-augmented

abstract syntax tree (FA-AST).

As for the pre-trained models, we considered RoBERTa [17], CodeBERT [14], GraphCode-

BERT [10], PLBART [12], and CodeT5 [13]. Each model was fine-tuned using a multi-layer

perceptron (MLP) decoder. We adopted Precision, Recall, and F1 as our evaluation metrics to

gauge the performance of these models.

4.1 PERFORMANCE OF C3P VS. OTHER METHODS 27

Model Precision Recall F1

Deckard [14] 0.93 0.02 0.03

RtvNN [14] 0.95 0.01 0.01

CDLH [14] 0.92 0.74 0.82

ASTNN [14] 0.92 0.94 0.93

FA-AST-GNN [79] 0.96 0.94 0.95

RoBERTa (code) [14] 0.960 0.955 0.957

CodeBERT [14] 0.964 0.966 0.965

GraphCodeBERT [14] 0.973 0.968 0.971

PLBART [12] - - 0.972

CodeT5 [13] - - 0.972

C3P 0.979 0.978 0.979
TABLE 4.4. Downstream Task 2: Code Clone Performance Measured by
Precision, Recall and F1.

Our findings, as illustrated in Table 4.4, demonstrate that our proposed C3P model outper-

forms both supervised and pre-trained baseline methods. In comparison to the top-performing

supervised model, FA-AST-GNN [79], our model achieves a 1.9%, 2.8%, and 2.9% improve-

ment in Precision, Recall, and F1, respectively. Moreover, as shown in the second group of

Table 4.4, C3P emerges as the best-performing model among pre-trained approaches for this

task, displaying enhancements of 0.6%, 1%, and 0.8% in the three evaluation metrics.

4.1.3 Code Translation

Code translation serves the essential purpose of migrating code functionality between different

programming languages, thereby easing the burden of transitioning existing projects to a new

programming language. To evaluate the efficacy of various methods, we use an experimental

dataset and settings that adhere to the standards set forth in mppSMT [35], attention-based

tree [80], CodeBERT [14], and GraphCodeBERT [10], as depicted in Table 4.5. We assess

28 4 RESULTS

the performance of our C3P model in comparison to other previous models by reporting the

standard generation metrics, BLEU-4 and accuracy, as shown in Table 4.6.

The first group of results presented in Table 4.6 pertains to traditional supervised methods. A

simplistic approach involves directly copying the original code fragments without making any

alterations. Moreover, we cite the results of the Transformer model [14] on this dataset, given

the remarkable success of the attention mechanism in text processing. As demonstrated by

the results in the first group, our model significantly surpasses the state-of-the-art supervised

models, boasting a 23.07% and 23.34% improvement in the task of translating Java code to

C-sharp, and a 26.73% and 26.73% improvement in the task of translating C-sharp code to

Java. decoders [14, 10] to ensure fair comparisons between the models. The results reveal that

the C3P model performs competitively when compared to prior work on the task of translating

Java code to C-sharp. Furthermore, the C3P model notably outperforms all previous methods

in the task of translating C-sharp code to Java, establishing its superior performance in this

particular translation challenge.

Train Valid Test
Translation Pairs 10, 300 500 1000
TABLE 4.5. Dataset of Code Translation

Java→ C# C#→ Java

Model BLEU Acc BLEU Acc

Naive [14] 18.54 0.00 18.6 0.00
PBSMT [14] 43.53 12.50 40.06 16.10
Transformer [14] 55.84 33.00 50.47 37.90

RoBERTa (code) [14] 77.46 56.10 71.99 57.90
CodeBERT [14] 79.92 59.00 72.14 58.00
GraphCodeBERT [10] 80.58 59.40 72.64 58.80

C3P 78.91 59.73 73.81 59.42
TABLE 4.6. Downstream Task 3: Code Translation Performance Measured
by BLEU-4 and Accuracy.

We report the standard generation metrics BLEU-4 and accuracy of the C3P against other

previous models in Table 4.6. The first group is the results of traditional supervised methods.

The naive method is to directly copy original code fragments without modifications. We

4.1 PERFORMANCE OF C3P VS. OTHER METHODS 29

also cite the Transformer model results [14] on this dataset since the success of the attention

mechanism on text processing. The results listed in the first group demonstrate our model

significantly outperforms supervised SOTA models with 23.07%, 23.34% improvement on

the task of Java transferring to C-sharp, and 26.73%, 26.73% improvement on the task of

C-sharp transferring to Java.

For the pre-training approaches, we employ the same decoders of multi-attention backbone as

the previous generation decoders [14, 10] to make sure the results can be fairly compared.

The results indicate that the C3P is competitive to previous works on the task of Java transfer-

ring to C-sharp while outperforming all previous methods evidently on the task of C-sharp

transferring to Java.

(a) Code Understanding Task. (b) Code Generation Task

FIGURE 4.1. Transferability: Improvement of C3P (w/o PL) over supervised
SOTA trained on full datasets including PL.

(a) Code Understanding Task. (b) Code Generation Task.

FIGURE 4.2. Transferability: Improvement of C3P (w/o PL) over pre-trained
SOTA using full datasets including PL.

30 4 RESULTS

4.1.4 Code Document Generation

Model Ruby Javascript Go Python Java Php Overall
Seq2Seq [14] 9.64 10.21 13.98 15.93 15.09 21.08 14.32
Transformer 11.18 11.59 16.38 15.81 16.26 22.12 15.56
RoBERTa [14] 11.17 11.90 17.72 18.14 16.47 24.02 16.57
CodeBERT (RTD) [14] 11.42 13.27 17.53 18.29 17.35 24.10 17.00
CodeBERT (MLM) [14] 11.57 14.41 17.78 18.77 17.38 24.85 17.46
CodeBERT (MLM+RTD) [14] 12.16 14.90 18.07 19.06 17.65 25.16 17.83
C3P 14.67 14.98 18.43 19.12 18.09 25.88 18.52

TABLE 4.7. Downstream Task 4: Code Document Generation Performance
Measured by Smoothing BLEU-4.

The objective of document generation is to automatically generate concise natural language

descriptions of code snippets, effectively summarizing their functionality. Given the robust

and well-documented foundation provided by CodeBERT [14], we have chosen to adopt

their experimental datasets and settings for our analysis. Table 4.7 presents a comparative

assessment of our C3P model’s performance in relation to earlier pre-training efforts.

The Seq2Seq model [81] makes use of a multilayered recurrent neural network to map input

sequences to fixed-length vectors and subsequently decodes these latent vectors into target

sequences. This model has been successfully adapted to the code2seq approach [8], which

harnesses the syntactic structure of programming languages to translate them into natural

language sequences.

As illustrated in Table 4.7, the performance of document generation is evaluated using the

BLEU-4 metric. Our C3P model demonstrates a significant improvement in performance

when compared to the best results achieved by previous works across six distinct programming

languages. This clearly showcases the potential of our model in effectively summarizing code

snippets and generating accurate natural language descriptions, thereby outperforming its

predecessors in the realm of document generation.

4.1.5 Transferability

To study the transferability of our model to new programming languages, we try to train

the model C3P (w/o PL) by removing one of the programming languages (PLs) from the

4.1 PERFORMANCE OF C3P VS. OTHER METHODS 31

Model Ruby Javascript Go Python Java Php Overall

Understanding
(MRR)

Supervised SOTA [14] 0.275 0.287 0.723 0.398 0.404 0.426 0.419
Pre-trained SOTA [10] 0.703 0.644 0.897 0.692 0.691 0.649 0.713
C3P (w/o Ruby) 0.721 0.662 0.873 0.679 0.737 0.659 0.721
C3P (w/o Javascript) 0.739 0.649 0.885 0.681 0.705 0.672 0.722
C3P (w/o Go) 0.727 0.637 0.798 0.675 0.694 0.661 0.698
C3P (w/o Python) 0.716 0.648 0.865 0.664 0.693 0.655 0.706
C3P (w/o Java) 0.732 0.625 0.874 0.680 0.703 0.672 0.714
C3P (w/o Php) 0.719 0.652 0.884 0.690 0.677 0.653 0.712

Generation
(BLEU-4)

Supervised SOTA [14] 11.18 11.59 16.38 15.81 16.26 22.12 15.56
Pre-trained SOTA [10] 12.16 14.90 18.07 19.06 17.65 25.16 17.83
C3P (w/o Ruby) 13.77 15.31 17.41 17.81 16.32 25.73 17.72
C3P (w/o Javascript) 12.08 15.98 18.27 19.35 18.51 25.49 18.28
C3P (w/o Go) 13.36 16.14 16.91 16.13 17.92 23.52 17.33
C3P (w/o Python) 12.79 14.13 18.47 18.34 17.24 24.85 17.63
C3P (w/o Java) 12.84 14.67 18.94 17.44 18.41 23.10 17.56
C3P (w/o Php) 13.02 13.39 17.91 18.29 16.74 22.31 16.94

TABLE 4.8. Transferability. C3P (w/o PL) is compared with the best available
supervised SOTA and pre-trained SOTA.

pre-training and fine-tuning set. For example, C3P (w/o Python) means the model pre-trained

and fine-tuned on the datasets without Python codes, which is then evaluated on Python

datasets in downstream tasks. Since C3P (w/o Python) has not seen the code style of Python

before the test stage, the transferability of the model (to Python) can be evaluated through

the test performance. As shown in Table 4.8, we test the transferability of six programming

languages by removing one language at a time in the training stage. We show the performance

on two downstream tasks: code search (code understanding) and document generation (code

generation), and compare the results with fully supervised / pre-trained SOTA models. For

code understanding task, we adopt the same evaluation scripts of MRR as [10]. For code

generation task, we adopt the same evaluation function BLEU-4 as [14].

Fig. 4.1 and Fig. 4.2 illustrate the improvement brought by our models. We first compare

C3P (w/o PL) with fully supervised SOTA models trained on the whole datasets including the

specific PL language. As shown in Fig. 4.1 (a), in the code understanding task, the scores

of our models without prior PL information achieve considerable enhancement, respectively

increased by 44.50%, 36.20%, 29.80%, 26.60%, 22.70%, 7.50%. Also, Fig. 4.1 (b) demon-

strates that in the code generation task, C3P (w/o PL) surpasses all supervised specific-task

models with different degrees of improvement, with margins from 4.39% to 0.19% on the six

programming languages.

32 4 RESULTS

We then compare the transfer performance of C3P (w/o PL) with SOTA fine-tuned models

pre-trained on the whole datasets including PLs. Fig. 4.2 (a) shows the comparison of MRR

scores on the six programming languages in the code understanding task. We observe that

our models achieve enhancement of 1.8%, 1.2%, 0.5%, 0.40% on Ruby, Java, Javascript, Php

tasks. However, without prior information on Python and Go, the performance of the model

falls behind the model pre-trained and fine-tuned on the whole datasets that include these

two languages. Fig. 4.2 (b) summarises the comparison in the code generation task. Without

adding PLs in the pre-training stage, our models are still competitive with fully pre-trained

models on Ruby, Javascript and Java tasks, while on Python, Go and Php tasks, our models

achieve slightly worse results than fully pre-trained CodeBERT [14].

4.2 Ablation Study

We present the performance of C3P vs. other methods on a variety of downstream tasks

and then analyze the transferability of the models pre-trained without one of programming

languages in section 4.1. In this section, we provide more ablation study results by removing

certain components and compare with other training strategies on the same experimental

settings as [10].

Impact of Token Length and Batch Size. The efficacy of contrastive learning tends to be

significantly affected by factors such as the length of the input data and the batch size utilized

during training, as demonstrated by Conde et al. [38]. In order to thoroughly investigate

the optimal hyperparameters for various learning strategies, we conducted a comprehensive

series of experiments. To eliminate the potential impact of specific decoders, we assessed our

approach without any fine-tuning by focusing on the Encoder-Only Task (Code Search).

Figure 4.3(a) illustrates the influence of token length on performance when employing

different representation techniques. Through our analysis, we found that incorporating code

structure information into the learning process results in noticeable enhancements in the code

search task’s outcomes. Additionally, when a comment encoder is integrated into the process,

the performance experiences a further boost, emphasizing the value of this approach.

4.2 ABLATION STUDY 33

In Figure 4.3(b), we explore the effects of varying batch sizes on the performance of small,

medium, and large variants of the C3P model. It is important to note that the large-size

backbone configuration remains consistent with the experimental settings outlined in section

4.1. Our findings reveal that increasing the batch size during the pre-training phase has a

positive impact on the performance of differently sized pre-trained models. This suggests

that the choice of batch size is a crucial factor to consider when aiming to optimize the

effectiveness of contrastive learning in various contexts.

(a) Impact of Token Length with Multi-Modalities

Representation.

(b) Impact of Batch Size on Different Size of Encoders

FIGURE 4.3. Ablation Study on Input Length and Batch Size. Tested
on the code search task by pre-trained encoders WITHOUT fine-tuning.
The score is measured by MRR(%). C3P-S/C3P-M/C3P-L represent the
small/medium/large size of backbone presented in Table 3.1 respectively.

Fusion Strategy and Impact of Fine-Tuning. In order to thoroughly examine the fusion

of heterogeneous features of code and text, we conduct a comprehensive validation of our

proposed method in comparison with the approach of directly concatenating inputs for a

single encoder without distinguishing between code and comments, as presented in Guo et

al.’s GraphCodeBERT [10]. This comparative analysis aims to investigate the benefits of

effectively combining code and natural language features within our model’s architecture.

To ensure that the observed improvements in performance are attributable to the pre-trained

models themselves and not to specific decoders on the downstream task, we also carefully

assess the impact of our proposed models without employing fine-tuning by task-specific

34 4 RESULTS

Strategy CS WU FT FE Valid Test
MRR@1 MRR@5 MRR@1 MRR@5

Single
Encoder

✓ 72.47 78.19 69.26 75.47
✓ 70.28 81.27 68.05 73.29

✓ ✓ 75.83 84.18 71.02 80.36
✓ ✓ ✓ 75.12 87.42 73.06 85.39
✓ ✓ ✓ ✓ 80.17 88.42 73.53 82.95

Two
Encoders

✓ 74.15 82.09 69.46 76.54
✓ 73.92 78.44 70.25 78.23

✓ ✓ 78.37 88.02 71.98 86.32
✓ ✓ ✓ 76.26 88.06 74.24 85.73
✓ ✓ ✓ ✓ 82.04 90.07 74.80 87.85

TABLE 4.9. Ablation Study. Performance comparisons with encoding strategy
on the validation set and test set. CS: Whether adding code structure repres-
entation; WU: Warp-up; FT: Fine-tuning; FE: Freeze pre-trained embeddings.
Each model with ✓ in the FT option is fine-tuned for just one epoch.

decoders. This evaluation helps to eliminate potential confounding factors and provides a

clearer understanding of the inherent strengths of our pre-training approach.

The experimental results, as documented in Table 4.9, consistently demonstrate that our

pre-training method outperforms the single encoder approach across both the validation set

and the test set. This finding suggests that our model is capable of effectively leveraging the

distinct features of code and natural language, resulting in superior performance on various

tasks.

Moreover, we observe that the C3P model exhibits a more pronounced increase in accuracy

scores when provided with prior knowledge of natural language descriptions, particularly

when considering the acceptance rate from top 1 to top 5 (MRR@1 vs. MRR@5). This result

indicates that our model is not only proficient in combining code and text features but also

adept at capitalizing on the additional information provided by natural language descriptions,

thereby leading to a more robust and versatile model capable of handling a wide range of

tasks.

4.3 CASE STUDY 35

4.3 Case Study

In this section, we showcase four distinct cases to exemplify the performance of our proposed

C3P model on various downstream tasks. In the code search task, as demonstrated in

Table 4.10, C3P effectively identifies the correct code fragment corresponding to the query,

which aims to extract the video ID from a given URL. With regards to code clone detection,

illustrated in Table 4.11, C3P accurately discerns the subtle differences in the keywords a’

and b’ present in the two code snippets, resulting in a relatively low similarity score that

reflects their dissimilarity.

In the context of the code translation task, we present a case study in Table 4.12 where the

C3P model translates a Java code fragment to its C-sharp equivalent. The model effectively

captures the nuances by incorporating the definition of the type variable in the translated

code snippet. Finally, for the document generation task, as illustrated in Table 4.13, C3P

produces an accurate and concise natural language description that effectively summarizes

the functionality of the given code, which is to determine if a specific value falls within a

particular range. These four cases demonstrate the robust performance of C3P across a diverse

set of tasks, highlighting its versatility and effectiveness in handling different programming

language processing challenges.

Query Extracts video ID from URL.

Code

import utils.match as match

def get_vid_from_url (url):

path1='youtu\.be/ ([^?/]+)'

path2='youtube\.com/emb/([^/?]+)'

path3='youtube\.com/v/ ([^/?]+)'

return match (url, path1) or\

match (url, path2) or\

match (url, path3)

TABLE 4.10. A Case of Code Search Output by C3P.

36 4 RESULTS

Code1 Code2

import numpy as np

def f (array):

a=np.sum (array)

b=np.mean (array)

return b

import numpy as np

def f (array):

a=np.sum (array)

b=np.mean (array)

return a

similarity=0.1

TABLE 4.11. A Case of Code Clone Output by C3P.

Java

public void removePresentation\

Format ()

{

remove1stProperty (PropertyIDMap\

.PID_PRESFORMAT);

}

C-sharp

public void RemovePresentation\

Format ()

{

MutableSection s = (Mutable\

Section)FirstSection;

s.RemoveProperty (PropertyIDMap.\

PID_PRESFORMAT);

}

TABLE 4.12. A Case of Code Translation from Java to C-sharp Output by
C3P.

4.3 CASE STUDY 37

Code

function inRange (value, min, max)

{

const int = parseInt (value, 10)

return (

`${int}` === `${value.\

replace (/^0/, '')}` &&

int >= min &&

int <= max

)

}

NL tokens [’Determine’, ’if’, ’value’, ’is’, ’within’, ’a’, ’numeric’, ’range’]

TABLE 4.13. A Case of Document Generation Output by C3P.

CHAPTER 5

Conclusions

5.1 Discussion

Beyond this work, there are some technologies that may be introduced in the future to explore

related issues. One potential direction in contrastive learning for programming-natural

language tasks is to explore multitask learning, where a model learns to simultaneously

optimize multiple objectives such as code summarization, code search, and code translation.

This approach could lead to more generalized representations and improve overall performance

and transferability. Alongside this, integrating curriculum learning into contrastive pre-

training could provide an ordered sequence of tasks for the model to learn, starting with

simpler tasks and gradually progressing to more complex ones, enabling the model to build a

stronger foundation in both programming and natural language understanding.

Moreover, incorporating meta-learning techniques could allow models to adapt more quickly

to new programming languages or domains, while also facilitating more effective fine-tuning

on smaller amounts of data. This adaptability could be further enhanced by developing

contrastive learning techniques that enable zero-shot or few-shot learning, which would

involve training a model capable of generalizing to new programming languages or tasks

without requiring extensive labeled data.

Another intriguing avenue for future research involves incorporating knowledge graphs into

contrastive learning models, as this would provide rich semantic information about program-

ming languages, libraries, and frameworks, potentially improving the model’s understanding

of complex relationships between programming concepts and natural language. Furthermore,
38

5.2 CONCLUSION 39

exploring self-supervised pre-training techniques involving code generation tasks could lead

to a more comprehensive understanding of both programming and natural language syntax, as

models would learn to generate syntactically and semantically correct code.

Finally, integrating active learning into the contrastive learning process could help models

adapt more effectively to new programming languages or domains by selectively acquiring

the most informative samples, reducing the amount of labeled data needed for fine-tuning.

By combining these innovative ideas and paradigms, contrastive learning techniques for

programming-natural language tasks could revolutionize the way we work with code and

natural language understanding.

5.2 Conclusion

In this work, we present a novel contrastive pre-training approach designed to effectively

capture and comprehend multi-modal representational features of both programming and

natural language syntax. By doing so, we aim to establish a robust model capable of tackling

various tasks across these domains. To ensure the efficacy and reliability of our methodology,

we conduct a comprehensive series of experiments following the same pre-training and

fine-tuning protocol as established benchmarks in the field.

The results of our experiments reveal that our proposed model consistently and significantly

surpasses the performance of previous works in a wide range of code-related downstream

tasks. These tasks include, but are not limited to, code search, clone detection, code translation,

and document generation. Furthermore, our model demonstrates exceptional generalization

capabilities and transferability across different programming languages. Notably, its perform-

ance on previously unseen programming languages during the training phase outperforms all

supervised methods, showcasing its competitiveness with pre-training methods that have been

trained on a diverse range of programming languages.

In order to provide a thorough understanding of the various factors that contribute to the

success of our proposed method, we conduct an in-depth ablation study. This study examines

40 5 CONCLUSIONS

the impact of different aspects of our methodology, including the fusion strategy employed

for combining programming and natural language representations, the code representation

techniques used, the token length of input data, and the batch size chosen for training.

By systematically analyzing these components, we aim to offer valuable insights into the

effectiveness of our contrastive pre-training approach and its potential applications in a variety

of multi-modal tasks.

Bibliography

[1] X. Pei, D. Liu, L. Qian and C. Xu, ‘Contrastive code-comment pre-training,’ in 2022

IEEE International Conference on Data Mining (ICDM), IEEE, 2022, pp. 398–407.

[2] Z. Li et al., ‘Vuldeepecker: A deep learning-based system for vulnerability detection,’

arXiv preprint arXiv:1801.01681, 2018.

[3] J. McBroom, B. Paassen, B. Jeffries, I. Koprinska and K. Yacef, ‘Progress networks

as a tool for analysing student programming difficulties,’ in Australasian Computing

Education Conference, 2021, pp. 158–167.

[4] T. H. Le, H. Chen and M. A. Babar, ‘Deep learning for source code modeling and

generation: Models, applications, and challenges,’ ACM Computing Surveys (CSUR),

vol. 53, no. 3, pp. 1–38, 2020.

[5] X. He, L. Xu, X. Zhang, R. Hao, Y. Feng and B. Xu, ‘Pyart: Python api recommend-

ation in real-time,’ in 2021 IEEE/ACM 43rd International Conference on Software

Engineering (ICSE), IEEE, 2021, pp. 1634–1645.

[6] A. Vaswani et al., ‘Attention is all you need,’ Advances in neural information processing

systems, vol. 30, 2017.

[7] Y. Liu et al., ‘Roberta: A robustly optimized bert pretraining approach,’ arXiv preprint

arXiv:1907.11692, 2019.

[8] U. Alon, S. Brody, O. Levy and E. Yahav, ‘Code2seq: Generating sequences from

structured representations of code,’ arXiv preprint arXiv:1808.01400, 2018.

[9] A. Kanade, P. Maniatis, G. Balakrishnan and K. Shi, ‘Pre-trained contextual embedding

of source code,’ 2019.

[10] D. Guo et al., ‘Graphcodebert: Pre-training code representations with data flow,’ arXiv

preprint arXiv:2009.08366, 2020.

41

42 BIBLIOGRAPHY

[11] M. Chen et al., ‘Evaluating large language models trained on code,’ arXiv preprint

arXiv:2107.03374, 2021.

[12] W. U. Ahmad, S. Chakraborty, B. Ray and K.-W. Chang, ‘Unified pre-training for

program understanding and generation,’ arXiv preprint arXiv:2103.06333, 2021.

[13] Y. Wang, W. Wang, S. Joty and S. C. Hoi, ‘Codet5: Identifier-aware unified pre-

trained encoder-decoder models for code understanding and generation,’ arXiv preprint

arXiv:2109.00859, 2021.

[14] Z. Feng et al., ‘Codebert: A pre-trained model for programming and natural languages,’

arXiv preprint arXiv:2002.08155, 2020.

[15] A. Radford, K. Narasimhan, T. Salimans and I. Sutskever, ‘Improving language under-

standing by generative pre-training,’ OpenAI Blog, vol. 1, no. 8, 2018.

[16] J. Howard and S. Ruder, ‘Universal language model fine-tuning for text classification,’

in Proceedings of the 56th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), 2018, pp. 328–339.

[17] J. Devlin, M.-W. Chang, K. Lee and K. Toutanova, ‘Bert: Pre-training of deep bid-

irectional transformers for language understanding,’ arXiv preprint arXiv:1810.04805,

2018.

[18] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy and S. R. Bowman, ‘Glue: A multi-task

benchmark and analysis platform for natural language understanding,’ arXiv preprint

arXiv:1804.07461, 2018.

[19] P. Rajpurkar, J. Zhang, K. Lopyrev and P. Liang, ‘Squad: 100,000+ questions for

machine comprehension of text,’ in Proceedings of the 2016 Conference on Empirical

Methods in Natural Language Processing, 2016, pp. 2383–2392.

[20] S. Ruder, ‘A survey of cross-lingual word embedding models,’ Journal of Artificial

Intelligence Research, vol. 65, pp. 569–630, 2019.

[21] T. Chen, S. Kornblith, M. Norouzi and G. Hinton, ‘Simclr: A simple framework for

contrastive learning of visual representations,’ in International Conference on Machine

Learning, PMLR, 2020, pp. 1597–1607.

BIBLIOGRAPHY 43

[22] J. Lu, D. Batra, D. Parikh and S. Lee, ‘Vilbert: Pretraining task-agnostic visiolinguistic

representations for vision-and-language tasks,’ in Advances in Neural Information

Processing Systems, 2019, pp. 13–23.

[23] R. Hadsell, S. Chopra and Y. LeCun, ‘Dimensionality reduction by learning an invariant

mapping,’ 2006 IEEE Computer Society Conference on Computer Vision and Pattern

Recognition (CVPR’06), vol. 2, pp. 1735–1742, 2006.

[24] A. v. d. Oord, Y. Li and O. Vinyals, ‘Representation learning with contrastive predictive

coding,’ arXiv preprint arXiv:1807.03748, 2018.

[25] F. Schroff, D. Kalenichenko and J. Philbin, ‘Facenet: A unified embedding for face

recognition and clustering,’ in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2015, pp. 815–823.

[26] Z. Wu, Y. Xiong, S. X. Yu and D. Lin, ‘Unsupervised feature learning via non-

parametric instance discrimination,’ Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pp. 3733–3742, 2018.

[27] M. Lewis et al., ‘Bart: Denoising sequence-to-sequence pre-training for natural lan-

guage generation, translation, and comprehension,’ arXiv preprint arXiv:1910.13461,

2020.

[28] K. He, H. Fan, Y. Wu, S. Xie and R. Girshick, ‘Momentum contrast for unsuper-

vised visual representation learning,’ in Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 2020, pp. 9729–9738.

[29] T. Chen, S. Kornblith, K. Swersky, M. Norouzi and G. Hinton, ‘Big self-supervised

models are strong semi-supervised learners,’ arXiv preprint arXiv:2006.10029, 2020.

[30] Y. Tian, D. Krishnan and P. Isola, ‘What makes for good views for contrastive learning?’

arXiv preprint arXiv:2005.10243, 2020.

[31] M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski and A. Joulin, ‘Unsuper-

vised learning of visual features by contrasting cluster assignments,’ arXiv preprint

arXiv:2006.09882, 2020.

[32] M. Allamanis, E. T. Barr, C. Bird and C. Sutton, ‘A survey of machine learning for big

code and naturalness,’ ACM Computing Surveys (CSUR), vol. 51, no. 4, pp. 1–37, 2018.

44 BIBLIOGRAPHY

[33] P. Yin, B. Deng, E. Chen, B. Vasilescu and G. Neubig, ‘Learning to mine aligned code

and natural language pairs from stack overflow,’ arXiv preprint arXiv:1906.07155,

2019.

[34] L. Hu, X. Lu and S. Zhang, ‘Deep code search: Natural language processing powered

software reuse,’ arXiv preprint arXiv:1804.00699, 2018.

[35] A. T. Nguyen, T. T. Nguyen and T. N. Nguyen, ‘Divide-and-conquer approach for multi-

phase statistical migration for source code (t),’ in 2015 30th IEEE/ACM International

Conference on Automated Software Engineering (ASE), IEEE, 2015, pp. 585–596.

[36] S. Kim, J. Zhao, Y. Tian and S. Chandra, ‘Code prediction by feeding trees to trans-

formers,’ in 2021 IEEE/ACM 43rd International Conference on Software Engineering

(ICSE), IEEE, 2021, pp. 150–162.

[37] N. Rethmeier and I. Augenstein, ‘A primer on contrastive pretraining in language pro-

cessing: Methods, lessons learned and perspectives,’ arXiv preprint arXiv:2102.12982,

2021.

[38] M. V. Conde and K. Turgutlu, ‘Clip-art: Contrastive pre-training for fine-grained art

classification,’ in Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2021, pp. 3956–3960.

[39] A. Radford et al., ‘Learning transferable visual models from natural language super-

vision,’ in International Conference on Machine Learning, PMLR, 2021, pp. 8748–

8763.

[40] A. Krizhevsky, I. Sutskever and G. E. Hinton, ‘Unsupervised feature learning via non-

parametric instance discrimination,’ in Proceedings of the 2011 IEEE International

Conference on Computer Vision, IEEE, 2011, pp. 481–488.

[41] C. K. Joshi, D. Chen, A. Shah, Z. Parekh and M. Bendersky, ‘Marge: Pre-training with

contrastive language and image encodings,’ arXiv preprint arXiv:2104.07033, 2021.

[42] I. Beltagy, M. E. Peters and A. Cohan, ‘The power of scale for parameter-efficient

prompt tuning,’ arXiv preprint arXiv:2104.08691, 2021.

[43] X. Chen, L. Gong, A. Cheung and D. Song, ‘Plotcoder: Hierarchical decoding for

synthesizing visualization code in programmatic context,’ in Proceedings of the 59th

BIBLIOGRAPHY 45

Annual Meeting of the Association for Computational Linguistics and the 11th Inter-

national Joint Conference on Natural Language Processing (Volume 1: Long Papers),

2021, pp. 2169–2181.

[44] N. Rethmeier and I. Augenstein, Data-efficient pretraining via contrastive self-supervision,

2021. arXiv: 2010.01061 [cs.CL].

[45] T. Klein and M. Nabi, ‘Contrastive self-supervised learning for commonsense reason-

ing,’ in Proceedings of the 58th Annual Meeting of the Association for Computational

Linguistics, 2020, pp. 7517–7523.

[46] X. Duan, H. Yu, M. Yin, M. Zhang, W. Luo and Y. Zhang, ‘Contrastive attention mech-

anism for abstractive sentence summarization,’ in Proceedings of the 2019 Conference

on Empirical Methods in Natural Language Processing and the 9th International Joint

Conference on Natural Language Processing (EMNLP-IJCNLP), 2019, pp. 3044–3053.

[47] Y. Qu, D. Shen, Y. Shen, S. Sajeev, J. Han and W. Chen, ‘Coda: Contrast-enhanced

and diversity-promoting data augmentation for natural language understanding,’ arXiv

preprint arXiv:2010.08670, 2020.

[48] D. Iter, K. Guu, L. Lansing and D. Jurafsky, ‘Pretraining with contrastive sentence

objectives improves discourse performance of language models,’ in Proceedings of the

58th Annual Meeting of the Association for Computational Linguistics, 2020, pp. 4859–

4870.

[49] A. Neelakantan et al., Text and code embeddings by contrastive pre-training, 2022.

arXiv: 2201.10005 [cs.CL].

[50] X. Ge, Y. Yu and L. Song, ‘Codehow: Code search across multiple repositories with nat-

ural language queries,’ in 2018 IEEE/ACM 40th International Conference on Software

Engineering (ICSE), IEEE, 2018, pp. 1018–1029.

[51] K. Wang, D. Liu and X. Huang, ‘Codebert: A pre-trained model for programming

and natural language processing,’ in Proceedings of the 28th ACM Joint Meeting on

European Software Engineering Conference and Symposium on the Foundations of

Software Engineering, 2020, pp. 1059–1069.

[52] G. Singh, R. Kumar, S. Kumar and S. Sanyal, ‘Graphcodesearch: Semantic code search

using graphs,’ arXiv preprint arXiv:2006.15210, 2020.

https://arxiv.org/abs/2010.01061
https://arxiv.org/abs/2201.10005

46 BIBLIOGRAPHY

[53] H. Husain, K. Wu, T. Gazit, M. Allamanis and M. Brockschmidt, ‘Codesearchnet chal-

lenge: Evaluating the state of semantic code search,’ arXiv preprint arXiv:2009.09464,

2020.

[54] M. Allamanis, H. Peng and C. Sutton, ‘A neural framework for code search with natural

language queries,’ in Proceedings of the 32nd IEEE/ACM International Conference on

Automated Software Engineering, IEEE, 2018, pp. 610–620.

[55] X. Gu, H. Zhang and S. Kim, ‘Deep code search,’ in 2018 IEEE/ACM 40th International

Conference on Software Engineering (ICSE), IEEE, 2018, pp. 933–944.

[56] M. Li and Y. Li, ‘A survey on code clone detection research,’ in 2018 IEEE 25th

International Conference on Software Analysis, Evolution and Reengineering (SANER),

IEEE, 2018, pp. 1–12.

[57] L. Jiang, X. Zhang and Z. Su, ‘Scalable code clone detection: Practices and trends,’

Journal of Systems and Software, vol. 131, pp. 408–429, 2017.

[58] M. White, M. Tufano, C. Vendome and D. Poshyvanyk, ‘Deep learning code frag-

ments for code clone detection,’ in 2016 31st IEEE/ACM International Conference on

Automated Software Engineering (ASE), IEEE, 2016, pp. 87–98.

[59] S. Zhou, Y. Chen, Y. Liu, Q. Hu and S. Wang, ‘Self-supervised learning for code

clone detection,’ in Proceedings of the 43rd International Conference on Software

Engineering, 2021, pp. 1255–1266.

[60] B. Roziere, M.-A. Lachaux, L. Chanussot and G. Lample, ‘Unsupervised translation of

programming languages,’ Advances in Neural Information Processing Systems, vol. 33,

pp. 20 601–20 611, 2020.

[61] H. Ragavan, V. Srikumar and D. Roth, ‘Statistical machine translation for code mi-

gration,’ in Proceedings of the 2014 Conference on Empirical Methods in Natural

Language Processing (EMNLP), 2014, pp. 2049–2059.

[62] S. Srivastava, M. Malik and C. Jawahar, ‘Toward statistical machine translation for

programming languages,’ ACM Transactions on Programming Languages and Systems

(TOPLAS), vol. 36, no. 2, pp. 1–28, 2014.

BIBLIOGRAPHY 47

[63] J. Gu, Z. Lu, H. Li, V. O. Li and X. Xie, ‘Deep api learning,’ in Proceedings of the 2016

ACM SIGPLAN International Conference on Object-Oriented Programming, Systems,

Languages, and Applications (OOPSLA), ACM, 2016, pp. 631–647.

[64] K. Xu, K. Liu, Z. Chen and Y. Zhao, ‘Neural machine translation for code comments:

Learning from large-scale parallel corpus,’ Journal of Systems and Software, vol. 162,

p. 110 448, 2020.

[65] Y. Zhang, J. Xu, Z. Wang, Y. Zhang and Y. Lu, ‘Joint template-based generation for

accurate and diverse chinese table layout description,’ in Proceedings of the AAAI

Conference on Artificial Intelligence, vol. 33, 2019, pp. 7251–7258.

[66] K. Wang, C. Yao and H. Wang, ‘Code2seq: Generating sequences from structured

representations of code,’ in Proceedings of the 2019 Conference on Empirical Methods

in Natural Language Processing and the 9th International Joint Conference on Natural

Language Processing (EMNLP-IJCNLP), 2019, pp. 3611–3621.

[67] R. Lebret, D. Grangier and M. Auli, ‘Neural text generation from structured data

with application to the biography domain,’ in Proceedings of the 2016 Conference on

Empirical Methods in Natural Language Processing (EMNLP), 2016, pp. 1203–1213.

[68] Z. Zhang, Y. Zhao, X. Zhang and J. Su, ‘Toward diverse and coherent paragraph

generation from a given topic,’ IEEE Transactions on Knowledge and Data Engineering,

vol. 33, no. 2, pp. 795–807, 2021.

[69] Z. Li, X. Wang, H. Zhang and T. Zhao, ‘Unsupervised neural document generation

with domain-specific knowledge,’ ACM Transactions on Information Systems (TOIS),

vol. 38, no. 1, pp. 1–28, 2020.

[70] F. Yu et al., ‘Ernie-vil: Knowledge enhanced vision-language representations through

scene graph,’ arXiv preprint arXiv:2006.16934, 2020.

[71] I. Loshchilov and F. Hutter, ‘Decoupled weight decay regularization,’ arXiv preprint

arXiv:1711.05101, 2017.

[72] H. Husain, H.-H. Wu, T. Gazit, M. Allamanis and M. Brockschmidt, ‘Codesearchnet

challenge: Evaluating the state of semantic code search,’ arXiv preprint arXiv:1909.09436,

2019.

48 BIBLIOGRAPHY

[73] J. Svajlenko, J. F. Islam, I. Keivanloo, C. K. Roy and M. M. Mia, ‘Towards a big

data curated benchmark of inter-project code clones,’ in 2014 IEEE International

Conference on Software Maintenance and Evolution, IEEE, 2014, pp. 476–480.

[74] L. Jiang, G. Misherghi, Z. Su and S. Glondu, ‘Deckard: Scalable and accurate tree-based

detection of code clones,’ in 29th International Conference on Software Engineering

(ICSE’07), IEEE, 2007, pp. 96–105.

[75] M. White, M. Tufano, C. Vendome and D. Poshyvanyk, ‘Deep learning code frag-

ments for code clone detection,’ in 2016 31st IEEE/ACM International Conference on

Automated Software Engineering (ASE), IEEE, 2016, pp. 87–98.

[76] H. Wei and M. Li, ‘Supervised deep features for software functional clone detection

by exploiting lexical and syntactical information in source code.,’ in IJCAI, 2017,

pp. 3034–3040.

[77] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang and X. Liu, ‘A novel neural source

code representation based on abstract syntax tree,’ in ICSE, 2019, pp. 783–794.

[78] S. Hochreiter and J. Schmidhuber, ‘Long short-term memory,’ Neural computation,

vol. 9, no. 8, pp. 1735–1780, 1997.

[79] W. Wang, G. Li, B. Ma, X. Xia and Z. Jin, ‘Detecting code clones with graph neural

network and flow-augmented abstract syntax tree,’ in 2020 IEEE 27th International

Conference on Software Analysis, Evolution and Reengineering (SANER), IEEE, 2020,

pp. 261–271.

[80] X.-P. Nguyen, S. Joty, S. C. Hoi and R. Socher, ‘Tree-structured attention with hier-

archical accumulation,’ arXiv preprint arXiv:2002.08046, 2020.

[81] I. Sutskever, O. Vinyals and Q. V. Le, ‘Sequence to sequence learning with neural

networks,’ Advances in neural information processing systems, vol. 27, 2014.

5.3 APPENDIX A 49

5.3 Appendix A

What the contrastive pre-training learned in the process.

Contrastive pre-training has emerged as a powerful approach to learn high-quality features

and representations from data by exploiting the intrinsic differences and similarities among

samples. In this paragraph, we delve into the pre-training process, examining the learn-

ing dynamics from various perspectives, including mathematical formula analysis, sample

extraction, and objective functions.

Mathematically, contrastive pre-training employs a loss function that aims to maximize the

similarity between semantically related samples, while minimizing the similarity between

unrelated samples. This is typically achieved by computing the cosine similarity between the

learned embeddings of the samples in the latent space. The objective function is carefully

designed to ensure that the model captures the underlying relationships among the samples and

adequately adapts to the given task. In the symmetric contrastive learning process, the goal is

to learn a representation that maximizes the similarity between related samples (positive pairs)

while minimizing the similarity between unrelated samples (negative pairs). The symmetric

loss function used for this purpose can be represented using mathematical formulas. Let’s

consider a pair of related samples xi and xj , where xi is the code and xj is the corresponding

comment. Their embeddings in the latent space are represented by vi = f(xi) and vj = g(xj),

where f and g are the code and comment encoders, respectively.

The symmetric contrastive loss function can be expressed as:

L(xi, xj) = − log
exp(sim(vi, vj)/τ)∑K

k=1 exp(sim(vi, vjk)/τ)

Here, sim(vi, vj) denotes the similarity between the embeddings vi and vj , which is typically

calculated using the cosine similarity. τ is a temperature parameter that controls the concen-

tration of the probability distribution, and K is the total number of negative pairs. The term

vjk represents the k-th negative sample’s embedding for the code sample xi.

50 BIBLIOGRAPHY

This loss function encourages the model to maximize the similarity between related samples

(i.e., code and corresponding comment) and minimize the similarity between unrelated

samples (i.e., code and other comments). By optimizing this objective, the model learns a

representation in the latent space that is effective in capturing the intrinsic connections between

code and comments, which subsequently leads to improved performance on downstream

tasks.

In essence, the symmetric contrastive learning process, as represented by the mathematical

formula above, allows the model to learn meaningful relationships between related samples

by maximizing their similarity while minimizing the similarity between unrelated samples.

This is achieved by optimizing the symmetric loss function, which ensures that the learned

embeddings in the latent space capture the essential information required for successful

transfer learning and improved performance on various downstream tasks.

From a sample extraction perspective, the pre-training process involves carefully selecting

and preparing data that captures the essential characteristics of both related and unrelated

samples. For instance, when working with code-comment pairs, the model should be trained

on a diverse set of examples that represent various programming languages, coding styles,

and natural language descriptions. This allows the model to learn a comprehensive set of

relationships that can be effectively applied to the downstream tasks.

Regarding objective functions, contrastive pre-training seeks to optimize a symmetric loss

function that balances the need to maximize the similarity of related pairs while minimizing the

similarity of unrelated pairs. This is often achieved by employing a temperature-scaled cross-

entropy loss that encourages the model to focus on the most informative and discriminative

features. As a result, the learned embeddings in the latent space exhibit rich semantic

information, which is crucial for successful transfer to downstream tasks.

In summary, contrastive pre-training learns valuable features and representations by care-

fully balancing mathematical formulas, sample extraction, and objective functions. This

approach enables the model to effectively capture the underlying relationships among the

5.3 APPENDIX A 51

samples, which is essential for successful transfer learning and ultimately leads to improved

performance on various downstream tasks.

	Abstract
	Keywords
	Acknowledgements
	Chapter 1. Introduction
	1.0.1. Introduction of Programming Language Processing
	1.0.2. Introduction of Pre-Train and Fine-Tuning Paradigm
	1.0.3. Introduction of Contrastive Pre-Training
	1.0.4. Introduction of Challenges in Programming Languages
	1.0.5. Introduction of Contributions of Our Paper

	Chapter 2. Literature review
	2.0.1. Programming Language Pre-Training
	2.0.2. Contrastive Learning for Pre-Training
	2.0.3. Downstream Code-Related Tasks

	Chapter 3. Methods
	3.1. Contrastive Code and Comment Pre-training
	3.1.1. Code and Comment Encoders
	3.1.2. Contrastive Learning
	3.1.3. Fine-Tuning

	Chapter 4. Results
	4.1. Performance of C3P vs. Other Methods
	4.1.1. Code Search
	4.1.2. Clone Detection
	4.1.3. Code Translation
	4.1.4. Code Document Generation
	4.1.5. Transferability

	4.2. Ablation Study
	4.3. Case Study

	Chapter 5. Conclusions
	5.1. Discussion
	5.2. Conclusion

	Bibliography
	5.3. Appendix A
	What the contrastive pre-training learned in the process.

