
Dynamical and functional
mechanisms of visual attention

A thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

by

Shencong Ni

School of Physics
Faculty of Science

The University of Sydney
Australia

May 2023



Declaration of originality

To the best of my knowledge, this thesis contains no copy or paraphrase of work
published by another person, except where duly acknowledged in the text. This
thesis contains no material which has been presented for a degree at The University
of Sydney or any other university.

Name: Shencong Ni

Signature:



Authorship attribution statements

Listed below are details of the papers on which Chapters 2 to 4 are based.

Chapter 2:
Flexible corticocortical communication: underlying mechanism and func-
tional roles in visual attention
Shencong Ni and Pulin Gong
In preparation
I was primarily responsible for this work, with an overall contribution of about 80%.
I co-designed the study, performed the analysis and wrote the drafts of the paper
with the co-authors.

Chapter 3:
Attention-Guided Visual Search
Shencong Ni and Pulin Gong
In preparation
I was primarily responsible for this work, with an overall contribution of about 80%.
I co-designed the study, performed the analysis and wrote the drafts of the paper
with the co-authors.

Chapter 4:
Dynamical working regime of visual cortex
Shencong Ni and Pulin Gong
In preparation
I was primarily responsible for this work, with an overall contribution of about 70%.
I co-designed the study, performed the analysis and wrote the drafts of the paper
with the co-authors.

iii



iv

In addition to the statements above, in cases where I am not the corresponding
author of a published item, permission to include the published material has been
granted by the corresponding author.

Student Name: Shencong Ni

Signature:

Date:

As the supervisor for the candidature upon which this thesis is based, I can confirm
that the authorship attribution statements above are correct.

Supervisor Name: Pulin Gong

Signature:

Date:



Acknowledgements

First and foremost, I would like to express my sincere gratitude to my lead supervi-
sor A/Prof. Pulin Gong for his continuous mentoring during the past several years.
Pulin’s brilliant ideas for research, patience in guiding students, and helps in im-
proving my writing skills make the completion of the thesis possible. I would also
like to thank my associate supervisor Prof. Peter Robinson for his kind support and
suggestions.

Thanks must also go to the members of the Complex System group: Guozhang,
Xian, Yuxi, Asem, Kevin, Daniel, Yiben, Shuzheng, Brendan, etc. Thanks for their
company, exchange of ideas, and encouragement.

Last but certainly not least, I am deeply grateful to my parents, who have offered
invaluable support and guidance throughout this challenging journey.

v



Abstract

Attention is a crucial brain function for selectively processing behaviorally relevant
stimuli over irrelevant ones. Several decades of psychophysical and neurophysiolog-
ical studies have established that attention is highly dynamic and flexible, yet the
mechanism underlying such flexible functionality remains unknown. In this thesis,
we focus on the circuit and functional mechanisms of visual attention. We first in-
vestigate the flexible corticocortical communication mechanism by using a biophys-
ically realistic large-scale circuit model consisting of sensory and association areas.
We illustrate that spiking activity patterns with complex spatiotemporal dynamics
emerging in both areas exhibit dynamically coordinated interactions, based on which
the flexible gamma synchrony-based and subspace-based interareal communication
can naturally emerge. We further demonstrate that such dynamic communication
can be modulated during attention tasks and such modulated communication pro-
vides a mechanistic account for a great variety of neural effects of attention. We
then apply this large-scale circuit model to attention-guided visual search, and il-
lustrate that the interactions of bottom-up object saliency and top-down attention
modulate the dynamics of spiking activity patterns; the modulation process can
explain the hallmarks of neural and behavioral features of visual search, including
the linear increase of reaction time with the number of search items. Finally, we
identify a dynamical working regime of the visual cortex, in which a great variety
of neural dynamics at the individual neuron and circuit levels can be reconciled and
explained; these include super-Poisson spiking variability, theta-gamma coupling,
and normalization.
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Chapter 1

Introduction

Every moment we receive tremendous amounts of information from the sensory
nervous system. Due to the limited information processing capacity of the brain,
it is often that only the most behaviorally relevant information can be relayed to
downstream brain regions and preferentially processed, controlled by the function
of attention. Decades of research have investigated the attention mechanism from
the single neuron level to the behavior level. However, a unified framework that ac-
counts for the attention effects spanning multiple scales is still in its infancy. In this
thesis, we focus on the circuit and functional mechanism underlying visual attention.
We first investigate the flexible information routing mechanism of the cortex using
a large-scale circuit model composed of a bottom sensory area and a top association
area. We illustrate such information routing can be modulated during attention
tasks and such modulation accounts for a wide range of attention effects on neural
activity (Chapter 2). We next show that the spatiotemporal spiking patterns in the
model in response to the bottom-up and top-down influences can explain behavior
and neurophysiological findings regarding the attention-guided visual search (Chap-
ter 3). We then focus on identifying the dynamical working region of our circuit
model that can support the above attention function (Chapter 4).
Like many other brain functions, visual attention arises from the interaction of

multiple aspects of the neural system, including single-neuron neurophysiology, neu-
ral circuit connectivity, and population-level neural dynamics. Therefore, in this
chapter, we first provide an overview of the anatomy and physiology of neurons and
neural circuits, as well as the computation model for neurons, in Section 1.1. In
Section 1.2, we cover the neural dynamics emerging from the neural circuits, partic-
ularly focusing on neural oscillations. In Section 1.3, we provide an overview of the
experimental results and current theoretical model regarding visual attention.

1.1 Cortex structure

1.1.1 Neurons and synapses

Neurons are the fundamental processing units in the nervous system. There is a
rich diversity in the type and shape of neurons, but they all share a typical mor-
phology: dendrites, soma, and axon (Figure 1.1A)(Bear, Connors, and Paradiso
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1.1. CORTEX STRUCTURE 2

2020). The dendrites are the places where neurons receive inputs from other neu-
rons. The soma integrates these received inputs and emits an electrical pulse called
‘spike’ (or action potential) when the total inputs reach a threshold. The spike then
propagates through the axon to the axon terminal, where the signal transmits to
other neurons. The axon terminal of the sending neuron and the dendrites of the
receiving neuron together form a structure called ‘synapse’ (Figure 1.1B); thus, the
sending neuron is referred to as the presynaptic neuron, and the receiving neuron is
the postsynaptic neuron. When the spike arrives at the presynaptic axon terminal,
the neurotransmitter stored in the vesicles in the axon terminal will be released to
the synaptic cleft and diffuses to the receptors on the dendrite of the postsynaptic
neuron, then the postsynaptic neuron changes its activity depending on the type of
neurotransmitter released and the type of receptor bound to the neurotransmitter.

Synapse

Vesicles

Neurotransmitter

Action potential

Postsynaptic potential

Receptors

Electrode

Presynaptic 
neuron
axon

Postsynaptic 
neuron
dendrite

Figure 1.1: The structure of neurons and synapses
(A) A schematic of a pyramidal neuron. The inset shows an impulse of an
action potential. Adapted from Gerstner et al. (2014).
(B) A schematic of a synapse.

Like other cells, the cytoplasm of the neurons is wrapped by the membrane con-
sisting of the phospholipid bilayer. Spanning the membrane are a variety of proteins
that support the functions of neurons. There are two types of proteins that are of
particular importance to the functionality of neurons: bumps and ion channels. The
bumps consume energy and actively transport specific ions across the membrane to
maintain the membrane potential. For example, the sodium-potassium bumps de-
liver Na+ from the intracellular to the extracellular and meanwhile, transport K+

in the opposite direction. As a result, the concentration of K+ is higher inside the
neuron than outside the neuron while the Na+ is more concentrated outside com-
pared to the inside. This concentration gradient of ions leads to an ionic current flow
caused by diffusion from the high-concentration side to the low-concentration side
through the leaky ion channels. The magnitude of the leaky current is dependent on
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the permeability of the leaky ion channel to the ion and the membrane potential, in
the form of I = −g(V −Eion). Here g is the conductance of the channel representing
the permeability, V is the membrane potential which is the intracellular potential
minus the extracellular potential, and Eion is the equilibrium potential (or reversal
potential). When V = Eion the electrical force counterbalances the diffusional force
and thus the net ionic flow across the membrane is zero. Eion can be calculated
by Nernst Equation, Eion = kT/q ln(n2/n1), where k is the Boltzmann constant, T
the temperature, q is the charge of individual ions, and n2 and n1 the ionic concen-
tration outside and inside of the neuron, respectively. At T = 37◦C, Eion for K+

and Na+ are EK = -80 mV and ENa = 62 mV. The permeability of leaky channels
to the K+, however, is higher than that to the Na+, which means that the K+ is
easier to flow outside the neuron than the Na+ to flow inside and this eventually
leads to the membrane potential at resting state closer to the equilibrium poten-
tial of potassium than that of sodium, around -70 mV. The permeability of leaky
channels is mostly time-independent (A. Cohen, Ben-Abu, and Zilberberg 2009).
On the contrary, some types of ion channels open or close according to the voltage
(voltage-gated ion channels), and others depend on whether specific neurotransmit-
ters bind to receptors (transmitter-activated ion channels). Voltage-gated channels
are crucial for generating spikes, and the underlying mechanism of spike generation
was first illustrated by Hodgkin and Huxley (1952), together with a mathematical
model, the Hodgkin-Huxley (HH) model, which precisely explains and reproduces
the action potential. The HH model can be understood as an electric circuit (Figure
1.2B), which is described by

C
dV

dt
= −

∑
k

Ik(t) + I(t), (1.1)∑
k

Ik = gNam
3h (V − ENa) + gKn

4 (V − EK) + gL (V − EL) . (1.2)

Here C is the capacitance, V is the membrane potential, I(t) is the input current,
and Ik(t) is the channel current. The original HH model includes three types of
channel current, which are the current flowing through voltage-gated sodium chan-
nels, voltage-gated potassium channels, and non-specific leaky channels in Equation
1.2, where the gNa and gK are the maximum conductance of voltage-gated sodium
and potassium channels and gL the constant conductance of leaky channel. The
voltage-gated characteristic of voltage-gated channels is manifested in the voltage-
dependent controlling variables m, h, and n. m controls the fraction of sodium
channels that are opened, h the fraction of the sodium channels that can be opened,
and n the fraction of potassium channels that are opened; each of them evolve in
the form:

dx

dt
= − 1

τx(V )
[x− x0(V )] , (1.3)

where x can be m, h, and n. The x0(V ) is the steady state and τx(V ) is the
time constant; both are functions of the membrane potential (Figure 1.2C, D).
At the resting state, both sodium and potassium channels are closed. Suppose
that some external current is injected into the neuron which continuously increases
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(depolarizes) the membrane potential (Figure 1.2A). When the membrane potential
is high enough, the sodium channel opens rapidly (m increases, with a short time
constant), and the resultant influx of Na+ furtherly increases the membrane potential
and causes the steep rising phase of the action potential. The rising of potential
ceases as more and more sodium channels become inactivated (h decreases when V is
high), and the efflux of K+, caused by the opening of potassium channels (increasing
n), furtherly decreases the potential, giving rise to the falling phase of the action
potential (Figure 1.2A).

Threshold
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K+ channels 
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Figure 1.2: Spike generation and Hodgkin-Huxley model
(A) A schematic diagram of the change of membrane potential during a spike.
(B) The electric circuit diagram for the Hodgkin-Huxley model.
(C) The steady-state value of the voltage-dependent controlling variables as
functions of membrane potential.
(D) The time constant values of the voltage-dependent controlling variables as
functions of membrane potential. (B-D) are adapted from Gerstner et al. (2014).

The HH model successfully captures the neurophysiological dynamics for spike
generation. However, it is computationally expensive, thus unsuitable to be the
neuron model in large-scale neural network circuit models. Given the fact that the
form of spikes generated by a neuron is rather stereotypical, the exact shape of the
spike is usually regarded as not carrying and conveying information (Gerstner et al.
2014); instead, only the spike timing is what really matters. Therefore, one type
of simplified phenomenological neuron model called the ‘Leaky Integrate-and-Fire
(LIF)’ model is often used in neural network modeling, and so in the model in this
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thesis. The LIF model is given by:

C
dV

dt
= −gL(V − EL) + I(t). (1.4)

Compared to the HH model, the LIF model omits the voltage-gated sodium and
potassium channels which are responsible for spike generation. To determine the
timing of spikes, the LIF model uses a pre-defined voltage threshold, and the spike
timing is defined as the time point when the membrane potential reaches the thresh-
old from below. After spike initiation, the membrane potential is manually reset to
a value below the threshold and held for a refractory period of around several mil-
liseconds to simulate the spike duration and refractoriness in the HH model and real
neurons.
Spikes arriving at the axon terminal of the presynaptic neuron stimulate the re-

lease of neurotransmitters. Once the neurotransmitters bind to the receptors on the
postsynaptic neurons they activate the transmitter-activated ion channels. Neuro-
transmitters can be divided into two classes: excitatory and inhibitory, depending
on their effects on postsynaptic neurons (Rogawski 2013; Gerstner et al. 2014). The
excitatory neurotransmitter, such as glutamate, causes an increase, or depolariza-
tion, in the membrane potential of postsynaptic neurons, which is referred to as the
excitatory postsynaptic potential (EPSP). By contrast, the inhibitory neurotrans-
mitter, such as γ-aminobutyric acid (GABA), leads to the inhibitory postsynaptic
potential (IPSP), decreasing the membrane potential of postsynaptic neurons (hy-
perpolarization). The ionic current activated by ionic channels on the synapses can
be described by

I = −gsyn(V − Esyn), (1.5)

gsyn = A(e
− t

τd − e−
t
τr ), (1.6)

where gsyn is the conductance and Esyn is the equilibrium potential. Esyn ≈ 0 mV for
excitatory receptors and Esyn ≈ -80 mV for inhibitory receptors. The time course of
gsyn induced by each incoming spike is usually expressed as the difference between
two exponential functions (Equation 1.6), giving rise to a rising and falling time
course of EPSP and IPSP, and emulating the opening and closing of ion channels. τd
and τr are the decay and rising time constant of gsyn respectively. In the cortex, 80%
of the neurons are excitatory neurons which release neurotransmitters depolarizing
target neurons, and 20% are inhibitory, exerting hyperpolarizing effects.

1.1.2 Neural circuits

Neurons interconnect with each other to form the cortex. The mammalian neocor-
tex has a similar six-layer structure with about 3-4 mm thickness across different
cortex regions (V. B. Mountcastle 1997). The basic structure of the cortex is the
minicolumn (V. Mountcastle 1978), which is organized vertically across the layers,
consisting of around 100 neurons (Figure 1.3A). A number of adjacent minicolumns
are in turn horizontally connected to form the column, of which the horizontal diam-
eter is around 300-600 µm (V. B. Mountcastle 1997). Across different mammalian
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species, the size of individual columns varies little even though the size of the cortex
may differ significantly. Neurons within the same columns in the sensory cortex
usually have the same receptive field and the same preferred feature of stimuli (e.g.,
orientation, color, etc.) (Gerstner et al. 2014), suggesting that each individual col-
umn as a whole is responsible for a specific computation. The connectivity between
neurons is still partially unknown due to the constraints of measuring techniques and
the lack of experimental data. However, some general connectivity properties have
been identified. For example, the horizontal connection probability between neu-
rons decays with the inter-neuron distance (distance-dependent connectivity, Figure
1.3B) (Markov, Misery, et al. 2011; Levy and Reyes 2012), and neurons with similar
preferred features tend to make connections with each other (Angelucci and Bressloff
2006).

Figure 1.3: Neural connectivity
(A) The 6-layer laminar structure of the cortex. Shapes of excitatory neurons at
different layers are depicted. The thickness of the arrows on the right and left
side indicates the connection probability between excitatory neurons within a
layer and between layers, respectively. Data from the barrel cortex of the
mouse. Adapted from Gerstner et al. (2014).
(B) The distribution of presynaptic neurons of neurons in the macaque V1
cortex as an exponential function of the distance between presynaptic and
postsynaptic neurons. Adapted from Markov, Misery, et al. (2011).

Although the column structure is shared across different brain regions, properties
of neurons and circuits vary systematically across the cortical hierarchy (i.e., from
sensory areas to association areas), which leads to the notion of the macroscopic
gradient (Wang 2020). Using the observation that the long-range cortical feedback
projections from association areas to sensory areas tend to originate from the deep
layers (layer 5/6) of the cortex, whereas the long-range feedforward projections are
more likely to begin at superficial layers (layer 2/3) (Figure 1.4A), one can allocate
different brain regions at a position, from 0 to 1, in a hierarchy dimension based
on the laminar distribution of the presynaptic neurons for interareal connections
(Figure 1.4B; Markov, Julien Vezoli, et al. 2014). For example, the primary visual
cortex (V1) is at the bottom of the visual hierarchy (0), and area 24c is at the top (1).
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One well-established macroscopic gradient is that the excitatory synaptic coupling
strength increases with the hierarchy: strength in the prefrontal cortex is around 10
times that in the V1 (Figure 1.4C; Chaudhuri et al. 2015). Such a systematic change
in the excitatory coupling strength may contribute to the different time scales in
the dynamics of different brain regions (Chaudhuri et al. 2015). It could also enable
the neural circuit at higher hierarchy levels to form a self-sustained working region
supporting sustained vigorous neuronal firing in the absence of external input, which
is a candidate for the mechanism of working memory (Wang 2001; Brunel and Wang
2001). Likewise, the inhibitory GABAergic neurons also display cortical gradients.
The GABAergic neurons in the cortex can be classified into three types: PV, SST,
and VIP neurons. It has been revealed that the ratio of the density of SST neurons
to PV neurons increases from sensory and motor areas to frontal areas, in both mice
and primates (Risberg and Grafman 2006; Kim et al. 2017).
The principled organizations of column structure across the cortex and the corti-

cal gradients suggest that the evolution may reuse the same basic building blocks,
columns, to form different brain areas and meanwhile sculpts the properties of cir-
cuits in different areas to support diverse functions (Wang 2020; Douglas and Martin
2012).

1.2 Neural dynamics

Interactions of interconnected neurons give rise to rich dynamics at the neural pop-
ulation level, ranging from asynchrony spiking activity to synchrony collective os-
cillations. In this section, we give a brief overview of different network dynamical
states and the mechanisms underlying them.

1.2.1 Excitation-inhibition balance and asynchronous states

In the cortex, the neural circuits are typically composed of recurrently connected ex-
citatory neurons and inhibitory neurons, and the excitatory input to individual neu-
rons is balanced by its inhibitory input, a phenomenon called excitation-inhibition
(EI) balance (Van Vreeswijk and Sompolinsky 1996; Vreeswijk and Sompolinsky
1998). Such balance is maintained across brain areas despite the diverse network
architecture in different regions. Intuitively, when excitatory neurons’ activity is
increased, either by external inputs or endogenous fluctuation, it recruits postsynap-
tic inhibitory neurons and enhances their activity, which in turn delivers inhibitory
current to the network and counterbalances the excitatory current over time (An-
derson, Carandini, and Ferster 2000; Shu, Hasenstaub, and McCormick 2003; Wehr
and Zador 2003; Wilent and Contreras 2004). The PV inhibitory neurons have been
found to play an important role in maintaining EI balance, which dynamically ad-
justs their synaptic strength to each of their target excitatory neurons according to
the activity of the excitatory neurons, leading to a relatively equal ratio of excita-
tory postsynaptic current (EPSC) to inhibitory postsynaptic current (IPSC) across
neurons (Figure 1.5; Xue, Atallah, and Scanziani 2014).
The EI balance is essential for shaping cortical dynamics. First, at the single neu-

ron level, due to the dynamic tracking of inhibitory inputs to excitatory inputs, the
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Figure 1.4: Cortical hierarchy
(A) The distribution of the labeled neurons by retrograde tracers injected at an
arbitrary area ‘d’. The tracing reveals that the long-range feedforward
projections primarily start from the superficial layers while the long-range
feedback projections primarily start from deep layers. Adapted from Markov,
Julien Vezoli, et al. (2014).
(B) The hierarchical position of different cortical areas, inferred from the
patterns of the long-range corticocortical connections in (A).
(C) The number of spines on the synapses of different brain regions, which is a
proxy for excitatory coupling strength, increases with the hierarchical position.
(B-C) are adapted from Chaudhuri et al. (2015).

total input to individual neurons can be maintained close to the rheobase, and the
membrane potential of neurons hovers close to the firing threshold and stochasti-
cally exceeds the threshold, giving rise to the irregular spike timing observed in vivo
(Van Vreeswijk and Sompolinsky 1996). Second, from the aspect of the correlation
in the activity between neurons, the EI balance decorrelates the total synaptic input
between two neurons, even though the network is densely connected (i.e., any two
neurons share a substantial amount of common input) (Renart et al. 2010). Theo-
retically, for a randomly connected balanced binary network of which the synaptic
strength is scaled by 1/

√
N , where N is the number of neurons, the correlation

between the total input of two arbitrary neurons (c) is given by

c = cEE + cII + 2cEI . (1.7)

Here cEE is the correlation between excitatory inputs, cII is the correlation between
inhibitory inputs, and cEI is the correlation between excitatory and inhibitory in-
puts. Although cEE and cII are positive and large because of common synaptic
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Figure 1.5: Excitation-inhibition balance
Channelrhodopsin-2 (ChR2) is expressed in layer 4 excitatory neurons of
Scnn1a-Cre-Tg3 mice. Light pulse induces spikes in layer 4 excitatory neurons,
which are one of the primary inputs of layer 2/3 neurons. EPSC and IPSC are
recorded in 4 layer 2/3 pyramidal cells. The magnitude of IPSC and EPSC are
positively correlated, maintaining a roughly constant E/I ratio. Adapted from
Xue, Atallah, and Scanziani (2014).

inputs, cEI is negative and thus decreases the correlation between the total input
current, such that c ∝ 1/

√
N . Moreover, the spike count correlation (cr) is decreased

even further, which is cr ∝ 1/N . This state with low correlations between neurons
is termed the asynchronous state. Such EI balance-related decorrelation reconciles
two seemly contradictory observations in vivo, which are the high local connection
probability between neurons and the low correlation between neural activity (Ecker
et al. 2010). In addition, it also justifies the assumption of statistical independence
of the total input current and the firing between neurons, an assumption which
is often made in the mean-field approach to theoretically quantify the population
activity of neural networks (Van Vreeswijk and Sompolinsky 1996; Vreeswijk and
Sompolinsky 1998; Brunel 2000).

1.2.2 From asynchrony to oscillations

The mean population firing rate of the asynchronous state in the previous subsection
can be regarded as constant over time. In vivo, however, brain activity can exhibit
oscillations with diverse frequencies (Buzsaki and Draguhn 2004). The formation
mechanism of oscillations (or at least some oscillations, if not all) can be understood
from the perspective of the stability of the asynchronous state (Treves 1993; Abbott
and Vreeswijk 1993). Suppose the stationary firing rate of the asynchronous state
is v0 and now a small perturbation is added onto it, then the instantaneous firing
rate can be expressed as v = v0(1 + ϵ · exp(λt)), where ϵ ≪ 1 and λ = a+ iw is the
eigenvalue of the linear system linearized around the stationary state. The real part
of the eigenvalue, a, determines the stability of the asynchronous state, with a < 0
stable and a > 0 unstable. When w is positive, a change from negative a to positive a
indicates the onset of oscillation, a transition termed the Hopf bifurcation. Based on
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the linear stability analysis, Brunel (2000) characterized a rich variety of behaviors
of the neural network composed of leaky integrate-and-fire neurons in Equation 1.4
and delta-function-like synapses, and they found the stability of the asynchronous
state depends on the strength of the external input, the balance between excitation
and inhibition, and the synaptic time delay. Using a more biologically realistic
synapse model in Equation 1.5 and 1.6, Brunel and Wang (2003) analyzed the
fast oscillation, particularly in the gamma band (30-80 Hz) and sharp-wave ripples
(≈ 200 Hz), and illustrated its dependency on the network structure and synaptic
constant (i.e., rising time τr, decay time τd, and time delay d). They found that fast
oscillation can arise from two types of network architecture: networks consisting of
purely inhibitory neurons and networks with excitatory-inhibitory feedback loops.
At the critical point of the onset of the oscillation (a = 0 and w ̸= 0) the oscillation
frequency obeys

π = ωdi + atan(ωτri) + atan(ωτdi) (1.8)

for purely inhibitory neuron networks, and

π = ωdi + atan(ωτri) + atan(ωτdi) + ωde + atan(ωτre) + atan(ωτde) (1.9)

for networks consisting of excitatory (E) and inhibitory (I) neurons with only E-
to-I and I-to-E connections (in Equation 1.8 and 1.9, subscript ‘i’ is for inhibitory
synaptic current and ‘e’ for excitatory). For networks with all E-E, E-I, I-E, and I-I
connections the resulting oscillation frequency is a compromise between the purely
inhibitory-neuron mechanism and the E-I loop mechanism.
While fast oscillation relies on the inhibitory neuron groups, the circuit/neuron

level mechanism for slow oscillation is likely different. One possible candidate for
neuron level mechanism of slow oscillations is spike frequency adaptation, referring
to the phenomenon that the neuron’s firing rate decreases over time in response to
long, persistent external stimulus, primarily observed in excitatory neurons (Wang
1998). The spike frequency adaptation is typically caused by the self-inhibitory hy-
perpolarizing current, such as the potassium current through M channels, which is
activated when the membrane potential is high, especially during the action poten-
tial initiation (Delmas and D. A. Brown 2005). Since the decay time constant of
this self-inhibitory current is slow (tens to hundreds of milliseconds), the hyperpo-
larizing adaptation current could accumulate over time when the firing rate is high,
which eventually causes the population activity to transit from a vigorous firing
state to salient state. After the adaptation current decays during the salient state,
population activity has more chance to enter the vigorous firing state again, leading
to slow oscillation/switching between the two states. Neural networks with neu-
rons endowed with spike frequency adaptation have reproduced the UP (vigorous
firing) and DOWN (salient) states transitions during slow-wave sleep and anesthesia
(Nghiem et al. 2020), and the theta oscillations in attentional sampling (Chen and
Gong 2022). Intriguingly, despite the different circuit/neuron mechanisms of slow
oscillations compared to fast oscillations, the emergence of slow oscillations could
still be interpreted as the destabilization of the state with a stationary constant fir-
ing rate (Folias and Bressloff 2005); we will return to this point in detail in Chapter
2.
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1.3 Visual attention in the brain

Advanced cognitive functions such as attention are supported by neural physiol-
ogy and neural dynamics. In this section, we give an overview of visual attention.
Specifically, we focus on how neural dynamics in the visual cortex are changed dur-
ing attention to enable selective enhancement in processing behaviorally relevant
external stimuli. We also introduce existing theoretical models that capture the
neural and behavioral results related to the attention observed empirically. We then
discuss the latest experimental findings incompatible with current models and thus
call for new insights into the circuit and functional mechanisms of attention.

1.3.1 Bottom-up and top-down attention

The central nervous system has limited capacities for processing the vast amount of
received information. Thus, attention is a crucial brain function that dynamically
selects the relevant stimuli in the environment and prioritizes the processing of them
over the irrelevant ones. Attention can be categorized into two kinds: bottom-up
attention and top-down attention (Katsuki and Constantinidis 2014). Bottom-up
attention is guided by salient external stimuli which stand out in the visual field,
which is an automatic process. On the other hand, top-down attention refers to the
internal voluntary deployment of attention to behaviorally relevant stimuli (Katsuki
and Constantinidis 2014).
Previous studies on bottom-up attention have found that the neural response to

the stimulus in the classical visual receptive field is modulated by the feature of
the stimuli surrounding the receptive field. Neurons exhibit stronger firing rates if
the feature of the stimulus inside the receptive field is different from the feature of
the surrounding stimuli compared with the scenario when the stimuli’s feature is
homogenous across the visual field (Allman, Miezin, and McGuinness 1985; Tanaka
et al. 1986; Schein and Desimone 1990; Knierim and Van Essen 1992). This enhance-
ment in the response to salient stimuli suggests that bottom-up attention is attracted
to the location causing the strongest neural response, and the salient object’s neural
representation could obtain more processing resources in the downstream visual cor-
tical regions than other stimuli. In addition to this bottom-up salience-dependent
neural response, neural activity is also affected by top-down attention. It has been
found that when two stimuli with different features, one preferred feature and the
other non-preferred, are concurrently presented at the receptive field, the neural re-
sponse is intermittent between the responses when either stimulus is presented alone.
The attention to either stimulus would make the response to concurrent stimuli close
to the response when only the attended stimulus was presented, a phenomenon re-
ferred to as ‘biased competition’ (Desimone, Duncan, et al. 1995). Through this
biased competition between the response to different stimuli, top-down attention
can voluntarily promote the processing of behaviorally relevant inputs even if they
may not be the most inherently standing out signals.



1.3. VISUAL ATTENTION IN THE BRAIN 12

1.3.2 Normalization model for attention

The modulation of the mean firing rate of neural response caused by the competition
between concurrently presented stimuli and the effect of top-down attention can be
captured by the normalization model (Reynolds and Heeger 2009). In the model,
the response of neurons is predicted as follows:

R(θ) =
A(θ)E(θ)

S(θ) + σ
. (1.10)

Here θ is the most preferred feature of an arbitrary dimension of an arbitrary neuron,
E(θ) is the stimulus drive of the stimulus in the visual field, A(θ) is the attention field
representing the attentional modulation of the external drive, σ is the contrast gain,
and S(θ) is the suppressive drive, which is the pooled stimulus drive surrounding θ,
defined as

S(θ) = s(θ) ∗ [A(θ)E(θ)], (1.11)

where s(θ) is the suppressive field defining the range of the pooling in dimension θ
and * denotes convolution. According to the model, nearby stimuli cause suppres-
sion effects on each other due to the suppressive drive S(θ). Meanwhile, top-down
attention modulated the external drive of each stimulus according to their task rel-
evance, biasing the competition between stimuli that are presented simultaneously.
Combining both bottom-up and top-down factors, the stimulus with the highest
response wins the most perception resources.

1.3.3 Top-down modulation beyond the firing rate

The effects of top-down attention are not limited to the firing rate. It has been
observed that the variability of the response of individual neurons and the shared
variability between neurons are both decreased by top-down attention (Figure 1.6A,
B; M. R. Cohen and Maunsell 2009; Mitchell, Sundberg, and Reynolds 2009). The
variability of individual neurons is quantified by the Fano factor which is defined
as the ratio of the variance of spike counts to its mean, and the shared variability
between neurons is quantified by the noise correlation (spike count correlation), de-
fined as the Pearson correlation of the spike counts between pairs of neurons. High
response variability means a low signal-to-noise ratio and thus decreases the quality
of the information that neural activity represents; this is particularly worse when the
fluctuation is correlated between neurons because correlated noise/fluctuations can-
not be reduced by averaging the activity across a large number of neurons. Therefore,
the top-down attention-related reduction of the Fano factor and noise correlation
together with the increased firing rate improve the signal-to-noise ratio of the neu-
ral population representation of behaviorally relevant stimuli, thereby leading to
improvements in cognitive tasks. In addition, it is worth noting that recently there
is an emerging view arguing that the reduced variability and noise correlation are
both consequences of the attention modulation of the normalization (Equation 1.10)
as well (Verhoef and Maunsell 2017; Schmitz and Duncan 2018).
In addition to the effect on single neuron populations, top-down attention also

influences the interaction between remote brain regions. One hallmark of this aspect
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Figure 1.6: Attention modulation on the neural activity
(A) The Fano factor of neurons is lower when the receptive field stimulus is
attended (black) than when the receptive field stimulus is unattended (grey).
(B) Attention decreases the noise correlation between neurons (black vs grey).
The noise correlation is plotted as a function of the mean firing rate of the
neuron pair. The noise correlation of pairs of neurons at opposite hemispheres is
close to zero (dash line). (A-B) are adapted from M. R. Cohen and Maunsell
(2009).

is the enhanced gamma-band coherence between visual sensory areas, such as V4,
and association areas, such as the frontal eye field (FEF) (Gregoriou et al. 2009). The
coherence is an index characterizing the phase-synchrony between two oscillators and
high coherence between the activities of two neuron groups has been proposed as a
communication mechanism between distant brain areas (Fries 2015). This argument
has been supported by the observation that the coherence between different brain
regions with non-overlapping receptive fields has lower coherence than regions with
overlapping receptive fields. Thus, attention improvements in gamma coherence
suggest that the information of the attended stimulus is preferentially transmitted
along the visual hierarchy and is processed with a high priority compared with the
information of distractors.

1.3.4 Visual search

In addition to the attentional effects on the neural response mentioned above, visual
attention has also been investigated at the behavior level to reveal the attention-
deployment strategies during the visual search tasks (Klein 1988). In those tasks,
subjects were instructed to look for a distinct target that may or may not exist
among a set of distractors and make a response of whether the target is presented on
each trial. The number of total items (set size) varied across trials and the reaction
time (RT) subjects need to make such target-present or target-absent responses were
measured. Studies of this kind reveal that the RT is a linear function of the set size,
and the slope of RT × set size function for target-absent trials is around 2-3 times
the slope for target-present trials (Figure 1.7; Wolfe 1998). These results suggest the
visual search is serial, with the attention deployed sequentially to each item until
the target is found (Sternberg 1966; A. M. Treisman and Gelade 1980). In addition,
the slope of the RT × set size function reflects the efficiency of a specific search task;



1.3. VISUAL ATTENTION IN THE BRAIN 14

tasks in which targets are difficult to find elicit steeper slopes than tasks with high
saliency targets. To explain these behavior data, Wolfe (1994) proposed the Guided
Search model, in which they introduced the notion of the ‘activation map’ (Figure
1.8). The activation map gives each item in the space an activation intensity which
encodes the priority of each item to be attended. The activation intensity depends
on both bottom-up object saliency and top-down guidance. To compute the bottom-
up saliency of each item, they first assume each of the features of items (e.g., color,
orientation) is coded by the output of a set of broadly tuned channels, for example,
channels ‘red’, ‘yellow’, etc., for the feature of color and channels ‘steep’, ‘left’, etc.,
for the feature of orientation. The saliency of each item is then computed for each
feature dimension by calculating the difference between the output of each channel
for the item itself and the surrounding neighbors. To model the effect of top-down
guidance, the channel of which output can best differentiate the target from the
background items is selected for each feature dimension, and the output of the
selected channel becomes the saliency for that feature of the item. For example, to
search a 10-degree line tilted to the left among vertical lines, one may choose the ‘left’
channel to facilitate the search. The saliency of each item in each feature dimension
gives rise to the ‘feature map’, and the sum of each feature map across features gives
the total activation map. The attention is then deployed in descending order of the
activation intensity on the activation map until the target is found or the activation
intensity is below a pre-defined activation threshold. In the Guided Search model,
it is assumed that the activation is noisy and Gaussian-distributed; thus, the search
becomes a signal detection problem, and the slope of the RT × size functions of
target-absent and target-present trials can be related to the distributions of the
target and distractors activation. Specifically, the slope of the target-present trials
is determined by the area of the distractor activation distribution that is larger than
the mean of the target activation distribution. The slope of the target-absent trials
corresponds to the area of the distractor activation distribution that is larger than
the activation threshold, and the error rate of missing a target is related to the area
of the target activation distribution that is lower than the activation threshold. To
produce the 2:1 slope ratio of target-absent to target-present RT × size functions,
they further assume the variance of the target activation increases inversely with
the square root of its mean, and the activation threshold is dynamically adjusted
for different target activation means to maintain a constant error rate.
Despite the success of the traditional models for visual searches, such as the

Guided Search model mentioned above, they are mostly phenomenological models;
thus, the circuit mechanism underlying these searching behaviors remains unknown.

1.3.5 Rhythm of attention

The neural correlate of sustained attention used to be supposed as constant neu-
ral firing, as the normalization model described in subsection 1.3.2 does. However,
there is accumulating evidence suggests that the perception fluctuates both in time
and space, rather than a static process. Neural recordings during the spatial atten-
tion tasks in which participants simultaneously monitor two concurrently presented
stimuli revealed that visual stimuli can evoke gamma band activity with its ampli-
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Figure 1.7: Visual search tasks
(A) A schematic of a typical visual search task in which the subject was
instructed to search for a target ‘T’ among distractors ‘L’.
(B) The reaction time needed to make a target-preset or target-absent response
is a linear function of the number of items (set size) in the visual field. The
slope of the linear function for target-absent trials (red) is around 2-3 times that
for target-present trials (black). (A-B) are adapted from Wolfe (2012).

Figure 1.8: The architecture of Guided Search model
Adapted from Wolfe (1994).
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tude fluctuates at theta band frequency (≈ 4 Hz) (Figure 1.9; Landau et al. 2015;
Spyropoulos, Bosman, and Fries 2018). This theta-phase modulated gamma am-
plitude is a phenomenon termed theta-gamma phase-amplitude coupling, which is
widely observed in experiments aiming for spatiotemporal properties of attention.
One of the important features regarding this theta-gamma coupling is that the theta
fluctuation of the gamma amplitude of the response to each of the two stimuli is
antiphase to each other, and the gamma amplitude influences the perception: par-
ticipants are more likely to detect a change in a stimulus when the gamma activity
of the neural representation corresponding to the changing stimulus is high, which
gives rise to a theta rhythm in the behavior performance (Figure 1.9; Landau et al.
2015). This theta-modulated neural activity and perception occur in both sensory
and association areas in visual cortical regions. In sensory areas, the theta is pro-
posed to arise from the interaction of the receptive field: stimuli in the inhibition
surround of the receptive field compete with those in the excitatory center, and this
competition causes theta oscillation in the multiunit activity and the reaction time
to detect targets (Kienitz et al. 2018). In association areas, theta-gamma phase-
amplitude coupling has been found to be induced by the ‘cue’ (a signal directing
attention). Subdural electrocorticography recordings in humans reveal cue-evoked
theta oscillation in the high-frequency band activity (70-150 Hz, a proxy for neuronal
excitability) in frontoparietal attention networks (e.g., areas such as FEF and LIP),
with the theta phase indicative the behavior performance (Helfrich et al. 2018). In
mice, cue-evoked theta-gamma coupling has been observed in the prefrontal cortex
and is induced by phasic Acetylcholine release (Howe et al. 2017). These findings
of the fluctuation in both neuronal activity and behavior outcome suggest that at-
tention is an ongoing sampling process, perhaps functioning in both bottom-up and
top-down directions.
Despite such ubiquitous fluctuation properties of attention, only recently has the

research in attention begun to investigate the underlying circuit mechanism. Chen
and Gong (2022) considered a biologically plausible spiking neuronal network model
and argued that the complex spatiotemporal spiking activity patterns emerging at
the critical transition region between different network states can account for the
theta-gamma coupling observed in vivo. In this model, the spiking activity pattern
exhibits gamma oscillations and its complex propagating dynamics lead to the neural
excitability fluctuation at the theta band. However, a unified model/theory is still
needed to link the fluctuating nature of attention to the attention-related changes
in the neural response, such as the reduction in variability and noise correlation
and the enhancement in gamma band coherence between distant cortical regions
(introduced in subsection 1.3.3). Furthermore, it is also worth investigating whether
the fluctuating attention underlies the serial attention-guided search as introduced
in subsection 1.3.4.
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Figure 1.9: The theta rhythm in the gamma amplitude and behavior
performance
A schematic diagram for the theta rhythmic sampling of attention during a
change-monitoring task. The subject was asked to monitor a change randomly
occurring at one of the two stimuli placed at the right and left visual fields,
respectively. Red and blue lines in the top panel indicate the gamma activity in
the MEG. The power of gamma activity fluctuates at around 4 Hz and is
antiphase between the right and left hemispheres. Successful detection (hit) of
the change on the right stimulus often occurs at the moment when the gamma
power in the left hemisphere is high, and failure of detection (miss) often occurs
when the left hemisphere gamma is low. Adapted from Landau et al. (2015).



Chapter 2

Flexible corticocortical
communication: underlying
mechanism and functional roles in
visual attention

Abstract: Flexible communication between different cortical areas is essential for
most perceptual, cognitive, and motor functions. To understand the circuit mecha-
nism of corticocortical communication, here we develop a canonical, large-scale spik-
ing neural circuit model involving sensory and association areas with feedforward
and feedback interactions. Population activity patterns with rich spatiotemporal
dynamics emerging from the circuit model can account for a range of neural dynam-
ics at the individual neuron and circuit levels, including the variability of spikes and
gamma bursts. We illustrate that coordinated interactions of the spatiotemporal
dynamics in sensory and association areas provide a circuit mechanism for imple-
menting flexible gamma burst synchrony-based communication. This mechanism
also explains how subspace-based communication emerges in our large-scale circuit,
thus reconciling two major proposals of corticocortical communication (i.e., gamma
synchrony and subspace communication). We further demonstrate that dynamical
corticocortical communication can be modulated during visual attention tasks and
that such modulated communication provides a mechanistic account of a great va-
riety of neural effects of visual attention, which include the reduction of spike-count
correlations and the increase of inter-areal gamma synchrony. These results thus
reveal a circuit mechanism of flexible corticocortical communication and suggest
that such communication is important to understanding brain functions such as
attention.

2.1 Introduction

Brain functions ranging from perception to cognition and behavior fundamentally
depend on flexible communication between different cortical areas (Park and K. Fris-
ton 2013; K. J. Friston 2011; Battaglia et al. 2012). Understanding the circuit mech-
anism of such interareal communication has been a long-standing topic of interest in

18
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systems and computational neuroscience. One prevalent view proposed for under-
standing interareal communication is based on interactions of cortical areas through
low-dimensional subspace (Semedo et al. 2019), within which population activity in
one cortical area is functionally related to that in another area. Such subspace-based
communication has been observed in a variety of cortical areas (Semedo et al. 2019;
Srinath, Ruff, and M. R. Cohen 2021). However, the dynamical circuit mechanism
underlying the emergence of communication subspaces, and how they can be rapidly
reconfigured to implement flexible interareal communication, remains unclear.
Another view proposed for accounting for cortical communication is that inter-

areal gamma synchrony or coherence can coordinate interactions of neural assem-
blies in different brain areas (Womelsdorf, Schoffelen, et al. 2007), and that such
gamma synchrony-based communication underlies key brain functions such as at-
tention (Womelsdorf, Fries, et al. 2006; Gregoriou et al. 2009). Rather than being
regular, sustained oscillations as often assumed, growing evidence indicates that
gamma activity exhibits highly nonstationary, burst-like properties (Burns, Xing,
and Shapley 2011; Xing et al. 2012), thus exhibiting large fluctuations over time.
Although it has been suggested that such bursting properties of gamma activity
might be beneficial for interareal communication (Palmigiano et al. 2017), these
studies, however, have not focused on the spatial organization of gamma bursts,
which, along with the temporal fluctuations, potentially endows gamma bursts with
rich, complex spatiotemporal dynamics providing a powerful mechanism for flexi-
ble interareal communication. Furthermore, whether and how the two leading views
(i.e., the view of communication subspace and that of gamma synchrony) can be rec-
onciled to gain a comprehensive and deep understanding of cortical communication
remain unresolved.
Here, we propose a new mechanism for implementing interareal communication

in a profoundly flexible manner based on coordinated interactions of complex spa-
tiotemporal dynamics of bursts of spiking and associated gamma bursts emerging in
different cortical areas. In our mechanism, spiking bursts are organized as spatially
localized, coherent activity patterns or wave packets with rich propagating dynamics.
Coordinated interactions of these localized activity patterns in sensory and associ-
ation areas give rise to distributed dynamical synchrony. That is, these patterns
would be synchronized in one retinotopically aligned location for a while; they are
then desynchronized before they are synchronized in another location. Crucially, the
transient synchrony of these patterns would naturally give rise to gamma-mediated
communication. We illustrate this mechanism by developing a canonical, large-scale
cortical circuit model involving sensory and association areas with bottom-up (feed-
forward) and top-down (feedback) connections. Based on this large-scale model, we
further demonstrate that the synchrony of these localized patterns can account for
the emergence of communication subspace; our mechanism thus reconciles the two
leading views of interareal communication. Crucially, we find that the transient dis-
tributed synchrony provides a dynamical mechanism for flexibly switching between
distinct communication subspaces.
We further elucidate that such flexible interareal communication can be mod-

ulated during attention. Particularly, we show that during cued attention tasks
as studied in Reynolds, Pasternak, and Desimone (2000) and M. R. Cohen and
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Maunsell (2009), the state of the activity patterns is modulated locally to dynami-
cally enhance interareal communication. The processes underlying such modulated
communication can account for a great variety of neural effects of visual attention,
which include the classical observation of biased competition (Desimone, Duncan,
et al. 1995), the increase of spike bursts in the attended location (Engel et al. 2016),
the reduction of neural variability and spike-count correlations (M. R. Cohen and
Maunsell 2009), increased gamma synchrony between V4 and FEF (Gregoriou et al.
2009), and increased theta-gamma coupling (Howe et al. 2017). These results thus
offer a novel perspective to understand the underlying circuit mechanism of flexible
interareal communication and its functional role in brain function.

2.2 Results

2.2.1 Two-area circuit with cortico-cortical loops

We develop a large-scale neural circuit model involving a sensory area (i.e., V4,
bottom) and a frontal association area (i.e., FEF, top); the two areas are coupled
via bottom-up (feedforward) and top-down (feedback) connections, thus interacting
with each other through cortico-cortical loops (Figure 2.1, see Methods for details
of the model). The large-scale neural circuit incorporates several well-established
properties of the cortex, including the distance-dependent coupling property (Levy
and Reyes 2012), the property of balanced excitation and inhibition (Xue, Atallah,
and Scanziani 2014; Barral and D Reyes 2016), and the property of neural firing
adaptation (Hasselmo 1995; Wang 1998). In addition, our large-scale model incor-
porates areal heterogeneity of local circuits; that is, excitatory synaptic strengths
increase along the cortical hierarchy from sensory to association areas (Chaudhuri
et al. 2015). Both the sensory and association circuits are close to the transition
state between the propagating wave state and non-propagating wave state, as we
have previously identified (Gu, Qi, and Gong 2019); we refer to this transition state
as the dynamical working regime of our model.
In the dynamical working regime, individual neurons in both areas fire sparsely

and irregularly during spontaneous activity; the firing rates of V4 and FEF neurons
are 6.06 ± 0.01 and 7.39 ± 0.03 Hz (mean ± SEM), respectively. The coefficient of
variation (CV) of interspike interval and the Fano factor of spike counts (the ratio
of the variance of spike counts to the mean spike counts over 52 ms time windows)
of V4 and FEF neurons have broad distributions, and their mean values are greater
than 1 (CV in V4 is 1.114 ± 0.004, CV in FEF is 1.193 ± 0.005; Fano factor in V4
is 1.325 ± 0.008, Fano factor in FEF is 1.773 ± 0.013, mean ± SEM, p < 10−30

for all the difference between above mean values and 1, two-sided one-sample t-
test), quantitatively comparable to those measured experimentally (Churchland et
al. 2010). Note that the variability of FEF neurons is greater than that of V4
neurons (p < 10−20 for CV and p < 10−55 for Fano factor, two-sided unpaired t-
test); a similar trend has been found in (Goris, Movshon, and Simoncelli 2014).
We find that inactivating distant sources of either bottom-up or top-down input to
FEF and V4 reduces the spiking variability of their neurons. When the top-down
connection is disconnected, the Fano factor in V4 reduces to 1.234 ± 0.007 (mean
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Figure 2.1: Schematic of the network model
Each area of the network consists of excitatory (orange triangles) and inhibitory
(orange circles) neurons. Spiking activity patterns (black dots) in two areas are
intermittently synchronized at different retinotopically aligned regions (big
circles with different colors indicating different time). During each synchronized
events, local population neural oscillations, particularly in the gamma band, are
transiently phase locked between areas (red and brown curves).

± SEM, p < 10−34, two-sided paired t-test); when the bottom-up connection is
disconnected, Fano factor in FEF reduces to 1.567 ± 0.011 (mean ± SEM, p < 10−38,
two-sided paired t-test). The cortico-cortical loops effectively contribute to the
variability of neural dynamics, as found in experimental studies (Gómez-Laberge
et al. 2016). These results indicate that the cortico-cortical loops in our model are
as effective as found in experimental studies, thus providing a quantitative modeling
framework for understanding the general mechanism of cortico-cortical coordination
and communications underlying cognitive function.
At the circuit level, coherent localized activity patterns emerge and exhibit com-

plex spatiotemporal dynamics, as observed in experimental studies (Liu et al. 2021).
In this study, we illustrate that spatiotemporal interaction/coordination of these
correlated activity patterns across different cortical areas provides a mechanism for
communicating or routing information in a fundamentally dynamical and flexible
way. Crucially, this dynamical communication mechanism is able to reconcile the
neural subspace (Semedo et al. 2019; Srinath, Ruff, and M. R. Cohen 2021) and
gamma-based communication mechanisms (Womelsdorf, Fries, et al. 2006; Grego-
riou et al. 2009) proposed previously. Figure 2.2A and D show that a coherent,
localized spiking pattern emerging in the V4 and FEF circuits respectively hovers
around one location for a while and then switches to another location in an intermit-
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tent manner. By tracking this coherent pattern (see Methods), we find that when it
dwells around one location, spiking activity at the corresponding location exhibits
vigorous ensemble, and then turns back to a relatively quiescent state after the pat-
tern moves away (Figure 2.2B, E). This thus causes neurons to fluctuate between
phases of vigorous (On state) and faint (Off state) spiking and neurons fire in a
bursting way; such on-off transitions have been found in spontaneous activity of V4
of behaving monkeys (Engel et al. 2016). To characterize these bursts, we detect
them by thresholding the instantaneous multiunit activity (MUA, defined as the
average firing rate of a local group of excitatory neurons; see Methods for details of
burst detection). The duration of the On state in V4 is ton = 54.46 ± 1.98 ms (mean
± SEM), and that of Off state is toff = 280.44 ± 13.89 ms (distributions are shown
in Figure 2.12A); these durations are quantitively comparable to those measured in
the spontaneous activity of macaques V4, with ton = 97 ± 36 ms and toff = 118
± 47 ms (Engel et al. 2016). In the circuit of FEF, the dynamical patterns can
similarly explain the burst-like, On-Off transitions of spiking activity (Figure 2.2A,
2.12C); ton = 43.60 ± 0.66 ms and toff = 302.62 ± 14.53 ms.
In both V4 and FEF areas, we find that the bursts of spiking are associated with

gamma bursts in either local field potential (LFP; which is calculated based on the
sum of synaptic currents of excitatory neurons) or MUA. As shown in Figure 2.2G,
the power spectrum of MUA and LFP in V4 and FEF shows a gamma peak sitting
on top of 1/f activity. Through wavelet transform-based time-frequency analysis on
LFP and MUA (see Methods), we find that during the transient epochs of spiking
bursts, there exist gamma bursts in both LFP and MUA (Figure 2.2C, F, only the
time-frequency spectrograms for MUA are shown). Our further statistical analysis
of the duration and power of these gamma bursts in V4 and FEF indicate that
they exhibit large fluctuations, as measured in experimental studies (Figure 2.10,
2.11). Such bursting and variable properties of gamma oscillations, however, would
be destroyed if the circuit is moved away from the working regime by changing the
relative strength between excitatory and inhibitory synaptic coupling (see Methods
2.4.4 and the Results in Chapter 4 for detailed analyses of gamma bursts and working
regime).
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Figure 2.2: Spatiotemporal dynamics, On-Off dynamics, and
intermittent gamma bursts of the model in the dynamical working
regime
(A) A snapshot of localized spiking activity pattern in FEF. Grey dots indicate
the number of spikes for each excitatory neuron over the previous 15 ms. The
line indicates the trajectory of the center of mass of the pattern over the period
from 180 to 360 ms. (B) Raster plot of the spiking activity (vertical black line)
of a local group of 80 excitatory neurons near the center of FEF shows the
transition between On (epochs marked by blue) and Off states. The pink line
shows the distance of the center of mass of the spiking activity pattern to the
center of FEF. Spiking activity is at On states when the activity pattern is close
to the neurons and at Off states when the pattern moves away. (C) Wavelet
time-frequency spectrogram of the MUA of the same 80 neurons over the same
period in (B). The epochs of On states align with the moment of gamma band
bursting activity. (D-F) Same as (A-C) but for the V4. (G) Power spectrums of
the MUA at the center of V4 (first panel) and FEF (second panel), and power
spectrums of the LFP at the center of V4 (third panel) and FEF (fourth panel).
Two peaks at theta and gamma band are evident in these power spectrums.
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2.2.2 Gamma-based communication

We next elucidate that the localized activity patterns in V4 and FEF coordinate or
interact with each other to give rise to rich and complex spatiotemporal dynamics
and that these coordinated dynamics provide a mechanism for gamma-based com-
munication. By tracking the trajectories of these patterns in both V4 and FEF,
we find that once these patterns are spatially aligned at a location (characterized
by the incident when the distance of the pattern in both V4 and FEF to a retino-
topically aligned position are simultaneously short; Figure 2.3A), they would be
synchronized for a while at this location; they then move around on their own
until they are synchronized at another location for another transient epoch. The
transient synchronized patterns give rise to simultaneous burst spiking activity at
the retinotopically aligned positions across areas; we denote the epoch of simul-
taneous burst activity across areas as the simultaneous On state (S-On) and the
epoch of simultaneous faint spiking activity as the simultaneous Off (S-Off) state.
To quantify the retinotopy-specific interaction between the two areas during these
synchronized events, we measure the coherence in the gamma band between MUA
in the center region of V4 and FEF at S-On states and S-Off states, respectively,
during spontaneous activity. The coherence in this study is a modified version of the
conventional coherence used in other literature. The conventional coherence quanti-
fies the cross-trial relative-phase consistency and amplitude-covarying between two
signals by performing Fourier transform to obtain the phase and amplitude for each
frequency component and calculate the coherence based on the obtained phase and
amplitude (Gregoriou et al. 2009); here, due to the non-stationarity of the MUA,
we quantify the cross-time relative-phase consistency and amplitude-covarying be-
tween signals for different states (i.e., S-On and S-Off) by using band-pass filter
and Hilbert transform to get instantaneous phase and amplitude, over which the
coherence is calculated (see Methods). Coherence in the gamma band is regarded
to be an index for interactions between neural populations. We found that the
gamma band coherence at the S-On state is higher than that at the S-Off state
(average coherence between 40 and 60 Hz is 0.27± 6× 10−3 for the S-On state and
0.13±7×10−3 for the S-Off state, p < 10−15, mean ± SEM, two-sided paired t-test)
and the peak coherence value appears at 50 Hz which is close to the peak gamma
frequency in the power spectrums (Figure 2.3C). The enhanced gamma coherence
when the localized activity patterns are retinotopically synchronized suggests that
these synchrony epochs are key time intervals during which the two cortical areas
effectively interact with each other. To illustrate this, we examine the changes in
firing rates for neurons in V4 and FEF during and outside these synchrony events,
respectively (Figure 2.3B). The firing rate is strongest when both areas are at the
On state, compared with when only one is at the On state or both at the Off state
(V4 firing rate is 20.40 ± 0.94 Hz for S-On, 16.94 ± 0.78 Hz for V4 On only, 4.69
± 0.16 Hz for FEF On only, and 2.86 ± 0.07 Hz for S-Off; FEF firing rate is 43.67
± 2.46 Hz for S-On, 5.04 ± 0.22 Hz for V4 on only, 34.35 ± 1.94 Hz for FEF On
only, and 2.51 ± 0.07 Hz for S-off; mean ± SEM, p < 10−13 for all the comparisons
between the mean at S-On state and other states, two-sided paired t-test).
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Figure 2.3: Interareal interactions at different States
(A) Spiking activity of a local group of 80 neurons at the center of FEF (top)
and V4 (bottom). These two groups of retinotopically aligned neurons can be
both at On state (e.g. at 300 ms and 1000 ms) or only one at On state (e.g. at 0
ms, only FEF is at On state). Pink lines show the distance from the activity
pattern in each network to the network center.
(B-D) Captions on next page.
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Figure 2.3:
(B) Average firing rate of the V4 neurons (left panel) and FEF neurons (right
panel) in (A) at different states. S-Off, simultaneous-Off state; S-On,
simultaneous-On state; V4 On, only V4 at On states; FEF On, only FEF at On
states. Error bars indicate 1 SEM.
(C) Coherence between MUAs of the retinotopically aligned neurons in V4 and
FEF at simultaneous-Off state (S-Off, empty circle) and at simultaneous-On
state (S-On, solid circle) for the frequency from 30 to 120 Hz. The coherence is
maximum at 50 Hz.
(D) Communication subspace between V4 and FEF. The performance of
predicting FEF spiking activity by V4 spiking activity using reduced-rank
regression (RRR) with different numbers of predictive dimensions at the S-On
state (solid circle) is higher than that at the S-Off state (empty circle). The
performance of the full linear regression model is also higher at the S-On state
(solid triangle) than at the S-Off state (empty triangle), suggesting
communication primarily occurs at the S-On states. At S-On states, the
performance of RRR is comparable to that of full regression when the RRR uses
three predictive dimensions and using more predictive dimensions does not
improve the performance of RRR furtherly, indicating the interaction between
V4 and FEF is low dimensional.

2.2.3 Subspace-based communication

We now illustrate that the coordinated, distributed synchrony of localized activ-
ity patterns in V4 and FEF provides a dynamical mechanism for implementing
subspace-based communication. As in Semedo et al. (2019), we quantify interactions
between sensory and association areas by using the reduced-rank regression (RRR)
method (see Methods), which not only quantifies the linear dependence of target
area activity on source area activity but also reveals the dimensions of subspace
through which the interareal communication occurs. Specifically, during sponta-
neous activity, we record single-unit activity (SUA) in 20 ms nonoverlap bins for
each neuron at center regions (80 excitatory neurons within 5 grid points to center)
in both areas simultaneously and then divide the SUA time series into On state pe-
riod and Off state period based on local MUA. We next calculate the fluctuations of
the SUA for each neuron in each state period respectively by subtracting the mean
SUA of each neuron for each state period from the raw SUA in the corresponding
state period. Next, we use the SUA fluctuations of these neurons in V4 to predict
the SUA fluctuations in FEF using RRR for the S-On state and S-Off state, respec-
tively. RRR restricts the number of regression dimensions (rank) during fitting; here
we refer to those dimensions as predictive dimensions as in Semedo et al. (2019).
The prediction performance during the S-On state in spontaneous activity increases
to its maximum when only around three predictive dimensions are used in RRR
(Figure 2.3D), and this maximal performance is comparable to the performance ob-
tained by a full linear regression model (ridge regression; see Methods) (p = 0.27
for the difference between the performance for RRR with three dimensions at S-On
state and performance for full linear regression at S-On state, two-sided paired t-
test). The full linear regression includes all the available dimensions (the maximal
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number of regression dimensions of full linear regression is equal to the number of
target neurons, in our case, 80). This indicates that the communication is realized
through a subspace with a low dimension of ≈ 3. During the S-Off state, however,
the prediction performance × number of predictive dimensions curve is flatter and
lower than the S-On state (Figure 2.3D; p = 0.017 for the difference between the
performance for RRR with three dimensions at S-On state and S-Off state, two-sided
paired t-test).
In summary, these results indicate the coordinated interactions of the localized

correlated wave patterns provide a mechanism of dynamical and flexible commu-
nication. Such flexible coherent pattern-based communication structure reconciles
and explains the subspace-based and gamma synchronization-based communication
mechanisms. Note that fundamentally different from static communication as often
assumed, our communication mechanism is dynamical and evolves rapidly in time
and space. Such dynamical communication is largely consistent with that reported
in a recent study (Javadzadeh and Hofer 2022). The ability to flexibly switch be-
tween different neural groups for dynamical communication is a core prediction of
our communication mechanism.

2.2.4 Neural effects of attention emerging from modulated
flexible communication

We next illustrate the dynamical communication autonomously occurring through
interactions between patterns can be modulated or enhanced during cognitive func-
tions such as attention, and that the dynamical process underlying such modulated
communications provides a mechanistic account of a great variety of neural effects
of attention. These attention effects include enhanced gamma synchrony between
V4 and FEF, increased theta-gamma coupling after the cue onset as found in the
prefrontal cortex, biased competition, and reduction of neural variability and corre-
lation.
We consider a cued spatial attention task, in which a cue is given for one of two

simultaneously presented objects that are monitored to detect a change in one of
the objects (Reynolds, Pasternak, and Desimone 2000; M. R. Cohen and Maunsell
2009). To model the attention task, one external object is added at the center and
the other at the corner of V4 (see Methods). To model the effect of the cue, we
note that acetylcholine (ACh) has been found to participate in cue detection and
attention (Gritton et al. 2016), and local ACh release in the prefrontal cortex (PFC)
evoked by cue was found in rodents (Howe et al. 2017). During this process, ACh can
act quickly to spatially localized neural populations; for this reason, ACh constitutes
a key biochemical basis of rapid population coding dynamics of attention (Schmitz
and Duncan 2018). Among many other effects, it has been widely observed that the
release of ACh can modulate spike-frequency adaptation (SFA) (McCormick and
Williamson 1989). In biological neurons, one type of SFA is mediated by M-type
(KV7) potassium channel family in pyramidal neurons, which plays an important
role in regulating neuron excitability (Delmas and D. A. Brown 2005). M-type
potassium channels open when the membrane potential is high (roughly around -50
mV), generating an outward potassium current and decreasing the excitability and
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firing rate of neurons. These channels can be inhibited by the activation of the
M1 Muscarinic acetylcholine receptor. Thus, in our model, we assume that the cue
induces ACh-mediated, spatially local SFA reduction in FEF excitatory neurons at
the local region retinotopically aligned with the cued stimulus (the center stimulus
in V4); we refer to the onset of local SFA reduction as cue onset. During directed or
cue-driven attention, the cue and resultant SFA reduction are kept at the location
(i.e., the center) of the FEF area that is retinotopically aligned with the center
area of V4 to indicate a sustained attention situation as in experimental studies
(Reynolds, Pasternak, and Desimone 2000; M. R. Cohen and Maunsell 2009).
To proceed, we first demonstrate the effect of cue-driven ACh on the dynamics

of the FEF area is consistent with experimental findings. In Howe et al. (2017), it
has been shown that even without stimulus, cue-triggered ACh can enhance theta-
gamma coupling in the prefrontal cortex. To quantify such enhanced theta-gamma
coupling in our model, we calculate the phase-amplitude coupling modulation index
(PAC-MI) for LFP in FEF at the cued location before and after the cue onset with
no external input in V4. The PAC-MI quantifies the strength of cross-frequency
phase-amplitude coupling by measuring the extent to which the amplitude of a
specific frequency component (amplitude frequency, 35-100 Hz) is nonuniformly dis-
tributed with respect to the phase of another different frequency component (phase
frequency, 1-10 Hz) (see Methods); as shown in Figure 2.4A, B, the theta-gamma
phase-amplitude coupling is stronger for the cued condition than in the spontaneous
activity [average peak PAC-MI among all amplitude frequency (35-100 Hz)-phase
frequency (1-10 Hz) combinations is 3.9 × 10−3 for cued and 2.7 × 10−3 for spon-
taneous, P < 6 × 10−5, two-sided paired t-test]. This result thus provides further
neurophysiological validity of our model of ACh-mediated interareal communication
modulation.

2.2.5 Theoretical analysis of theta oscillations

In our model, theta oscillations arise from the mechanism of SFA-mediated forma-
tion of oscillatory activity pattern that is called ‘breather’. To illustrate this, we
adopt a firing rate model that possesses the SFA mechanism and the overall cou-
pling structure as the spiking neural circuit model. We perform dynamical stability
analysis for the stationary bump solution in response to perturbations (see Meth-
ods). Specifically, the evolution of the perturbation of firing rate at the boundary
(where the rate is equal to the output activation function threshold) of the stationary
bump-like firing rate solution can be decomposed into Fourier modes; the stationary
solution is stable if the eigenvalues of all modes have negative real parts. Based on
our analysis, we find the solution is stable when the SFA strength is weak (Figure
2.5A). As the SFA increases, some Fourier modes start to destabilize. For the model
parameter setting we consider here, mode n = 3 first destabilizes, followed by n = 2,
n = 1, and n = 0 (Figure 2.5A). By furtherly examining the eigenvalue at the critical
point of the transition of stability, we note that its imaginary part is nonzero at the
transition point, which indicates oscillation behavior (Figure 2.5B); thus, this tran-
sition of stability is Hopf bifurcation, transforming from a stable stationary solution
to an oscillatory pattern: breather. Therefore, the onset of instability results in the
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Figure 2.4: Cue-evoked theta-gamma coupling in FEF
(A) Cross-frequency phase-amplitude comodulograms for the LFP at the center
of FEF during the spontaneous activity.
(B) Same as (A) but for the LFP at the center of FEF after the onset of the
cue, i.e., the spike frequency adaptation around the center of FEF reduced. The
cue triggers the coupling between the phase of the theta oscillations and the
amplitude of the gamma oscillations.

onset of oscillation, with the frequency of oscillation at the transition point defined
by the imaginary part of the eigenvalue, referred to as the Hopf critical frequency
(ωc) (Figure 2.5B). The value of ωc can be analytically obtained; we find that ωc

increases as the SFA increases. As shown in Figure 2.5B and D, the ωc for mode
n = 1 (which destabilizes when SFA is high) is larger than n = 2, which in turn is
larger than mode n = 3 (which destabilizes when SFA is low). By numerical simu-
lation, we find that the oscillation frequency of the periodic solution is still close to
the Hopf critical frequency even far from the bifurcation point (Figure 2.5D), and
that the oscillation frequency increases as the SFA increases. This SFA-dependent
oscillation frequency is consistent with the spiking neural circuit model, in which
theta frequency increases with SFA (Figure 2.13).
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Figure 2.5: Impact of adaptation on the stability and oscillation of
the activity pattern in a neural field model
(A) The real part of eigenvalues, real(λ), for each Fourier mode (shown in
different colors) as a function of adaptation strength β. Only the larger real(λ) is
shown if there are two real eigenvalues. The top horizontal line shows the region
of β in which a particular mode has the largest positive real part of eigenvalues
and thus dominates the oscillation (shown in the same color but lower
brightness as those for the eigenvalues, same for the other panels in this figure).
(B) Same as (A) but for the imaginary part of eigenvalues, imag(λ)/(2π). The
black dash line shows the theoretic critical Hopf frequency ωc/(2π) (Hz) as a
function of β. Note that the imag(λ)/(2π) for each mode is tangent to ωc/(2π)
at the bifurcation point.
(C) Radius of the boundary (a) of the stationary activity pattern. The
boundary is defined as the curve where the activity of neurons is equal to the
threshold (see Methods). The black line indicates that the stationary activity
pattern is stable while the grey line indicates unstable.
(D) Oscillation frequency of the activity pattern, measured as the frequency of
the activity fluctuation at the pattern boundary, for different β measured in
numerical simulations (blue line), compared to the critical Hopf frequency
ωc/(2π) for three dominant modes (color dots on the black dash line).
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2.2.6 On and Off states modulation

We now illustrate the effects of ACh on the spatiotemporal dynamics of the activity
patterns by comparing the conditions with and without local SFA reduction in the
center area of FEF, with the former referred to as the with-attention condition and
the latter as without-attention condition, respectively. Two stimuli are presented at
the center and corner of V4 in both conditions. In the without-attention condition,
the activity patterns in both areas switch between the two locations with external
inputs sequentially, with occasional jumps to other areas. As illustrated above for
spontaneous activity (Figure 2.2), such pattern dynamics lead to On-Off transitions
in the spiking activity (Figure 2.6A left). In the with-attention condition, we find
that the localized activity pattern in FEF would stay in the central location with
ACh modulation for a longer period due to the decrease in SFA, leading to longer
On state duration and higher firing rate at the cued position in FEF than in the
without-attention condition (Figure 2.6A, B; On duration, without-attention: ton =
44.14 ± 0.60 ms, with-attention: ton =145.45 ± 6.54 ms, mean ± SEM, p < 10−5,
two-sided paired t-test; On rate, without-attention: ron = 48.49 ± 1.90 Hz, with-
attention: ron =100.93 ± 2.38 Hz, mean ± SEM, p < 10−5, two-sided paired t-test;);
despite this change, overall the movement of the localized activity pattern across
the whole FEF circuit still follows superdiffusive Lévy motion (Figure 2.14C, D
and Figure 2.15C, D). Note that, this result indicates that rather than completely
changing the stability of cortical circuits as proposed in existing studies, during the
cued attention task, ACh only locally modulates the pattern dynamics by increasing
its dwelling time at the cued location.
Because of the cortico-cortical interactions and the resultant coordination of the

dynamical patterns, the localized activity pattern in FEF with the increased dura-
tion at the cued location would tend to drag the localized pattern in V4 to stay
around the spatially aligned central area for a longer period than the without-
attention condition. Consequently, this process results in an increase of the On
state duration in V4 (Figure 2.6B, without attention: ton = 73.99 ± 1.85 ms, with
attention: ton = 82.48 ± 2.31 ms, mean ± SEM, p < 10−5, two-sided paired t-test),
as found in V4 of monkeys during the cued attention task (Engel et al. 2016). The
top-down modulation also increases the firing rate of the On and Off state in V4
(On rate, without attention: ron = 38.13 ± 0.90 Hz, with attention: ron = 41.65 ±
0.97 Hz, p < 10−5; Off rate, without attention: roff = 8.02 ± 0.28 Hz, with atten-
tion: roff = 10.44 ± 0.37 Hz, p < 10−5, two-sided paired t-test), consistent with
(Engel et al. 2016). In experimental studies, the effect of top-down attention on
the Off duration is unclarified, with different experiments obtaining distinct results
(Engel et al. 2016; Kempen et al. 2021); here, we found no significant influence on
the Off duration in V4 (without attention: toff = 133.41 ± 2.23 ms, with attention:
toff = 131.53 ± 2.82 ms, mean ± SEM, p = 0.20, two-sided paired t-test), but
significant reduction in the Off duration in FEF by attention (without attention:
toff = 187.84 ± 2.98 ms, with attention: toff = 149.46 ± 3.21 ms, mean ± SEM,
p < 10−5, two-sided paired t-test). In our model, we find that the distribution of
the duration of the On and Off state follows the exponential distribution (Figure
2.16, 2.17), comparable to On and Off durations measured in V4 of monkeys during
the cued attention task.
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Figure 2.6: Attention modulation of On-Off dynamics
(A) Raster plot of the stimulus-evoked spiking activity of 80 retinotopically
aligned excitatory neurons at the center of V4 (bottom row) and FEF (top row)
at without-attention (left column) and with-attention condition (i.e., local
reduction in the spike frequency adaptation around the center of FEF, right
column). Two stimuli are presented at the center and corner of V4. Pink lines
show the distance of the activity pattern to the center.
(B) Average On duration (first column from right), Off duration (second
column), On firing rate (third column), and Off firing rate (fourth column) for
FEF (top row) and V4 (bottom row) at without-attention (w/o att., blue bar)
and with attention-condition (w/ att., orange bar).
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2.2.7 Improvements in interareal communication

The enlarged durations of the patterns around the cued location in the sensory
and association areas consequently enhance interareal communications from both
perspectives of gamma synchrony and low-dimensional subspace-based communica-
tions. To illustrate this, we perform the same coherence analysis for both attention
conditions as for spontaneous activity. In the without-attention condition, consis-
tent with spontaneous activity, we find that the S-On state exhibits stronger gamma
coherence compared with the S-Off state (Figure 2.7A), and the coherence in both
states is furtherly enhanced by attention (without-attention, average coherence be-
tween 40-60 Hz is 0.34 for S-On state and 0.22 for S-Off state; with-attention, average
coherence is 0.37 for S-On and 0.25 for S-Off, p < 10−5 for comparisons both between
states and between attention conditions, two-sided paired t-test).
To further elucidate that these synchronized burst events are related to commu-

nication, we apply information theoretical analysis (see Methods) to the stimulus-
evoked activity. Specifically, we measure the transfer entropy (TE) between MUAs
in the center regions of two areas in the bottom-up direction, which quantifies the
amount of reduction in the uncertainty of the future MUA values in FEF by know-
ing the past MUA in V4 with varying time delay. We find that information is
transmitted primarily inside the bursts, but information transfer is low outside the
synchronous epochs, suggesting the dynamical routing of information flow (Figure
2.7C). Moreover, such information flow is significantly improved by top-down atten-
tion (without attention, the average TE across time delays from 7 to 10 ms is TE
= 6.5 × 10−4 nats for S-Off and TE = 6.7 × 10−3 nats for S-On; with attention,
TE = 2.4 × 10−3 nats for S-Off and TE = 8.4 × 10−3 nats for S-On, p < 10−3

for all comparisons between attentional states and comparisons between S-On and
S-Off state, two-sided paired t-test). Different from RRR and classical full linear
regression which only quantifies linear dependence between source and target ac-
tivities, TE can reveal non-linear interactions between two populations of neurons,
thus providing further justifications for the dynamical communication mediated by
inter-areal pattern interactions and its modulation during attention tasks.
Note that the communication is still communicated through a low dimensional

subspace preferentially during the S-On state in the stimulus-evoked condition, as
revealed by RRR (Figure 2.7B). For the S-On state during without-attention, the
performance for RRR is comparable to that for full linear regression (0.053 ± 0.004,
mean ± SEM) when the number of dimensions is larger than two (p > 0.4) and is
significantly higher than that for S-Off state for all number of dimensions (p < 10−5,
two-sided paired t-test). Similarly, for the with-attention condition and S-On state,
the performance for RRR is comparable to that for full linear regression (0.084 ±
0.005, mean ± SEM) for dimensions larger than three (p > 0.1) and is significantly
higher than that for S-Off state for all dimensions (p < 10−5, two-sided paired t-test).
In addition, the prediction performance of RRR with each number of dimensions is
improved by attention in both S-On and S-Off states (p < 0.02, two-sided paired
t-test). Note that at the with-attention condition and S-On state, although the
difference between the performance of RRR with three dimensions and that of full
linear regression is significant (p = 0.001), it is rather small, equal to 1.6% of the
performance of full regression; so basically, in our circuit model, the dimension of
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subspace for both attentional condition is kept constant (dimension = 3), suggest-
ing the attention improves the communication between distant neuronal population
without effecting the underlying subspace through which the communication occurs,
consistent with the experimental findings that the attention improves the efficacy
of information flow between medial temporal area and superior colliculus without
changing the subspace (Srinath, Ruff, and M. R. Cohen 2021).
These results thus indicate that during the cued attention task, the communica-

tion between V4 and FEF is modulated/enhanced. Such a mechanism could allow
for flexible routing and gating information between brain areas through the dynam-
ical formation and coordination of “communication subspaces”. These form key
experimentally testable predictions of our dynamical communication mechanism.

Figure 2.7: Attention modulation of the interareal communication
(A) Coherence between MUAs in V4 and FEF at different On-Off states as in
Figure 2.3C, but for stimulus-evoked activity and different attention conditions.
Solid circle: S-On states; empty circle: S-Off states; blue: without attention;
orange: with attention (same for the other panels). Attention enhances the
coherence in the gamma band.
(B) Performance of RRR and full linear regression model to predict the FEF
spiking activity using the V4 spiking activity, as that in Figure 2.3D. Difference
lines indicate different conditions as in (A). The communication subspace is still
low-dimensional for the stimulus-evoked activity with the same predictive
dimensions as that in spontaneous activity, and the attention improves the
efficacy of communication without changing the dimensions of the
communication subspace.
(C) Transfer entropy from the MUA in V4 to the MUA in FEF as a function of
the time delay between the V4 MUA and FEF MUA. Difference lines indicate
different conditions as in (A) and (B).
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2.2.8 Attention modulation on firing rates

We next investigate the top-down selective sampling effect on the overall response
rate in V4 irrespective of On and Off states. We find that top-down attention
selectively increases the response to the attended stimulus (Figure 2.8A, B) whereas
decreases that to the unattended one (Figure 2.8B). On average across the response
period from 0 to 600 ms, the response to the attended stimulus (center) increases
from 27.6 Hz to 32.4 Hz, while the response to the distractor (corner) decreases from
27.2 Hz to 26.2 Hz (p < 10−8, two-sided paired t-test). To quantify the attention
modulation of the neural population response we calculate the modulation ratio
(MIr), defined as the ratio of the firing rate with and without attention. As shown
in Figure 2.18, MIr is larger than 1 for the locations close to the cued position (center)
and less than 1 for locations far from the cued position. This phenomenon suggests
a competition for neural representation between different neural groups and that
attention biases this competition towards the attended stimulus, a hallmark of biased
competition (Desimone, Duncan, et al. 1995), indicating that the improved processes
on task-relevant stimuli are at the expense of task-irrelevant ones. Specifically, the
maximum MIr is around 1.17 at the center and decreases with the distance to the
center until reaches the minimum at locations with a distance of around ±28.28 grid
points to the center; as distance continues to increase, the MIr gradually increases
but remains less than 1. At the maximum distance of 45.25 grid points to the
center, MIr is 0.96. This relation between MIr and the distance to the cued position
could arise from the intra-areal synaptic coupling strategy we used in the model, in
which the probability of both excitatory and inhibitory synaptic connections decays
exponentially with the distance between post- and pre-synaptic neurons, and the
decay for the inhibitory connections is slower than that for the excitatory connections
(see Methods). This long-range inhibition and short-range excitation could generate
center enhancement and lateral suppression effects, with the maximum suppression
at a distance of around ±28.28 grid points.

2.2.9 Attention-related reductions in neural variability and
correlation

We now illustrate that the coordinated spatiotemporal dynamics underlying the
enhanced communication provide a novel account of neural variability reduction and
correlation reduction that have been widely observed during attention tasks (M. R.
Cohen and Maunsell 2009). We find that attention reduces neural variability, which
is quantified by the mean-matched Fano factor (see Methods). On average across the
response period (600 ms), the Fano factor is reduced by attention by 5%, from 1.464
to 1.386 (p < 10−11, two-sided paired t-test). By further checking the time-resolved
value for the Fano factor, we note that the reduction primarily happens at the
later phase of the response (Figure 2.8C), which is in line with in-vivo observations
(M. R. Cohen and Maunsell 2009). We then calculated the correlated variability in
spike counts between pairs of neurons, which is quantified by the noise correlation.
We find an attention-related reduction in noise correlation, with a decrease from
0.319 to 0.306, averaged across the response period (p < 10−5, two-sided paired
t-test). Similar to the Fano factor, the time curve for noise correlation shows that
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the significant attentional reduction of the noise correlation is also evident in the
later phase (Figure 2.8D).

Figure 2.8: Attentional effects on the neural response and variability
(A) Temporal curve of MUA in V4 in response to the onset of stimulus (0 ms)
for without-attention condition (blue) and with-attention condition (orange).
(B) Average neural response along the diagonal of V4 at different attentional
states.
(C) Attention decreases the mean-matched Fano factor, primarily at the later
phase of the response.
(D) Attention decreases the noise correlation between the neurons in the
attended neuron groups. The horizontal red (blue) line in each panel indicates
the period when the attentional effects on the value on the vertical axis are
increasing (decreasing) (p < 0.05, one-sided paired t-test).

2.2.10 Fractional neural sampling model

To understand the mechanism underlying these changes in neural variability and cor-
relation in V4, we develop a mathematical fractional neural sampling (FNS) model
that captures the complex spatiotemporal dynamics of the trajectory of spiking ac-
tivity patterns. Because the spiking activity pattern behaves like a random walker
that exhibits intermittent long jumps in space, a characteristic feature of Lévy mo-
tion, we model a random walker with a such feature using a stochastic differential
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equation driven by Lévy motion with a momentum term (Qi and Gong 2022)

dxt = γb (xt) dt+ βvtdt+ γ1/αdLα
t , (2.1)

dvt = βb (xt) dt, (2.2)

where xt is the coordinate of pattern trajectory, vt is the momentum term, β = 1
is the damping coefficient, b (xt) is the drift term related to the landscape of the
potential well (see below and Methods), γ = 100 is the strength of the Lévy motion
Lα
t whose step size over a time period dt = 1 ms follows a symmetric Lévy alpha

stable distribution SαS
(
α, dt

1
α

)
with α = 1.2.

In this model, there are two potential wells at the locations where the external
stimuli are added to the circuit, i.e., center and corner, to simulate the effect of
external stimuli on the dynamics of pattern trajectory in V4 (see Methods) (Figure
2.9A); the increase of attentional synaptic inputs from the association area (FEF) to
the center location would be equivalent to deepening the center well (Figure 2.9A,
red vs blue). As shown in Figure 2.9D, deepening the potential well at the center
attended location increases the On state duration at the corresponding position;
this is consistent with the spiking model. We next model the spiking activity in
the simple model. We assume the neurons in this FNS model are positioned on
a 2D plane in the same way as the excitatory neurons in the spiking model (see
Methods); because the spatial profile of the spiking pattern in the model can be
fitted as a Gaussian function (Gu, Qi, and Gong 2019), we assume the profile of
the instantaneous firing rate in the network is a 2D Gaussian bump centered at
the pattern trajectory, plus a baseline firing rate (Figure 2.9B). The baseline firing
rate corresponds to the Off state firing rate and the On state rate is the baseline
+ Gaussian bump. To model the attentional effect on the firing rate, we note that
in our spiking model, the attention increases both the firing rate of the On and Off
states by a similar value (3.52 Hz for On states and 2.42 Hz for Off states); thus,
we increase the baseline firing rate at the attended location by a value proportional
to the attentional increase in the depth of the attended well, so that both On and
Off state firing rate is modulated by attention (see Methods) (Figure 2.9C). We
next simulate the spikes trains of each neuron by Poisson random distribution of
which rate equals instantaneous firing rate. Then we compute the Fano factor and
noise correlation for a group of 80 neurons in the center region for different top-
down attention strengths (i.e., different well depth at the center location; the depth
combines the effects of stimulus and attention on pattern trajectory and firing rate).
Figure 2.9E shows the Fano factor computed with different window lengths (10-

1000 ms) for different attention strengths; the enhanced attention decreases the
Fano factor in all window lengths. For example, for 55 ms window, the Fano factor
decreases from 1.28 in without-attention to 1.15 in maximum attention [p < 10−20 for
the comparisons between the average Fano factor in without-attention (well depth
50) and strongest-attention (well depth 100) for all window lengths we tested, two-
sided unpaired t-test]. The noise correlation shows similar attentional reduction
(Figure 2.9F); for 55 ms window, it decreases from 0.22 to 0.13 when well depth
increases from 50 to 100 [p < 10−18 for the difference between the average noise
correlation in without-attention (depth 50) and strongest-attention (depth 100) for
all window lengths we tested, two-sided unpaired t-test].
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Figure 2.9: FNS explains the attentional reduction in the neural
variability
(A-C) 1D schematic for the 2D FNS model.
(A) Potential well along the diagonal of the 2D FNS model. For the
without-attention condition, there are two wells at the center and corner with
equal depth to simulate the stimuli (blue). For the with-attention condition, the
depth of the center well increases to account for the top-down attention effects,
assuming the attention is deployed to the center well/stimulus (orange). (B)
Baseline firing rate (long dash line), the firing rate of the activity pattern with
Gaussian profile centered at the center of mass of the pattern (short dash line),
and the total firing rate (baseline + Gaussian, solid line) along the diagonal of
FNS model for the without-attention condition.
(C) Same as (B) but for with-attention. The baseline rate at the center
potential well increases by a value proportional to the increase in the potential
well depth by attention.
(D) On duration at the center well as a function of the center potential well
depth, which represents different top-down attention strengths.
(E) Fano factor for neurons near the center potential well as a function of
window length for spike counting and potential well depth.
(F) Same as (E) but for noise correlation.

2.3 Discussion

In this study, we have identified a flexible interareal communication mechanism
based on coordinated interactions of spatiotemporal dynamics in sensory and asso-
ciation areas. These interactions not only give rise to gamma-mediated communi-
cation but also provide a mechanistic account of the emergence of communication
subspace, thus reconciling the former and latter to gain a better understanding of in-
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terareal communication. As we have illustrated, our mechanism provides profound
functional advantages such as flexible switching between different communication
subspaces. In addition, we have elucidated that our mechanism underlies brain
functions such as visual attention through demonstrating how the modulation pro-
cess of flexible interarea communication can explain a great variety of neural effects
of visual attention.
Our large-scale model of cortico-cortical interactions provides a novel perspec-

tive on the role of complex spatiotemporal dynamics of neural population activity
patterns. As we have demonstrated, localized coherent activity patterns or wave
packets emerging from our model hover around one location for a while and then
move or switch to another location in an intermittent manner. Such intermittent
motion of coherent patterns, which can be characterized as a type of nonstation-
ary motion (i.e. Lévy motion), can explain how bursts of spiking and associated
gamma bursts and their key variable properties such as variable gamma frequencies
emerge in our model. Due to the nonstationary nature of these localized patterns,
their coordinated interactions in the sensory and association areas give rise to tran-
sient synchrony unfolding both in space and time; namely, these patterns would
be synchronized in one aligned location of the cortical areas for a while; they are
then desynchronized before they are synchronized in another location. As we have
demonstrated, such transient synchrony of gamma bursts is essential for coordinat-
ing interareal communication; this role of gamma bursts is consistent with what has
been proposed in a previous study (Palmigiano et al. 2017). However, in our model
transient gamma synchrony is a spatially focal phenomenon with local groups of
neurons involved in this process and exhibits much richer spatiotemporal dynamics
than global synchrony as modeled in Palmigiano et al. (2017).
Our large-scale cortical model also reveals that coordinated interactions of local-

ized coherent activity patterns underlie the emergence of communication subspace
with a low dimension (≈3). In particular, we have found that functional communica-
tion as quantified by using RRR mainly occurs within the transient synchronization
epochs between localized activity patterns; such synchronized localized patterns pro-
vide a mechanism by which the communication between the two cortical areas is
constrained to a low-dimension subspace. One hallmark of subspace communication
in our model is that the subspace evolves rapidly over time, and switches from one
subspace to another; this dynamical property of communication subspace forms a
key testable prediction of our mechanism of interareal communication. Indeed, it
has been shown that cortico-cortical interactions and communication between V1
and LM neurons in mice cortex is dynamical and reorganizing over time (Javadzadeh
and Hofer 2022), as found in our study. To directly test whether our mechanism
underlies the dynamical communication found in Javadzadeh and Hofer (2022), fu-
ture studies need to focus on massive individual-neuron recordings and to analyze
spiking patterns in the same way as done in our modeling study.
As we have demonstrated, the coherent patterns of flexible interareal commu-

nication can be modulated during attention and such modulated communication
provides a mechanism for explaining how attention emerges from interactions of
sensory and association areas involving bottom-up sensory input and top-down cue,
respectively. Particularly, we have found that the cue-trigged neuromodulator would
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locally modulate the circuit state by increasing the transient dwelling time of local-
ized activity patterns in the cued location. This would lead to the increase of the
aligned, gamma burst synchronization time between dynamical patterns in the two
cortical areas, thus enhancing their communication. We further illustrated that such
enhanced communication can explain a wide range of empirical findings on neural
effects of attention, including the increase of spike bursts in the attended location
(Engel et al. 2016), the reduction of neural variability (M. R. Cohen and Maunsell
2009), the reduction of spike-count correlations (M. R. Cohen and Maunsell 2009),
increased gamma synchrony between V4 and FEF (Gregoriou et al. 2009), increased
theta-gamma coupling (Howe et al. 2017); such a unified account would otherwise
not be possible in existing models.
It is also worth noting that our mechanism underlying the neural effects of at-

tention (i.e. modulated dynamical communication) is fundamentally different from
what has been proposed in existing studies. For instance, in Huang et al. (2019),
top-down inhibitory inputs are needed to shift the circuit state from an unstable
state to a stable state. In our model, however, the circuit state is only locally
modulated as evidenced that although the dynamical patterns tend to stay in the
attended location for a longer time, they still follow the Lévy motion as found dur-
ing the unattended condition. This thus indicates that our circuit is still in the
dynamical working regime near the transition state without the overall circuit state
being changed during attention. Based on this local modulation of activity patterns
as found in our spiking neural circuit model, we have developed a mathematical
model to account for the changes in neural dynamics during visual attention, in-
cluding reductions of neural variability and neural correlations, thus offering a novel
circuit mechanism (i.e., modulated dynamical communication) for understanding
visual attention.
Our large-scale, canonical circuit model involves sensory and association areas

with both feedforward and feedback connections; namely, these areas interact via
cortico-cortical loops. It has been proposed that such loops are essential for gen-
erating adaptive resonance (Carpenter and Grossberg 1993) or nonlinear ignition
(Moutard, Dehaene, and Malach 2015) between different cortical areas. As we have
demonstrated, as localized burst patterns in different cortical areas are transient
aligned or synchronized, firing rates in both areas would be suddenly amplified,
thus exhibiting resonance-like or ignition-like features. Another model proposed
for understanding cortico-cortical loops is related to the “counter streams” struc-
ture (Ullman 1995), in which neural activity performs sequence seeking or searching
along both the feedforward and feedback pathways; once such seeking processes
meet, an effective mapping or communication between different cortical areas would
be implemented. In essence, localized activity patterns in our model carry out a
searching or sampling process (Qi and Gong 2022), and their aligned interactions
are indeed important for coordinating cortico-cortical interactions, as proposed in
the model of counter streams. By capturing some key aspects of the existing models
of cortical loops, our model thus provides a unifying framework for understanding
circuit mechanisms and functional principles of cortico-cortical interactions.
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2.4 Methods

2.4.1 Network model: neurons and synapses

The model is composed of two areas of neurons; the bottom area is represented for a
sensory area (β = 1) and the top area is represented for an association area (β = 2).
Each area consists of an excitatory neuron group (α = e) with Ne = 4096 excitatory
neurons and an inhibitory neuron group (α = i) with Ni = 1024 inhibitory neurons.
Hereinafter we use the notation αβ to denote the neuron group at area β with
neuron type α, the notation mαβ

j to denote an arbitrary variable m of the jth neuron

in group αβ, and the notation mαpreβpreαβ
jprej for an arbitrary variable m relating to the

connection between presynaptic neuron jpre from group αpreβpre and postsynaptic
neuron j in group αβ.
Each neuron nαβ

j is modeled as a conductance-based linear integrate-and-fire model,
where the membrane potential dynamics can be described as the following:

C
dV αβ

j (t)

dt
= − gl

(
V αβ
j (t) − Vl

)
+ Iαβj,k (t) + Iαβj,rec (t) + Iαβj,ext (t) , (2.3)

where α ∈ {e, i}, β ∈ {1, 2}, j ∈ {1, 2, . . ., Nα}, the capacitance is C = 0.25
nF, the leaky conductance is gl = 16.7 nS for excitatory neurons and gl = 25 nS
for inhibitory neurons, and the reversal potential for leaky current is vl = -70 mV.
Every time the membrane potential of a neuron exceeds the threshold vT = -50 mV
a spike is generated, and the membrane potential is reset to vr = -70 mV and held on
for a refractory period τref = 4 ms. The potassium current for the spike-frequency
adaptation of excitatory neurons is:

Ieβj,k (t) = −geβj,k (t)
(
V eβ
j (t)− Vk

)
, (2.4)

where the reversal potential is Vk = -85 mV and the conductance for potassium
current geβj,k (t) is described by:

dgeβj,k (t)

dt
= −

geβj,k (t)

τk
+∆geβk

∑
i

δ
(
t− teβj,i

)
(2.5)

with teβj,i the time of the ithspike generated by neuron j from group e in area β. Each
spike emitted by an excitatory neuron increases the potassium current conductance
of itself by ∆geβk , with ∆ge1k = 1.9 nS in the sensory area and ∆ge2k = 6.5 nS in as-
sociation area. Note that we only model spike-frequency adaptation for excitatory
neurons because spike-frequency adaptation is primarily found in pyramidal neu-
rons (Hasselmo 1995; Wang 1998); I iβj,k (t) = 0 mA for all inhibitory neurons. The
postsynaptic current for intra- and inter-areal recurrent connections is given by:

Iαβj,rec (t) = −
∑
βpre

∑
αpre

∑
jpre

gα
preβpreαβ

jprej,rec (t)
(
V aβ
j (t)− V αpre

rev

)
(2.6)

where gα
preβpreαβ

jprej,rec (t) is the postsynaptic conductance for the connection between

presynaptic neuron nαpreβpre

jpre and post synaptic neuron nαβ
j . The reversal potential
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for excitatory and inhibitory postsynaptic current are V e
rev = 0 mV and V i

rev = -
80 mV, and the kinetics of postsynaptic conductance is described by two coupled
differential equations:

dgα
preβpreαβ

jprej,rec (t)

dt
= −

gα
preβpreαβ

jprej,rec (t)

τα
pre

d

+
xαpreβpreαβ
jprej,rec (t)

τα
pre

d

, (2.7)

and

dxαpreβpreαβ
jprej,rec (t)

dt
= −

xαpreβpreαβ
jprej,rec (t)

ταpre

r

+ wαpreβpreαβ
jprej,rec

∑
i

δ
(
t− tα

preβpre

jpre,i − dα
preβpreαβ

jprej

)
.

(2.8)
Here tα

preβpre

jpre,i is the time of the ith spike emitted by the presynaptic neuron nαpreβpre

jpre ,

and dα
preβpreαβ

jprej is the synaptic time delay between pre- and postsynaptic neuron,
which is uniformly randomly distributed between 0.5 ms and 2.5 ms for intra-areal
connections (βpre = β ) and between 8 ms and 10 ms for inter-areal connections
(βpre ̸= β ). wαpreβpreαβ

jprej,rec is the synapse coupling weight, which is the amount of

increase in xαpreβpreαβ
jprej,rec (t) for each spike generated by the presynaptic neuron. The

dynamics of xαpreβpreαβ
jprej,rec (t) gives rise to an rising-and-decaying time course of post-

synaptic conductance gβ
preβpreαβ

jprej,rec (t), with rising time constant τ ir = τ er = 1 ms and
decay constant τ ed = 5 ms and τ id = 4.5 ms for both areas. Each neuron receives
external input current Iαβj,ext (t) driven by the Poisson spike train from which each
spike induces excitatory postsynaptic current with the same kinetics as intra- and
inter-areal excitatory postsynaptic current. The parameter settings for the rate of
external Poisson spike train and for the synapse coupling weights of recurrent and
external inputs will be described in detail later (see Network model: connectiv-
ity and External inputs).

2.4.2 Network model: connectivity

The size of each area is [-32, 32] × [-32, 32] with periodic boundary conditions.
Both types of neurons are evenly distributed in each area, with the distance be-
tween adjacent inhibitory neurons twice the distance between adjacent excitatory

neurons. The coordinate of each neuron is yαβ
j =

(
yαβj,1 , yαβj,2

)
, where yeβj,1, y

eβ
j,2 ∈

{−31.5, −30.5, . . . , 30.5, 31.5} and yiβj,1, y
iβ
j,2 ∈ {−30, −28, . . . , 28, 30} for both

areas. The connection probability P between two neurons decays exponentially as
their distance grows:

P = Pαpreβpreαβ
0

(
e−dα

preβpreαβ
jprej

/τα
preβpreαβ

P

)
, (2.9)

where P0 is the peak probability, dα
preβpreαβ

jprej is the Euclidean distance between presy-

naptic neuron nαpreβpre

jpre and postsynaptic neuron nαβ
j , and τP is the decay constant.

The exact values of these variables for connections between different neuron groups
are as follows:
(1) intra-areal connection: P e1e1

0 = P e2e2
0 = 0.8057, P e1i1

0 = P e2i2
0 = 0.6964, P i1e1

0 =
P i2e2
0 = 0.4088, P i1i1

0 = P i2i2
0 = 0.5663; τ e1e1P = τ e2e2P = 7.5, τ e1i1P = τ e2i2P =

9.5, τ i1e1P = τ i2e2P = 19, τ i1i1P = τ i2i2P = 19.
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(2) inter-areal connection: P e1e2
0 = P e1i2

0 = P e2e1
0 = P e2i1

0 = 0.4; τ e1e2P = τ e1i2P =
τ e2e1P = τ e2i1P = 8.
As shown above, we use the same connection strategy for the intra-areal connec-

tions in both areas and the same strategy for the bottom-up and top-down connec-
tions between the two areas. Note that for the inter-areal connections, the presynap-
tic neurons are all excitatory, but targeting both inhibitory and excitatory neurons].
In addition, for the inter-areal projections, we randomly choose 50% of neurons in
each excitatory neuron group to be the presynaptic (source) neurons, while all ex-
citatory and inhibitory neurons in another area can be the postsynaptic (target)
neurons. Based on the above parameters of synaptic connections the average inde-
gree for intra-areal connections can be calculated for each neuron group: Keβeβ

in =
270, Keβiβ

in = 350, Kiβeβ
in = 130, Kiβiβ

in = 180, where β ∈ {1, 2}. The intra-areal
synaptic coupling weights wαpreβαβ

jprej,rec for each postsynaptic neuron nαβ
j are randomly

generated from Gaussian distributions with the mean equal to

W
αpreβαβ

j,rec =Jαpreβαβ
rec /

√
Kαpreβαβ

in,j , (2.10)

and the standard deviation being 5% of the mean, where Kαpreβαβ
in,j is the indegree

of neuron nαβ
j for the projections from the group with neuron type αpre in the same

area β, and

Jαpreβαβ
rec = W

αpreβαβ

rec

∑
j K

αpreβαβ
in,j∑

j

√
Kαpreβαβ

in,j

, (2.11)

where W
αpreβαβ

rec is the overall mean of all the synaptic strengths of the connection

from neuron group αpreβ to αβ. Specifically, W
e1e1

rec = 7.857 nS, W
e1i1

rec = 10.847 nS,

W
i1e1

rec = 35.534 nS, W
i1i1

rec = 45 nS, W
e2e2

rec = 11 nS, W
e2i2

rec = 13.805 nS, W
i2e2

rec =

41.835 nS, W
i2i2

rec = 50 nS. This setup ensures that the average intra-areal coupling
weight of a postsynaptic neuron is inversely proportional to the square root of the
indegree of that neuron (Barral and D Reyes 2016). For simplicity, the coupling
weights for inter-areal connections are randomly generated from identical Gaussian
distribution for each postsynaptic neuron in one area without scaling the mean with

the number of indegrees. The mean inter-areal coupling weights are W
e1e2

rec = 3.656

nS, W
e1i2

rec = 3.656 nS, W
e2e1

rec = 0.578 nS, and W
e2i1

rec = 0.578 nS, and the standard
deviation is 5% of the corresponding mean.
The simulation of the spiking network model is implemented in the Brian2 sim-

ulator (Stimberg, Brette, and Goodman 2019) using the Euler method with 0.1 ms
time steps.

2.4.3 External inputs

Each neuron receives external input current Iαβj,ext (t) driven by Poisson spike train
with rate

λ
(
yαβ
j , t

)
=λbg+λsti

(
yαβ
j , t

)
, (2.12)

where λbg is the rate of homogeneous background inputs which is 1600 Hz for all

neurons in both areas and λsti

(
yαβ
j , t

)
is the rate of external stimuli with its spatial



2.4. METHODS 44

profile being a sum of multiple Gaussian functions:

λsti

(
yαβ
j , t

)
=
∑
l

Cαβ
sti,lλbgexp

−

∥∥∥yαβ
j −yαβ

sti,l

∥∥∥2
2σ2

sti

 . (2.13)

Here yαβ
sti,l is the center of the lth stimulus, σsti is the width of each stimulus, and

Cαβ
sti,l is the contrast of the lth stimulus, representing the ratio between the maximum

amplitude of the stimulus and the amplitude of the background input λbg. In this
study, we only add stimuli to the excitatory neurons in the sensory (bottom) area,
i.e., Cαβ

sti,l = 0 when β = 2 or α = i. The synapse coupling weights for external
background and stimulus inputs are all 5 nS.

2.4.4 IE-ratio and network dynamics

The relative strength between inhibitory and excitatory synaptic weights in our
model affects the dynamical states at the area level, which is quantified by the
IE-ratio

ζαβ =
W

iβαβ

rec Kiβαβ
in

W
eβαβ

rec Keβαβ
in

, (2.14)

defined as the ratio of average total incoming inhibitory synaptic strength to average
total incoming excitatory synaptic strength for a specific neuron type α in area β.
Here we only consider the intra-areal connections when defining the IE-ratio. For
the default parameters described above we have ζe1 = 2.722, ζ i1 = 2.134, ζe2 =
2.289, ζ i2 = 1.863, and the network dynamics in both areas are at the critical region
between the propagating wave state and the non-propagating wave state. To change
the network state, we vary the IE-ratio for the excitatory neuron groups in two areas,
i.e., ζe1 and ζe2.

2.4.5 Center of activity pattern detection

Since there is only one activity pattern in both areas, we use the center of mass of
the spiking activity of a whole area as a proxy of the center of the activity pattern,
with the coordinate denoted as rc (t) = [rc,1 (t) , rc,2 (t)]. To find rc (t) we first
count the number of spikes emitted by each neuron across an area within 5 ms time
bins centered at time t, obtaining a 2D matrix r (t) containing the number of spikes
of each neuron in one area. We then sum the r (t) along the vertical axis to get a 1D
array r1 (t), and the horizontal coordinate of rc (t), that is, rc,1 (t), can be found by
calculating the center of mass of r1 (t), with the periodic boundary conditions being
considered. Similarly, the vertical coordinate rc,2 (t) can be found by summing the
r (t) along the horizontal axis to get the 1D array r2 (t) and then calculating its
center of mass.

2.4.6 MUA, LFP proxy, and time-frequency analysis

The MUA at position y in one area is defined as the mean firing rate of a local
group of excitatory neurons within a radius of 5 grid points to y using time bins
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with duration tb. tb = 5 ms for the temporal response curve, tb = 10 ms for On/Off
states detection, and tb = 1 ms for power spectrum, coherence, and transfer entropy
analysis. The LFP at position y in area β is defined as a weighted sum of the
absolute value of recurrent excitatory and inhibitory postsynaptic current across
excitatory neurons in that area (Mazzoni et al. 2015), given by

LFP (y, t,β)=
∑
j

(∣∣∣Ie1eβj,rec (t)
∣∣∣+ ∣∣∣Ie2eβj,rec (t)

∣∣∣+ ∣∣∣I iβeβj,rec (t)
∣∣∣) exp

−

∥∥∥yeβ
j − y

∥∥∥2
2σ2

LFP

,

(2.15)
where yeβ

j is the coordinate of neuron neβ
j , Ie1eβj,rec (t) and Ie2eβj,rec (t) are the total intra-

or inter-areal excitatory inputs to the neuron neβ
j , and I iβeβj,rec (t) is the total intra-

areal inhibitory inputs (note that the inhibitory neurons do not project inter-areal
connections in our model). The sum of the absolute value of each of these inputs
is then multiplied by a weight determined by the exponential term of the above
equation, with the weight decays as the distance between yeβ

j and y increases.
σLFP defines the spatial scale of the weighted sum, we use σLFP = 7. Both MUA
and LFP signals are sampled every 1 ms (1 kHz sampling rate).
To detect the gamma bursts in MUA and LFP we apply Complex Morlet wavelet

transform on them to get the instantaneous amplitude time series for each frequency
spanning the gamma band (30-80 Hz, with 2 Hz interval). The amplitude time series
is then smoothed by a gaussian kernel with SD = 3 ms, from which the instantaneous
power time series are calculated. We then threshold the power time series for each
frequency at the 95th percentile of the instantaneous power pooled from all time and
all gamma band frequencies to define the epoch with gamma bursts.

2.4.7 Spike frequency adaptation and top-down attention

For the simulated experimental trials with selective top-down attention from the
association area to the sensory area, we decrease the spike-frequency adaptation
∆ge2k of excitatory neurons in a local region in the association area. The new ∆ge2k
at coordinate yj under the attention condition is given by

∆ge2k
(
yj

)
=∆ge2k,base −∆ge2k,modu

fatt
(
yj ,yatt, Ratt, σatt

)
fatt (yatt,yatt, Ratt, σatt)

, (2.16)

where

fatt
(
yj ,yatt, Ratt, σatt

)
= 1

1 + exp

(
−∥yj−yatt∥+Ratt

σatt

)

1− 1

1 + exp

(
−∥yj−yatt∥−Ratt

σatt

)
 .

(2.17)

Here ∆ge2k,base = 6.5 nS is the baseline value, yatt is the center of spike-frequency
modulation profile fatt. We refer to yatt as the attended location and we set yatt =
(0, 0), ‘attending’ the center of the sensory area. The range of modulation is Ratt
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= 8.2, and the shape of the modulation profile is σatt = 2.2. The maximum of the
reduction in the adaptation is ∆ge2k,modu = 6 nS at yatt, resulting in the minimum
adaptation across the association area being 0.5 nS. All trials with attention are
simulated using these parameters.

2.4.8 Phase-amplitude coupling

To quantify the phase-amplitude coupling between the different frequency compo-
nents we calculate the modulation index (MI) (Tort et al. 2010). We band-pass
the raw LFP at the phase-frequency band (LFPp) and amplitude-frequency band
(LFPa), and find the instantaneous phase of LFPp and instantaneous amplitude
of LFPa using Hilbert transform. The phase time series LFPp are binned into N
= 20 phase interval, and the average amplitude of LFPa for each phase interval is
calculated to obtain the distribution of the amplitude with respect to the phase,
given by

p(Φj) =
AΦj∑N
j=1AΦj

, (2.18)

where AΦj
is the average amplitude for phase interval Φj. The MI is a measure of

divergence of p(Φj) from the uniform distribution, given by

MI = 1−
−
∑N

j=1 p(Φj)log(p(Φj))

logN
. (2.19)

To exclude the MI caused by chance, we shuffle the amplitude time series LFPa

and calculate the MI between the shuffled LFPa and original LFPp, denoted by
MIs. MIs is then subtracted from MI to get the final MI presented here.

2.4.9 Temporal curves for the response rate, Fano factor,
and noise correlation

For the results regarding the temporal curve of response firing rate, Fano factor, and
noise-correlation we generate 60 random realizations of the network, in each realiza-
tion we perform 50 trials for the condition with- and without-attention, respectively
(3000 trials for each attention condition). One trial consists of a 600 ms concurrent
presentation of two external stimuli to the excitatory neuron group in the sensory
area. Two stimuli positions are at the center and corner of the sensory area, i.e.,
ye1
sti,1 = (0, 0) and ye1

sti,2 = (-32, -32), the stimuli contrast are Ce1
sti,1 = Ce1

sti,2 =
0.25, and size σsti = 6 for both stimuli. The interval between two successive trials
is randomly between 800 - 1500 ms. For the with-attention condition, the onset of
the local spike frequency adaptation reduction at the association area is 2000 ms
before the first trial and the attention (to the center region) persists for the rest of
the trials.
The temporal response curve is the MUA at the center of the sensory area using 5

ms bins sampled every 1 ms. The MUAs are averaged across trials for each attention
condition and for each realization to get a mean temporal response curve for each
condition and realization. The overall mean and SEM are calculated across the
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mean of each realization. For the Fano factor, we choose a group of excitatory
neurons of which distance to the center of the sensory area (i.e., the center stimulus
location) is within 8 grid points, and we calculate the mean and variance of spikes
over 50 ms time bins (sliding at 10 ms interval within each trial) across trials for
each neuron in that group and for each attention condition. The Fano factor in each
bin is computed using mean-matching method (Churchland et al. 2010). Briefly, for
each time bin, a random subset of neurons was sampled in a manner so that the
mean spike counts of the subset neurons in each bin are roughly equal across bins at
different time points and different attention conditions. For each time bin, the Fano
factor is defined as the slope of the mean-variance relationship of the mean-matched
subset neurons using linear regression. This mean-matched random neuron-subset
sampling process is performed 100 times and then the Fano Factor obtained for each
sampling is averaged to get the mean-matched Fano Factor for each time bin to get
the Fano factor temporal curve for each attention condition and for each network
realization. For the noise correlation results, we choose the same neuron group as
the one in the Fano factor analysis. The noise correlation is measured as the Pearson
correlation coefficient of the spike counts between two neurons, with the mean and
variance computed across trials over 50 ms time bins (sliding at 10 ms intervals
within each trial). We first find the noise correlation for all neuron pairs within the
group at each sampled time point, and then average across neuron pairs at each time
point to get the mean noise-correlation temporal curve for each attention condition
and for each network realization.

2.4.10 On and Off states detection

We classify the spiking activity in a local region into On or Off states based on
the MUA signal at that region, with the MUA defined as the mean firing rate
of the local excitatory neurons using 10 ms bins sampled at 1KHz (see MUA and
LFP approximation 2.4.6). The MUA is smoothed by Savitzky-Golay filter before
detecting the abrupt change points in the MUA using the ‘findchangepts’ function in
MATLAB. We refer to the smoothed MUA as η1 (t) and the time of the nth change
points as pt1 (n). pt1 (n) as the outcome of the MATLAB ‘findchangepts’ function
is a preliminary segmentation of the MUA into high and low activity phases. To
improve the On-Off classification results, we derive a new signal η2 (t) from η1 (t),

where η2 (t) =
1

pt1(n+1)−pt1(n)

∫ pt1(n+1)

pt1(n)
η1 (t) dt, for pt1 (n) ≤ t < pt1 (n+ 1). We then

segment the η2 (t) to On and Off states by comparing η2 (t) at each time point
with a threshold θη, and define a new signal η01 (t), with η01 (t) = 1 if η2 (t) ≥
θη (On states) and η01 (t) = 0 if η2 (t) < θη (Off states). The On-Off transition
points in η01 (t) is pt2 (n). Similar to η2 (t), using pt2 (n) we can define a signal

η3 (t) = 1
pt2(n+1)−pt2(n)

∫ pt2(n+1)

pt2(n)
η1 (t) dt, for pt2 (n) ≤ t < pt2 (n+ 1). To find the

appropriate value of θη we try a range of θη and find the sum of squared error
SSE =

∑
t (η3 (t)− η1 (t))

2 for each θη. The θη giving the minimum SSE is chosen to
be the threshold for the On-Off states classification and t is at On state if η3 (t) ≥ θη,
and Off state if η3 (t) < θη. We determine the best θη for each realization of the
network respectively.
For the analysis of the On-Off dynamics in the spontaneous activity, we generate
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30 distinct realizations with each of them simulated for 205 seconds. In each real-
ization, we extract 200 seconds MUAs at the center of sensory and association areas
respectively (6000 seconds in total for each area, the first 5 seconds MUAs in each
realization are excluded to ignore the transient activity) and do On-Off segmenta-
tion on them. For the stimulus-evoked activity, we use the same 30 realizations as
those for the spontaneous activity and run 20 trials for each attention condition,
with each trial consisting of a 10-second simultaneous presentation of two stimuli
located at the center and corner of sensory area excitatory neurons. The MUAs
at the center of both areas on each trial are used to perform the On-Off analysis,
with the first 200 milliseconds on each trial excluded (196 seconds for each area
and attention condition in each realization, 5880 seconds in total for each area and
attention condition).

2.4.11 Coherence

To measure the coherence between two signals at the gamma band we first use
the 8th order Butterworth band-pass filter to filter both signals at narrow band
Fb = [fc − 5Hz, fc + 5Hz] with fc the center frequency at each band and ±5Hz the
3dB frequency. We then perform Hilbert transform on the two filtered signals to
extract the time series of the phase ϕfc (t) and amplitude Afc (t) for each frequency
fc. The coherence at fc is defined as

C12
fc =

∣∣∣⟨A1
fc
(t) eiϕ

1
fc
(t)A2

fc
(t) e−iϕ2

fc
(t)⟩t
∣∣∣√

⟨
[
A1

fc
(t)
]2⟩t⟨[A1

fc
(t)
]2⟩t , (2.20)

where ⟨·⟩t denotes the averaging across time, and |·| denotes the absolute value. We
measure the coherence during S-On states (averaging across S-On states periods)
and S-Off states (averaging across S-OFF states periods) respectively.

2.4.12 Communication subspace

To quantify the dynamical communication between two areas we choose two local
group of excitatory neurons, one group for each area, with the distance of neurons
in each group to the center of each area is less than 5 (80 neurons for each group).
We next count the spikes emitted by each neuron in 20 ms nonoverlap bins and
divide the spikes data into two categories: one for the spikes generated during On
states and the other during Off states. The mean spikes for each neuron is measured
across time for each category, and subtracted from the raw spikes data, obtaining the
fluctuations of spiking activity of each neuron in each state. We use linear regression
to reveal how such ongoing fluctuation in two groups are linearly related differently
for the periods when both groups are simultaneously at On states (S-On) or both
are at Off states (S-Off):

Y = XB, (2.21)

where X is a n ∗ p matrix for the fluctuations in the source group during S-On
or S-Off periods, n is the number of data points, and p = 80 is the number of
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source neurons in the source group. Y is a n ∗ q matrix for the fluctuations in the
target group, q = 80 is the number of target neurons. B is a p ∗ q coefficient matrix,

which we find using ridge regression to avoid overfitting: Brdg =
(
XTX + λI

)−1
XY ,

where I is a p*p identity matrix and λ is a scalar. The corresponding predicted
value is given by: Yrdg = XBrdg. We choose the appropriate value of λ using 10-
fold cross-validation. In each fold, we measure the prediction performance which

is defined as the normalized mean squared error NSE =
⟨(Y−Yrdg)

2
⟩

⟨(Y−Y )
2
⟩
, which is the

MSE normalized by the variance of Y . The averaging operation ⟨·⟩ for NSE is done
across all target neurons and all time points. We choose the maximum λ for which
the mean prediction performance across folds is within one SEM (measured across
folds) of the best performance.
To unravel the low dimensional nature of the communication we perform reduced-

rank regression (RRR) as in Semedo et al. (2019): YRRR = XBRRR with YRRR the
predicted spike counts and BRRR = BrdgV V T . Here V is a q ∗ m matrix with
the column vectors as the top m principal component of Yrdg. We calculate the
performance for m = 1 to 10 respectively using 10-fold cross-validation.
The experimental setup is the same as that in the On-Off dynamics analysis. We

do the subspace analysis described above for each realization separately and then
average across realizations.

2.4.13 Transfer entropy

To quantify the information transferred from the V4 to FEF at different states
we measure the Transfer entropy (TE) between the MUA in V4 and the MUA in
FEF at simultaneous-On states and simultaneous-Off states respectively. The MUA
is defined as the average firing rate over 1 ms time bins of a local group of 80
excitatory neurons nearest to the stimulus center; the sampling interval for MUA is
1 ms (1kHz). The TE measures the reduction in the uncertainty (entropy) of the
future value of the MUA in FEF (target) by knowing the past value of the MUA in
V4 (source), which is given by:

TE = H(Tt+1 | T k
t )−H(Tt+1 | T k

t ,S
l
t+1−u), (2.22)

where H(·) denotes the entropy of an arbitrary random variable, Tt+1 is the MUA
of FEF at time t+1, T k

t = (Tt−k+1, Tt−k+2, . . ., Tt) denotes the past k values of FEF
MUA, and Sl

t+1−u = (St−k+2−u, St−k+3−u, . . ., St+1−u) denotes the past l values of V4
MUA with a source-target time delay u. These values are constrained to the epochs
of S-On states to calculate the TE for the S-On state and to the epochs of S-Off
states to calculate the TE for the S-Off state. TE can be expressed in the form of
probability distributions of Tt+1, T

k
t , and Sl

t+1−u as follows:

TE =
∑

Tt+1,T
k
t ,S

l
t+1−u

p(Tt+1,T
k
t ,S

l
t+1−u)loge

(
p(Tt+1 | T k

t ,S
l
t+1−u)

p(Tt+1 | T k
t )

)
. (2.23)

We compute the TE for different time delays u from 1 to 20 ms; the TE is estimated
by Kraskov Algorithm (Kraskov, Stögbauer, and Grassberger 2004). We search the
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optimal history size k and l from 1 to 8 ms using the Ragwitz criterion (Ragwitz and
Kantz 2002). All these TE analyses are performed using the information-theoretic
toolkit JIDT (Lizier 2014).

2.4.14 Neural field model

To obtain a quantitative understanding of how adaptation induces theta band os-
cillations from the perspective of Hopf bifurcation, we consider a neural field model
as in Folias and Bressloff (2005), which is described by the following equations:

τ
∂u

∂t
= −u+ w ∗ f (u)−βϱ+I, (2.24)

τA
∂ϱ

∂t
= −ϱ+u, (2.25)

where ∗ denotes the convolution, u (r, t) is the average activity (e.g., membrane po-
tential) of a local group of neurons at position r = (r, θ), ϱ (r, t) provides negative
feedback to u, behaving like spike frequency adaptation, with its strength repre-
sented by β. τ=10 ms and τA=333.3 ms are the time scale of u and ϱ. I = Ipe

−r2/σ2

is the external input, with Ip=1 and σ=5.2. f is the Heavyside activation function
with f (u) = H (u− κ), and κ=0.15 is the activation threshold. w is the Mexican
hat coupling weight function given by

w(r) =
ae
σ2
e

wK(r/σe)−
ai
σ2
i

wK(r/σi), (2.26)

where ae = 1, σe = 1, ai = 1.4, σi = 1.8, wK(r) = (2/3π)[K0(r) −K0(2r)] and K0

is the modified Bessel function of the second kind. The synaptic input to u (r, t) is
computed as the convolution

w∗f (u)=

∫
R2

w
(
|r−r

′|
)
f
(
u
(
r

′
, t
))

dr
′
. (2.27)

Following the analytical analysis in Folias and Bressloff (2005), at the stationary
state we expect a radial symmetric profile of u (r, t) = U (r) and ϱ (r, t) = Q (r).
The radius of the boundary of the stationary activity pattern is denoted as a with
U (a)=κ, 0 < U (r) < κ for r > a, and U (r) > κ for 0 < r < a. The profile of U (r)
can be found by noting U (r) = Q (r), giving rise to

(1 + β)U (r) = M (a, r) + I (r) , (2.28)

where

M(a, r) =

∫ 2π

0

∫ a

0

w(|r − r
′ |)r′

dr
′
dθ. (2.29)

This stationary pattern corresponds to a fixed-point solution of a dynamical system
and its stability can be determined by examining the eigenvalues of the system
linearized around this fixed point. The eigenvalue λ for each Fourier mode n is
given by

τλ+ 1 +
β

τAλ+ 1
=

µn (a)

|U ′ (a)|
, (2.30)
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where

µn (a) = 2a

∫ π

0

w (2asinϕ) cos (2nϕ) dϕ. (2.31)

We have

λ±
n =

1

2τ

[
−Λn±

√
Λ2

n−4ϵ (1+β) (1−Γn)
]
, (2.32)

where

Λn = 1 + ϵ− Γn(1 + β), (2.33)

Γn =
µn(a)

(1 + β)|U ′(a)|
, (2.34)

ϵ =
τ

τA
. (2.35)

The stability of a particular mode n is determined by the sign of the real part of
eigenvalues λ±

n . When ϵ < β, real part of λ±
n is negative if the condition Λn > 0

is satisfied. When Λn = 0, λ±
n = ±i

√
ϵ (β − ϵ)/τ , which corresponds to the critical

Hopf frequency.

2.4.15 Fractional neural sampling model

We consider a 2D plane with the size equal [-32, 32] × [-32, 32], the same as the size
of each area of the spiking model, and we assume there are 4096 neurons uniformly
distributed on the plane. The potential at position x, denoted by ρ(x), in the model
is given by:

ρ(x) =
∑
i

ρi(x) (2.36)

where

ρi(x) = (Ds,i +Da,i)(
|x− xp,i|2

σp
2

− 1), if |x− xp,i|< σp, (2.37)

or

ρi(x) = 0, if |x− xp,i|≥ σp. (2.38)

Here the coordinate of the potential well is xp,1 = [0, 0] and xp,2 = [-32, -32], the
width of the potential well is σp =12, the depth of the potential well contributed by
the stimulus is Ds,1 = Ds,2 = 50, the depth of the potential well contributed by the
attention is Ds,2 = 0 and Ds,1 varies between 0 to 50. The drift term b(xt) in the
stochastic differential equations (2.1) and (2.2) is given by (Çelik and Duman 2012):

b(xt) =
∂ρ

∂x

Γ(α− 1)

Γ(α/2)2
, (2.39)

where xt is the coordinate of the random walker, Γ is the Gamma function and α
= 1.2. The instaneous firing rate r(x) of a neuron at x is given by

r(x) = Are
− |x−xt|

2

2σr2 + A0, (2.40)
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where the amplitude of the gaussian bump is Ar = 20 Hz, the width of the gaussian
bump is σr = 12, and the baseline rate is

A0 = Ab − 0.2Da,1(
|x− xp,1|2

σp
2

− 1), if |x− xp,1|< σp, (2.41)

or
A0 = Ab, if |x− xp,1|≥ σp, (2.42)

where Ab = 3 Hz.
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2.5 Supplemental information

Figure 2.10: Distributions of the duration and power of MUA gamma
bursts
(A) Distribution of the duration of gamma bursts in the MUA of V4.
(B) Distribution of the power of gamma bursts in the MUA of V4.
(C) Same as (A) but for FEF.
(D) Same as (B) but for FEF.
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Figure 2.11: Distributions of the duration and power of LFP gamma
bursts
(A) Distribution of the duration of gamma bursts in the LFP of V4.
(B) Distribution of the power of gamma bursts in the LFP of V4.
(C) Same as (A) but for FEF.
(D) Same as (B) but for FEF.
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Figure 2.12: Distributions of the duration and firing rate of On and
Off states at the spontaneous activity
(A) Distribution of the duration of On (left) and Off (right) states at V4 at the
spontaneous activity.
(B) Distribution of the firing rate of On (left) and Off (right) states at V4 at the
spontaneous activity.
(C) Same as (A) but for FEF.
(D) Same as (B) but for FEF.
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Figure 2.13: Oscillation frequency of the spiking model increases with
adaptation
Power spectrums of MUA in V4 during spontaneous activity for adaptation
strength ∆gk = 0 nS (blue), 1 nS (orange), and 2 nS (green). FEF and V4 are
disconnected.
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Figure 2.14: Lévy motion of the trajectory of spiking activity
patterns (without-attention)
(A) Increments of the pattern trajectory in V4 along the horizontal axis in 5 ms
time steps follow the Lévy α stable distribution. Best-fit parameters are shown
at the top, where α, β, µ, and σ are the stability parameter, skewness
parameter, location parameter, and scale parameter, respectively. Two stimuli
are placed at the center and corner of V4 and no top-down attention.
(B) Mean squared displacement (MSD) of the pattern trajectory in V4 indicates
superdiffusion.
(C) Same as (A) but for FEF.
(D) Same as (B) but for FEF.
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Figure 2.15: Lévy motion of the trajectory of spiking activity
patterns (with-attention)
(A-D) Same as Figure 2.14(A-D) but for the condition when top-down attention
is deployed to the center stimulus.
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Figure 2.16: Distributions of the duration and firing rate of On and
Off states in V4 at the stimulus-evoked activity
(A) Distribution of the duration of On (left) and Off (right) states at the center
of V4 when two stimuli are placed at the center and corner of V4 and there is no
top-down attention.
(B) Same as (A) but for the firing rate.
(C-D) Same as (A-B) but for the condition when the top-down attention is
deployed at the center stimulus.

Figure 2.17: Distributions of the duration and firing rate of On and
Off states in FEF at the stimulus-evoked activity
(A-D) Same as Figure 2.16(A-D) but for FEF.
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Figure 2.18: Modulation ratio of the population neural response
The attention modulation index (MIr) of the firing at the locations along the
diagonal of the sensory area.



Chapter 3

Attention-Guided Visual Search

Abstract: Visual search is guided by the object saliency in the external envi-
ronment (bottom-up) and the current behavior goal in the internal cognitive state
(top-down). To investigate the dynamical mechanism underlying this bottom-up
and top-down guided visual search, we develop a large-scale neural circuit model
consisting of a bottom sensory area and a top association area with feedforward
and feedback interactions and apply this model to the classical visual search tasks.
The spatiotemporal spiking activity patterns emerging in both areas sample exter-
nal stimuli in a serial fashion and cause the spiking activities at stimulus locations
to exhibit fluctuations between high and low firing rate states. By using the av-
erage (geometric mean) of the instantaneous firing rate at the stimulus position of
two areas as the instantaneous information communicated across areas, and assum-
ing the accumulated average firing rate as a proxy of the accumulated evidence of
the stimulus identity, we compute the reaction time (RT) of target detection. We
illustrate that such reaction time is linearly dependent on the stimuli set size, a
hallmark of serial search, and the slope of the RT × set size function is affected by
both the bottom-up target saliency and top-down attention strength. We further
demonstrate that the accumulated evidence of the distractors accumulated during
the target-present trials could serve as a target-absent threshold for target-absent
trials; when all distractors’ accumulated evidence in a target-absent trial reaches
this target-absent threshold then a subject would conclude the absence of the target
and give rise to target-absent reaction time. The target-absent reaction time com-
puted in this way shows a linear dependence on the set size as well and the ratio of
the slope of RT × set size functions of target-absent trials to target-present trials
exhibits a well-documented 2:1 relationship. These results indicate that our large-
scale model provides a unified framework to understand the neural and behavioral
features during visual search.

3.1 Introduction

One of the most important functions of the brain is the ability to search efficiently
for a target in a cluttered visual scene. Decades of research on visual search have
established that visual attention deployment can be both bottom-up stimulus-driven
and top-down user-guided (Theeuwes 2010; Katsuki and Constantinidis 2014). At

61
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the neural level, the former bottom-up aspect has led to extensive neurophysiological
studies on the effect of the stimulus salience on neural responses, which showed that
when the feature of the within-receptive field stimuli is distinct from that of the
surrounding stimuli the sensory neuron exhibits stronger activities than when the
feature of stimuli is homogeneous across the visual environment (Allman, Miezin,
and McGuinness 1985; Tanaka et al. 1986; Schein and Desimone 1990; Knierim and
Van Essen 1992). Thus, the salient object’s neural representation could obtain more
processing resources in the downstream visual cortical regions. On the other hand,
during visual search, neural responses also can be modulated by top-down attention
(Haenny and Schiller 1988; Spitzer, Desimone, and Moran 1988; Maunsell et al.
1991; Moran and Desimone 1985; Motter 1993; Ogawa and Komatsu 2004). For
example, according to the feature similarity gain model (Treue and Trujillo 1999),
the response of the neurons whose preferred feature is attended will be enhanced
and the response will be depressed if the attended feature is dissimilar from the
neuron’s feature preference. At the behavioral level, the characteristic of human
searching behavior has been studied using the visual search paradigm (A. Treisman
1986), in which the observer is instructed to look for a target that may or may not
exist among a set of distractors and determine whether the target exists or not on
each trial. The typical measurements of interest in the visual search paradigm are
the reaction time (RT) an observer needs to make such a target-present or target-
absent conclusion and the relation between the RT and the number of total items
(set size) in the visual field. Studies like these revealed that the reaction time is a
linear function of the set size, with the slope of the RT × set size functions when
the target is absent around twice as large as the slope when the target exists (Wolfe
1998). This linear RT × set size function and the 2:1 target absent-target present
slope ratio implies the visual search is serial; that is, the attention deploys to one
item/location after another until the target is found, or until no target has been
found after some sort of exhaustive searching (Wolfe 1994). In addition, the slope of
the RT × set size function for the target-present condition reflects the efficiency of a
particular search task; a larger slope indicates lower efficiency, but a shallower slope
indicates higher efficiency (Wolfe 1998). It has been assumed that the mechanism
underlying such serial search is based on ‘inhibition of return’, which prevents the
attention from being focused constantly on one item, facilitating the deployment of
the attention ‘spotlight’ to new stimulus (Klein 1988). Although many models have
been proposed to explain some of these behavioral properties such as the linear RT
× set size functions, most of these existing models are functional models based on
either the signal detection theory or ideal observer model (Wolfe 1994; Najemnik
and Geisler 2005; Ma et al. 2011). Thus, the mechanism underlying these properties
remains unknown. Furthermore, to deepen our understanding of visual search, it
is essential to integrate and explain these behavioral as well as neural effects in a
unified framework.
Here, we reveal the large-scale circuit mechanism of visual search based on dy-

namical interactions of bottom-up sensory salience and top-down attention guide
(Buschman and E. K. Miller 2007; Theeuwes 2010). In our circuit model involving
the sensory and association areas, we demonstrate that the spiking activity pattern
with complex spatiotemporal dynamics emerging at the transition regime between
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different network states can sample stimuli in a serial fashion without explicitly
imposing the inhibition of return mechanism.
By using the average (geometric mean) of the instantaneous firing rate at the stim-

ulus position of two areas as the instantaneous information communicated across dis-
tant brain areas, and assuming the accumulated average firing rate as a proxy of the
accumulated evidence for object identification, we measure the reaction time of the
target detection (the time when the accumulated evidence from the target reaches
a threshold) and illustrate its linear dependence on the set size, a hallmark of serial
search (Klein 1988). Crucially, such reaction time and the slope of RT × set size
functions are modulated by both the salience of bottom-up external inputs and the
top-down attention strength, reproducing the empirical observation that the search
efficiency is both bottom-up and top-down dependent (Duncan and Humphreys
1989; Wolfe, Butcher, et al. 2003; Ogawa and Komatsu 2004). We then propose a
new approach to identifying when the observer will terminate a search if there is
no target presented, i.e., the reaction time of target-absent trials. We hypothesize
that the reaction time of a target-absent trial is the time when the accumulated ev-
idence of non-targets all reach a target-absent threshold which is determined by the
distribution of accumulated evidence from non-targets in target-present trials. We
demonstrate that such an adaptive target-absent threshold automatically enables
the slope of the target-absent RT × set size function to covary with the slope of the
target-present RT × set size function, roughly maintaining the 2:1 absent-present
slope ratio across different target-present slopes as observed in visual search tasks
(Wolfe 1998). Crucially, our model can reproduce and explain the positively skewed
rection-time distributions for different task conditions, including the target-present
and target-absent conditions, and the conditions with different bottom-up saliency
and top-down attention guidance as found in the classical study (Wolfe, Palmer, and
Horowitz 2010). Our model is the first model showing how attention-guided visual
search can be implemented in a biophysically realistic, large-scale cortical circuit.

3.2 Results

3.2.1 Network model and emergent spatiotemporal dynam-
ics

We consider the same large-scale spiking-neuron network model as that in Chapter
2, which incorporates known anatomical and neurophysiological features such as the
distance-dependent synaptic connection probabilities (Levy and Reyes 2012), the
gradient of excitation coupling strength across cortical hierarchy (across areas, in
our model) (Chaudhuri et al. 2015), and temporally correlated inhibitory and excita-
tory synaptic input (EI balance) to individual neurons (Xue, Atallah, and Scanziani
2014). The neuronal circuit in each area exhibits a rich repertoire of spatiotemporal
dynamics ranging from the local propagating wave state to the network-wide gamma
oscillation state. A detailed analysis of the dynamical regions of this network is pre-
sented in the Results of Chapter 4; here we describe them briefly. The state of
the network is controlled by the relative strength between excitation and inhibition,
which can be characterized by the ratio of average inhibitory to average excitatory
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synaptic weight coupling to individual excitatory neurons, denoted by the IE-ratio ζ.
For high ζ (i.e., stronger inhibition), neurons in the network exhibit strong gamma
oscillations that are nearly network-wide, whereas for low ζ, spiking activity forms
a coherent local propagating wave moving across the network. When IE-ratio is at
an intermediate level of ζ., the network is at the critical transition region between
the local propagating wave state and network-wide gamma oscillation state, where
localized propagating activity pattern emerges and exhibits complex spatiotemporal
dynamics. Specifically, the pattern wanders around one position for a while and
then jumps to another place intermittently; this motion dynamic is consistent with
the Lévy motion. Such an activity pattern with Lévy motion dynamics has been re-
vealed as the spatiotemporal mechanism of spatial visual attention (Chen and Gong
2022), with the pattern sampling multiple salient external inputs dynamically and
efficiently. Moreover, transient synchronization between areas at this critical transi-
tion region can form a dynamical communication subspace, as discussed in Chapter
2, suggesting the functional role of activity patterns in inter-areal cortical commu-
nication. In this study, We further elucidate that such critical pattern dynamics
can account for key neural and behavioral effects of attention-guided visual search,
including the linear increase of reaction time with the number of stimuli (set size),
heavy tail distribution of the reaction time, and 2:1 ratio of the slope of reaction
time × set size functions between target-absent and target-present scenarios.

3.2.2 Bottom-up and top-down components in visual search

In standard visual search tasks, subjects were instructed to look for a distinct tar-
get among a set of identical distractors in a display. Salient objects can attract
attention in a bottom-up automatic manner; this notion has been supported by the
experimental observations that the neural response to a stimulus inside the receptive
field is stronger when the feature of that stimulus is different from the feature of
neighbor objects surrounding the within-receptive field stimulus, compared with the
condition when all stimuli share the same feature (Allman, Miezin, and McGuin-
ness 1985; Tanaka et al. 1986; Schein and Desimone 1990; Knierim and Van Essen
1992). To mimic this bottom-up component in the visual search, we first model
the items in the searching environment as a set of external stimuli to the bottom
(sensory) area of our model. On target-absent trials, all stimuli are distractors while
on target-present trials one of the stimuli is the target. We then keep the amplitude
of the distractors the same while making the amplitude of the target, if it exists,
higher than that of distractors (Figure 3.1A); the amplitude of each stimulus is de-
fined as the ratio of the stimulus input to the background input, denoted by C (see
Methods). We refer to the ratio of the amplitude of the target to the amplitude
of surrounding distractors as the salience of the target, denoted by S. As shown
in Figure 3.1C, higher S elicits stronger neural responses, mimicking the salience-
dependent response intensity observed in the visual cortex. The average firing rate
over 2 seconds increases from 20.24 ± 0.45 Hz to 25.34 ± 0.48 Hz (mean ± SEM)
when S increases from 1.05 to 1.35 (p < 10−11, two-sided unpaired t-test, attention
strength α = 62%).
Contrary to bottom-up attention which occurs in an involuntary fashion, top-
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down attention, on the other hand, is user-driven, representing the influence of the
endogenous status of the cognitive state such as the goal and prior knowledge on the
searching behavior (Haenny and Schiller 1988; Spitzer, Desimone, and Moran 1988;
Maunsell et al. 1991; Moran and Desimone 1985; Motter 1993). Such voluntary
attention deployment is crucial when the item of interest is not the most unusual
one in the visual field. Here we implement the selective top-down attention, as in
Chapter 2, by decreasing the spike frequency adaptation (SFA, in the unit of nS,
see Methods) in a local region of the top (association) area, with the SFA reduction
triggered by cue-evoked acetylcholine releasement. This leads to a stronger firing rate
inside the top area activity pattern when it moves to the location with adaptation
reduction, and thus to a larger top-down enhancement to the activity in the bottom
area which is retinotopically aligned with the SFA reduction location in the top area.
We define the strength of top-down attention as α = (∆gk,base−∆gk,min)/∆gk,base×
100%, which is the percentage of the SFA reduction at the attention position, where
∆gk,min is the minimum SFA in the top area and ∆gk,base = 6.5 nS is the baseline
SFA in the top area (Figure 3.1B). We find that such top-down modulation indeed
affects the response in the bottom area of our model. The response increases from
21.31 ± 0.42 Hz to 25.56 ± 0.58 Hz when the attention strength increases from
α = 0% to α = 92% (p < 10−7, two-sided unpaired t-test, target salience S = 1.2)
(Figure 3.1D).
We next illustrate the top-down effect further by changing the validity of atten-

tion: we deploy the attention to the distractor by reducing the SFA in the location
of the top area which is retinotopically aligned with one of the distractors. This
inconsistency between the bottom-up component from the target salience and the
top-down expectation simulates the scenario of an invalid cue, which we find can
suppress the response to the target (Figure 3.1D), as found in Treue and Trujillo
1999; the average firing rate over 2 seconds decreases from 25.56 ± 0.58 Hz to 19.08
± 0.38 Hz when the attention strength α = 92% changes from the valid to invalid
scenario (p < 10−15, two-sided unpaired t-test).

3.2.3 Reaction time increases linearly with the set size and
is affected by target salience

We next demonstrate that the dynamics of the spiking activity pattern in response
to the external stimuli produce the well-known linear relation between the reaction
time (RT, the time needed to find the target) and the stimulus set size (Wolfe 1998),
and we show that the slope of the linear function of RT × set size is affected by
the target salience. To this end, as in the typical visual search task, on each trial,
we present different numbers of stimuli to the bottom area. To focus on the effect
of target salience we fix the top-down attention strength at α = 62% and keep it
valid, and there is always one target among the stimuli. As shown in Figure 3.2A,
the activity pattern in both the bottom and top area switch between each stimulus
sequentially, searching for the possible target among distractors. The switching
dynamics of the activity pattern cause the firing rate of each stimulus location to
alternate between high (On state) and low (Off state) (Figure 3.2B). To measure the
reaction time of detecting the target, we borrow the idea of ‘evidence accumulation’
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Figure 3.1: Bottom-up and top-down components in the model and
their effects on neuronal response
(A) Schematic of the external input amplitude C in the bottom area to emulate
objects in visual search tasks. The target (solid circle) has higher input
(C=0.45) than distractors (dash circle, C=0.25). The target salience for this
scenario is S = 0.45/0.25 = 1.8.
(B) The value of the spike-frequency adaptation in the top area when valid
top-down attention deployed to the target in (A). The baseline adaptation is 6.5
nS and the minimum adaptation is 0.5 nS at the attention center. The
top-down strength in this scenario is α = (6.5− 0.5) /6.5 ∗ 100% = 92%.
(C) Effects of the target salience S on the response in the bottom area. The
attention strength is α = 62% for all target salience, and the set size is 2.
(D) Effects of the top-down attention on the response in the bottom area. Blue
line, valid cue α = 92%, red line, invalid cue α = 92%, black line, neutral cue
α = 0%. The target salience is kept at S = 1.2 for all attention strengths. The
set size is 2.
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from the literature of decision making (Ratcliff 1978; S. D. Brown and Heathcote
2008), which assumes the decision is based on the accumulated evidence for potential
responses and the decision is made if the evidence for one specific response reaches a
threshold (Donkin et al. 2011). In Chapter 2 we have demonstrated that interareal
communication primarily occurs during the period when both areas are at On states,
during which the firing rate is much higher than that of Off states. Therefore, in
this chapter, we use the average firing rate (rm, Figure 3.2C) of two areas at the
stimulus location as an approximation of the instantaneous information about the
stimulus identity transferred across areas, given by rm =

√
r1r2, where r1 and r2

is the average firing rate of a local group of 80 excitatory neurons nearest to the
stimulus position in the bottom and top area, respectively. Thus, the accumulated
rm over time is the proxy for the total accumulated evidence/information transferred
from the bottom to the top area; we model such accumulation process as

dκ

dt
= −κ

τ
+ rm, (3.1)

where κ is the accumulated evidence and τ = 5000 ms is the decay time constant.
The reaction time is defined as the time point when the accumulated evidence at
the target position (κT ) starting from the beginning of a trial reaches an arbitrary
threshold ϑT (Figure 3.2C). Due to the fluctuation between the On and Off states,
the accumulated evidence κT shows a step-like curve, with the rapid rising aligning
with the overlapped On states across areas (Figure 3.2B and C). We note that the
mean RT calculated in this way can be related to the set size by a linear function
with a positive slope (Figure 3.3A), which is a feature found in a wide range of
visual search tasks (Wolfe 1998). Moreover, by varying the target salience S, we
show that this linear relation between RT and set size is conserved across different
target salience, yet the slope of RT × set size function, together with the RT itself,
are affected: higher target salience leads to lower RT and slope, and vice versa for
lower target salience. The slope is 123.80, 90.35, and 68.86 ms/item for S = 1.05, 1.2,
and 1.35 respectively when ϑT = 15. Note that these slope values are quantitatively
comparable to those measured in the real visual search tasks (Wolfe, Palmer, and
Horowitz 2010), in which it has been shown that the slope of RT × set size function
is around 40 ms/item when the task is to search for a figure ‘2’ among ‘5’, a type
of task referred to as ‘Spatial Configuration Search’. The reduction of RT × set
size slope is consistent with the argument that the slope of RT × set size function
reflects the searching efficiency; high salience targets are more easily to be detected
than the low salience target (Duncan and Humphreys 1989). We then examine the
effect of the threshold ϑT for defining the RT. We find that the ϑT does not alter
the qualitative linear relation of the RT × set size, but it changes the exact value of
the slope and RT (Figure 3.3E). Changing this threshold seems to scale up or down
the slope of RT × set size of all target salience by a similar factor, with its value
equal to ≈ 2.5 when the ϑT changes between 6 and 15 (the slope when ϑT = 6 vs
the slope when ϑT = 15 is 123.80:48.50 = 2.55, 90.35:36.87 = 2.45, and 68.86:26.91
= 2.56 for S = 1.05, 1.2, and 1.35, respectively).
We next go beyond the average RT and examine the RT distribution in our model

(Figure 3.3B and F). Two key aspects of real experimental RT distribution are repro-
duced: (1) positive skewness with a heavy tail, and (2) increasing standard deviation
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Figure 3.2: Spatiotemporal dynamics of the activity pattern and the
accumulated firing rate-based reaction time
(A) The spiking activity pattern in both the bottom and top areas switches to
external stimuli sequentially. Dash and solid line circles in the bottom area
indicate the distractor stimuli and target stimulus, respectively. The solid circle
in the top area indicates the attention location. The color line in each area
indicates the trajectory of the activity pattern over the period from 370 to 770
ms on one trial.
(B) Firing rate at the target location of the bottom (r1, green line) and top (r2,
purple line) area.
(C) The proxy of instantaneously transferred evidence [geometric mean of the
firing rate in (B) (rm, black line)] and the corresponding target accumulated
evidence κT (orange line) which cumulates from the trial onset t = 0 ms. The
horizontal dash line indicates the threshold ϑT for κT . RT is defined as the time
point when κT = ϑT .

with the set size (Figure 3.3C, D, G, and H). Again, the threshold for detecting the
target does not affect these properties qualitatively, but it does change the shape of
distribution: a higher threshold (ϑT = 15) yields a unimodal RT distribution (Fig-
ure 3.3B) while a lower threshold (ϑT = 6) tends to transform the distribution into
a bimodal one (Figure 3.3F). The bimodal RT distribution of low ϑT is a product
of the fluctuation nature of the activity pattern and the resultant step-like curve of
the accumulated evidence. For a low target threshold ϑT , the accumulated evidence
may surpass the threshold in the first arrival of the activity pattern to the target
stimulus location on some of the trials, producing a peak at around 150 ms in RT
distribution. Whereas on other trials, two or more arrivals of the activity pattern
may be needed for evidence to reach the threshold, causing another peak at higher
RT in the RT distribution. On the other hand, when the threshold is high, it is less
likely for the firing rate to reach the threshold in the first arrival of the activity pat-
tern, therefore the distribution becomes a unimodal distribution with a larger mean
value. Nevertheless, because (1) changing the threshold does not qualitatively affect
the two key properties of RT distributions, that is, the positive skewness and the
increasing standard deviation with set size, and because (2) changing the threshold



3.2. RESULTS 69

affects the slope of RT × set size functions for different target salience equally, in the
following analyses we keep the target detection threshold ϑT = 15 for the simplicity.
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Figure 3.3:
(A) RT × set size functions for different target salience, from the lowest
S = 1.05 (lightest orange line) to the highest S = 1.35 (darkest orange line).
The top-down strength is α = 62% for all target salience conditions. Target
detection threshold ϑT = 15. Error bars indicate 1 SEM.
(B) RT distributions for different set sizes and target salience. From left to
right: S = 1.05, 1.20, and 1.35, respectively. Set size is coded by the lightness of
lines, from the lightest for set size 2 to the darkest for set size 5.
(C) Standard deviation of the RT distributions in (B).
(D) Skewness of the RT distributions in (B).
(E–H) Same as (A-D) but for target detection threshold ϑT = 6.

3.2.4 Top-down attentional effect on RT × set size functions

We now elucidate the effects of top-down attention guidance on RT × set size func-
tions. To this end, we keep the target salience S = 1.2 while varying the top-down
attention strength α deployed at the target in the bottom area. We find that stronger
α gives rise to lower RT and slope of RT × set size functions (the slope decreases from
157.67 to 42.33 ms/item when α increases from 31% to 92%) (Figure 3.4A), making
the search more efficient. This is consistent with the empirical findings that the
degree of uncertainty about upcoming targets influences RT: if the target remains
identical in each trial, top-down attention can be implicitly guided to the feature
of the target, which subsequently leads to quicker responses in following trials. On
the contrary, altering target identity across trials can increase the uncertainty of the
target feature and thus less top-down information is available to guide search, which
causes high RT (Wolfe, Butcher, et al. 2003). In addition, across different atten-
tion strengths, the RT distribution maintains positive skewness as well as increasing
standard deviation with the set size (Figure 3.4B and C, Figure 3.6).
We next explore the impact of the validity of the top-down cue on target search by

comparing RT in the condition of the valid, invalid, and neutral cue. We implement
an invalid cue by changing the spike frequency adaptation strength in the top area
at the position corresponding to one of the distractors. This setting emulates the
wrong top-down expectation/knowledge about the feature of targets. For neutral
cue, we simply keep the adaptation strength at all locations in the top area at
the baseline value, i.e., α = 0%. We find the invalid and valid cue increases and
decreases the RT and the slope respectively (Figure 3.4D), compared to the neutral
cue. However, the invalid cue does not influence the properties of increasing RT
standard deviation with the set size and the positive skewness of RT (Figure 3.4E
and F).

3.2.5 RT × set size functions for target-absent trials

Until now we have focused on the visual search problem when the target exists in
the visual field. In this section we proceed to investigate another aspect of visual
search; that is, how and when one decides to abandon a trial if there is no target.
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Figure 3.4: Effects of top-down attention on RT × set size functions
and RT distributions
(A) RT × set size function for different top-down attention strengths, from the
weakest α = 31% (lightest blue line) to the strongest α = 92% (darkest blue
line). Error bars indicate 1 SEM.
(B) Standard deviation of the RT distributions for different top-down attention
strengths and different set sizes.
(C) Skewness of the RT distributions for different top-down attention strengths
and different set sizes.
(D-F) Same as (A-C) but for comparing the effect of the validity of the cue on
the RT. Blue line: valid cue α = 92%, red dash line: invalid cue α = 92%, grey
line: neutral cue with no top-down attention, α = 0%.

In standard visual search experiments, trials with and without the target presented
are interspersed and observers are required to make a judgment on whether the
target exists or not for each trial. RT in this case is measured as the time needed
to make such a judgment. RT for target-absent (TA) trials is typically longer than
that for target-present (TP) trials, with the slope of RT × set size function of
target-absent trials 2–3 times that of target-present trials. This slope ratio with
a value around 2 suggests some extent of exhaustive searching through all items
on target-absent trials to confirm that no target exists. Obviously, if the searcher
randomly selects one item after another then the time to find a target is on average
half of the time to sample all objects to make the target-absent conclusion, and
the absent-present slope ratio is 2:1. However, this oversimplified searching strategy
has two problems: (1) the searching process is unlikely to be completely random
because, as we discussed earlier, RT and RT × set size functions for target-present
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trials are affected by target salience, the higher the salience of the target is the
easier it will be selected. And (2), if one needs to sample all objects to make the
target-absent conclusion then the slope of target-absent trials should be constant
regardless of the target-present slope (assume the dwelling time of the attention at
each object does not change with the target-present slope), which is inconsistent with
the empirical observations that slope ratio is roughly constant for various target-
present and target-absent slopes (Wolfe 1998). To address these issues, the classical
Guided Search model (Wolfe 1994) assumes the search starts from the most salient
object and sample in descending order of the saliency of each stimulus; the search
is terminated when the target is found, or the saliency of the selected item is lower
than an activation threshold. By assuming the saliency of items are noisy and
Gaussian distributed, and the variance of the target saliency decreases with its
mean, a roughly constant 2:1 target-absent to target-present slope ratio could be
produced (see Discussion for more details). Here, we offer a new perspective for the
cause of this 2:1 slope relation; we illustrate that the 2:1 slope ratio is an emergent
result of the sampling behavior of the spiking activity pattern in our model. First,
if we posit that (1) the slope of target-present RT × set size function reflects the
difficulty of a specific type of search task, and (2) the ratio of target-absent and
target-present slope with a value close to 2 implies at least some sort of exhaustive
search in target-absent trials, then the relatively constant slope ratio between target-
absent and target-present across different target-present slopes indicates that the
criterion for terminating search in target-absent trials is different for divergent task
difficulties characterized by different target-present slopes. We now hypothesize
that the criterion/threshold for determining when to abort a target-absent trial is
based on the amount of information/evidence about distractors accumulated during
the target-present trials with the same stimuli set size. We assume that one may
‘learn’ the distribution of the information gathered for distractors when the target
is detected in target-present trials, and then reuse this information as the threshold
in target-absent trials such that when the accumulated information obtained from
each of the distractors all reach this target-absent threshold, we can conclude the
absence of targets.
We calculate the RT for target-absent trials in our model based on this hypothesis.

First, on target-present trials, we record the accumulated evidence at each distractor
position, denoted by κTP

D (Figure 3.5A), when the target is detected (i.e., the time
when the target accumulated evidence κT reaches the target threshold ϑT ), for each
set size and each target salience S. We then suppose the threshold for target-absent
trials is based on the distribution of κTP

D (Figure 3.5B) and we consider two different
scenarios of how the target-absent threshold is calculated from the κTP

D distribution:

(1) Constant target-absent threshold. We use the mean of κTP
D distribution, de-

noted by ⟨κTP
D ⟩, for each set size and target salience on target-present trials as the

threshold for corresponding target-absent trials with the same set size, denoted
by ϑTA

D , i.e., ϑTA
D =

〈
κTP
D

〉
. Next, on each target-absent trial, the time point when

the accumulated evidence at all distractor positions, denoted by κTA
D , all reach

the target-absent threshold ϑTA
D is defined as the RT for the target-absent trial

(Figure 3.5D, top row).

(2) Random target-absent threshold. For each target-absent trial, we use a random
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value generated from the distribution of κTP
D in target-present trials with the

same set size as that of target-absent trials as the target-absent threshold, i.e.,
ϑTA
D = Rand(κTP

D ). As in (1), the target-absent RT for each target-absent trial is
when κTA

D = ϑTA
D for all distractors (Figure 3.5D, bottom row).

Based on these target-absent RT definitions we next compare the RT × set size
functions between target-absent and target-present trials, and we keep the attention
strength α = 62% for target-present trials, and S = 1 and α = 0% for target-
absent trials (i.e., no target and no top-down attention). Intriguingly, the RT for
target-absent trials defined by both scenarios yields a linear relation with the set
size just like the target-present trials, consistent with observations in psychophysical
studies (Wolfe 2012). For the first scenario, the slope of RT × set size is 242.53,
188.18, and 150.97 ms/item for target salience S = 1.05, 1.2, and 1.35, respectively
(Figure 3.5E), and for the second scenario the slope is 254.99, 187.64, and 152.38
ms/item for the same set of S (Figure 3.5I). Notably, the slope ratio between TA and
TP slope is a relatively constant value of around 2 across different target salience.
This ratio for the first scenario is 1.96, 2.08, and 2.19 for S = 1.05, 1.2, and 1.35,
respectively, and 2.06, 2.08, and 2.21 for the second scenario. Note that there is
a slight decreasing trend of this slope ratio with the target-present slope increases,
which in turn corresponds to the decreasing S, consistent with empirical observations
(Wolfe 1998). This constant TA-TP slope ratio can be intuitively understood by
looking at the relationship between the target-absent threshold in the first scenario
ϑTA
D = ⟨κTP

D ⟩ and the target salience S (Figure 3.5C). Specifically, increasing target
salience gives rise to shorter RT on target-present trials and thus leads to lower
distractor accumulated evidence κTP

D accumulated till the RT; therefore, the target-
absent threshold ϑTA

D = ⟨κTP
D ⟩ also decreases with the increasing target salience S,

which in turn decreases the slope ratio of the corresponding TA slope and maintain
the target-absent to target-present slope ratio across different target salience. A
similar explanation could be applicable to the second scenario: the random target-
absent threshold Rand(κTP

D ) generated from the distribution of κTP
D obtained from

target-present trials with high target salience tends to be lower than that with low
target salience, and thus making the slope of RT × set size functions of target-
absent trials decrease with the target salience S. The similar 2:1 TA-TP slope
ratio obtained from two different but related target-absent threshold calculation
methods suggests that our hypothesis for the search termination criterion is robust,
that is, one may decide to conclude the absence of a target based on the amount
of information/evidence about distractors accumulated during the target-present
trials.
As illustrated above, the two methods of the target-absent threshold calculation

produce similar results of the mean of RT. They, however, do affect the shape of
the target-absent RT distributions. Specifically, for the first scenario, the standard
deviation of the RT in target-absent trials is slightly lower than that of target-
present trials, with the former being around 0.7–1 times the latter (Figure 3.5F and
G). On the other hand, the second scenario yields a larger standard deviation of
the RT distributions of target-absent trials than target-present trials because of the
extra randomness introduced by the random target-absent threshold; the standard
deviation of target-absent RT is 2–3 times that of target-present RT (Figure 3.5J
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and K). Actually, our two scenarios represent two extreme scenarios of how the
target-absent threshold could be produced by making use of the distribution of the
κTP
D . A more practical and realistic way of calculating the target-absent threshold

for a particular target-absent trial could be averaging the κTP
D over the past several

target-present trials, which should lead to a target-absent RT distribution with a
standard deviation at an intermediate value between the two extreme scenarios
discussed here. In real visual search tasks, the standard deviation of target-absent
RT is around 1.1–1.5 times that of target-present RT (Palmer et al. 2011), which is
indeed within the range of the two extreme scenarios here.
In addition, regardless of which scenario is being used, we find that the standard

deviation of RT distributions for target-absent trials increases with the set size
(Figure 3.5G and K), just as in target-present trials, and the skewness of target-
absent RT distributions is positive (Figure 3.5H and L); both are consistent with the
observation in real search tasks (Wolfe, Palmer, and Horowitz 2010). Thus, they
provide further justification for our methods of determining when to terminate a
search process if no target exists.
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Figure 3.5: Methods for defining the RT for target-absent trials and
comparisons of RT on target-absent trials with RT on target-present
trials
(A) The accumulated evidence for the target (κT , orange line) and distractors
(κTP

D , grey lines) on an example target-present trial with set size 4, target
salience S = 1.35 and top-down strength α = 62%.
Captions for (B - L) on next page.
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Figure 3.5:
(B) The distribution of the distractors’ accumulated evidence κTP

D at t = RT for
the experimental condition in (A).
(C) The mean of κTP

D for different set sizes and different target salience.
(D) Two example target-absent trials (each column for one trial) with set size 4,
S = 1, and α = 0%. Two scenarios of target-absent RT definition are illustrated
in each row. In the top row the target-absent threshold ϑTA

D is defined as the
average of κTP

D in (B), while in the bottom row ϑTA
D on each trial is a random

value generated from the κTP
D distribution in (B). The RT for each target-absent

trial is the time point when the accumulated evidence κTA
D for all distractors

reaches ϑTA
D (indicated by black arrows).

(E) The result of target-absent RT × set size functions (dash lines) when the
first scenario in (D) is considered and its comparison to target-present trials
(solid lines). Different target salience is indicated by different colors as those in
Figure 3.3, from the lowest S = 1.05 (lightest orange line) to the highest
S = 1.35 (darkest orange line). Top-down strength is α = 62% for all target
salience conditions in the target-present trials and α = 0% in all target-absent
trials. Error bars indicate 1 SEM.
(F) RT distributions of target-present trials (solid lines) and target-absent trials
(dash lines) for different set sizes and target salience. From left to right:
S = 1.05, 1.20, and 1.35, respectively. Set size is coded by the lightness of the
line, from the lightest for set size 2 to the darkest for set size 5.
(G) Standard deviation of the RT distributions in (F).
(H) Skewness of the RT distributions in (F).
(I-L) Same as (E-H) but for the second scenario in (D).

3.3 Discussion

In this study, we have applied our large-scale neural circuit model to account for a
wide range of neural and behavioral features of attention-guided visual search; these
features would otherwise remain unexplained in existing models. We demonstrate
that the interaction of bottom-up sensory inputs and top-down attention cue gives
rise to the bottom-up- and top-down-sensitive neural responses, the linear relation
between the reaction time and stimuli set size, the approximate 2:1 ratio of the slope
of RT × set size functions of target-absent to target-present trials and the positively
skewed RT distributions.
Existing models of visual search, including the classical Guided Search model

(Wolfe 1994), have mainly focused on modeling behavioral data. Our model reveals
the dynamical circuit mechanism underlying the attention-guided search. In par-
ticular, we link the On-Off dynamics caused by the spatiotemporal spiking activity
pattern to the serial sampling process. As we have elucidated in Chapter 2, the
interareal synchronized bursting spiking activity, i.e., S-On states, is the neural sub-
strate for dynamic information communication between distant areas in our model.
Here in this study, we use the accumulated average firing rate of two areas as an
approximation for the total evidence of the stimulus identity transferred across the
bottom sensory to the top association area during the S-On states. We demonstrate
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that the reaction time, defined as the surpassing point of accumulated evidence to
a target-defining threshold, linearly increases with the number of stimuli. This phe-
nomenon implies that adding additional stimuli to the visual scene modulates the
On-Off dynamics in a way that the average information transfer rate is inversely
proportional to the number of stimuli. To verify this, more detailed analyses can be
done in the future to quantify how the On-Off duration and firing rate are modulated
by the set size. In recent years, the On-Off dynamics have been documented in the
change-monitoring attention tasks (Engel et al. 2016) where the subject needs to
respond to a change randomly happening in time to a stimulus; studies of this kind
revealed that the changes occurring close to the On state lead to quicker response
than changes occurring at Off states. Although such On-Off dynamics have not yet
been investigated in the classical visual search tasks, a similar dynamical sampling
process mediated by fluctuating neural excitability could underlie the linear set size
effect on the reaction time.
Our model also provides a unified account of the bottom-up saliency and top-

down cue effects on target searching; that is, bottom-up and top-down interactions
modulate the sampling dynamics of the spiking activity pattern, which subsequently
influence the reaction time and searching efficiency, as indicated in the slope of RT ×
set size functions. Such interareal interactions provide a mechanistic implementation
for the classical ‘activation map’ notion in the Guided Search model (Wolfe 1994),
in which it has been suggested that the activation intensity in the activation map
combines both the bottom-up and top-down information and encodes the priority
for an item/location to be attended. The attention is deployed in descending order
of the activation intensity until the target is found. It is worth noting that in the
classical Guided Visual search model, the objects are sampled without replacement;
items that have been attended will not be selected by attention again. This makes
the activation map determine the sampling order deterministically. Whereas in our
model, the activity pattern, although switches between stimuli sequentially, would
visit one item multiple times. In essence, the pattern samples in a probabilistic
way (Qi and Gong 2022), with the probability determined by both bottom-up and
top-down factors. Thus, the activity map in our model could be interpreted as
a probability map that encodes the likelihood of the attention deployment given
the information from the external environment (bottom-up) and endogenous prior
knowledge (top-down), and we have illustrated that such probabilistic sampling
mechanisms can produce the same linear relationship between the reaction time
and set size as the deterministic approach adopted by conventional models.
We also propose a new perspective to the search termination problem for target-

absent trials; that is, a subject may conclude the absence of a target once the
accumulated evidence about each distractor’s identity reaches a threshold that is
related to the accumulated evidence of the distractors in target-present trials. This
search termination criterion for target-absent trials is different from the classical
Guided Search model mentioned above, in which the attention deploys to objects in
the decreasing order of the activation map. Search in such a model is terminated
when the target is sampled (target-detected) or when the selected item’s activation
intensity is below an activation threshold and the target is still not found (one
claims that the target is absent); the activation threshold is dynamically adjusted
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across trials to maintain a user-defined target-missing error rate (note that this
activation threshold is a different notion from the accumulated evidence threshold
in our study). If the activations of both distractors and targets are assumed to be
Gaussian distribution, then the slope of the target-present trials corresponds to the
area of the distractor activation distribution that is larger than the mean of the
target activation distribution, the slope of the target-absent trials corresponds to
the area of the distractor activation distribution that is larger than the activation
threshold, and the error rate is related to the area of target activation distribution
that is lower than the activation threshold. In this case, if the error rate is maintained
by adjusting the activation threshold, to produce the 2:1 slope ratio of target-absent
to target-present RT × set size functions, one must assume the variability of the
target activation distribution is roughly inversely related to the square root of the
mean of target activation distribution (Wolfe 1994). Such an assumption, however,
is controversial. In our model, we argue that the accumulated evidence threshold
for target-absent and present trials could be different and that the threshold for
target-absent trials can be learned from the knowledge of the accumulated evidence
of distractors in target-present trials (κTP

D ). Our argument does not impose strong
restrictions onto the form of using such knowledge; for the two forms we test, which
are ϑTA

D =
〈
κTP
D

〉
and ϑTA

D = Rand(κTP
D ), both adaptive target-absent thresholds

produce a roughly constant 2:1 slope ratio across different target salience without
further assumptions, i.e., the 2:1 slope ratio is an emergent phenomenon arising from
the interaction of external inputs, top-down attention, and spatiotemporal dynamics
of activity patterns. One prediction that can be tested in experiments relating to our
target-absent reaction time defining method is that the reaction time in the target-
absent trials could be more variable if the set size varies from trial to trial than if
the set size is kept constant for a block of trials. The reason for this prediction is
that the intermixed set size across trials could interfere with the estimation of the
distribution of κTP

D for each set size.

3.4 Methods

The network model in this study is the same as the large-scale circuit model in
Chapter 2 with the same parameters for the connectivity, neurons, and synapses.
Here we only describe the settings of external inputs and top-down attention used
in this chapter.

3.4.1 External inputs

Each neuron of type α (α = e, i; e for excitatory neurons and i for inhibitory
neurons) in area β (β = 1, 2; 1 for the bottom area and 2 for the top area) receives
external input current Iαβj,ext (t) driven by Poisson spike train with rate

λ
(
yαβ
j , t

)
=λbg+λsti

(
yαβ
j , t

)
, (3.2)

where λbg is the rate of homogeneous background inputs which is 1600 Hz for all

neurons in both areas and λsti

(
yαβ
j , t

)
is the rate of external stimuli at position
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yαβ
j with its spatial profile being a sum of multiple Gaussian functions:

λsti

(
yαβ
j , t

)
=
∑
l

Cαβ
sti,lλbgexp

−

∥∥∥yαβ
j −yαβ

sti,l

∥∥∥2
2σ2

sti

 . (3.3)

Here yαβ
sti,l is the center of the lth stimulus, σsti = 5 is the width of each stimulus, and

Cαβ
sti,l is the contrast of the lth stimulus, representing the ratio between the maximum

amplitude of the stimulus to the amplitude of the background input λbg. In this
study, we only add stimuli to the excitatory neurons in the bottom (sensory) area,
i.e., Cαβ

sti,l = 0 when β = 2 or α = i. To investigate the effect of the target salience on
RT, we test three target contrast levels, which are Ce1

sti,1 = 0.2625, 0.3, and 0.3375
for target-present trials. The contrast level for distractors is always 0.25. The
number of the stimulus is the set size, which varies from 2 to 5. The center of the
stimulus positions is chosen from one of these 5 coordinates: (2, -10.4), (-23.6, 2.4),
(-10.8, 28), (14.8, 15.2) and (27.6, -23.2); the target stimulus on target-present trials
is always at (2, -10.4). The synapse coupling weights for external background and
stimulus inputs are all 5 nS.

3.4.2 Spike frequency adaptation and top-down attention

To implement the top-down attention we decrease the spike-frequency adaptation
∆ge2k of excitatory neurons in a local region in the top area. The spike-frequency
adaptation ∆ge2k at coordinate yj is given by

∆ge2k
(
yj

)
=∆ge2k,base −∆ge2k,modu

fatt
(
yj ,yatt, Ratt, σatt

)
fatt (yatt,yatt, Ratt, σatt)

, (3.4)

where

fatt
(
yj ,yatt, Ratt, σatt

)
= 1

1 + exp

(
−∥yj−yatt∥+Ratt

σatt

)

1− 1

1 + exp

(
−∥yj−yatt∥−Ratt

σatt

)
 .

(3.5)

Here ∆ge2k,base = 6.5 nS is the baseline value and yatt is the center of spike-frequency
modulation profile fatt. For the valid cue, yatt = (2, -10.4), same as the target
position; for the invalid cue, yatt is randomly chosen to be one of the distractors’
positions. The range of modulation is Ratt = 8.2, and the shape of the modulation
profile is σatt = 2.2. The maximum of the reduction in the adaptation is ∆ge2k,modu,
and the attention strength is α = ∆ge2k,modu/∆ge2k,base × 100%. To test the attention
effect on RT we choose α = 31%, 62%, and 92% for the valid cue condition, α = 92%
for the invalid cue condition, and α = 0% for the neutral condition.
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3.4.3 Trial simulations

For Figure 3.1C and D we generate 60 random realizations of the network and run
100 trials in each realization (6000 trials in total) for each target salience and top-
down attention strength and validity. For Figure 3.3 to 3.4 we generate one set of
150 random realizations of the network and simulate 50 trials in each realization
for each target salience, top-down attention, and set-size condition (7500 trials in
total for each condition). For Figure 3.5 we generate the same set of 150 random
realizations as the above and simulate 50 trials in each realization for each set size
(7500 trials in total for each set size). Trials are simulated for long enough to ensure
that accumulated evidence can reach the threshold. When calculating the RT of
target-absent trials with the set size of 5, there are 21 trials, 10 trials, and 1 trial on
which the evidence cannot reach the threshold within 11 seconds when the target-
absent RT is based on the κTP

D of target-present trials with S = 1.05, 1.2 and 1.35,
respectively, and when calculating the RT of target-absent trials with the set size of
3, there is 1 trial on which the evidence cannot reach the threshold within 7 seconds
when the target-absent RT is based on the κTP

D of target-present trials with S = 1.2.
These trials are excluded from the analysis.
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3.5 Supplemental information

1000 2000 3000 4000

RT (ms)

0

1

2

3

P
ro

ba
bi

lit
y 

de
ns

ity

×10
−3

Set size: 2

Set size: 3

Set size: 4

Set size: 5

α : 92%

1000 2000 3000 4000

RT (ms)

α : 62%

1000 2000 3000 4000

RT (ms)

α : 31%

Figure 3.6: RT distributions for different attention strengths
From left to right, α = 92%, 62%, and 31%, respectively. Set size is coded by
the lightness of lines, from the lightest for set size 2 to the darkest for set size 5.
Target salience S = 1.2.



Chapter 4

Dynamical working regime of
visual cortex

Abstract: The visual cortex has been extensively studied, but the dynamical regime
in which it operates remains unclear. To address this question, we consider a spa-
tially extended spiking circuit model. We illustrate that spiking activity patterns
with complex spatiotemporal dynamics emerge at the transition regime between
different network states. At this transition state, the spiking activity of individual
neurons is super-Poisson. The collective neural activity within the spiking patterns
exhibits gamma oscillations and the propagation of these patterns causes the theta
oscillations, thereby producing the theta-gamma coupling. In addition, the ampli-
tude and the frequency of the gamma activity increase with the stimuli contrast
level, and the population neural response to multiple concurrently presented stimuli
obeys normalization. Through reconciling and explaining the dynamical properties
in a unified manner, the transition regime between different network states thus
represents the working regime of the visual cortex and has important implications
for understanding the dynamical function of the visual cortex.

4.1 Introduction

The visual cortex has been extensively studied experimentally. These studies have
begun demonstrating rich and complex dynamics at the individual neuron and cir-
cuit levels. The spikes of individual neurons are highly variable; such variability
increases with the mean in a supralinear fashion, exhibiting super-Poisson dynamics
(Goris, Movshon, and Simoncelli 2014). Neural population activity of a local group
shows oscillations, particularly in the gamma (30-80 Hz) and theta (4-8 Hz) bands
(Spyropoulos, Bosman, and Fries 2018). It has also been found that in respond-
ing to external stimuli, neurons typically elicit weaker responses when two stimuli
are added together than when only one of them is placed, a phenomenon termed
normalization (Busse, Wade, and Carandini 2009). For instance, according to the
cross-orientation suppression, the response to a preferred orientation grating super-
imposed with a non-preferred orientation grating at the receptive field is a sublinear
sum of the response to each of them alone (Morrone, Burr, and Maffei 1982; Brouwer
and Heeger 2011); and, according to the surround suppression, the mask stimulus

82
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placed at the surrounding region of receptive field suppresses the response to within-
receptive field stimulus (Cavanaugh, Bair, and Movshon 2002a; Cavanaugh, Bair,
and Movshon 2002b; Zenger-Landolt and Heeger 2003).
The classical modeling framework for the visual cortex is based on attractors,

where the attractor arises from the interactions of recurrent synaptic couplings, re-
producing experimental observations such as the roughly constant tunning width ir-
respective of input strength (Ben-Yishai, Bar-Or, and Sompolinsky 1995). Recently,
several models attempted to reveal the circuit mechanism underlying normalization.
One of them combines the ‘inhibition-stabilized network’ with the supralinear single
neuron input-response function, thus, referred to as the stabilized supralinear net-
work (Rubin, Van Hooser, and K. D. Miller 2015). However, such models cannot
reproduce the oscillation behaviors and super-Poisson spiking variability. Another
model, proposed by (Heeger and Zemlianova 2020), recapitulates the normalization
using coupled neural integrators, consisting of two types of neurons: modulator
neurons and principal neurons. In this model, neurons are recurrently connected
and the recurrent input to principled neurons is inversely dependent on the re-
sponse of the modulator neurons, which leads to nonlinear recurrent amplification
for different external input strengths and resultant normalization. By choosing
proper time constants for the modulator neurons, this model can further reproduce
gamma oscillations with its oscillation amplitude increasing with the external input;
this contrast-dependent property of gamma activity has been found in experimen-
tal studies (Roberts et al. 2013). However, such a model lacks theta oscillations
and variable spiking activity. Therefore, the exact dynamical working regime of the
visual cortex remains unclear.
Here, we consider a spatially extended spiking neuron circuit and illustrate that

the complex spatiotemporal dynamics emerging at the transition regime between dif-
ferent cortical states (i.e., propagating wave state and non-propagating wave state)
can explain the theta and gamma oscillations and super-Poisson spiking activity.
Crucially, the amplitude and frequency of such gamma oscillations increase with the
contrast level of stimuli, reproducing the contrast-dependent gamma activity. In
addition, the interactions of concurrently presented stimuli elicit neural responses
that follow normalization. We referred to this transition regime between different
network states as the working regime of the visual cortex, and validate the key pre-
dictions of our working regime by comparing modeling results with published data
and by performing new analyses for Neuropixel data.

4.2 Results

4.2.1 Neural dynamics of visual cortex

We investigate the dynamics of the spontaneous activity of the mouse primary visual
cortex (VISp) using the local field potential (LFP) and spike data from the Allen
Brain Institute. We first analyze the LFP signal, which is regarded to be generated
by transmembrane currents and reflects the collective activity of a local population of
neurons (Katzner et al. 2009). The power spectrum of LFP recorded in VISp during
the spontaneous activity when the mouse is awake shows that the LFP power decays
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as the frequency (f) increases in a typical 1/f manner, with two evident peaks sitting
on the 1/f curve at the theta (≈ 5.5 Hz) and gamma (≈ 51 Hz) band respectively
(Figure 4.1A). We then examine the relationship between such theta and gamma
oscillations by calculating the phase-amplitude coupling modulation index, which
quantifies the extent of cross-frequency coupling by measuring the degree to which
the phase of one frequency component (phase frequency, 2-10 Hz) is informative to
the amplitude of another frequency component (amplitude frequency, 20-100 Hz).
We find the phase-amplitude coupling is strongest between the theta phase (3 Hz)
and gamma amplitude (60 Hz) (Figure 4.1B); this frequency-pair showing the most
evident cross-frequency coupling is close to the theta and gamma peak frequency in
the LFP power spectrum.

Figure 4.1: Neural oscillations in mouse visual cortex
(A) Power spectrum of LFP measured for the spontaneous activity in mouse
primary cortex VISp when the mouse is awake. Two peaks at theta and gamma
band are evident.
(B) Cross-frequency phase-amplitude coupling comodulograms for 20-second
LFP recorded in VISp.

We next quantify the fluctuations of the spiking activity of individual neurons of
mouse VISp area by calculating the Fano factor of spike count, which is the ratio
between the variance of spike count and mean spike count. We compute the Fano
factor of each neuron over non-overlapping time windows across time. We find the
Fano factor is close to 1 for small time window lengths and increases as the window
size increases (Figure 4.2A), consistent with the observations of spiking activities
in the MT areas of marmoset monkeys (Munn et al. 2020). We then inspect the
relationship of the variance and mean of spike counts using 52 ms window size; we
find that the former is dependent on the latter in a supralinear way (Figure 4.1B),
a phenomenon that has been observed in macaque visual cortex V1, V2, and MT
areas (Goris, Movshon, and Simoncelli 2014). These results indicate a super-Poisson
characteristic of spiking activities in the mammalian cortex.
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Figure 4.2: Fano factor of spiking activity in VISp
(A) Fano factor of the spontaneous spiking activity in VISp computed using
different window sizes.
(B) Variance-mean relationship of the spike counts of 1028 VISp neurons (blue),
compared with the same relationship for the Poisson process (black dash line).
The spikes are counted using 52 ms windows.

4.2.2 Spiking model

To understand the circuit mechanism and dynamic working regime underlying the
neural dynamics of mouse VISp neurons, we consider a biologically plausible spiking
neural circuit model that incorporates the known anatomic and physiological prop-
erties of cortical circuits, including distance-dependent synaptic connection proba-
bilities (Levy and Reyes 2012), the balance between excitation and inhibition (Xue,
Atallah, and Scanziani 2014; Barral and D Reyes 2016), and neural firing adap-
tations (Hasselmo 1995; Wang 1998); the model is the same as the model of V4
area in Chapter 2 except for minor changes mainly for identifying the dynamical
working regime of the visual cortex (see Methods). We first illustrate that the
population-level dynamics of this circuit model depend on the relative strength be-
tween excitatory and inhibitory synaptic coupling strength coupled to the excitatory
neurons, denoted as the IE-ratio (ζ, see Methods). We change ζ by varying the cou-
pling strength from inhibitory neurons to excitatory neurons. For low ζ, i.e., weak
inhibitory coupling strength, the spiking activity constitutes a local coherent pattern
propagating through the network (Figure 4.3A). When the pattern sweeps through
a region it causes vigorous spiking activity (denoted by On state as that in Chapter
2) at the corresponding location; and when the pattern moves away the neurons fire
less frequently (denoted by Off state, Figure 4.3C). By furtherly comparing the spik-
ing activity of a local region in the network with the underlying ongoing LFP signal
of the same location, we find that the vigorous On state occurs at the peak theta
phase of the LFP, suggesting that the propagating pattern contributes to the theta
oscillations of LFP (Figure 4.3D). Such theta oscillations is also manifested in the
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power spectrum of the LFP, with a theta peak at around 2.5 Hz (Figure 4.3A). The
total power in the theta band (2-8 Hz) is 7.2 × 105 a.u (arbitrary unit). In addition,
at this propagating wave state, we find that the LFP shows weak gamma band ac-
tivity with no peak in the gamma band in the power spectrum (Figure 4.3B, D). The
total power in the gamma band (30-80 Hz) band is 3.0 × 103 a.u. For stronger in-
hibitory strength, i.e., larger ζ, the activity pattern, however, becomes much sparser
than the low ζ condition and does not propagate as the pattern behaves in the low
ζ condition (Figure 4.3I); instead, the neurons exhibit strong nearly network-wide
gamma oscillations, at around 35 Hz, as shown in both the power spectrum and the
temporal curve of the LFP bandpass-filtered at the gamma band (Figure 4.3J, L),
with the total gamma power equal to 4.1 × 105 a.u. Due to the lack of propagating
pattern at this state, the propagating pattern-resultant theta band oscillations of
LFP attenuates; the total power in the theta band is 1.4 × 104 a.u., less than that
in the low ζ state (p < 10-17, two-sided paired t-test). At the intermediate ζ, the
spiking activity pattern emerges with complex propagating dynamics: the localized
pattern hovers around one position for a while and jumps to another place in an
intermittent manner (Figure 4.3E). In this dynamic region, both theta and gamma
oscillations occur, as indicated by the theta (3.5 Hz) and gamma (55 Hz) peaks in
the LFP power spectrum (Figure 4.3F), with the amplitude of gamma and theta os-
cillations at the intermediate level between low and high ζ state: the total power in
the theta band is 1.7 × 104 a.u and the total power in the gamma band is 2.1 × 104

a.u. (p < 10-2 for all the differences in theta and gamma power between this and the
other two states, two-sided paired t-test). The temporal profile of LFP oscillations
and spiking activities shows that the peak of the LFP theta phase, as the case for
low ζ, aligns with the On state of vigorous spiking activity, caused by the temporary
dwelling of the activity pattern (Figure 4.3G), and the amplitude of LFP gamma
oscillations is strongest during the vigorous spiking activity, generally aligned with
theta peak, indicating the gamma band activity is nested in the theta rhythm (Fig-
ure 4.3H). We then furtherly illustrate this theta-gamma phase-amplitude coupling
in our circuit model by calculating the phase-amplitude coupling modulation index
of LFP, as we have done for the mouse VISp cortex. As shown in Figure 4.4, the
phase-amplitude coupling is most evident between 3 Hz and 50 Hz, comparable to
the in vivo LFP in VISp.
We then analyze the Fano factor of the spike counts in this dynamic regime by

performing the same analysis as done for the mouse data. Consistent with empirical
observations, the Fano factor increases with the window length of spike counting,
particularly when the window length is shorter than 100 ms (Figure 4.5A). More-
over, the Fano factor is greater than one for window length larger than 14 ms
(p < 10-40, two-sided one-sample t-test), and the variance increases with the mean
in a supralinear way (Figure 4.5B). These super-Poisson properties of spiking activ-
ity thus provide further justifications for the validity of our model. Here, we refer to
this network state with intermediate IE-ratio, complex pattern dynamics, coexist-
ing theta-gamma oscillations, and super-Poisson spiking variability, as the working
regime of the visual cortex, in which our circuit model can quantitatively capture
and explain experiment data of the mouse visual cortex.
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Figure 4.3: Spatiotemporal dynamics of the spiking model
(A-D) Results for IE-ratio ζ = 2.07.
(A) Spiking activity pattern (black) and its propagation trajectory over time
(coded by color).
(B) Power spectrum of LFP recorded at the center of the network, shaded
region indicates 1 SEM.
(C) Raster plot for the spiking activity of 80 excitatory neurons at the center of
the network (black) and the distance of the activity pattern to the network
center (pink).
(D) Traces of LFP recorded at the network center and filtered at 1.5-8 Hz band
(close to theta band, blue) and 30-80 Hz band (gamma band, orange).
(E-H) Same as (A-D) but for ζ = 2.61.
(I-L) Same as (A-D) but for ζ = 3.16. Note that the trajectory of the activity
pattern and the distance of the activity pattern to the network center is not
plotted in (I) and (K) because the activity pattern at ζ = 3.16 does not
propagate as the pattern behaves when ζ = 2.07 and ζ = 2.61.
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Figure 4.4: Phase-amplitude coupling in the model
Cross-frequency phase-amplitude coupling comodulograms for 50-second LFP
recorded at the center of the spiking network model.

Figure 4.5: Fano factor of spiking activity in the model
(A) Fano factor for the excitatory neurons in the network, computed using
different window sizes.
(B) Variance-mean relationship of spike counts over 52 ms windows for 2460
randomly picked up excitatory neurons.
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4.2.3 Contrast-dependent gamma response

We next illustrate that in the working regime, the gamma oscillations depend on
the contrast level of external inputs, as has been widely observed in experimental
studies (Roberts et al. 2013; Jia, Xing, and Kohn 2013). To this end, we add
one external stimulus with varying contrast levels to mimic the effect of stimulus
contrast on the strength of afferent synaptic inputs (see Methods) and measure the
LFP at the location of the stimulus. As shown in Figure 4.6A and B, both the peak
frequency and the amplitude of gamma band LFP activity increases as the contrast
level increases. The mean of the peak frequency increases from 55.0 Hz to 58.2 Hz
as the contrast level increase from c = 0 (spontaneous) to c = 0.5 [F(4, 116) = 16.9,
p < 10-10, one-way repeated measures ANOVA], and the gamma power (summed
across 30-80 Hz) increases from 2.1 × 104 a.u. for c = 0 to 5.1 × 104 a.u. for c = 0.5
[F(4, 116) = 624.8, p < 10-76, one-way repeated measures ANOVA]. This contrast-
dependent gamma band activity is consistent with that found in the monkey visual
cortex V1 and V2 (Roberts et al. 2013).

Figure 4.6: Contrast-dependent gamma oscillations in the model
(A) Power spectrum of LFP recorded at the stimulus center for different
contrast levels (c) of stimulus.
(B) Peak frequency (blue) and total power (orange) in the gamma band of the
power spectrum in (A) for different contrast levels.

4.2.4 Normalization of neural response to multiple stimuli

We now elucidate that in the working region, the population response to concur-
rently presented stimuli obeys the normalization model, that is, the total response
is a weighted sum of the response to each stimulus presented alone. We add two
external inputs, one at the center (coordinate [0, 0]) of the network and the other at
a nearby location (coordinate [-20, -20], i.e., two stimuli are on the diagonal of the
network, see Methods), to represent inputs from two stimuli with different features



4.3. DISCUSSION 90

(e.g., different orientations). We then vary the contrast level of each stimulus to
examine the dependence of population response on the contrast, as in experimental
studies (Busse, Wade, and Carandini 2009). We find that the response to concur-
rently presented stimuli is less than that when each stimulus is presented alone,
indicating competition between different stimuli (Figure 4.7, black lines vs blue and
green lines), which is analogous to the phenomenon of cross-orientation suppression
observed in experiments (Morrone, Burr, and Maffei 1982; DeAngelis et al. 1992).
In addition, the extent of suppression depends on the contrast level, consistent with
what has been observed in the cat visual cortex V1 (Busse, Wade, and Carandini
2009). Specifically, (1) when two stimuli have equal contrast levels, the response
of the neurons near each stimulus is suppressed by a common factor (Figure 4.7A),
reflecting that in this condition the population response to concurrent stimuli is a
weighted sum of the response to each stimulus and that the weight for each stimulus
component is the same. (2) When the contrast levels of two stimuli are extremely
different, the total population response favors the stimulus with high contrast level,
mimicking the winner-take-all competition between different stimuli (Figure 4.7B).
(3) When two stimuli have different but similar contrast levels, the response is at
the intermediate level between the above two extreme scenarios (Figure 4.7C, D).
To further quantify these observations, we fit the neural responses in our circuit
model by a modified version of the classical normalization model (Busse, Wade, and
Carandini 2009), which is

R1+2(c1, c2, x) = rmax
cn1G1 + cn2G2 + b0

cn50 + cnrms

, (4.1)

where R1+2(c1, c2, x) is the response at position x along the diagonal of the network,
c1 and c2 are the contrast levels of the two stimuli, crms =

√
c21 + c22 is the root-

mean-square of contrast levels, n, rmax, and c50 are constant, b0 is a bias to account
for the spontaneous activity in our model (this parameter is not included in the
original model), G1 and G2 are Circular Gaussians given by

G(x) = Aep∗cos[(x−xi)/xmax∗π]/[2πI0(p)], (4.2)

where xi is the distance of each stimulus to the network center (x1 = 0 and x2 =
20
√
2), I0 is the modified Bessel function of the first kind, A and p are constant.

We find the response curve indeed can be characterized by the normalization model
(Figure 4.7, red line, R2 = 0.982). The best-fit value of parameters are A = 44.61,
p = 4.39, n = 1.53, c50 = 0.64, rmax = 3.12, and b0 = 1.02.

4.3 Discussion

In this study, we analyze the LFPs and spiking data of the mouse VISp cortex for
spontaneous activity and reveal the properties of theta-gamma coupling in the LFPs
and super-Poisson spiking activities. We have illustrated the circuit mechanism
underlying these dynamics using a biologically plausible spiking neuron circuit (i.e.,
the bottom sensory area in Chapters 2 and 3). By systematically varying the IE-
ratio of synaptic coupling strength in this model, we identify the working regime
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Figure 4.7: Normalization of the neural response in the model
(A) We add two stimuli at coordinates [0, 0] and [-20, -20] in the network. The
contrast level for both stimuli is 0.5. Black, population response along the
diagonal of the network, error bars indicate 1 SEM; green, average population
response to the stimulus at [-20, -20] presented alone; blue, average population
response to the stimulus at [0, 0] presented alone, error bars are not shown.
(B-D) Same as (A) but for the conditions when the contrast levels of both
stimuli (c1, c2) are (0.125, 0.5), (0.375, 0.5), and (0.375, 0.25), respectively.

with evident theta and gamma oscillations as the transition region between the
propagating wave and non-propagating wave states. We have further illustrated
that this working regime also exhibits super-Poisson spiking dynamics, contrast-
dependent gamma response, and normalization.
In most of the previous models for the visual cortex, including the stabilized supra-

linear network (Rubin, Van Hooser, and K. D. Miller 2015), the neural responses
were usually modeled as the stable fixed point, therefore the response lacks oscilla-
tions. On the other hand, in some models, like the normalization model consisting of
recurrently coupled principal and modulator neurons proposed by Heeger and Zem-
lianova (2020), although the response can be unstable under some parameter settings
of the modulator neuron’s time constant, they failed to explain the co-existence of
both theta and gamma rhythm. By contrast, our model operates in a fundamentally
different regime compared with other models; the spiking activity patterns in our
model exhibit non-equilibrium propagating dynamics. We demonstrated that such
propagating patterns could be crucial for explaining the theta oscillations in vivo.
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In addition, the gamma oscillation is nested in the spiking pattern which gives rise
to the theta-gamma coupling. In our model, the spiking pattern instability is caused
by the spike frequency adaptation as we illustrated in Chapter 2 Subsection 2.2.5
and leads to the pattern sampling stimuli sequentially (demonstrated in Chapter
3) in a probabilistic manner (Qi and Gong 2022). In this study, we have further
illustrated that the response of such non-equilibrium pattern dynamics to external
stimuli obeys normalization, thus offering a new perspective for the origin of the
widely-observed normalization computation in the cortex.
Building on the rigorous formulation and validation of the working regime of the

visual cortex, future studies will focus on establishing the theoretical mathematic
and physical formulation for this transition of network state in which the cortical
working regime resides. Further analysis can also investigate whether our working
regime is robust to different synaptic coupling strategies other than our model’s,
which is Mexican-hat-like synaptic coupling with long-range inhibition and short-
range excitation (see Chapter 2 Subsection 2.4.2).

4.4 Methods

4.4.1 Spiking network model

The model we considered here is the bottom sensory area of the two-area model
used in Chapters 2 and 3. Most parameters are the same except for the refractory
period of inhibitory neurons changes from 4 ms to 2 ms.

4.4.2 IE-ratio and network dynamics

The relative strength between inhibitory and excitatory synaptic weights in our
model affects the dynamical states, which is quantified by the IE-ratio (same as
Chapter 2 2.4.4)

ζα =
W

iα

rec K
iα
in

W
eα

rec K
eα
in

, (4.3)

defined as the ratio of average total incoming inhibitory synaptic strength to average
total incoming excitatory synaptic strength for a specific neuron type α (α = e, i).
At the working regime, ζe ≈ 2.61 and ζ i ≈ 2.13. For Figure 4.3, we vary ζe

between 2.07, 2.61 and 3.16. Note the superscript e in ζe is omitted in Figure
4.3 for simplicity. The band-passed signal in Figure 4.3 is obtained by using 4th

order Butterworth filter applied forward and backward to the LFP to avoid phase
distortion.

4.4.3 External inputs

The external input is modeled in the same way as Chapter 2 2.4.3. Each neuron j
at population α (α = e, i for excitatory and inhibitory neuron groups, respectively)
receives excitatory external input current Iαj,ext (t) driven by Poisson spike train with
rate

λ
(
yα
j , t
)
=λbg+λsti

(
yα
j , t
)
, (4.4)



4.4. METHODS 93

where λbg is the rate of homogeneous background inputs which is 1600 Hz for all
neurons in both excitatory and inhibitory groups and λsti

(
yα
j , t
)
is the rate of exter-

nal stimuli at position yα
j with its spatial profile being a sum of multiple Gaussian

function:

λsti

(
yα
j , t
)
=
∑
l

cαl λbgexp

(
−
∥∥yα

j −yα
sti,l

∥∥2
2σ2

sti

)
. (4.5)

Here yα
sti,l is the center of the lth stimulus, σsti is the width of each stimulus, and cαl

is the contrast of the lth stimulus, representing the ratio of the maximum amplitude
of the stimulus to the amplitude of the background input λbg. The synapse coupling
weights for external background and stimulus inputs are all 5 nS.

4.4.4 Trials Simulation

For Figure 4.6 we add one stimulus at [0, 0] to the excitatory neuron group with
σsti = 6 and ce1 varying between 0, 0.125, 0.25, 0.375 and 0.5. No external stimulus
is added to inhibitory neuron group. For each ce1 value we generate 30 random
realizations of network and simulate 50 trials in each realization; each trial is 1000
ms long. The grand mean of the power spectrum of each trial is plotted. For Figure
4.7 we add two stimuli at [0, 0] and [-20, -20] respectively with σsti = 6 and cel and ce2
varying between 0, 0.125, 0.25, 0.375 and 0.5 independently. No external stimulus
is added to inhibitory neuron group. For each ce1 − ce2 combination we generate 60
random realizations of network and simulate 50 trials in each of them; each trial is
1200 ms long. The average firing rate of each trial between 200 ms to 1200 ms is
computed. The grand mean of the firing rate for each ce1−ce2 combination is plotted.

4.4.5 LFP proxy

The LFP of the model is defined by the same proxy as in Chapter 2. Specifically,
the LFP at position y is defined as a weighted sum of the absolute value of recurrent
excitatory and inhibitory postsynaptic current across excitatory neurons in that area
(Mazzoni et al. 2015), given by

LFP (y, t,)=
∑
j

(∣∣Ieej,rec (t)∣∣+ ∣∣I iej,rec (t)∣∣) exp
(
−
∥∥ye

j − y
∥∥2

2σ2
LFP

)
, (4.6)

where ye
j is the coordinate of neuron ne

j , I
ee
j,rec (t) is the excitatory recurrent input

current to the neuron ne
j , and I iej,rec (t) is the inhibitory recurrent input current. Note

that the variable β representing different areas in Chapter 2 is omitted here because
we only consider the bottom area in this chapter. The sum of the absolute value of
each of these inputs is then multiplied by a weight determined by the exponential
term of the above equation, with the weight decays as the distance between ye

j and
y increases. σLFP defines the spatial scale of the weighted sum; we use σLFP = 7.

4.4.6 Phase-amplitude coupling

To quantify the phase-amplitude coupling between the different frequency compo-
nents we calculate the modulation index (MI) as in Chapter 2 2.4.8. We band-pass
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the raw LFP (same filter as in 4.4.2) at the phase-frequency band (LFPp) and
amplitude-frequency band (LFPa), and find the instantaneous phase of LFPp and
instantaneous amplitude of LFPa using the Hilbert transform. The phase time series
LFPp are binned into N = 20 phase interval, and the average amplitude of LFPa

for each phase interval is calculated to obtain the distribution of the amplitude with
respect to the phase, given by

p(Φj) =
AΦj∑N
j=1AΦj

, (4.7)

where AΦj
is the average amplitude for phase interval Φj. The MI is a measure of

divergence of p(Φj) from the uniform distribution, given by

MI = 1−
−
∑N

j=1 p(Φj)log(p(Φj))

logN
. (4.8)

To exclude the MI caused by chance, we shuffle the amplitude time series LFPa

and calculate the MI between the shuffled LFPa and original LFPp, denoted by
MIs. MIs is then subtracted from MI to get the final MI presented here.
For Figure 4.1, we perform the phase-amplitude coupling analysis on 20 seconds

of data for spontaneous activity of the VISp area. The data consists of 6 LFP signals
recorded simultaneously from 6 channels. We calculate the MI for each LFP and
average them to get the phase-amplitude coupling comodulograms. For Figure 4.4
we calculate the MI for 50 seconds of LFP during spontaneous activity in the spiking
model.

4.4.7 Fano factor

For Figure 4.2 we calculate the Fano factor for 85 single-unit spike data recorded
in 15 spontaneous intervals. The Fano factor is computed across time using non-
overlapping sliding windows for each neuron and each spontaneous interval. Most
of these intervals are 30 seconds long (minimum: 1 second, maximum: 301 seconds,
mean: 82.5 seconds). For Figure 4.5 we calculate the Fano factor for 82 randomly
chosen excitatory neurons in each random network realization (30 realizations in
total, 2460 neurons in total). Each realization is simulated for 50 seconds of sponta-
neous activity data. The Fano factor is computed across time using non-overlapping
sliding windows for each neuron and each realization.



Chapter 5

Concluding Remarks and Future
Directions

The overall focus of this thesis is investigating the spatiotemporal dynamics and
circuit mechanisms underlying visual attention. In this chapter, we first review the
major contributions in Chapters 2-4 and then discuss potential future directions
that can extend our current work.

5.1 Review of major contributions

In Chapter 2, we investigate the flexible information routing mechanisms for in-
terareal cortical communications using a large-scale circuit model that consists of
sensory and association areas. We illustrate that the complex spatiotemporal spiking
activity patterns emerging in both areas exhibit transient synchrony, characterized
by the epoch when both areas exhibit On states vigorous spiking activity; such
synchrony incidents naturally give rise to gamma-based and subspace-based com-
munication, the two major proposals of corticocortical communication in the liter-
ature. We then demonstrate that the cue-evoked acetylcholine-mediated reduction
of the spike frequency adaptation in the association area modulates the interareal
communication such that the information transmission at the cued location is en-
hanced. In addition, such modulation of communication leads to changes in neural
responses which resemble neural effects of attention observed empirically. These
results suggest that interareal communication could be established on the dynami-
cal interactions of spatiotemporal patterns distributed in distant brain regions, and
top-down attention is in essence a modulation process in the ongoing corticocortical
communication.
In Chapter 3, we further apply the large-scale model in Chapter 2 to investigate the

dynamic attention allocation mechanism using the classical visual search paradigm.
We illustrate that the spiking activity patterns sample external stimuli in a serial
manner and result in On-Off fluctuations at each stimulus location. We then use
the geometric mean of the firing rate across aligned regions in different areas as a
proxy of the instantaneous information/evidence of the stimulus identity transmitted
across areas and define the reaction time (RT) of target detection as the time point
when the accumulated evidence surpasses an arbitrary user-defined threshold. The

95
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reaction time computed in this way shows a linear dependence on the number of
search items (set size); such a linear RT × set size relationship is widely observed in
visual search and is a hallmark of serial search. We next demonstrate that the slope
of RT × set size functions changes with different bottom-up saliency and top-down
attention strengths, suggesting the search efficiency, reflected by the slope of RT ×
set size, is modulated by both bottom-up and top-down factors. We further propose
a new perspective to the search termination problem for target-absent trials; that is,
a subject may conclude the absence of a target once the accumulated evidence about
each distractor’s identity reaches a threshold that is dependent on the distribution
of the accumulated evidence of distractors in target-present trials. This adaptive
target-absent threshold naturally gives rise to the approximate 2:1 RT × set size
slope ratio of the target-absent to target-present trials observed in psychophysical
visual search studies.
In Chapter 4, we identified the dynamical working regime of the visual cortex.

We propose the transition regime between different network states is the working
regime of the visual cortex. At the working regime, spiking activity patterns with
complex spatiotemporal dynamics explain the theta-gamma coupling and the over-
all individual neuron spiking activity exhibits super-Poisson variability. In response
to external stimuli, the gamma amplitude and frequency increases with the stimuli
contrast level and the population response to multiple stimuli obeys the normaliza-
tion. These results are validated by published data and new analyses on Neuropixel
data.

5.2 Future directions

In Chapter 2 we mainly focus on the gamma-band feedforward communication,
which is implemented in theta cycles. In the cortex, it has been found that the al-
pha (≈ 10 Hz) and beta (≈ 15 to 30 Hz) band oscillations also play important roles
in regulating interareal interactions, and these oscillations primarily exert feedback
influence from top-hierarchical cortical regions to earlier stages of the brain (Van
Kerkoerle et al. 2014; Bastos et al. 2015). Such frequency-specific feedforward-
feedback influences are partially supported by the cortical layer-specific oscillation
frequencies and interareal axonal projection patterns. Specifically, superficial lay-
ers typically exhibit gamma-band oscillations while deep layers are usually associ-
ated with alpha/beta oscillations (Maier et al. 2010; Van Kerkoerle et al. 2014),
and top-down long-range axonal projections tend to originate from the deep lay-
ers while bottom-up long-range projections predominantly originate in superficial
layers (Felleman and Van Essen 1991; Markov, Julien Vezoli, et al. 2014). Future
studies could focus on investigating the mechanism underlying the emergence of
alpha/beta oscillations and building large-scale circuit models with column struc-
ture and layer-specific connectivity, neurophysiology, and dynamics properties. One
specific direction of research along this line could be understanding the mechanis-
tic account of the influence of beta oscillations in selective attention. It has been
found that the cortical area 7a in the parietal cortex exhibits beta oscillations and
such beta-band oscillations influence the V1 area in a top-down direction (Richter
et al. 2017). Moreover, during an attention task, such top-down 7a to V1 beta
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influences can enhance the V1 to V4 gamma-band influences, i.e., the top-down
attention from 7a to V1 promotes the gamma-band bottom-up information trans-
mission through the top-down beta rhythms (Richter et al. 2017). Note that this
notion is not necessarily contradictory to the theta-modulated gamma activity in
our current framework, in which each gamma information package is nested in each
theta cycle. In fact, it is possible that beta oscillations in 7a could be nested in
the local theta rhythms of 7a itself, and this theta-modulated beta oscillation in 7a
periodically enhances V1 to V4 gamma-band communication. Indeed, both theta
and beta activity have been observed in the power spectrum of 7a activity (Richter
et al. 2017); however, whether the beta amplitude is modulated by the theta phase
needs to be tested.
In summary, further investigations on the formation mechanism of alpha and beta

band oscillations can deepen our understanding of the working regime of the visual
cortex, and examinations of the interaction mechanism across different frequency
bands can help us explore the neural dynamic mechanisms underlying brain func-
tions such as attention.
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Liu, Yuxi et al. (2021). “Lévy walk dynamics explain gamma burst patterns in
primate cerebral cortex”. In: Communications Biology 4.1, p. 739.

Lizier, Joseph T (2014). “JIDT: An information-theoretic toolkit for studying the
dynamics of complex systems”. In: Frontiers in Robotics and AI 1, p. 11.

Ma, Wei Ji et al. (2011). “Behavior and neural basis of near-optimal visual search”.
In: Nature neuroscience 14.6, pp. 783–790.



BIBLIOGRAPHY 102

Maier, Alexander et al. (2010). “Distinct superficial and deep laminar domains of
activity in the visual cortex during rest and stimulation”. In: Frontiers in systems
neuroscience 4, p. 31.

Markov, Nikola T, P Misery, et al. (2011). “Weight consistency specifies regularities
of macaque cortical networks”. In: Cerebral cortex 21.6, pp. 1254–1272.

Markov, Nikola T, Julien Vezoli, et al. (2014). “Anatomy of hierarchy: feedforward
and feedback pathways in macaque visual cortex”. In: Journal of Comparative
Neurology 522.1, pp. 225–259.

Maunsell, John HR et al. (1991). “Extraretinal representations in area V4 in the
macaque monkey”. In: Visual neuroscience 7.6, pp. 561–573.

Mazzoni, Alberto et al. (2015). “Computing the local field potential (LFP) from
integrate-and-fire network models”. In: PLoS computational biology 11.12, e1004584.

McCormick, David A and Anne Williamson (1989). “Convergence and divergence of
neurotransmitter action in human cerebral cortex.” In: Proceedings of the National
Academy of Sciences 86.20, pp. 8098–8102.

Mitchell, Jude F, Kristy A Sundberg, and John H Reynolds (2009). “Spatial atten-
tion decorrelates intrinsic activity fluctuations in macaque area V4”. In: Neuron
63.6, pp. 879–888.

Moran, Jeffrey and Robert Desimone (1985). “Selective attention gates visual pro-
cessing in the extrastriate cortex”. In: Science 229.4715, pp. 782–784.

Morrone, M Concetta, DC Burr, and Lamberto Maffei (1982). “Functional implica-
tions of cross-orientation inhibition of cortical visual cells. I. Neurophysiological
evidence”. In: Proceedings of the Royal Society of London. Series B. Biological
Sciences 216.1204, pp. 335–354.

Motter, Brad C (1993). “Focal attention produces spatially selective processing in
visual cortical areas V1, V2, and V4 in the presence of competing stimuli”. In:
Journal of neurophysiology 70.3, pp. 909–919.

Mountcastle, Vernon (1978). “An organizing principle for cerebral function: the unit
module and the distributed system”. In: The mindful brain.

Mountcastle, Vernon B (1997). “The columnar organization of the neocortex.” In:
Brain: a journal of neurology 120.4, pp. 701–722.

Moutard, Clément, Stanislas Dehaene, and Rafael Malach (2015). “Spontaneous fluc-
tuations and non-linear ignitions: two dynamic faces of cortical recurrent loops”.
In: Neuron 88.1, pp. 194–206.

Munn, Brandon et al. (2020). “Fractal spike dynamics and neuronal coupling in the
primate visual system”. In: The Journal of Physiology 598.8, pp. 1551–1571.

Najemnik, Jiri and Wilson S Geisler (2005). “Optimal eye movement strategies in
visual search”. In: Nature 434.7031, pp. 387–391.

Nghiem, Trang-Anh E et al. (2020). “Cholinergic switch between two types of slow
waves in cerebral cortex”. In: Cerebral Cortex 30.6, pp. 3451–3466.

Ogawa, Tadashi and Hidehiko Komatsu (2004). “Target selection in area V4 during a
multidimensional visual search task”. In: Journal of Neuroscience 24.28, pp. 6371–
6382.

Palmer, Evan M et al. (2011). “What are the shapes of response time distributions
in visual search?” In: Journal of experimental psychology: human perception and
performance 37.1, p. 58.



BIBLIOGRAPHY 103

Palmigiano, Agostina et al. (2017). “Flexible information routing by transient syn-
chrony”. In: Nature neuroscience 20.7, pp. 1014–1022.

Park, Hae-Jeong and Karl Friston (2013). “Structural and functional brain networks:
from connections to cognition”. In: Science 342.6158, p. 1238411.

Qi, Yang and Pulin Gong (2022). “Fractional neural sampling as a theory of spa-
tiotemporal probabilistic computations in Neural Circuits”. In: Nature Commu-
nications 13.1. doi: 10.1038/s41467-022-32279-z.

Ragwitz, Mario and Holger Kantz (2002). “Markov models from data by simple
nonlinear time series predictors in delay embedding spaces”. In: Physical Review
E 65.5, p. 056201.

Ratcliff, Roger (1978). “A theory of memory retrieval.” In: Psychological review 85.2,
p. 59.

Renart, Alfonso et al. (2010). “The asynchronous state in cortical circuits”. In:
science 327.5965, pp. 587–590.

Reynolds, John H and David J Heeger (2009). “The normalization model of atten-
tion”. In: Neuron 61.2, pp. 168–185.

Reynolds, John H, Tatiana Pasternak, and Robert Desimone (2000). “Attention
increases sensitivity of V4 neurons”. In: Neuron 26.3, pp. 703–714.

Richter, Craig G et al. (2017). “Top-down beta enhances bottom-up gamma”. In:
Journal of Neuroscience 37.28, pp. 6698–6711.

Risberg, Jarl and Jordan Grafman (2006). The frontal lobes: Development, function
and pathology. Cambridge University Press.

Roberts, Mark J et al. (2013). “Robust gamma coherence between macaque V1 and
V2 by dynamic frequency matching”. In: Neuron 78.3, pp. 523–536.

Rogawski, Michael A (2013). “AMPA receptors as a molecular target in epilepsy
therapy”. In: Acta Neurologica Scandinavica 127, pp. 9–18.

Rubin, Daniel B, Stephen D Van Hooser, and Kenneth D Miller (2015). “The sta-
bilized supralinear network: a unifying circuit motif underlying multi-input inte-
gration in sensory cortex”. In: Neuron 85.2, pp. 402–417.

Schein, Stanley J and Robert Desimone (1990). “Spectral properties of V4 neurons
in the macaque”. In: Journal of Neuroscience 10.10, pp. 3369–3389.

Schmitz, Taylor W and John Duncan (2018). “Normalization and the cholinergic
microcircuit: a unified basis for attention”. In: Trends in cognitive sciences 22.5,
pp. 422–437.

Semedo, João D et al. (2019). “Cortical areas interact through a communication
subspace”. In: Neuron 102.1, pp. 249–259.

Shu, Yousheng, Andrea Hasenstaub, and David A McCormick (2003). “Turning on
and off recurrent balanced cortical activity”. In: Nature 423.6937, pp. 288–293.

Spitzer, Hedva, Robert Desimone, and Jeffrey Moran (1988). “Increased atten-
tion enhances both behavioral and neuronal performance”. In: Science 240.4850,
pp. 338–340.

Spyropoulos, Georgios, Conrado Arturo Bosman, and Pascal Fries (2018). “A theta
rhythm in macaque visual cortex and its attentional modulation”. In: Proceedings
of the National Academy of Sciences 115.24, E5614–E5623.

https://doi.org/10.1038/s41467-022-32279-z


BIBLIOGRAPHY 104

Srinath, Ramanujan, Douglas A Ruff, and Marlene R Cohen (2021). “Attention
improves information flow between neuronal populations without changing the
communication subspace”. In: Current Biology 31.23, pp. 5299–5313.

Sternberg, Saul (1966). “High-speed scanning in human memory”. In: science 153.3736,
pp. 652–654.

Stimberg, Marcel, Romain Brette, and Dan FM Goodman (2019). “Brian 2, an
intuitive and efficient neural simulator”. In: Elife 8, e47314.

Tanaka, Keiji et al. (1986). “Analysis of local and wide-field movements in the supe-
rior temporal visual areas of the macaque monkey”. In: Journal of Neuroscience
6.1, pp. 134–144.

Theeuwes, Jan (2010). “Top–down and bottom–up control of visual selection”. In:
Acta psychologica 135.2, pp. 77–99.

Tort, Adriano BL et al. (2010). “Measuring phase-amplitude coupling between neu-
ronal oscillations of different frequencies”. In: Journal of neurophysiology 104.2,
pp. 1195–1210.

Treisman, Anne (1986). “Features and objects in visual processing”. In: Scientific
American 255.5, 114B–125.

Treisman, Anne M and Garry Gelade (1980). “A feature-integration theory of at-
tention”. In: Cognitive psychology 12.1, pp. 97–136.

Treue, Stefan and Julio C Martinez Trujillo (1999). “Feature-based attention in-
fluences motion processing gain in macaque visual cortex”. In: Nature 399.6736,
pp. 575–579.

Treves, Alessandro (1993). “Mean-field analysis of neuronal spike dynamics”. In:
Network: Computation in Neural Systems 4.3, p. 259.

Ullman, Shimon (1995). “Sequence seeking and counter streams: a computational
model for bidirectional information flow in the visual cortex”. In: Cerebral cortex
5.1, pp. 1–11.

Van Kerkoerle, Timo et al. (2014). “Alpha and gamma oscillations characterize
feedback and feedforward processing in monkey visual cortex”. In: Proceedings of
the National Academy of Sciences 111.40, pp. 14332–14341.

Van Vreeswijk, Carl and Haim Sompolinsky (1996). “Chaos in neuronal networks
with balanced excitatory and inhibitory activity”. In: Science 274.5293, pp. 1724–
1726.

Verhoef, Bram-Ernst and John HR Maunsell (2017). “Attention-related changes in
correlated neuronal activity arise from normalization mechanisms”. In: Nature
neuroscience 20.7, pp. 969–977.

Vreeswijk, Carl van and Haim Sompolinsky (1998). “Chaotic balanced state in a
model of cortical circuits”. In: Neural computation 10.6, pp. 1321–1371.

Wang, Xiao-Jing (1998). “Calcium coding and adaptive temporal computation in
cortical pyramidal neurons”. In: Journal of Neurophysiology.

Wang, Xiao-Jing (2001). “Synaptic reverberation underlying mnemonic persistent
activity”. In: Trends in neurosciences 24.8, pp. 455–463.

Wang, Xiao-Jing (2020). “Macroscopic gradients of synaptic excitation and inhibi-
tion in the neocortex”. In: Nature Reviews Neuroscience 21.3, pp. 169–178.

Wehr, Michael and Anthony M Zador (2003). “Balanced inhibition underlies tuning
and sharpens spike timing in auditory cortex”. In: Nature 426.6965, pp. 442–446.



BIBLIOGRAPHY 105

Wilent, W Bryan and Diego Contreras (2004). “Synaptic responses to whisker de-
flections in rat barrel cortex as a function of cortical layer and stimulus intensity”.
In: Journal of Neuroscience 24.16, pp. 3985–3998.

Wolfe, Jeremy M (1994). “Guided search 2.0 a revised model of visual search”. In:
Psychonomic bulletin & review 1.2, pp. 202–238.

Wolfe, Jeremy M (1998). “What can 1 million trials tell us about visual search?”
In: Psychological Science 9.1, pp. 33–39.

Wolfe, Jeremy M (2012). “When do I quit? The search termination problem in visual
search”. In: The influence of attention, learning, and motivation on visual search,
pp. 183–208.

Wolfe, Jeremy M, Serena J Butcher, et al. (2003). “Changing your mind: on the
contributions of top-down and bottom-up guidance in visual search for feature
singletons.” In: Journal of Experimental Psychology: Human Perception and Per-
formance 29.2, p. 483.

Wolfe, Jeremy M, Evan M Palmer, and Todd S Horowitz (2010). “Reaction time dis-
tributions constrain models of visual search”. In: Vision research 50.14, pp. 1304–
1311.

Womelsdorf, Thilo, Pascal Fries, et al. (2006). “Gamma-band synchronization in
visual cortex predicts speed of change detection”. In: Nature 439.7077, pp. 733–
736.

Womelsdorf, Thilo, Jan-Mathijs Schoffelen, et al. (2007). “Modulation of neuronal
interactions through neuronal synchronization”. In: science 316.5831, pp. 1609–
1612.

Xing, Dajun et al. (2012). “Stochastic generation of gamma-band activity in primary
visual cortex of awake and anesthetized monkeys”. In: Journal of Neuroscience
32.40, 13873–13880a.

Xue, Mingshan, Bassam V Atallah, and Massimo Scanziani (2014). “Equalizing
excitation–inhibition ratios across visual cortical neurons”. In: Nature 511.7511,
pp. 596–600.

Zenger-Landolt, Barbara and David J Heeger (2003). “Response suppression in V1
agrees with psychophysics of surround masking”. In: Journal of Neuroscience
23.17, pp. 6884–6893.


	Authorship attribution statements
	Acknowledgements
	Abstract
	Contents
	Introduction
	Cortex structure
	Neurons and synapses
	Neural circuits

	Neural dynamics
	Excitation-inhibition balance and asynchronous states
	From asynchrony to oscillations

	Visual attention in the brain
	Bottom-up and top-down attention
	Normalization model for attention
	Top-down modulation beyond the firing rate
	Visual search
	Rhythm of attention


	Flexible corticocortical communication: underlying mechanism and functional roles in visual attention
	Introduction
	Results
	Two-area circuit with cortico-cortical loops
	Gamma-based communication
	Subspace-based communication
	Neural effects of attention emerging from modulated flexible communication
	Theoretical analysis of theta oscillations
	On and Off states modulation
	Improvements in interareal communication
	Attention modulation on firing rates
	Attention-related reductions in neural variability and correlation 
	Fractional neural sampling model

	Discussion
	Methods
	Network model: neurons and synapses
	Network model: connectivity
	External inputs
	IE-ratio and network dynamics 
	Center of activity pattern detection
	MUA, LFP proxy, and time-frequency analysis
	Spike frequency adaptation and top-down attention
	Phase-amplitude coupling
	Temporal curves for the response rate, Fano factor, and noise correlation
	On and Off states detection
	Coherence
	Communication subspace 
	Transfer entropy
	Neural field model
	Fractional neural sampling model

	Supplemental information

	Attention-Guided Visual Search
	Introduction
	Results
	Network model and emergent spatiotemporal dynamics
	Bottom-up and top-down components in visual search
	Reaction time increases linearly with the set size and is affected by target salience
	Top-down attentional effect on RT × set size functions
	RT × set size functions for target-absent trials

	Discussion
	Methods
	External inputs
	Spike frequency adaptation and top-down attention
	Trial simulations

	Supplemental information

	Dynamical working regime of visual cortex
	Introduction
	Results
	Neural dynamics of visual cortex
	Spiking model
	Contrast-dependent gamma response
	Normalization of neural response to multiple stimuli

	Discussion
	Methods
	Spiking network model
	IE-ratio and network dynamics 
	External inputs
	Trials Simulation
	LFP proxy
	Phase-amplitude coupling
	Fano factor


	Concluding Remarks and Future Directions
	Review of major contributions
	Future directions

	Bibliography

