
1

DISCIPLINE OF BUSINESS ANALYTICS

MPHIL THESIS

DEEP LEARNING STRUCTURE FOR
DIRECTED GRAPH DATA

 Author: Supervisors:
 Chunya Zou Prof. Junbin Gao

 SID: A/Prof. Dmytro Matsypura

 Dr. Stephen Tierney

A thesis submitted in fulfilment of the requirements for the degree of

Master of Philosophy

Discipline of Business Analytics, Business School

The University of Sydney

2

Abstract

Deep learning structures have achieved outstanding success in many

different domains. Existing research works have proposed and presented

many state-of-the-art deep neural networks to solve different learning

tasks in various research fields such as speech processing and image

recognition. Graph neural networks (GNNs) are considered as a type of

deep neural network and their numerical representation from the graph

does improve the performance of networks. In the real-world cases, data

is not only in the form of simple graph, but also they could contain

direction information in the graph resulting in the so-called directed

graph data.

This thesis will introduce and explain the first attempt in this domain to

apply Singular Value Decomposition (SVD) on adjacency matrix for

graph convolutional neural networks and propose SVD-GCN. This thesis

also utilizes the framelet decomposition to help better filter the graph

signals, thus to improve novel structure’s performance in node

classification task and to enhance the robustness of the model when

encountering high-level noise attack. The thesis also applies the new

model on link prediction tasks. All the experimental results demonstrate

SVD-GCN’s outstanding performances in both node-level and edge-

level learning tasks.

3

CERTIFICATE OF ORIGINALITY

I certify that this thesis work is my own work, and it has not been

submitted or published for any degree or other purposes in other

educational institutions. I declare that any contribution made to the

research by other people, with whom I have worked at the University of

Sydney or elsewhere, is explicitly acknowledged in the thesis.

Chunya ZOU

4

Table of Contents

INTRODUCTION & BACKGROUND .. 11

1.1 FROM EUCLIDEAN SPACE TO NON-EUCLIDEAN GEOMETRY .. 12

1.2 GRAPH DATA .. 15

1.2.1 Directed and Undirected Graph .. 15

1.2.2 Heterogenous and Homogeneous Graph ... 16

1.2.3 Dynamic Graphs & Static Graphs .. 17

1.3 TYPES OF DEEP LEARNING APPROACHES ... 18

1.3.1 Supervised Learning .. 18

1.3.2 Semi-supervised Learning ... 19

1.3.3 Unsupervised Learning ... 19

1.3.4 Deep Reinforcement Learning (DRL) ... 19

1.4 LEARNING TASKS FOR GRAPH DATA ... 20

1.4.1 Node Classification ... 20

1.4.2 Link Prediction .. 21

1.4.3 Graph Classification .. 21

1.5 FEATURE LEARNING .. 22

1.6 DEEP LEARNING STRUCTURES ... 22

1.6.1 Convolutional Neural Network in Euclidean Domain .. 24

1.6.2 Neural Network on Non-Euclidean Space ... 25
1.6.2.1 Convolutional Neural Network ... 26
1.6.2.2 Generative Models ... 26
 .. 28
1.6.2.3 Long Short-Term Memory Architecture ... 28

1.7 THESIS OUTLINE AND CONTRIBUTION ... 30

LITERATURE REVIEW .. 32

2.1 GRAPH NEURAL NETWORK ON DIRECTED GRAPH DATA ... 32

2.2 SPECTRAL-BASED CONVGNNS .. 34

2.3 SPATIAL-BASED CONVGNNS .. 37

2.4 DIRECTED GRAPH ... 43

2.5 FRAMELET-BASED APPROACH ... 45

2.6 SVD APPLICATION IN ADVERSARIAL MACHINE LEARNING AND RECOMMENDATION SYSTEM .. 47

5

DEEP LEARNING STRUCTURE FOR DIRECTED GRAPH DATA - SVD-GCN 50

3.1 MOTIVATION OF USING SVD AND BACKGROUND .. 50

3.2 METHODOLOGY ... 53

3.2.1 SVD-Framelets .. 53

3.2.2 Decomposition and Reconstruction of SVD-Framelet Signal .. 56

3.2.3 Model Architecture & Simplified SVD-Framelet Filtering .. 57

3.2.4 Faster Filtering for Large Graphs .. 59

3.3 NODE CLASSIFICATION EXPERIMENT ... 60

3.3.1 Experimental Protocol .. 61
3.3.1.1 Datasets .. 61
3.3.1.2 Baseline Architectures .. 62

3.3.2 Training Setup ... 62

3.3.3 Result Analysis .. 63

3.3.4 Fast Algorithm Experiment ... 65
3.3.4.1 Experimental Protocol .. 65
3.3.4.2 Result Analysis .. 66

3.3.5 Denoising Capability and Robustness ... 66
3.3.5.1 Dataset and Baseline .. 66
3.3.5.2 Result Analysis .. 67
3.3.5.3 Sensitivity Analysis .. 68

3.3.6 Contribution and Discussion ... 69

3.4 LINK PREDICTION EXPERIMENT .. 70

3.4.1 Background and Motivation ... 70

3.4.2 Experimental Protocol .. 71
3.4.2.1 Datasets and Baselines ... 71
3.4.2.2 Experimental Setup ... 73

3.4.3 Result Analysis .. 74

3.4.4 Conclusion and Discussion .. 75

CONCLUSION ... 77

4.1 MAIN CONTRIBUTION ... 77

4.2 FUTURE RESEARCH DIRECTIONS .. 78

REFERENCE .. 79

6

List of Figures

Figure 1 A typical example of CNN structure for the task of image classification

(Alzubaidi et al, 2021) ... 13

Figure 2 Directed and Undirected Graph ... 15

Figure 3 A sentence (text) and its diagonal adjacency matrix 16

Figure 4 Category of Deep Learning Methods (Alom et al. 2018) 20

Figure 5 Left: Image in Euclidean Space; Right: Graph in Non-Euclidean Space

(Zhou et al., 2020) ... 25

Figure 6 Demonstration of GAN structure. G represents generator which helps sample

fake data to D, where D defines the discriminator which calculates the probability

regarding if this sample data is fake or real. .. 28

Figure 7 SVD-framelet System: SVD framelet layer transforms the feature X of the

input node utilizing SVD framelet matrices W and V and applying learnable filters gθ

on those new features Y; this process is illustrated in the simplified framelet parts

(11) and (12). ... 58

Figure 8 Analysis of Node Attribute Perturbation on the Cora_ml dataset 68

7

List of Tables

Table 1 Datasets Statistics ... 61

Table 2 Results for Node Classification Accuracy (%); Note: OOM means “out of

memory” .. 64

Table 3 Results between GCN and SVD-Framelet-III over Cora_Full 66

Table 4 Results between SVD-GCN and DiGCN-APPR on Cora_ml on Different

noise levels .. 67

Table 5 Statistics of Datasets ... 72

Table 6 Direction Prediction (%) ... 75

Table 7 Existence Link Prediction (%) .. 75

Table 8 Three Classes Link Prediction (%) ... 75

8

Acknowledgements

First of all, I’d like to express my sincere gratitude towards my

supervisors, Prof. Junbin Gao, A/Prof. Dmytro Matsypura and Dr.

Stephen Tierney for their advice and continuous support and patience

during my MPhil study. Their immense research experience and

abundant professional knowledge in computer science and mathematics

as well as other fields have helped me and guided me through my

research study. Secondly, I would like to thank all my co-authors for

sharing amazing ideas and opinions and making contributions in the

paper. It is a delightful experience to work and research with these

hardworking and intelligent scholars.

My sincere gratitude also goes to my friends and family for their

tremendous support and belief in me throughout my research study. I

really appreciate that they are always there when I am in low spirits and

help me get through the difficult time.

9

Publications

 This thesis is mainly based on the research works listed below:

• Zou, Chunya, Andi Han, Lequan Lin, and Junbin Gao. A simple yet

effective SVD-GCN for directed graphs. Submitted to IEEE Transac-

tions on Artificial Intelligence. arXiv preprint arXiv: 2205.09335

(2022). (Under 2nd Round Review)

10

Authorship Attribution Statement

I participated in the broad discussion with all the co-authors in the

process of model design and the research work design. I made

contribution writing the relevant paper which is under review of IEEE

Transactions on Artificial Intelligence (listed above). I also participated

in doing the programme, conducted the experiments and run the results

for the figures in the tables in this research work.

 Chunya ZOU Prof. Junbin GAO

Signature: Signature:

 Date: 23/03/2023 Date: 23/03/2023

11

Chapter 1

Introduction & Background

Since the 1950s, machine learning techniques have achieved outstanding success in

many different domains over the last few decades. Neural Networks are a subsection

under the umbrella of machine learning, while it is also the subfield which originated

the Deep Learning at the very beginning. During recent decades, deep learning has

become a prevalent field of machine learning, and deep learning techniques have

garnered tremendous success in a variety of domains (Alom et al. 2018). Since its

inception Deep Learning has been showing remarkable success in almost all the

application domains such as image analysis, computer vision, natural language

processing and speech recognition (Alom et al. 2018).

Deep learning techniques utilize the hierarchical structures to link the layers of nodes.

The output of a lower layer will be feed forward as the input of a higher layer through

certain calculations which could be linear or non-linear. These deep learning techniques

could transform the features of raw data into the abstract features, and compared to

machine learning architectures, deep learning techniques are much better on feature

representation, especially on those complex datasets (Bronstein et al., 2017). For

example, image and text are usually complex data and they could contain important

12

personal information, but machine learning technique is not sufficient and able to but

to process these kinds of complex data.

Learning approaches based on the representations of the data are usually called

representation learning (Alom et al. 2018). While recent research works also

demonstrate that Deep Learning based representation learning contains a hierarchy of

concepts and features, in which high-level features are determined from the low-level

ones. While Deep Learning has been defined as a universal learning method instead of

being task specific towards certain kinds of problems in certain fields (Alom et al.

2018).

Meanwhile, with the rapid progress of computer technology such as increasing power

of chips processing abilities and then the drastic reduction of the computational cost,

and these factors provide strong impetus for deep learning architectures to develop even

faster (Charikar et al., 2017). While nowadays, more and more applications on

structural data have appeared in this field, such as recommendation system and social

network, the deep learning algorithms have progressed a lot to better fulfil the

requirements of processing the graph data which is one type of structural data.

1.1 From Euclidean space to Non-Euclidean Geometry

A Euclidean space is a finite dimensional vector space over the reals R, in which the

points are designated by coordinates (one for each dimension); while Euclidean space

Rn := R*R*…*R (n times), in which the elements R are the vectors with n real

components. Euclidean geometry is also known as “plane geometry”, in which the

interior angles of a triangle should add up to 180 degree and the shortest distance

between two points should always be the straight line between them. And all these

13

examples are in a two-dimensional flat world, and they are bound by the laws of plane

Euclidean geometry, and the data exist in this domain is called Euclidean geometric

data. Deep learning architectures have been very successful when it comes to deal with

signals like images and speech where the underlying structure is Euclidean or grid-like

(Into the Wild: Machine Learning in Non-Euclidean Spaces · Stanford DAWN, 2019).

Regarding the deep neural networks’ success, one of the leading reasons is that they

can leverage data’s statistical properties – stationarity, locality and compositionality

via local statistics, and these properties have formalized in the convolutional neural

networks (CNNs) (Bronstein et al., 2017). For instance, in the task of image analysis

we could regard pictures or images as functions in a plane Euclidean space, and

sampled on a structure of grid, while Figure 1 clearly shows the procedure of CNN

architecture in image classification task. In such condition, we can say that locality is

the result of local connectivity, stationarity is because of the shift-invariance and

compositionality is owed to the grids’ multi-resolution structure property. Those

properties mentioned above are all accomplished because of the convolutional

structures that consist of alternating convolutional layer and pooling layer (Bronstein

et al., 2017).

Figure 1 A typical example of CNN structure for the task of image classification (Alzubaidi et al, 2021)

14

The advantage of utilizing convolutions is that it could extract the local features which

usually are shared across the image domain while it could also reduce the parameters’

amount without sacrificing the network’s capacity (Alzubaidi et al, 2021). However,

not all the data could be presented in the format that deep neural networks required,

and if we force some other complex data to be contorted into the grid, this will cause

us to sacrifice some probably important relationship info in that complex data in favour

of much more simple representation that neural networks can take as their input

(Alzubaidi et al, 2021).

However, many scientific study data are within a non-Euclidean space, for example,

social networks in social science, medical imaging showing brain’s functional

networks and genetics networks, and these are usually called non-Euclidean geometric

data. In many real-world applications, such geometric data are usually very complex,

and the scales are very large, for instance, the social network could be on the scale of

millions or even billions (Bronstein et al., 2017). Thus, the non-Euclidean nature of

complex data like this indicates that they do not have properties such as shift-

invariance, global parameterization, coordinate system or vector space structure.

Therefore, convolutional operations which are taken for granted in the Euclidean

geometry cannot even be defined correctly in the non-Euclidean cases, which causes

the difficulty for deep learning techniques such as CNNs to process and deal with such

complex data. Extending deep neural network architectures to the non-Euclidean

domain could be referred to as geometric deep learning, recently more and more

attention has been drawn into the application of deep learning techniques on non-

Euclidean geometric data (Bronstein et al., 2017). For instance, the sensor networks are

actually graph models of the distributed inter-connected sensors, and their reading are

regarded as time-dependent signals on the sensors (nodes); while the social networks

15

can be considered as social graph and the characteristics of the users (nodes) in the

social graph can be modelled as signals on these vertices.

1.2 Graph Data

Graphs has many different complex types according to their connections and

information on nodes and edges, in this section, different categorizations will be

illustrated in more details.

1.2.1 Directed and Undirected Graph

While the edges in between the nodes could be undirected or directed by associating

directionality to additionally specialize graphs and the directionality is also an

important information attached with the graph. In the case of undirected graphs, the

adjacency matrix A is symmetric, but when it comes to directed graph, the adjacency

matrix A is asymmetric as the matrix size is not square size of |v|*|v| anymore, instead

the size might be |n|*|m| or |x|*|y|. More details will be illustrated in more details in the

following sections.

There have been many types of graphs in the real world such as citation networks, while

some kinds of data that we might not think could be graph-structured data in the first

place. For example, text can be regarded as graphs, we actually can digitize the texts

via associating indices to each token or word and representing the sentence or text as a

sequence of these indices. This could generate a quite simple directed graph, in which

Figure 2 Directed and Undirected Graph

16

each index is a node and is connected by the edge to the following index, just like the

Figure 3 shown below. And its adjacency matrix for such text is a diagonal line as each

token could only connect to its prior token and the following one.

1.2.2 Heterogenous and Homogeneous Graph

There are mainly two types of graphs under the umbrella of graph data, heterogeneous

graphs and homogeneous graphs. A graph with just one single type of node and a single

kind of edge is called homogeneous (Hu et al. 2019). An example of such homogeneous

graph would be the Facebook social network, in which the nodes representing the

individuals and edges representing the friendship between two individuals connected

with each other. On the other hand, a heterogeneous graph can have nodes and edges

that are different types. For instance, in the recommendation system, nodes could be

products and customers, while edges could represent somebody buying something or

someone returning something.

Meanwhile the nodes and edges in the graph also could incorporate properties which

can be named as features or attributes. For example, in the case of Facebook social

media, a person node could have many features and attributes such as this person’s age,

Figure 3 A sentence (text) and its diagonal adjacency matrix

17

location, university or high school they attended and hobbies, while an edge between

two person nodes could have an attribute of date establishing the date that they added

each other as friends.

1.2.3 Dynamic Graphs & Static Graphs

A graph is a kind of structure of data that comprise two parts: nodes and edges. A graph

could be expressed as 𝐺	 = 	 (𝑉, 𝐸), in which 𝑉 represents nodes while	𝐸 represents

those links/edges in between nodes. Officially, a weighted and undirected graph G

could be written as a triple 𝐺	 = 	 (𝑉, 𝐸, 𝐴), in which the extra A is the adjacency matrix

recording relationships between nodes. While the matrix 𝐴 should be a square matrix

size of |v|*|v|. Information could be stored in each node, or each edge or the entire graph,

where the nodes symbolise entities in the data such as the members in the social

network and the edges represent the relationships between these entities. But in static

graph, time information is not considered carefully (Rossi et al. 2020).

Thus, when input features of the graph data vary with time, the graph is regarded as

dynamic graph. There are two kinds of dynamic graphs, Discrerte-Time Dynamic

Graph (DTDG) and Continuous-Time Dynamic Graph (CTDG). They both are

observed on a timely manner and an update will occur to the existing graph, the

difference is that DTDG is observed at regular intervals and generates a sequence of

snapshots of the graph and the changes or event happened during the intervals are not

recorded (Rossi et al. 2020). On the contrary, CTDG observes and records each change

in the graph individually with its timestamp. The types of events or changes could be

deletion of node or edge, creation of node and edge as well we the feature change of

nodes and edges (Rossi et al. 2020). Thus, this consecutively recording activity allows

the CTDG to track down the complete evolution of the graph, and it leads to the

18

minimal information loss during the whole evolution process. However, it is obvious

that it is generally more complicated and difficult to develop models for CTDG as these

models need to incrementally and efficiently incorporate new events and changes at

test time and handle all different kinds of events (Rossi et al. 2020).

1.3 Types of Deep Learning Approaches

As deep learning methods could be classified into many different types: supervised,

semi-supervised, and unsupervised, Additionally, there is also another section of

learning method which is called Deep Reinforcement Learning (DRL) and this

structure will also be introduced briefly later and this approach is sometimes under the

scope of unsupervised or semi-supervised learning approach (Alom et al. 2018).

1.3.1 Supervised Learning

Supervised learning is one type of learning methods and it utilizes labelled data. When

it comes to the case of supervised deep learning methods, the environment contains a

group of inputs and corresponding outputs (𝑥t, 𝑦t)	~	𝜌. In particular, after processing

the inputs xt, the intelligent agent will get a prediction result	𝑦!. = 𝑓(𝑥!), then the agent

will receive a loss value of 𝑙(𝑦! , 𝑦!.) between the ground truth label and predicted label.

Afterwards, the agent will train the model and iteratively modify the parameters of the

network to get better approximation for the desired outputs (Alom et al. 2018). After

appropriate modification of the parameters, then the agent will get the best answers

which is the closest one to the true answer to the problem. There are many kinds of

supervised learning methods under Deep Learning structures, including Deep Neural

Networks (DNN), Recurrent Neural Networks (RNN) such as Long Short-Term

Memory (LSTM), Convolutional Neural Networks (CNN) (Alom et al. 2018). While

19

LSTM will be further explained in Section 1.6.2.3 and CNN will be described with

more detail in Section 1.6.2.1.

1.3.2 Semi-supervised Learning

Semi-supervised learning is a learning process that is based on the partially labelled

datasets, and it is often called as reinforcement learning. In some cases, reinforcement

learning (Deep Reinforcement Learning) and Generative Adversarial Networks (GAN)

are applied as semi-supervised learning methods. While RNN structures such as LSTM

and GRU could also be utilized for semi-supervised learning (Alom et al. 2018).

Generative Adversarial Networks (GAN) will be further described in Section 1.6.2.2.

1.3.3 Unsupervised Learning

Unsupervised learning is a learning type that can do the learning without the true labels

of data. Thus, the agent will need to learn the important features or internal

representation to find out the hidden relationships or latent structures among the input

data. In the normal cases, either clustering, dimensionality reduction or generative

techniques could be applied as a unsupervised learning method (Alom et al. 2018).

Under the scope of deep learning structures, there are many networks which have

advantages in non-linear dimensionality reduction and clustering, for example, Auto

Encoders (AE) and Generative Adversarial Networks (GAN).

1.3.4 Deep Reinforcement Learning (DRL)

Deep Reinforcement Learning is a relatively recently proposed but outstanding

learning technique to be utilized in the unknown environments. Deep Reinforcement

Learning began in 2013 and several advanced structures have been introduced and

proposed based on the technique of Reinforcement Learning (RL) since then (Alom et

al. 2018).

20

In Reinforcement Learning, there is no straight forward loss function which makes the

learning process even more complicated compared to the common supervised methods.

The basic differences between reinforcement learning and supervised learning are: first

of all, there is no full access to the functions that need to be optimized during the

training process, and these functions need to be queried via interaction; secondly, the

environment is state-based, which means that input 𝑥! depends on the previous actions

and it updates its action as this process goes on (Alom et al. 2018).

1.4 Learning Tasks for Graph Data

This section will provide a brief information about three most common and major

representation learning tasks for the graph data.

1.4.1 Node Classification

This is a node-level learning task, inferring some nodes’ incomplete attributes while

given other neighbourhood nodes’ features values and structures in that network. The

main purpose here is to find out the best representation for each graph node so that they

could be further processed for the labelling phase, then put into the neural network

models for further learning and classification (Asif et al., 2021). And this is a graph

based supervised or semi-supervised learning problem, as the model is trained on a

Figure 4 Category of Deep Learning Methods (Alom et al. 2018)

21

subset of nodes with true labels and then make prediction of those target nodes (Asif et

al., 2021).

1.4.2 Link Prediction

This is an edge-level learning task, inferring missing relationship or finding out the

hidden relationships in between the nodes in the network. Similar with the node

classification problems, but the difference is that the subject is to assign labels to edges

instead of nodes. The model will utilize the hidden representation of node pairs and

then get the corresponding likelihood result of the link existence according to the nodes’

similarity scores (Asif et al., 2021). While deep neural networks models usually

integrate the representations of node pairs which are learned from the input data

altogether and then regard the link prediction problem as a binary classification

problem (Asif et al., 2021). Similar with the node classification, link prediction is also

a semi-supervised learning.

1.4.3 Graph Classification

This is a graph-level learning task, discriminating problem between graphs of different

classes. As a dataset could have multiple or hundreds of graphs, and each of these

graphs could be considered as instances to be assigned labels, and main task here is to

find out a low-dimensional representation of each graph from the graph data and the

output embedding of the graph will be passed to the readout layers such as fully

connected network after the graph pooling phase (Asif et al., 2021).

The node classification and link prediction learning tasks will be covered in more

details with empirical studies in the later chapters.

22

1.5 Feature Learning

The main difference between traditional machine learning methods and deep learning

methods is the techniques they apply to extract features from the input data. The

traditional machine learning methods utilize manually made features through applying

feature extraction algorithms such as Local Binary Pattern (LBP). Then the machine

learning algorithms including Random Forest (RF), Principal Component Analysis

(PCA), Support Vector Machine (SVM) and many other structures are considered to

be utilized for the classification task using those extracted features (Alom et al. 2018).

In addition, boosting techniques such as AdaBoost and XGBoost are frequently

implemented where several machine learning algorithms are applied on the features of

the input data and the final output and decision is computed based on several outcomes

from all the algorithms (Alom et al. 2018).

While among the Deep Learning methods, features are usually learned automatically

at the same time features’ representations are hierarchical in multiple levels, which is

a main advantage of the deep learning techniques compared to the traditional machine

learning methods (Alom et al. 2018).

1.6 Deep Learning Structures

In this section, a brief introduction of the history of graph neural network will be

illustrated. Since 2006 when graph theory has gradually come in close contact with the

machine learning techniques and then a new concept of Graph Neural Network

architecture emerged (Li et al., 2021). The very first proposal regarding GNN appeared

in 2006 by Scarselli and Gori, and then in 2008 the paper called “The Graph Neural

Network Model” was subsequently published, whose authors laid the basic

23

mathematical foundations for the modern graph neural network afterwards (Li et al.,

2021).

The proposed graph neural network consists of recursive neural networks and Markov

chains, which both are commonly applied to graph problems as the recursive neural

networks are neural network architectures whose input domain are usually directed

acyclic graphs and they map a graph to a vector of reals but the graph needs to go

through a pre-processing phase to make sure the model could handle different types of

cyclic graphs (Li et al., 2021). While recursive neural networks are also similar to

support vector machines (SVM) as they both utilize special kernels to process graph

structured data and encode the input graph as a representation.

Meanwhile, Markov chain model could imitate the processes in which the causal

relationships among events are represented by the graphs, and the random walk theory

also helps Markov chain models to be applied successfully to the web page ranking

algorithm (Li et al., 2021). And this algorithm was exploited by internet search engines

such as Google, to measure the relativity of the web pages. The paper “The Graph

Neural Network Model” also extends these two techniques to make the model be able

to directly deal with graph structured information and unifies them into a common

framework (Li et al., 2021). And this proposed architecture could process a more

general class of graph data such as undirected and cyclic graphs and can deal with node-

focused applications without any pre-processing phase (Li et al., 2021). Since advent

of this milestone paper, there has been many amazing spikes in the graph deep learning

world.

24

1.6.1 Convolutional Neural Network in Euclidean Domain

In LeCun et al. (1989) paper, researchers developed a convolutional neural network

which is designed for the handwritten zip code recognition and they utilize word

“convolution” for the very first time. Convolutional neural network is a type of feed

forward neural network which could extract multi-scale localized spatial features from

the dataset with a convolutional structure (Zhou et al., 2020). The main advantages that

CNN possesses are as follows,

1) Shared weights. A same group of connected nodes could share the same

weights, which could reduce the number of parameters.

2) Local connections. Every neuron is not linked to all the neurons from its

previous layers anymore, while this could help reduce the parameters as well

and also speed up the convergence.

3) Down-sampling dimensionality reduction (Zhou et al., 2020). This is a pooling

layer that utilize the principle of an image’s local correlation to down-sample

this image, and this process could also reduce the data amount at the same time

keeping the useful information and reduce the parameters via removing those

very trivial features.

The three characteristics listed above make convolutional neural network (CNN) turn

into one of the most influential and typical algorithms in the deep learning field for

Euclidean data (Zhou et al., 2020).

However, CNNs is only able to operate on regular Euclidean data like texts and images

while these data could also be considered as graphs. When the graph is in non-

Euclidean space (Figure 5), it is quite difficult for CNN to define localized

convolutional filters and the pooling operators, and this poses an obstacle in the

25

transformation of convolutional neural network from the Euclidean domain to non-

Euclidean domain (Zhou et al., 2020).

Figure 5 Left: Image in Euclidean Space; Right: Graph in Non-Euclidean Space (Zhou et al., 2020)

1.6.2 Neural Network on Non-Euclidean Space

This section will present and explain several commonly studied neural networks

utilized for graph exploitation. Generative models and discriminative models and the

sequential model will all be discussed for better understanding of these common graph-

based neural architectures.

Graph data is known to be relatively complicated compared to other data structures

such as time series, that is because graph data can be irregular and have a different size

of nodes in varying orders, thus, it hinders the application of machine learning

architectures to the graph domain such as the operation of convolutions (Wu et al.,

2020). Moreover, there is a significant assumption when applying many existing

machine learning models and that is all the nodes are independent from each other;

however, when it comes to graph data, this assumption cannot hold any more because

the nodes are related to each other via the edges (Wu et al., 2020).

26

Therefore, to better address the complexity issue of graph data and catch the hidden

information from the graph data, graph neural network (GNN) has gradually become

an effective method for graph learning tasks as the underlying principles of GNN is to

transform the complex graph-structured data into another space which is low

dimensional, and at the same time retain the structural information (Wu et al., 2020).

1.6.2.1 Convolutional Neural Network

The convolutional operation is also utilized in the graph neural network and nowadays

modern computer vision architectures use convolutional neural network or convolution

operation to learn image patches’ complicated features (Asif et al., 2021). Standard

CNN uses fully connected layers via transforming the output into a simple single

dimension. As for convolutional neural network, every pixel in the image is considered

as the input unit in the input layer whose size is n1*1 where n1 represents the amount

of input channels, and then trough the t kernels, the input vector with the size of k1*1

is filtered via convolutional layer in the hidden layer (Asif et al., 2021). And the

convolutional layer activation layer could be represented as follows:

𝑦"(𝑝) = max	(0, 𝑏#(%) +8𝑘"#(%) ∗ 𝑥"(%)

#

)

In which 𝑥"(%) is defined as the ith input and 𝑦#(%) is defined as the jth output activation,

while 𝑏#(%) represents the the jth output’s bias and the * denotes the convolution, at the

same time 𝑘"#(%) represents the convolution kernel between the input and output layer

(Asif et al., 2021).

1.6.2.2 Generative Models

In the machine learning domain, there are two highly appreciated approaches –

generative learning and discriminating learning. There are many structures have been

27

proposed so far such as generative adversarial network, auto-regressive networks,

variational autoencoder and Markov models (Asif et al., 2021). While these

architectures are also very applied in many real-life situations. Generative architectures

are utilized to better process graph structure and among the existing generative models,

Generative Adversarial Networks (GAN) has become very popular because of its

adversarial training process, and the Figure 6 below illustrates the vanilla adversarial

network process (Asif et al., 2021).

At the beginning, Goodfellow et al. (2020) designed and proposed Fc layers for

discriminator PD as well as Generator G. While the generator G is designed to fool the

discriminator via developing the fake input samples and generates a distribution	𝑃' 	on

the true data which is denoted as X, which mean that G will generate the synthetic data

through an adversarial training process and make the fake samples as real as the

distribution of the original real data (Asif et al., 2021). The objective function of G is

expressed as follows: 𝐸(~*![log @1 − 𝑃'C𝐺(𝑧)EF]+
,"- , in which 𝑃'(𝑥) represents the

probability which the data’s possible distribution is from the true data instead of the

generated fake sample data. The equation is maximized when 𝑃' is correct and it is

minimized when 𝑃' is wrong (Asif et al., 2021). The purpose of 𝑃' is to enhance the

accuracy rate of the classification to better distinguish the fake synthetic data from the

real data (Asif et al., 2021). The objective function for 𝑃' is as follows (Asif et al.,

2021):

𝐸.~*"#$#[log	𝑃'(x)]	/
,01 	+ 𝐸(~*![log @1 − 𝑃'C𝐺(𝑧)EF],

Therefore, the combined function for the whole generative architecture follows that

min-max theory which could be defined as follow (Asif et al., 2021):

28

	𝐸.~*"#$#[log	𝑃'(x)]	/
,01 	+ 𝐸(~*![log @1 − 𝑃'C𝐺(𝑧)EF]

1.6.2.3 Long Short-Term Memory Architecture

The paper Hochreiter & Schmidhuberet (2017) first proposed the Long Short-Term

Memory (LSTM) architecture which could reduce gradient vanishing issue from the

normal Recurrent Neural Network (RNN). The Long Short-Term Memory (LSTM)

model is comprised of recurrent networks in which each neuron/node of the hidden

layers will be interchanged through those memory cells (Asif et al., 2021). While

LSTM’s each memory cell architecture consists of self-connected recurrent edge which

normally has a fixed weight. And the property mentioned above helps gradients flow

through the networks successfully instead of vanishing during the process because of

the little weights they have (Asif et al., 2021). Long Short-Term Memory (LSTM)

model leverages long-term memory storage for a certain period in terms of short-term

activations (Asif et al., 2021).

The input sequence x(t) sends the input activation into input node when it is at present

time step, then present time step will be further prepared according to its previous time

hidden state which is denoted as h(t-1). Usually, the weighted sum is determined utilizing

that tanh activation function in hidden layer, while the paper Hochreiter &

Figure 6 Demonstration of GAN structure. G represents generator which helps sample
fake data to D, where D defines the discriminator which calculates the probability
regarding if this sample data is fake or real.

29

Schmidhuber (1997) uses the sigmoid activation function. Every memory cell is lined

by the linear activation function which could represented by s(t) (Asif et al., 2021).

While there are self-connected recurrent cells which are mentioned above, and they

hold the internal state, whose edge circulates based on the time steps with the fixed

value which is also weighted, and it could help avoid the explosion of gradient (Asif et

al., 2021). While in Gers & Schmidhuber (2000) paper, the forget gate is introduced to

help illustrate the method to remove the unimportant internal state part, which could

allow the gradient to pass through the network more smoothly.

During the phase of forward gradient propagation, the internal state is in control of the

gradient via the activation function. If both output cell and internal cell are lcoked and

closed, the activation will be detained completely in the memory cell and there will be

no changes towards the intermediate time steps (Asif et al., 2021). While in the

backward gradient propagation phase, the frequent error issue leads the structure to

backpropagate based on time steps. Multiple memory cells could help enhance the

Long Short-Term Memory (LSTM) model’s ability to learn more dependency

information from the input sequence (Asif et al., 2021).

It is obvious that LSTM network solves the problem of vanishing gradients in the

existing recurrent neural networks, and it is also proved to be a robust sequential

architecture. LSTM has been utilized and applied in many different industrial domains

such as speech recognition, natural language processing and medical imaging (Asif et

al., 2021). Among the modern deep learning techniques, LSTM is utilized to capture

the long-term dependency information or the spatio-temporal information (Asif et al.,

2021). Therefore, LSTM model could better leverage the long-term information for the

following learning processes which could eventually increase the accuracy of the

learning tasks. However, it required much more computational capacity and higher

30

memory capability to do the task comparing to a normal recurrent neural network (Asif

et al., 2021).

1.7 Thesis Outline and Contribution

There have been large number of literatures in graph-based deep learning methods,

most of them only can perform on homogeneous graphs with only one type of entity or

one kind of relationship, and there are some pioneer research works on dealing with

directed graph data and architectures proposed in those works have become

benchmarks.

At the beginning, inspired by the paper (Song et al., 2019), in which researchers proved

that the proposed tensor singular value decomposition (SVD) is very effective to help

achieve better performances of recovery regarding robust tensor completion issue, we

think that it could be worth to try to apply SVD into graph convolutional network and

see whether the new model could increase the accuracy rate when dealing with directed

graph’s learning tasks, though there have been some outstanding benchmark

architectures which already achieved relatively high accuracy rate in both node

classification and link prediction tasks.

After trying to conduct convolutions on the spectral domain which was generated by

the singular value decomposition (SVD) of the directed adjacency matrix, we

implemented it in coding and propose and denote this model as SVD-GCN, and the

preliminary results from the experiments showed that SVD-GCN performs better on

directed graph on both node classification task and link prediction task compared to

most of the state-of-the-art models’ results. We also leverage the graph framelets

(Zheng et al., 2021) and quasi-framelets (Yang et al., 2022) for the multi-resolution

analysis on the directed graph data because they could generate better model for high-

31

pass as well as low-pass information. Thus, this proposed SVD-GCN architecture is

the main contribution of this thesis, its application on link prediction task will also be

presented and explain in the Chapter 3.

To help better understand the contents, Chapter 2 will provide a more comprehensive

background introduction for the research topic and will help readers have a better

overview in this domain. Then Chapter 3 will present and explain in detail about the

proposed SVD-GCN architecture and its performance in node classification and link

prediction with all the experiments’ results and theorems. To close the thesis, Chapter

4 will also summarize the contributions and discuss some potential follow-up works

and potential directions for future research.

32

Chapter 2

Literature Review

This section will present a more comprehensive background in graph-cased deep

learning on graph-structured data with more literatures.

2.1 Graph Neural Network on Directed Graph Data

Neural Network was first time applied on direction graph data in the paper Sperduti &

Starita (1997), while this work handles the structured patterns that are represented as

directed labelled graphs and proposed a generalization of recurrent neurons which

could better represent the structured patterns than other statistical architectures. This

research work constructed the foundation for graph neural network (GNN) structures

application on the digraph data, and it motivated some early studies in this direction

(Wu et al., 2020).

The early research works focused a lot on the application of Recurrent Graph Neural

Network (RecGNN) on digraph data, addressing issues such as the correlated

maximum outdegree limit and the positional constraint in an image classification task

(Sperduti & Starita, 1997). The experimental results also prove that the new RNN

architecture could better handle directed acyclic graphs (DAGs). Recently, motivated

by the successful application of convolutional neural networks (CNNs) in computer

33

vision, researchers developed new generalizations of operations and re-formulate the

concepts of graph convolutions to better handle the complex graph data, and these new

methods are generally called Convolutional Graph Neural Network (ConvGNN) (Wu

et al., 2020). Quite different from the RecGNNs’ iterating node states with contractive

constraints, ConvGNNs mainly stacks multiple graph convolutional layers with

variable weights of each layer and develop the corresponding node representations or

edge representation based on the different learning tasks (Wu et al., 2020).

There are two major classes of convolutional graph neural networks (ConvGNN),

spectral-based and spatial-based approaches. For spatial-based approaches, they define

the graph convolutions by message passing or feature aggregation from each node’s

neighbourhood nodes; while for spectral-based approaches, they apply convolution in

the graph Fourier domain by eigen-decomposition (EVD) from the graph Laplacian

(Zou et al., 2022), which are motivated by the concept of “filter” from the graph signal

processing perspective. Both approaches could be applied to the directed graph data

(Digraph), but compared to the spectral-based approaches, spatial-based methods are

less favoured since they are not able to extract information at different frequencies. As

explained in (Balcilar et al., 2021; Nt & Maehara, 2019), many spatial-based models

have low-pass filters, which will fail to capture the high-frequency information while

the information could be very useful in the learning tasks.

Furthermore, it is not easy to generalize the spectral methods to digraph data because

the asymmetric adjacency and Laplacian matrices cannot generate the orthonormal

systems for the signal decomposition (Tong et al. 2020). If we ignore the direction

information in the directed graph data and by only performing convolutions on the

symmetric Laplacian or the Adjacency matrix, it will cause a very severe loss of

information and the models’ performance in the learning tasks will be even worse. In

34

Ma et al. (2019) work, the convolution on the directed graph is generated on a

symmetric Laplacian that is developed through the transition probability matrix. Tong

et al. (2020) research work extends this idea in Ma et al. (2019) that only works for

graphs which are strongly connected to the general graphs by adding a small teleport

probability in the transition matrix. Meanwhile, this work also improved the network’s

overall performance via generating the scalable receptive fields based on the idea of

inception module in (Szegedy et al., 2016). And the corresponding experimental results

also proves that this specialized model’s efficacy is better many other spatial-based

approaches. In recent year, spatial-based ConvGNNs have developed very fast because

of their high efficiency and flexibility and most of the existing ConvGNNs

architectures are spatial-based.

2.2 Spectral-based ConvGNNs

Spectral-based methods depend on the spectral graph theory. In this network, the graph

signals are filtered via eigen-decomposition of graph Laplacian (Balcilar et al., 2020),

which is determined by 𝐿 = 𝐷 − 𝐴 while the normalized graph Laplacian is

determined by 𝐿 = 	𝐼 − 𝐷2
%
&𝐴	𝐷2

%
& , in which 𝐴 is adjacency matrix,	𝐼 is the identity

matrix, 𝐷 ∈ ℝ-'×-' represents the diagonal degree matrix with 𝐷",# =	∑ 𝐴#,"# . It could

be decomposed into 𝐿 = 𝑈𝛬𝑈5 where 𝑈 is the eigenvectors matrix in the order based

on the eigenvalues as this Laplacian is positive semidefinite, while 𝛬 denotes diagonal

matrix of eigenvalues, while 𝛬""	 =	𝜆" where 𝜆 denotes positive eigenvalues’ vectors.

The eigenvectors from the normalized Laplacian matrix construct an orthonormal space

and it can be denoted mathematically as 𝑈5𝑈 = 𝐼. While the graph Fourier convert to

a signal 𝑥 from graph data can be denoted as 𝐹(𝑥) = 𝑈5 while the inverse version of

35

this graph Fourier transform could be written as 𝐹27(𝑥R) = 𝑈5𝑥R, in which 𝑥R represents

the final result from the signal through the transform of the graph Fourier. The overall

procedure is that the graph Fourier transform first coverts the input signal from the

graph into the orthonormal space in which foundation is built utilizing the normalized

graph Laplacian’s eigenvectors. Meanwhile the instances in this transformed signal 𝑥R

represents the graph signal’s new coordinates in a new space, while the input signal is

denoted as shown here: 𝑥 = ∑ 𝑥R"𝑢"" , that is also representation of the inverse version

of graph Fourier transform. Then input signal 𝑥 graph convolution can be written and

expressed as follow,

𝑥 ∗ 𝑔	 = 𝐹27(𝐹(𝑥)	⨀	𝐹(𝑔)) = 𝑈(𝑈5𝑥	⨀	𝑈5𝑔)

in which ⨀ represents the element-wise product, and filter could be denoted as 𝑔8 =

diag(U5𝑔), so the spectral graph convolution could be written as follows,

𝑥 ∗ 𝑔8 	= 𝑈𝑔8 	𝑈5𝑥

The equation above is the main principle of all the spectral-based ConvGNNs. While

the difference among all different spectral ConvGNNs architectures is the different

choice of the filter 𝑔8.

Spectral Convolutional Neural Network holds the assumption that the filter 𝑔8 = Θ".#
(:)

is a large group of learnable parameters and the filters are able to recognize the graph

signals via the multiple channels (Wu et al., 2019). Meanwhile in the Spectral

ConvGNN, a graph convolution layer could be a concatenation of all filtered signals

with the activation function 𝜎 , for example, ReLU (Rectified Linear Unit),

𝐻"
(:;7) = 𝜎\8𝑈	Θ".#

(:)	𝑈5𝐻"
(:)

<(

"=7

]

36

where for all 𝑙 is the layer index, 𝑓: denote input channels’ number while 𝑓:;7

represents output channels’ number, and 𝑗 ∈ {1, … , 𝑓:;7}, 𝐻(:) ∈ 	ℝ-×<(represents the

input graph signal, while Θ".#
(>) represents a diagonal matrix containing learnable

parameters. However, since spectral ConvGNNs utilizes eigen-decomposition of

Laplacian matrix, spectral ConvGNNs have three main disadvantages. Firstly, any

perturbation on a graph will lead to a change in the eigen-basis. Second of all, the

learned filters are mainly based on the domain, and this means that these learned filters

are specifically unique to each graph and cannot be generalized and implemented to a

different-structured graph. Thirdly, eigen-decomposition needs computational

complexity of 𝑂(𝑛?) and this workload is very heavy (Wu et al., 2019). There are other

research works that have proposed new structures such as GCN and ChebNet (Kipf &

Welling, 2016) which decrease the computational complexity to 𝑂(𝑚) via applying

some approximations and simplification techniques.

Chebyshev spectral ConvGNN (ChebNet) approximate graph filter 𝑔8 via the

Chebyshev polynomials of the eigenvalues’ diagonal matrix. The ChebNet filters are

localized in the local space and this is quite different from the normal spectral

ConvGNNs because it proves that filters in this work could extract important local

features in the graph size independently (Wu et al., 2019).

Graph Convolutional Network (GCN) proposes the first-order approximation of

ChebNet while GCN as a kind of spectral-based method, can be regarded as a spatial-

based approach as well. Because from the perspective of a spatial-based approach,

GCN could also be regarded as putting all the feature information all together according

to the target node’s neighbourhood nodes. While several papers have explored the

alternative symmetric matrices to further improve this deep learning architecture.

37

Adaptive Graph Convolutional Network (AGCN) (Li et al., 2018) learns the hidden

structural relations in the graph data via the graph adjacency matrix while it also

generates an adjacency matrix for the graph residual utilizing a learnable distance

function, that is able to regard two target nodes’ features as the inputs.

Dual Graph Convolutional Network (DGCN) (Zhuang & Ma, 2018) introduces and

proposes a dual graph convolutional structure, containing two layers of graph

convolution in parallel, at the same time these two layers share the same parameters.

While the two graph convolutional layers utilize the normalized adjacency matrix as

well as the positive pointwise mutual information (PPMI) matrix, that can help capture

the latent information about nodes’ co-occurrence via the random walks sampled from

the original graph data. By ensemble outputs from the dual graph convolutional layers,

Dual Graph Convolutional Network could encode both local and global structural

information instead of stacking multiple graph convolutional layers (Wu et al., 2019).

2.3 Spatial-based ConvGNNs

Spatial-based ConvGNNs develop graph convolutions according to the target node’s

spatial relations, and this is very similar with the convolutional operation from the

normal CNN structure on the classification task for image analysis. Because images

could be regarded as graph data as well where each pixel could be represented as a

node and each pixel is linked to its neighbourhood nodes. A filter could be applied (add

picture) to a 3*3 patch via taking the pixel value’s weighted average of the target node

and its neighbours over all other channels (Wu et al., 2019). Likewise, the spatial-based

graph convolutions exploit that target nodes’ representation and its neighbour nodes’

representations to generate target node’s new representation. The spatial graph

38

convolutional operation passes the nodes’ message via the links between the nodes (Wu

et al., 2019) and spatial ConvGNNs share the similar information propagation concept

in Recurrent GNNs.

Diffusion Convolutional Neural Network (DCNN) (Atwood & Towsley, 2016)

considers convolution operation on the graph as a process of diffusion, in which it

assumes that information is propagated from one node to one of its neighbour nodes

with a transition probability and then the information distribution will be able to reach

equilibrium after several rounds of information propagation. DCNN’s diffusion graph

convolution is defined as follows,

𝐻(>) = 𝑓C𝑊(>)⨀𝑃>𝑋E,

In which 𝑓(∙) denotes an activation function while 𝑃 ∈ ℝ-×- is probability transition

matrix and it is calculated via the formula 𝑃 = 𝐷27𝐴. In Diffusion Convolutional

Neural Network model, the hidden representation matrix 𝐻(>) has the same dimension

as the input feature matrix 𝑋. Then DCNN concatenates all the 𝐻(7), 𝐻(@), 𝐻(?), … , 𝐻(>)

as the final output. Because a diffusion process’s stationary distribution is adding all

the probability transition matrices’ power series, Diffusion Graph Convolution (DGC)

(Li et al., 2017) gathers all the output results during every round of diffusion process

to replace the concatenation operation. The diffusion graph convolution is written as

follow,

𝐻 =8𝑓C𝑊(>)𝑃>𝑋E
>

>=A

in which 𝑊(>) ∈ ℝ/×B and 𝑓(∙) represents the activation function. While the power of

a transition probability matrix could help the very distant neighbour node still pass

information onto the central node. PGC-DGCNN (Tran et al., 2018) improve the

39

contributions of distant neighbour nodes according to the shortest path which is defined

by the shortest path adjacency matrix 𝑆(#). Consider that the shortest path from a node

𝑣 to another node 𝑢 is of length 𝑗 , then 𝑆C,D
(#) = 1 or it will be 0. There is a

hyperparameter denoted as 𝑟 to help regulate size of that receptive field. While PGC-

DGCNN defines the corresponding convolutional operation as follow,

𝐻(>) =∥#=AE 𝑓C(𝐷m(#))27𝑆(#)𝐻(>27)𝑊(#,>)E,

in which ∥ represents the concatenation of the vectors, and 𝐷m""
(#) =	∑ 𝑆",:

(#)
: , 𝐻(A) = 𝑋.

However, the computation process of this shortest path adjacency matrix is very

expensive and the computational complexity of 𝑂(𝑛?) at maximum. While Partition

Graph Convolution (PGC) (Yan et al., 2018) partition all the neighbourhood nodes of

the target node into 𝑃 groups. Then PGC generates 𝑃 adjacency matrices on the

defined neighbourhood group. While PGC utilizes GCN (Kipf & Welling, 2016) and

applies a different matrix on each neighbourhood group and gather all the results,

𝐻(>) =8�̅�(#)𝐻(>27)𝑊(#,>)
*

#=7

where �̅�(#) = (𝐷m(#))2
%
&𝐴o(#)(𝐷m(#))2

%
&, 𝐴o(#) = 𝐴(#) + 𝐼, 𝐻(A) = 𝑋.

Message Passing Neural Network (MPNN) (Gilmer et al., 2017) proposed a spatial-

based ConvGNN framework, which considers the graph convolution as a message

passing step where all the information could be propagated from one node to another

through that edge between them directly. While MPNN runs the k-step iterations of

information propagation and this message passing function (spatial graph convolution)

could be written as follows,

40

ℎC
(>) = 𝑈>(ℎC

(>27), 8 𝑀>(ℎC
(>27), ℎD

(>27), 	𝑥CDF
D∈H(C)

))

In which 𝑈>(∙) and 𝑀>(∙) represents the functions with learnable parameters and

ℎC
(A) = 𝑥C . After generating the hidden representation for each node, ℎC

(>) could be

passed to the output layer and perform a readout function to do a node-level or graph-

level learning task. While the readout function could construct a representation of the

entire graph data according to the nodes’ hidden representations and this could be

written and expressed as: ℎ+ = 𝑅(ℎC
(I)|𝑣 ∈ 𝐺 , in which 𝑅(∙) denotes the readout

function with parameters. And MPNN actually covers many existing GNNs, but the

difference is that its forms of 𝑈>(∙),𝑀>(∙) and 𝑅(∙) is different.

However, Graph Isomorphism Network (GIN) (Xu et al., 2018) realized that the

MPNN-based architectures are not able to distinguish different graph structures based

on the graph embeddings previously generated. To solve the problem, GIN could

adjust the weight of the target node (central node) via a learnable parameter 𝜖(>). The

graph convolution is GIN could be written as follow,

ℎC
(>) = 𝑀𝐿𝑃(C1 + 𝜖(>)E	ℎC

(>27) + 8 ℎD
(>27)

D∈H(C)

)	

Where 𝑀𝐿𝑃(∙) denotes the multi-layer perceptron. In the real-world cases, the

number of a node’s neighbours are usually different which could be a hundred or a

million (Xu et al., 2018). So it might not be efficient to take the full size of the

neighbourhood node when calculating and constructing the graph convolution.

GraphSage utilizes random sampling to retain a fixed number of neighbour nodes for

each target node and the graph convolution could be written as follow,

ℎC
(>) = 𝜎(𝑊(>) ∙ 𝑓>(ℎC

(>27), uℎD
(>27), ∀𝑢 ∈ 𝑆H(C)w))

41

Where ℎC
(A) = 𝑥C , 𝑆H(C)	 represents the random sample from the target node 𝑣 ’s

neighbours, 𝑓>(∙) is the aggregation function which is usually invariant to the

permutations from the node orderings, such as a mean function (Xu et al., 2018).

Graph Attention Network (GAT) (Velickovic et al., 2017) is also a very popular graph-

based deep learning structure recently. It holds the assumption that the contributions

from the neighbour nodes to the target node are neither pre-determined like GCN (Kipf

& Welling, 2016), nor identical like in GraphSage (Hamilton et al., 2017). GAT applied

the attention mechanism to learn the relative weights between two connected nodes in

the graph. The graph convolution layer in GAT is denoted as follows,

ℎC
(>) = 	𝜎(8 	𝛼CD

(>)

D∈H(C)∪C

𝑊(>)	ℎD
(>27))

Where ℎC
(A) = 𝑥C , and the attention weight 	𝛼CD

(>) calculate the strength of the

connectivity between the node 𝑣 and its neighbour 𝑢 and the corresponding formula is

shown below,

	𝛼CD
(>) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑔 @𝕒5~𝑊(>)	ℎC

(>27) ∥ 𝑊(>)	ℎD
(>27)�F)

 Where 𝑔(∙) represents an activation function which might be ReLU function and 𝕒5

is the vector of a learnable parameter and the softmax function is applied to make sure

that the attention weights over the neighbour nodes of that central node could be

summed up to 1 at the end. GAT then applies multi-head attention mechanism to

improve the expressive ability of this architecture. The experimental results prove that

GAT does achieves remarkable improvement over GraphSage (Hamilton et al., 2017)

on the node classification task.

Mixture Model Network (MoNet) (Monti et al., 2017) generates a different method to

calculate the different weights on a central node’s neighbouring nodes. It proposed the

42

pseudo-coordinates of the target node to further calculate the relative position

information in between this node and its neighbouring nodes. After all, a weight

function will be applied to map out their relative position according to the calculated

relative weights on each node. In this way, the parameters of a graph filter can be shared

over different locations in the same graph data.

Because many ConvGNNs requires considerable but unnecessary computational

complexity when running, this research work (Wu et al., 2019) simplifies the complex

and tedious structures of digraphs and reduces the complexity via repeatedly removing

the nonlinearities between consecutive GCN layers and integrating the result function

into a single linear transformation step. The researchers call this simplified architecture

- Simple Graph Convolution (SGC) (Wu et al., 2019). They also find out that the

resulting linear architecture could correspond to a fixed low-pass filter and a linear

classifier, which then be added into the SGC model. Thus, SGC could smooth the

features locally in the graph data at the same time maintain even improve the accuracy

on the learning task such as node classification task.

In graph neural network, the high computational complexity is always an issue and it

usually could be alleviated through utilizing a sampling strategy, which retains a subset

of nodes or graphs at training time step. In the Rossi et al. (2020) research work,

researchers proposed a scalable and efficient graph deep learning structures, that can

perform group sampling by utilizing different sizes graph convolutional filters which

could allow fast inference and training. This novel model is called Simple Scalable

Graph Neural Network (SIGN), motivated by the inception module (Szegedy et al.,

2016). And this architecture is suitable to do learning tasks on the large-scale graph.

From the experimental result, SIGN with only one graph convolutional layer could still

43

obtain outstanding performances as the state-of-the-art architectures on several large-

scale graph datasets.

2.4 Directed Graph

Nowadays, the graph data extracted from the real world could contain more information

in the graph such as direction, thus this direction information is also very important to

be taken into consideration when it comes to learning tasks. Thus, it is a significant

field to have more research so that people could better and more deeply understand and

interpret directed graph information.

Recently, more attention has been drawn to the learning from directed graph (digraph)

data. Directed Graph Convolutional Network (DGCN) (Tong et al., 2020) was

proposed to adapt to the digraph data. The main concept is that they re-define a

symmetric normalized Laplacian Matrix for the digraph data by normalizing and

symmetrizing the transition probability matrix. Compared to those state-of-the-art

ConvGNNs, DGCN performs better on the digraph datasets in the node classification

task. However, DGCN also has some disadvantages and limitations: 1). It requires large

memory space and high-level computational capacity; 2). It holds the assumption that

the digraph data should be strongly connected (Tong et al., 2020).

In Monti et al. (2017), researchers introduced and proposed an architecture called

MotifNet, which could handle the digraph data by applying the local graph motifs. The

main idea is that the model utilizes the motif-induced adjacencies and at the same time

generates graph filters just like convolution. Through the results using the real digraph

datasets, it is proved that MotifNet has remarkable performance in directed graph data

processing task without requiring higher computational cost.

44

While in Tong et al. (2020), researcher was inspired by the Inception Network module

(Szegedy et al., 2016) and presented the Digraph Inception Convolutional Networks

(DiGCN). The researchers construct several scalable receptive fields and at the same

time reduce those receptive fields that are unbalanced and generated by the non-

symmetric digraph data. The experimental results on various benchmarks demonstrate

that DiGCN could learn digraph representation very effectively at the same time it

outperforms many state-of-the-art methods.

One of the common research ideas utilized in many architectures is to apply heuristics

to generate and adjust the Laplacian matrix to further improve the model’s performance

in learning tasks. In the very recent work, Zhang et al. (2021) presents a method called

MagNet and the main idea is to define a Magnetic Laplacian as a complex Hermitian

matrix which could then encode important direction information via these complex

numbers. Meanwhile MagNet is also a very flexible approach that could be adapted to

many spectral-based ConvGNN models. The experiments manifest that MagNet does

outperform all other mainstream graph deep learning structures on the directed graph

data’s learning tasks including node classification and link prediction (Zhang et al.,

2021).

There has been increasing attention in digraph data, however, the digraph focused

research is still limited compared to the amount of research work on the normal graph

data. Thus, there is still potential in digraph data learning and improve the architectures’

performance accuracy by applying novel techniques on the existing models or

proposing new structures based on new concepts or ideas from other fields.

45

2.5 Framelet-based Approach

Framelet method will be applied in the proposed structure because framelet-based

method is proved to have advantages of decomposing and reconstructing the signals

from the data (Zheng et al). The paper Zheng et al. (2021) explores the graph framelet

implementation and application, in which the main idea is that framelet decomposition

will induce a graph pooling method by aggregating the graph features which comprised

of feature values as well as geometric information of the graph data into high-pass and

low pass spectra. While researchers also present shrinkage function as a novel

activation function for the framelet convolution and this shrinkage function could assist

threshold high-frequency information on different scale levels. The graph neural

network with this proposed framelet method and pooling strategy has better

performance on the node classification and graph prediction tasks compared to the

existing ConvGNNs. Moreover, this framelet-based convolution method enjoys the

benefit of fast algorithm during the process of decomposition and reconstruction on

signals (Yang et al., 2022).

Manifold defined Framelet-based convolution for signal processing (Dong, 2017) is

also implemented and explored for graph signal in paper (Zheng et al., 2021). In Dong

(2017) paper, the linear framelet function utilizes a single modulation function 𝑔(∙),

and one set of modulation functions such as the scaling functions in the term of

Framelet. Specifically, 𝑔I is used to control the lower frequency at the same time 𝑔A is

used to control the high frequency, while the others will be utilized to regulate all the

frequencies left that are not included in 𝑔I and 𝑔A. The normal instances include the

linear and quadratic framelet functions (Dong, 2017) and sigmoid and entropy quasi-

framelet functions (Yang et al., 2022). The representative linear framelet functions’

formula and entropy framelet functions’ formula are shown as follows,

46

Linear Framelet Functions (Dong, 2017):

𝑔A(𝜉) = 𝑐𝑜𝑠@ �
𝜉
2� ;		𝑔7

(𝜉) =
1
√2

𝑠𝑖𝑛(𝜉);		𝑔@(𝜉) = 𝑠𝑖𝑛@ �
𝜉
2�.	

Entropy Framelet Functions (Yang et al., 2022):

𝑔A(𝜉) = 	�
�1 −	𝑔7@(𝜉)								𝜉 ≤ 𝜋/2

0	,																		𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
	; 				 		𝑔7(𝜉) = �4𝛼

𝜉
𝜋 − 4𝛼 �

𝜉
𝜋�

@

		 ;

𝑔@(𝜉) = 	�
�1 −	𝑔7@(𝜉)								𝜉 > 𝜋/2

0	,																		𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

In which 0 < 𝛼 ≤ 1 denotes a hyper-parameter and note that when 𝛼 = 1, 𝑔7@(𝜋𝜉) is a

binary entropy function.

Graph framelets (Dong, 2017) which is similar with the traditional wavelet method,

provide multiresolution analysis for the graph signals (Zheng et al., 2021). While the

fully tensorized framelet transformation makes sure that the efficient graph convolution

combines both high-pass and low-pass information, and the transform process only

requires graph Laplacian, Chebyshev Polynomial approximation and filter bank 𝜂 =

�𝑎; 𝑏(7), 𝑏(@), … , 𝑏(I)� ⊂ 𝑙A(𝑍) . Therefore, the group of modulation functions is

designed according to the multiresolution analysis (MRA) using the filter bank and it

could regulate the spectral frequency. However, Yang et al. (2022) further explored

and found that the MRA is not necessary, and this paper proposed a group modulation

function for quasi-framelets.

Definition 2.1 Modulation functions for Quasi-Framelets

Consider a group of modulation functions K + 1 which are positive and were defined

on [0, 𝜋] and ℱ = {	𝑔A(𝜉), 𝑔7(𝜉), … , 𝑔I(𝜉)}; it is a quasi-framelet when it meets the

identity condition requirements as follows,

47

𝑔A(𝜉)@ +	𝑔7(𝜉)@ +⋯+ 𝑔I(𝜉)@ ≡ 	1,									∀𝜉	 ∈ 	 [0, 𝜋]

In which 𝑔> could increase from 0 to 1, and	𝑔A could decrease from 1 to 0 over the

spectral domain of 	[0, 𝜋].

The paper Yang et al. (2022) developed filtering functions in the spectral domain from

the perspective of spectral ConvGNNs. Researchers proposed and presented the

undecimated quasi-framelet graph (QUFG) convolution for graph neural network via

introducing two groups of novel modulation functions. The experimental results further

proved QUFG’s outstanding denoising ability and flexibility in the node classification

task and demonstrated its remarkable performance as the state-of-the-art benchmark

architectures’.

2.6 SVD Application in Adversarial Machine Learning and

Recommendation System

There has been more and more research studies about the effects of adversarial attacks

on graph data and the robustness of the architecture’s defences as adversarial attack

study is a very important field that could represent many complex problems among AI

and machine learning domain and assist effectively to increase the architecture’s

stability. In paper Entezari et al. (2020), because of the vulnerability of the node

classification methods towards the adversarial attacks, thus it’s necessary to retain a

very robust node classification approach. Then researchers applied the truncated SVD

decomposition to compute and derive the low-rank approximation of the feature

matrices and adjacency matrices, and further retrain the GCN model with these

matrices to boost the performance of GCN when encountering an attacked graph data

and compare with the performance of the GCN on a clean graph. And the experiment

48

results on real-world datasets further prove that using the low-rank (rank-10) SVD

approximation of the feature matrices and adjacency matrices is robust enough to

vaccinate the GCN model against the attacks in the graph data.

The paper Mujkanovic et al. (2022) is mainly about the adversarial defence robustness,

researchers point out the importance of utilizing custom adaptive attacks instead of the

non-adaptive attacks which were normally used in the previous works leading to very

optimistic robustness estimates. From the experiment result, it is very surprising that

none of the assessed Graph Neural Network defense architectures are robust under

adaptive attacks. One of the assessed defense model is the SVD-GCN which is

introduced in the paper Entezari et al. (2020). And the preliminary experimental result

shows that this SVD-GCN cannot achieve considerable robustness gains, compared to

an undefended GCN model, not only under adaptive attacks but also non-adaptive

attacks.

The third paper I would like to compare here is the paper Peng et al. (2022), the

researchers proposed a simplified GCN architecture and replaced the neighbourhood

aggregation process with a truncated SVD which exploits the K-largest singular vectors

and values, and it is basically designed for the recommendation system. The

experimental results further prove that this SVD-GCN does show a positive effect in

learning the user-user and item-item relations in the recommendation system while the

renormalization trick they proposed to adjust the singular value gap could also

significantly alleviate the over-smoothing issue caused by stacking many graph

convolution layers in the original GCN architecture.

While in this thesis, we research about the SVD implementation in the GCN

architecture using the framelet approach (SVD-framelet) to perform the node

49

classification and link prediction problems. According to the experiments on several

real-world directed graph datasets, it is proved that SVD could improve the original

GCN’s performance on both tasks because it benefits from the advantages of the SVD-

framelets in filtering and transforming the signals from directed graph.

50

Chapter 3

Deep Learning Structure for Directed Graph Data -

SVD-GCN

3.1 Motivation of using SVD and Background

It has been proved by much research works that spectral-based Graph Neural Networks

is very useful and powerful regarding node-classification task. This is constructed

according to Laplacian on node or the 0th order Hodge Laplacian (Lim, 2020). Consider

that 𝑋 is the graph data’s signals, so in spectral-based GNN the basic operation is that

𝑌 = 𝐿	𝑋, where 𝐿 is the Laplacian matrix to process the graph signals and this graph

Laplacian symmetric and positive semi-definite. For undirected graph, operating

singular value decomposition (SVD) of a symmetric matrix is the same as the

eigenvalue decomposition (EVD), but there is still a bit different as the only difference

is the sign. Suppose that eigenvalue decomposition of normalized Laplacian matrix

𝐿� = 𝐼 − 𝐴� in which 𝐴� = (𝐷 + 𝐼)2
%
&(𝐴 + 𝐼)(𝐷 + 𝐼)2

%
& , because 𝐿� = 𝑈Λ𝑈5 = 𝑈(1 −

Σ)𝑈5, where 𝐴� = 	𝑈Σ𝑈5, the eigenvalues of 𝐴� falls in [-1,1] and the eigenvalues of 𝐿�

fall in [0,2]. The Laplacian’s eigenvalues could be regarded as the frequencies of the

signals from graph nodes.

51

However, when it comes to the case of directed graph, it would be a completely

different story since we cannot have the advantage of Laplacian’s symmetric property

anymore. Thus, a possible method based on the singular value decomposition (SVD)

of the adjacency matrix which could be considered to address the issue. This alternative

approach depends on the basic operation: 𝑌 = 𝐴	𝑋 , in which 𝐴 represents the

adjacency matrix and this adjacency matrix is asymmetric for directed graph data.

While this adjacency matrix is considered as the shift operator for the graph and this

shift operator can replace the graph signal on the target node with the linear

combination result of the neighbourhood nodes’ representations (Gavili & Zhang,

2017).

If the adjacency matrix is diagonalizable, then it doesn’t matter whether the graph is

undirected or directed, we could always have the equation as 𝐴 = 𝑉Λ𝑉27 and the

Fourier transform can be generalized as 𝑥R = 𝑉27𝑥. Noted that the adjacency matrix is

diagonalizable for those graphs that are strongly connected and directed (van Dam &

Omidi, 2018), but if the diagonalizable condition is violated then Jordan decomposition

could be taken into consideration (Sandryhaila & Moura, 2013). Meanwhile it needs to

be noted that generally for directed graph data, 𝑉27 ≠ 𝑉5 , and 𝑆 and 𝑉 are both

normally complex-valued, that hinders the extension to use the classic framelet theories

on directed graph data.

To solve this problem, singular value decomposition (SVD) is considered as the graph

shift operator, 𝐴 = 𝑈Λ𝑉5, in which 𝑈, 𝑉 represent two groups of orthonormal bases

which contains positive and real singular values	Λ. Because SVD is a suitable approach

to decompose and reconstruct the signal matrix utilizing orthogonal system and this is

also the reason why singular value decomposition (SVD) is applied instead of other

methods here. Utilizing this graph shift operator on the graph signal 𝑋 could be

52

considered as decomposing the signals via the two groups of bases which is based on

the 𝑉’s columns then the decomposition result will be put into a scaling operation

determined by Λ, then the scaled signal result will be transformed and reconstructed by

another group of orthonormal bases determined by the 𝑈 ’s columns. Because the

magnitude of Λ represents “frequency”, then Λ could be regulated by a modulation

function 𝑔 and the filter could be defined as follows,

𝑌 = 𝜎(C𝑉K(Λ)𝑈5E ∙ 𝑔8 ∘ C𝑈K(Λ)𝑉5𝑋E) (1)

In short, this first motivation is the successful improvement via utilizing the multiple

frequency separation for the graph signals through framelet decomposition while

Framelet (Zheng et al. 2021) relies heavily on the Fourier decomposition of the graph

signals and because it needs asymmetric adjacency matrix which is quite difficult for

the directed graph to generate. However, SVD could provide a direct method to the

graph signal decomposition, and it assists us to exploit the benefits of the frequency

separation.

The second motivation is that we would like to retain the superiority of the specialized

spectral GNNs for the directed graph data at the same time avoid the demand of a

carefully designed Laplacian matrix or adjacency matrix. We basically perform

convolution over the spectral domain which is provided by the singular value

decomposition of the directed adjacency matrix and this approach could be applied to

any structured matrix of a directed graph data while it is not limited to the graph

adjacency either.

53

3.2 Methodology

3.2.1 SVD-Framelets

A recent research paper regarding undecimated framelets-enhanced graph neural

network architecture which is also called UFG achieved outstanding results in different

learning tasks on graph data (Zheng et al. 2021). Because UFG is developed based on

the framework of spectral graph signal analysis by utilizing multiresolution analysis

developed by applying classic framelet theory (Dong, 2017), but it is quite limited to

apply this classic framelet on the directed graph. While for directed graph data signals,

it is important to figure out the method to explore the multiresolution lens. And this

motivated us to look back to find out if there is any signal analysis technique that could

be applied into the graph neural network on directed graph data.

Consider that a directed graph (homogeneous) 𝐺 = (𝑉, 𝐸) with graph signal 𝑋 and n

nodes in the graph; Suppose the 𝐴 ∈ ℝ-∗- represents its asymmetric adjacency matrix

while 𝐷7is the in-degree diagonal matrix and 𝐷@ is the out-degree diagonal matrix. If

we consider it as self-looped normalized adjacency matrix first, then the matrix could

be written as 𝐴� = (𝐷7 + 𝐼)
2%&(𝐴 + 𝐼)(𝐷@ + 𝐼)

2%& . In the spatial-based GNN

architectures, 𝐴� is usually utilized to determine the convolutional layer as follows,

𝑋M =	𝐴�	𝑋	𝑊 (2)

And now we set the SVD for the normalized adjacency matrix as follows,

𝐴� = 𝑈	Λ	V5 , (3)

In which 𝑉	holds the right singular vectors while 𝑈 holds the left vectors and Λ =

𝑑𝑖𝑎𝑔(𝜆7, 𝜆@, … , 𝜆H) represents all the singular values’ diagonal matrix and the singular

values are listed in a decreasing order. Now integrating equation (3) into equation (2),

54

this step means the projection of the node signals 𝑋 on the graph onto the orthogonal

system that was generated based on 𝑉’s columns, and then signals are reconstructed

based on the dual orthogonal system which was constructed using 𝑈’s columns, at the

same time this process is assisted by certain scaling function via singular values Λ. The

procedure is about how to filter the graph signals from the directed graph data via the

dual orthogonal systems.

While motivated by concept about utilizing the undecimated framelets in the proposed

orthogonal systems of Laplacian, we implemented framelets onto the orthogonal

systems that are determined by SVD. Consider one group of framelet functions ℱ =

{𝑔A(𝜉), 𝑔7(𝜉), … , 𝑔I(𝜉)} which falls on the range [0,𝜋] (Yang et al., 2022; Zheng et al.,

2021), and given a multiresolution level L, then the framelet signal decomposition and

reconstruction operators could be defined as follow,

𝒲A,N = 𝑉𝑔A @
O

@)*+F ∙∙∙ 𝑔A @
O
@)
FΛ

%
&	𝑉5 ,𝒲>,A =	𝑉𝑔> @

O
@)
F Λ

%
&	𝑉5 , for 𝑘 = 1, 2, … , 𝐾,

𝒲>,: = 𝑉𝑔> @
O

@)*(F 𝑔A @
O

@)*(,%F ∙∙∙ 	𝑔A @
O
@)
FΛ

%
&	𝑉5 for 𝑘 = 1, 2, … , 𝐾, 𝑙 = 1,2, … , 𝐿. (4)

and

𝒱A,N = 𝑈Λ
%
&𝑔A @

O
@)
F ∙∙∙ 𝑔A @

O
@)*+F 𝑉5 , 𝒱>,A =	𝑈Λ

%
&	𝑔> @

O
@)
F 𝑉5 , for 𝑘 = 1, 2, … , 𝐾,

𝒱>,: = 𝑈Λ
%
&𝑔A @

O
@)
F ∙∙∙ 𝑔A @

O
@)*+,%F𝑔> @

O
@)*+F	𝑉5 for 𝑘 = 1, 2, … , 𝐾, 𝑙 = 1,2, … , 𝐿. (5)

We then stack the corresponding equations together in the column direction as 𝒲 =

[𝒲A,N; 𝒲7,A; … ;𝒲I,A;𝒲7,7; … ;𝒲I,N] while stack them in the row direction as 𝒱 =

[𝒱A,N; 𝒱7,A; … ; 𝒱I,A; 𝒱7,7; … ; 𝒱I,N].

55

Theorem 3.1 The SVD-GCN layer could be applied via a step comprised of

decomposition and reconstruction which are determined by operator 𝒲 and 𝒱, then

taking these two operators into the SVD equation 𝐴� = 𝑈	Λ	V5, the result will be

𝑋M =	𝐴�	𝑋	𝑊 = 𝒱	(𝒲𝑋𝑊).

Proof. We will prove that 𝐴� = 	𝒲𝒱 from the equation shown above. While the

framelet functions’ identity property will be utilized ∑ 𝑔>@(𝜉) ≡I
>=A 1, in accordance

with the previous equations of matrices 𝒱 & 𝒲, the proof process is shown as follow,

𝒲𝒱 =𝒲A,N𝒱A,N +88𝒲>,:𝒱>,: =	𝒲A,N𝒱A,N +	
I

>=7

N

:=A

	8𝒲>,N𝒱>,N

I

>=7

+88𝒲>,:𝒱>,:

I

>=7

N27

:=A

= 𝑉𝑔A @
O

@)*+F ∙∙∙ 𝑔A @
O
@)
F Λ

%
&	𝑉5 ∙ 𝑈Λ

%
&𝑔A @

O
@)
F ∙∙∙ 𝑔A @

O
@)*+F𝑉5

+	8𝑉	𝑔A �
Λ

2,;:27� ∙∙∙ 	𝑔A �
Λ
2,� Λ

7
@	𝑉5 ∙

I

>=7

𝑈Λ
7
@𝑔A �

Λ
2,� ∙∙

∙ 𝑔A �
Λ

2,;N27�𝑔> �
Λ

2,;N�	𝑉
5

						+	88𝒲>,:𝒱>,:

I

>=7

N27

:=A

= 𝑈Λ
7
@𝑔A �

Λ
2,� ∙∙∙ 𝑔A �

Λ
2,;N27� §8𝑔>@ �

Λ
2,;N�

I

>=A

¨ ∙ 𝑔A �
Λ

2,;N27� ∙∙∙ 𝑔A �
Λ
2,� Λ

7
@	𝑉5

+	88𝒲>,:𝒱>,:

I

>=7

N27

:=A

=	𝒲A,N27𝒱A,N27 +88𝒲>,:𝒱>,:

I

>=7

N27

:=A

=	∙∙∙

= 	𝑒𝑝𝑒𝑎𝑡𝑒𝑑	𝑡ℎ𝑖𝑠	𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡	𝐿	 − 	1	𝑚𝑜𝑟𝑒	𝑡𝑖𝑚𝑒𝑠	

= 	𝒲A,A𝒱A,A +8𝒲>,A𝒱>,A

I

>=7

= 𝑈Λ
7
@ �8 𝑔>@ �

Λ
2,�

I

>=A
�	Λ

7
@	𝑉5 = 𝑈	Λ	𝑉5 = 𝐴�

The calculation process above completest the proof that 𝐴� = 	𝒲𝒱.

56

3.2.2 Decomposition and Reconstruction of SVD-Framelet Signal

In this step, the graph SVD framelet needs to be defined to further construct the SVD-

GCN layer.

Suppose that there are all singular vector triples and singular values for normalized

adjacency 𝐴� in the set of {(𝜆" , 𝑢" , 𝑣")}"=7H for graph 𝐺, in which there are 𝑁 nodes, and

𝑢" represents the columns of 𝑈 and 𝑣" represents the columns of 𝑉, and {𝜆"} are in a

decreasing order accordingly. While note that 𝛽A>(𝜉) = 𝑔> @
P
@)
F as well as

𝛽:>(𝜉) = 𝑔> @
P
@)
F	𝑔A @

P
@),%F ∙∙∙ 𝑔A @

P
@),(F for 𝑙 = 1,2, … , 𝐿, 𝑘 = 1,2, … , 𝐾.

Thus, consider a group of modulation functions ℱ = {𝑔A(𝜉), 𝑔7(𝜉), … , 𝑔I(𝜉)}, then

the forward SVD framelet for a graph 𝐺 at scale level 𝑙 could be written as follows,

𝜙Q,%(𝑞) =8𝜆"

H

"=7

𝛽NA �
𝜆"
2N� 𝑣"

(𝑝)𝑣"(𝑞), 𝜓Q,%> (𝑞) =8𝜆"

H

"=7

𝛽A> �
𝜆"
2A� 𝑣"

(𝑝)𝑣"(𝑞)

		𝜓:,%> (𝑞) = ∑ 𝜆"H
"=7 𝛽:> @

R-
@(
F 𝑣"(𝑝)𝑣"(𝑞), 𝑙 = 1,2, … 𝐿; 𝑘 = 1,2, … , 𝐾. (6)

While the backward SVD framelet could be written as shown below,

�̄�Q,%(𝑞) = ∑ 𝜆"H
"=7 𝛽NA @

R-
@+
F𝑢"(𝑝)𝑣"(𝑞),			�̄�Q,%> (𝑞) = ∑ 𝜆"H

"=7 𝛽A> @
R-
@.
F𝑢"(𝑝)𝑣"(𝑞)

		𝜓° :,%
> (𝑞) = ∑ 𝜆"H

"=7 𝛽:> @
R-
@(
F 𝑢"(𝑝)𝑣"(𝑞), 𝑙 = 1,2, … 𝐿; 𝑘 = 1,2, … , 𝐾. (7)

Where for all nodes 𝑞, 	𝜙:,%(𝑞) & �̄�:,%(𝑞) denote that at node 𝑝, the low-pass SVD

framelet translated meanwhile 	𝜓:,%> (𝑞)	& 		𝜓° :,%
> (𝑞) denote the high-pass SVD framelet

translated.

57

If the concept of undecimated framelet system (Dong, 2017) is applied as well, then

the two SVD- Framelet operator could be defined as follows,

SVD-UFS-𝐹N(ℱ, 𝐺) ≔ �𝜙Q,% ∶ 𝑝 ∈ 𝒱� 	∪ �	𝜓:,%> : 𝑝 ∈ 𝒱, 𝑙 = 0,1, … , 𝐿�
>=7

I
, (8)

SVD-UFS-𝐵N(ℱ, 𝐺) ≔ ��̄�Q,% ∶ 𝑝 ∈ 𝒱� 	∪ �	�̄�:,%> : 𝑝 ∈ 𝒱, 𝑙 = 0,1, … , 𝐿�
>=7

I
, (9)

While the signal transform 𝑥M = 𝐴�	𝑥 can also be applied in the SVD framelet transform

operator and the theorem is shown below.

Theorem 3.2 Transform of SVD-Framelet

Consider the forward and backward SVD framelet systems’ definition, the signal

transform could be represented as follows,

𝑥M =	∑ ¶𝜙N,%%∈𝒱 , 𝑥⟩�̄�N,% + ∑ ∑ ∑ ¶	𝜓:,%>%∈𝒱
N
:=A

I
>=7 , 	𝑥⟩	𝜓° :,%> (10)

The decomposition process here is to re-write 𝑥M = 𝐴�	𝑥 , from the equation shown

above, the transformed graph signal 𝑥M is indicated as a linear equation expression of

integrating backward SVD framelet operator with the partial signal from the system of

forward SVD framelet. Therefore, the filtering process of signals is mormally

developed by filtrating forward SVD framelet coefficient ¶𝜓:,%> , 𝑥⟩.

3.2.3 Model Architecture & Simplified SVD-Framelet Filtering

According to the Theorem 3.1 & Theorem 3.2 shown above, the simplified SVD

framelet filtering step could be presented as follows,

𝑌 = 𝜎(∑ (𝑈Λ
%
&	𝑔>(I

>=A Λ)𝑉5) ∙ 𝑔8> ∘ (𝑉	𝑔>(Λ)Λ
%
&	𝑉5𝑋𝑊))			 (11)

Where 𝑊 is the transformation weight of learnable features, 𝑔8> represents the filters

based on each modulation function 𝑔> and 𝜎 is the activation function. Because it

58

would be not always mandatory to further process the graph signal to that system of

backward SVD-framelet. Thus, SVD framelet filtering process could be simplified via

considering the transformation with only the forward SVD framelet operator as follows,

𝑌 = 𝜎(∑ (𝑉Λ
%
&	𝑔>(I

>=A Λ)𝑉5) ∙ 𝑔8> ∘ (𝑉	𝑔>(Λ)Λ
%
&	𝑉5𝑋𝑊))											(12)

Where the difference between (11) and (12) is that 𝑈 is replaced by 𝑉.

In the Figure 7 below, it demonstrates how the SVD framelet layer works. Firstly, the

normalized adjacency matrix 𝐴� is generated from the graph to get the framelet matrices

𝒲 and 𝒱 at certain scale level 𝐿; secondly, the framelet matrices	𝒲 which is the

primary matrices, is adapted into matrix 𝑋 of input node signal. Then the result will be

passed into learnable filters 𝑔8 on each node. While the dual framelet matrices 𝒱 will

be utilized to filter the signal and pass back to the transformed signal domain, which is

represented as 𝑋M and this will be forwarded to the next layer for further processing. It

is important to note that when several layers of SVD are implemented in the model,

both framelet matrices 𝒲 and 𝒱 are shared throughout all those SVD layers.

Figure 7 SVD-framelet System: SVD framelet layer transforms the feature X of the input node utilizing SVD framelet
matrices W and V and applying learnable filters gθ on those new features Y; this process is illustrated in the
simplified framelet parts (11) and (12).

59

3.2.4 Faster Filtering for Large Graphs

In real world, there are many datasets that are in large scale, thus if we would like to

utilize the proposed model to solve the real problems in the future, it is very significant

to make sure that this architecture is applicable on the large-scale datasets because

usually large-scale datasets have the issues of extremely high-level computational

complexity. Implementing SVD technique on adjacency matrix of large graph data

must be very costly. Thus, an approximated filter developed on Chebyshev

polynomials is considered, we adapt the idea proposed in (Onuki et al., 2017) and

construct the fast filtering. For the graph normalized adjacency matrix 𝐴� = 𝑈	Λ	𝑉5 =

	𝐴�	𝑉	𝑉5 and 𝐴�5𝐴� = 𝑉Λ@	𝑉5, which means that 𝑉’s columns provide the eigenvector

systems for 𝐴�5𝐴�, and then framelet analysis can be finished for the Laplacian matrix.

Given a group of framelet functions or quasi-framelet functions 	

𝐹 = {𝑔A(𝜉), 𝑔7(𝜉), … , 𝑔I(𝜉)} defined on [0,𝜋], the framelet signal decomposition and

reconstruction operator are written as follows,

𝒲A,N = 𝑉𝑔A @
O&

@)*+F ∙∙∙ 𝑔A @
O&

@)
F𝑉5 ,𝒲>,A =	𝑉𝑔> @

O&

@)
F𝑉5 , for 𝑘 = 1, 2, … , 𝐾,

𝒲>,: = 𝑉𝑔> @
O&

@)*(F𝑔A @
O&

@)*(,%F ∙∙∙ 	𝑔A @
O&

@)
F𝑉5 for 𝑘 = 1, 2, … , 𝐾, 𝑙 = 1,2, … , 𝐿. (13)

These equations shown above are quite similar with the equation (4), while the

difference is that the original Λ is replaced by Λ@	in the 𝑔(∙), and no extra term of Λ
%
&.

Meanwhile, the polynomial approximation method could also be considered to be

applied to each modulation function 	𝑔#(𝜉) where 𝑗 = 0,1,2, … , 𝐾, to avoid the explicit

SVD decomposition of 𝑉 . Thus, 	𝑔#(𝜉) could be approximated by Chebyshev

polynomials 𝒯#-(𝜉), in which 𝑛 is a fixed integer and it needs to be selected so that

60

Chebyshev polynomial approximation is of high precision. To simplify and get a less

complicated expression of the equation, 𝒯#(𝜉) will be utilized in the equation below

rather than using 𝒯#-(𝜉). Afterwards, the transformation equations of matrices’ SVD-

framelet can be written and determined as follow,

𝒲A,N ≈ 𝒯A �
1

2,;N 𝐴
�5𝐴�� ∙∙∙ 𝒯A �

1
2, 𝐴

�5𝐴�� , 𝒲>,A ≈	𝒯> �
1
2, 𝐴

�5𝐴��,

𝒲>,: ≈ 𝒯> @
7

@)*(𝐴�5𝐴�F 𝒯A @
7

@)*(,% 𝐴�5𝐴�F ∙∙∙ 𝒯A @
7
@)
𝐴�5𝐴�F, (14)

where 𝑘 = 1, 2, … , 𝐾, 𝑙 = 1, 2, … , 𝐿.

When it is not necessary to always utilize the adjacency SVD to generate the framelet

matrices. The large scale simplified SVD-Framelet-III when L = 0 could be denoted as

follows and it will be further exploited in the experiments later,

𝑌 = 𝜎(𝐴� ∑ 𝒲>,A
5 	I

>=A ∙ 𝑔8> ∘ (𝒲>,A	𝑋	𝑊))			 (15)

3.3 Node Classification Experiment

In this project, the directed graph data utilized can be found in: https://pytorch-

geometric.readthedocs.io/, including dataset Citeseer, Citeseer_full and Cora_ml, all of

them are citation networks, meanwhile the Amazon Photo (Amazon_photo) and

Amazon Computers (Amazon_cs) which are both co-purchase network. The code for

this experiment is available at https://github.com/ThisIsForReview/SVD-GCN. Brief

descriptions of all the datasets will be provided below and Table 1 will summarize the

datasets’ basic statistics.

61

3.3.1 Experimental Protocol

3.3.1.1 Datasets

Cora_ml & Cora_full (Bojchevski & Günnemann, 2017): Cora_ml dataset is a

relatively small dataset that is taken from the original Cora dataset and they are classic

citation network datasets as well as directed network datasets, in which nodes represent

published papers and edges represent their citation relationship.

Citeseer (Yang et al., 2016) & Citeseer_full (Chen et al., 2018): Citeseer dataset is

also a popular citation network dataset, in which all the nodes means papers while edges

denote the citation relationship between papers. The main difference between Citeseer

and Citeseer_full dataset is that in Citeseer_full the data split type is full.

Amazon_cs & Amazon_photo (Shchur et al., 2018): The dataset Amazon computer

and dataset Amazon photo both are separately taken from the original Amazon co-

purchase network. While in both datasets, nodes represent products and goods such as

computers or photos, while edges represent the relationship that these two products are

bought together by clients frequently, meanwhile the products’ review are the features

of the nodes.

Table 1 Datasets Statistics

Dataset Name # of Node # of Edges # of Classes # of Features

Cora_ml 2,995 8,416 7 2,879

Citeseer 3,312 4,715 6 3,703

Citeseer_full 3,327 3,703 6 602

Amazon_photo 7,650 143,663 8 745

Amazon_cs 13,752 287,209 10 767

Cora_full 19,793 65,311 70 8,710

62

3.3.1.2 Baseline Architectures

In this node classification task, the proposed model SVD-GCN will be compared with

fourteen existing state-of-the-art architectures, including spatial-based GNNs such as

GAT (Velickovic et al., 2018) and GraphSage (Hamilton et al., 2017); spectral-based

GNNs such as GCN (Kipf & Welling, 2016), ChebNet (Defferrard et al., 2016),

APPNP (Klicpera et al., 2019), SGC(Wu et al., 2019), and InfoMax (Velickovic et al.,

2019); Digraph GNNs including DGCN (Tong et al., 2020); Graph Inception including

SIGN (Rossi et al., 2020); Digraph Inception including DiGCN-PR (Tong et al., 2020),

DiGCN-APPR-IB (Tong et al., 2020), DiGCN-APPR (Tong et al., 2020). Meanwhile

UFG/QUFG generated based on Linear framelet functions (Zheng et al., 2021) and

Entropy framelet functions (Yang et al., 2022) will also be utilized in the experiments.

However, because both UFG and QUFG are designed for undirected graph data, before

applying these two models on the directed graph, there will be a simple step to simply

convert a directed graph to an undirected one by adding reversed edges.

3.3.2 Training Setup

In this experiment, the hyperparameter are selected as follows, 20 nodes are chosen for

model training for one class, while 500 nodes are grouped as a validation set at the

same time the rest of nodes are included in the testing set; the basic epoch is 200 and

the two-level framelets (L=1) are utilized in the experiment, while the dilation scale in

the framelets is also tested for values of 1.1, 1.5 and 2.0; the number of hidden layers

is tested for values of 16, 32 and 64, while the dropout ratio is tested for values of 0.1,

0.3 and 0.6 and the value with the best accuracy rate will be retained; the framelet

modulation function is neither Entropy nor Linear and the hyperparameter 𝛼 will be

tried at 0.1, 0.3, 0.5, 0.7 and 0.9, and it showed that both framelet modulation functions

do not have large different effects on the final results, so all the reported results’

63

experiments utilize the linear framelet modulation functions. Overall, this SVD-GCN

architecture comprised of one SVD framelet layer, then followed by a fully connected

linear layer then a softmax output layer to generate final outputs.

3.3.3 Result Analysis

The experimental results are listed in Table 2. The proposed SVD-GCN obtains

outstanding performances in most cases on all five digraph datasets compared to all the

state-of-the-art baseline architectures, if not it still achieves comparable performances.

For each dataset, the highest accuracy rate is bolded for highlight in the table, and it is

clear that most of the bolded results are obtained by SVD-GCN. For Citeseer,

Citeseer_full and Cora_ml datasets, more than 1% increase in the accuracy rate has

been achieved by the proposed method; while for the two Amazon datasets, the SVD-

GCN structure’s results are similar with the results of DiGCN-APPR model which

obtains the highest accuracy rate. It is noticeable that in the experiment on dataset

Citeseer_full, SVD-GCN achieves larger than 6% increase in accuracy rate compared

to the highest rate obtained by model DiGCN-PR and DiGCN-APPR (Tong et al.)

among the state-of-the-art models, and this could be called a remarkable improvement

achieved by this proposed architecture.

Tong et al, paper further presented and proposed the Digraph Inception Convolutional

Networks (DiGCN-APPR-IB) where the directed graph’s convolution and kth-order

proximity are utilized to construct larger receptive fields as well as to learn the multi-

scale features in directed graph data. This strategy is also applied and integrated with

this SVD-GCN architecture, resulting model is called SVD-GCN-IB. The results are

shown in the bottom two tows of Table 2. It clearly demonstrates that larger receptive

fields could improve the performances of SVD-GCN.

64

While for each dataset, we did quick experiments using UFG and QUFG and the

reported results were compared against the results’ of SVD-GCN. From the accuracy

rates in the table, it is obvious that UFG/QUFG performs generally well and sometimes

even better than the performances of some GNNs which are specifically designed for

digraph data. Thus, it further proves that utilizing multiple-scale decomposition in

Graph Neural Network is beneficial.

Table 2 Results for Node Classification Accuracy (%); Note: OOM means “out of memory”

65

3.3.4 Fast Algorithm Experiment

3.3.4.1 Experimental Protocol

This experiment will further explore the fast SVD-Framelet-III introduced in the the

previous chapter1. The dataset Cora_full is utilized and this dataset is also used in the

Bojchevski & Günnemann, (2017). Cora_full is full extension of the other Cora dataset

Cora_ml. From the dataset’s statistics table, it is clear that Cora_full is a quite large

datasets compared to other datasets utilized in the node classification learning task,

with 19,793 nodes ad 65,311 edges and the number of node classes is 70 while there

are 8,710 feature dimensions. Usually, regarding the graph data with more than 15k

nodes, we need to convert to use the CPU for slow training because the large dataset

cannot fit on the GPU memory.

The purpose here is to test the reliability of the proposed simplified version of SVD-

Framelet for fast algorithm called SVD-Framelet-III determined by the Chebyshev

Polynomial approximation. While corresponding experiments will compare this SVD-

Framelet-III’s results with the very basic state-of-the-art model GCN. We also

originally would like to compare with DiGCN-PR and DiGCN-APPR architecture,

however we cannot even run these experiments on the CPU. Thus, the results cannot

be provided.

The related results are provided in Table 3. The coding parameters’ setup in python for

this experiment is similar with the setting for the previous node classification learning

task. 20 nodes per class is chosen for training, 500 random nodes are assigned to

validation set and the rest of the nodes are assigned to the test set. The framelet scale

1 We originally would like to conduct this experiment on the Large-scale dataset to test the proposed
architecture’s reliability and efficiency, However, we didn’t find suitable large-scale directed graph
dataset as some large-scale directed graph datasets do not have node labels or features, otherwise we
would encounter nnz (number of non-zeros) overflow issue when conducting the experiment.

66

is set to 1.1, which means that linear framelet modulation functions are selected in this

experiment and at the same time the dropout rate is set to 0.1, and ReLU is chosen as

the activation function. The network model comprises of one layer of SVD-framelet,

followed by one layer of fully linear and then output will be feed into the output softmax

layer. Each experiment will be conducted on the replicate of 10 each time while it runs

200 epochs with a fix 0.005 learning rate in each replicate.

3.3.4.2 Result Analysis

The corresponding average accuracy rate with its standard deviation is reported in the

table below. The results demonstrate that the most ideal hidden unit size is 128 for this

large dataset, while SVD-GCN achieved 1-3% increase in the accuracy rate in all cases

compared to the GCN architecture. This further proves that the simplified fast SVD-

Framelet-III does help improve the architecture’s performances in node classification

tasks when the dataset is relatively large.

Table 3 Results between GCN and SVD-Framelet-III over Cora_Full

3.3.5 Denoising Capability and Robustness

3.3.5.1 Dataset and Baseline

Experiments are set to be conducted to further evaluate the robustness of the SVD-

GCN and the results will be compared with the DiGCN-APPR model’s. The process to

test the robustness is that we manually adjust the 𝜎 which is the standard deviation of

the noises to add different levels of noise to the dataset, and the dataset utilized in this

67

experiment is Cora_ml. While to evaluate the denoising capability of the proposed

model SVD-GCN, experiments are set up which is to randomly inject the “noise” of 0

mean with 0.01-5 standard deviation into the dataset and then compare the results with

the results from DiGCN-APPR architecture.

3.3.5.2 Result Analysis

In the Table 4 below, the results with all noise levels from 0.01 to 5.0 are reported.

However, the results for DiGCN-APPR for noise level of 1.0 and 5.0 are not reported

because the result figures are too poor and when the accuracy rate is less than 40%, it

is usually considered as poor figures and not comparable. From the reported

experimental results in Table 4, it is clear that SVD-GCN has much better ability of

denoising because its accuracy rates keep at a high level when the injected noise level

𝛼 is relatively large. When noise level 𝛼 becomes large than 0.01, the accuracy rate of

DiGCN-APPR has dropped dramatically from 53.39% to 35.72%, while the proposed

SVD-GCN architecture still has a comparable rate of accuracy.

Table 4 Results between SVD-GCN and DiGCN-APPR on Cora_ml on Different noise levels

68

3.3.5.3 Sensitivity Analysis

From the Table 4 above, it is quite clear that DiGCN-APPR fails in the denoising

testing experiments However, SVD-GCN is more robust and has much better denoising

capability compared to DiGCN-APPR because it has the advantage of framelet

decomposition on the domain of the SVD “frequency” and the filtering step into

learning process. More experiments are conducted using SVD-GCN on even larger

noise level of 10.0, 20.0 and etc. and the results are utilized to draw a line graph to have

a better overview of the test accuracy, shown in Figure 8. The yellow dot represents

the accuracy rate on each noise level while the blue shade area represents the standard

deviation of the accuracy rates. From the Figure 8 below, it is quite evident and

apparent that when the noise level is at 50.0, the result is around 50% and the

corresponding standard deviation is still acceptable. The results further prove and

demonstrate that SVD-GCN is quite robust and consistent in its performance in node

classification task when it is even facing much bigger attack from noise.

Figure 8 Analysis of Node Attribute Perturbation on the Cora_ml dataset

69

3.3.6 Contribution and Discussion

The application of framelets on the dual orthogonal system is further explored while

this dual orthogonal system is constructed by singular vectors from the singular value

decomposition (SVD) on the graph data. In this project, SVD-GCN is proposed for

directed graph data. The SVD-GCN is proven to improve the original GCN’s

performance on node classification task because it benefits from the advantages of the

SVD-framelets in filtering and transforming the signals from directed graph. The

results prove that SVD-GCN performs better than state-of-the-art architectures tested

in this experiment on those five benchmark digraph datasets, which demonstrates that

this proposed SVD-GCN has remarkable performance in processing digraph data.

While the sensitivity analysis and the robustness experiments further manifest that

SVD-GCN is robust and reliable to handle high-level noise attack.

For the fast algorithm experiment, originally we would like to conduct this experiment

on the Large-scale dataset to test the proposed SVD-GCN architecture’s reliability and

efficiency. However, Cora_full is actually not large enough to be considered as a large-

scale dataset thus the related experiment might not be material to prove SVD-GCN’s

reliability and improvement in processing large-scale dataset on node classification

tasks. Meanwhile, we also consider using the OGBN-Arxiv which is much larger

dataset with 169,343 nodes and 1,166,243 edges and it is more suitable to be utilized

in the large-scale dataset experiment. However, it failed to run the coding on OGBN-

Arxiv dataset because of a nnz overflow issue from the sparse matrix. And some other

large-scale directed graph dataset that is suitable in this experiment do not have node

labels or features, which means that we still cannot run the experiments because of too

few information.

70

3.4 Link Prediction Experiment

This is an extension of the SVD-GCN application. In the previous sections, the

proposed SVD-GCN is applied to do the node classification tasks while in the following

section, it will be applied to do the link prediction task which is also a common edge-

level learning task.

3.4.1 Background and Motivation

There are many applications of graph link prediction in the real world, for example,

product recommendation in the online shopping website, friend recommendation in the

social network and knowledge graph completion (Cai et al., 2021). While there have

been some research works in link prediction tasks such as the link existence prediction

on the graph data (Liben-Nowell et al., 2007; Schlichtkrull et al., 2018; Al Hasan et al.,

2006; Lü & Zhou, 2011). Many heuristic methods have been presented and proposed

to measure the similarity between the two connected nodes and then perform the link

existence prediction tasks. However, most of the heuristic architectures are usually

designed for certain network dataset specifically, and almost all of the heuristic

methods hold strong assumption on when the two nodes have high possibility to have

edge in between (Cai et al., 2021). Therefore, the heuristic approaches are quite limited

to be utilized on different graph datasets with different conditions.

To address the issues mentioned above, the “SEAL” architecture was proposed and

presented to automatically learn the heuristic functions from the target nodes’ h-hop

neighbourhood in the graph data and this model is able to extract the local enclosing

subgraphs which are centred on the two target nodes and then learn and output a

function mapping the subgraph patterns and information, then perform the link

71

existence prediction task based on the topology of the local enclosing subgraphs (Zhang

& Chen, 2018). In this research work, researchers transform and convert the link

prediction task into a graph classification task and present the “SEAL” structure which

is a graph neural network structure for link prediction, and this novel model has been

proved to outperform all heuristic methods, latent feature approaches as well as the

state-of-the-art Weisfeiler-Lehman Neural Machine (WLNM) (Zhang & Chen, 2018).

Compared to the research works on the normal graph data’s link prediction, the

literatures on directed graph data’s link prediction are very limited. For a directed graph

data, there are many sub-tasks under the category of edge-level learning task, not only

that the existence of the link could be predicted, but also the direction of the link could

be predicted which is a very important and informative learning task because the

direction information contains significant relationship information between the two

connected nodes (He et al., 2022). Therefore, for directed graph data, two more edge-

level experiments will be conducted, one is the experiment to predict the direction of

the edge of the vertices pair 𝑢, 𝑣, for which for which either (𝑢, 𝑣) ∈ ℰ or (𝑣, 𝑢) ∈ ℰ;

while the other experiment is to perform a three-class classification, which is to classify

and predict if an edge between two target node is (𝑢, 𝑣) ∈ ℰ , (𝑣, 𝑢) ∈ ℰ or

(𝑣, 𝑢), (𝑢, 𝑣) ∉ ℰ (He et al., 2022).

3.4.2 Experimental Protocol

3.4.2.1 Datasets and Baselines

Because there are not many existing research works and deep learning architectures

specifically designed for directed graph data, while researchers in the paper He et al.

(2022) conducted link prediction experiments utilizing DiGCN (Tong et al., 2020),

72

DGCN (Tong et al., 2020), MagNet (Zhang et al., 2021) and DiGCN-IB (Tong et al.,

2020). These four architectures are the benchmark structures specifically for directed

graph data. Then SVD-GCN method will be applied on the same digraph datasets and

results will be compared with the four models listed above. For convenience, the results

for these four models are copied from the paper He et al. (2022). There are five digraph

datasets in this experiment, among which the Cora_ml and Citeseer datasets are the

same as the ones used in the previous node classification task and are both available

from the link: https://github.com/flyingtango/DiGCN, while the other three WebKB

datasets are available on the open-source website as well.

In the following part, some brief description regarding the datasets will be provided

and the basic statistics will be shown in the Table 5:

Cora_ml (Bojchevski & Günnemann, 2017): This is a subset of the dataset that is

extracted from the original classic citation network dataset Cora and Cora_ml is a

directed graph dataset.

Citeseer (Yang et al., 2016): It is also a popular citation network and its structure is

similar with Cora_ml’s, whose nodes represent the publications and papers and edges

represent the citation relationship. In Citeseet, the nodes are classified into six classes.

WebKB-Cornell & WebKB-Texas & WebKB-Wisconsin2: These three datasets are

all from the online Alchemy WebKB dataset. And this WebKB comprises of seven

classes of hyperlinks and web pages from the computer science departments of four

universities which are The University of Washington, The University of Texas, Cornell

2 https://lig-membres.imag.fr/grimal/data.html

Table 5 Statistics of Datasets

73

University and The University of Wisconsin. In this experiment, only three of them

will be utilized, which are Texas, Cornell and Wisconsin.

3.4.2.2 Experimental Setup

In the graph link prediction task, the hyperparameters are set at follows: the basic epoch

is 100, since we have tried several epoch values and found that the best result appears

within 100 epochs in each rep, so it is not necessary to use 200 epochs in each rep. The

two-level framelets (L=1) is also utilized and the dilation scale in the framelet is set to

be 1.1 as usual. The number of hidden features is tested for 16, 32, 64 or 128 and is

tested and adjusted during the experiment to make sure that the numbers are set to give

the best output for each dataset. The dropout ratio is set to be 0.3 by default; while the

framelet modulation function could be set to Entropy, Linear or Sigmoid. Usually if

the framelet is Entropy, 𝛼	is usually set to be 0.5 but if the framelet is Sigmoid, 𝛼 will

be set to be 20; if the framelet type is Linear, then any value of 𝛼 listed above can be

utilized.

As not only link existence prediction task will be performed, but also the link direction

prediction will be done to test the SVD-GCN architecture’s performance in edge-level

tasks, thus there are two new parameters in the parameter setting part, one is called

“task” and the other one is called “num_class_link”. So when the experiment is about

link existence prediction, then “task” should be set to 1 while “num_class_link” is not

necessary to be set up because this is a parameter related to the link direction prediction.

74

When the experiment is about the two-class link direction prediction, the “task” should

be set to 2 and “num_class_link” should be 2; but when the experiment is to predict the

three-class link prediction task, then “task” should be 2 and the “num_class_link”

should be set to 3.

3.4.3 Result Analysis

All the results for three prediction experiments are shown below in the three tables and

for each dataset, the highest accuracy rate among all five architectures is bolded and

highlighted in the tables. It is very clear that the proposed SVD-GCN architecture

achieves remarkable performances in all three experiments. While in the link existence

prediction task, the accuracy of SVD-GCN is the highest among all 5 datasets. In the

link direction prediction experiment, SVD-GCN still achieves the highest accuracy in

dataset WebKB-Cornell, WebKB-Texas and Citeseer while its performance in

WebKB-Wisconsin and Cora_ml though is not the best, still ranked the second among

all the structures. In the three-class link prediction, SVD-GCN still achieves the best

performance in all the datasets except Cora_ml. Overall, the proposed SVD-GCN

architecture outperforms the state-of-the-art benchmark models in the link prediction

tasks for directed graph data.

75

Table 6 Direction Prediction (%)

3.4.4 Conclusion and Discussion

In this project, we extend to apply the proposed SVD-GCN on the link prediction tasks

and based on the results of the three experiments, it has been proved that SVD-GCN

could also achieve remarkable performances in edge-level learning tasks for digraph

data. It further demonstrates that this proposed novel SVD-GCN structure is

Table 7 Existence Link Prediction (%)

Table 8 Three Classes Link Prediction (%)

76

convincingly useful and appropriate when it comes to handle the directed graph data

and could be applied to address the real-world issues.

77

Chapter 4

Conclusion

This dissertation proposed a novel architecture, simple yet effective SVD-GCN and

applied it on the learning tasks of node classification and link prediction. In this chapter,

I will briefly summarize the contributions again, followed by a discussion about

potential future research direction.

4.1 Main Contribution

The main contributions of this research thesis are included in Chapter 3 and can be

five-fold:

1) It should be the first attempt to utilize the adjacency SVD for the graph

convolution neural networks. Quasi-framelet decomposition is applied to better

filter the graph signals on spectral domain and improve performance of the

proposed SVD-GCN as well as its robustness when encountering high level of

noise attack.

2) It is theoretically proved that the dual orthogonal systems provided by the SVD

ensure the successful implementation of the graph signal decomposition and

reconstruction which is in accordance with the spectral theory.

78

3) We investigate the method to scale up the proposed SVD-GCN for large graph

datasets according to the Chebyshev Polynomial approximation via attaining

the fast filtering for singular values while not running SVD.

4) Experimental results from the node classification task prove that the node

representation learning method by the framelet SVD-GCN is effective and the

proposed SVD-GCN achieves better performance compared to the state-of-the-

art architectures for digraph data.

5) SVD-GCN is also applied to perform on the link prediction tasks, and the results

further prove its effectiveness and remarkable performances on link prediction

on the directed graph data against the state-of-the-art structures.

4.2 Future Research Directions

In this thesis, the node-level task (node classification) and edge-level task (link

prediction) have been explored, there is another possible extension of applying the

SVD-GCN which is to perform on the graph-level tasks. Multi-Relational MR-GCN

was proposed in Huang et al. (2020), the researchers utilized the generalized tensor

product computation into the normal graph convolution theory and define the multi-

relational graph convolution operator (MR-GCO). While if the transformed tensor

SVD (Song et al., 2019) is applied in the SVD-GCN, then it is possible to make the

SVD-GCN better process the multi-relational graph data and the results could be

outstanding as well because it has been proved that framelet SVD-GCN is really good

and robust at the handling graph signals and make predictions for the graph

classification task.

79

Reference

Al Hasan, M., Chaoji, V., Salem, S., & Zaki, M. (2006, April). Link prediction using

supervised learning. In SDM06: workshop on link analysis, counter-terrorism and

security (Vol. 30, pp. 798-805).

Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M. S., ... &

Asari, V. K. (2018). The history began from alexnet: A comprehensive survey on

deep learning approaches. arXiv preprint arXiv:1803.01164.

Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., ...

& Farhan, L. (2021). Review of deep learning: Concepts, CNN architectures,

challenges, applications, future directions. Journal of big Data, 8, 1-74.

Asif, N. A., Sarker, Y., Chakrabortty, R. K., Ryan, M. J., Ahamed, M. H., Saha, D. K.,

... & Tasneem, Z. (2021). Graph neural network: A comprehensive review on non-

euclidean space. IEEE Access, 9, 60588-60606.

Atwood, J., & Towsley, D. (2016). Diffusion-convolutional neural networks. Advances

in neural information processing systems, 29.

Balcilar, M., Guillaume, R., Héroux, P., Gaüzère, B., Adam, S., & Honeine, P. (2021,

May). Analyzing the expressive power of graph neural networks in a spectral

perspective. In Proceedings of the International Conference on Learning

Representations (ICLR).

Balcilar, M., Renton, G., Héroux, P., Gauzere, B., Adam, S., & Honeine, P. (2020).

Bridging the gap between spectral and spatial domains in graph neural networks.

arXiv preprint arXiv:2003.11702.

Bojchevski, A., & Günnemann, S. (2017). Deep gaussian embedding of graphs:

Unsupervised inductive learning via ranking. arXiv preprint arXiv:1707.03815.

80

Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., & Vandergheynst, P. (2017).

Geometric deep learning: going beyond euclidean data. IEEE Signal Processing

Magazine, 34(4), 18-42.

Cai, L., Li, J., Wang, J., & Ji, S. (2021). Line graph neural networks for link prediction.

IEEE Transactions on Pattern Analysis and Machine Intelligence.

Charikar, M., Chatziafratis, V., Niazadeh, R., & Yaroslavtsev, G. (2019, April).

Hierarchical clustering for euclidean data. In The 22nd International Conference on

Artificial Intelligence and Statistics (pp. 2721-2730). PMLR.

Chen, J., Ma, T., & Xiao, C. (2018). Fastgcn: fast learning with graph convolutional

networks via importance sampling. arXiv preprint arXiv:1801.10247.

Chiang, W. L., Liu, X., Si, S., Li, Y., Bengio, S., & Hsieh, C. J. (2019, July). Cluster-

gcn: An efficient algorithm for training deep and large graph convolutional

networks. In Proceedings of the 25th ACM SIGKDD international conference on

knowledge discovery & data mining (pp. 257-266).

Defferrard, M., Bresson, X., & Vandergheynst, P. (2016). Convolutional neural

networks on graphs with fast localized spectral filtering. Advances in neural

information processing systems, 29.

Dong, B. (2017). Sparse representation on graphs by tight wavelet frames and

applications. Applied and Computational Harmonic Analysis, 42(3), 452-479.

Entezari, N., Al-Sayouri, S. A., Darvishzadeh, A., & Papalexakis, E. E. (2020,

January). All you need is low (rank) defending against adversarial attacks on graphs.

In Proceedings of the 13th International Conference on Web Search and Data

Mining (pp. 169-177).

81

Gao, H., Wang, Z., & Ji, S. (2018, July). Large-scale learnable graph convolutional

networks. In Proceedings of the 24th ACM SIGKDD international conference on

knowledge discovery & data mining (pp. 1416-1424).

Gavili, A., & Zhang, X. P. (2017). On the shift operator, graph frequency, and optimal

filtering in graph signal processing. IEEE Transactions on Signal Processing,

65(23), 6303-6318.

Gers, F. A., & Schmidhuber, J. (2000, July). Recurrent nets that time and count. In

Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural

Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for

the New Millennium (Vol. 3, pp. 189-194). IEEE.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., & Dahl, G. E. (2017, July).

Neural message passing for quantum chemistry. In International conference on

machine learning (pp. 1263-1272). PMLR.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ...

& Bengio, Y. (2020). Generative adversarial networks. Communications of the

ACM, 63(11), 139-144.

Gori, M., Monfardini, G., & Scarselli, F. (2005, July). A new model for learning in

graph domains. In Proceedings. 2005 IEEE international joint conference on neural

networks (Vol. 2, No. 2005, pp. 729-734).

Grover, A., & Leskovec, J. (2016, August). node2vec: Scalable feature learning for

networks. In Proceedings of the 22nd ACM SIGKDD international conference on

Knowledge discovery and data mining (pp. 855-864).

82

Into the Wild: Machine Learning In Non-Euclidean Spaces · Stanford DAWN. (2019,

October 10). Retrieved February 15, 2023, from

https://dawn.cs.stanford.edu/2019/10/10/noneuclidean/

Hamilton, W., Ying, Z., & Leskovec, J. (2017). Inductive representation learning on

large graphs. Advances in neural information processing systems, 30.

He, Y., Zhang, X., Huang, J., Cucuringu, M., & Reinert, G. (2022). PyTorch Geometric

Signed Directed: A Survey and Software on Graph Neural Networks for Signed and

Directed Graphs. arXiv preprint arXiv:2202.10793.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural

computation, 9(8), 1735-1780.

Hu, B., Zhang, Z., Shi, C., Zhou, J., Li, X., & Qi, Y. (2019, July). Cash-out user

detection based on attributed heterogeneous information network with a hierarchical

attention mechanism. In Proceedings of the AAAI Conference on Artificial

Intelligence (Vol. 33, No. 01, pp. 946-953).

Huang, Z., Li, X., Ye, Y., & Ng, M. K. (2020). MR-GCN: Multi-Relational Graph

Convolutional Networks based on Generalized Tensor Product. In IJCAI (pp. 1258-

1264).

Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph

convolutional networks. arXiv preprint arXiv:1609.02907.

Klicpera, J., Bojchevski, A., & Günnemann, S. (2018). Predict then propagate: Graph

neural networks meet personalized pagerank. arXiv preprint arXiv:1810.05997.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., &

Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition.

Neural computation, 1(4), 541-551.

83

Levie, R., Monti, F., Bresson, X., & Bronstein, M. M. (2018). Cayleynets: Graph

convolutional neural networks with complex rational spectral filters. IEEE

Transactions on Signal Processing, 67(1), 97-109.

Li, C., Qin, X., Xu, X., Yang, D., & Wei, G. (2020). Scalable graph convolutional

networks with fast localized spectral filter for directed graphs. IEEE Access, 8,

105634-105644.

Li, R., Wang, S., Zhu, F., & Huang, J. (2018, April). Adaptive graph convolutional

neural networks. In Proceedings of the AAAI conference on artificial intelligence

(Vol. 32, No. 1).

Li, Y., Yu, R., Shahabi, C., & Liu, Y. (2017). Diffusion convolutional recurrent neural

network: Data-driven traffic forecasting. arXiv preprint arXiv:1707.01926.

Li, Z., Liu, F., Yang, W., Peng, S., & Zhou, J. (2021). A survey of convolutional neural

networks: analysis, applications, and prospects. IEEE transactions on neural

networks and learning systems.

Liben‐Nowell, D., & Kleinberg, J. (2007). The link‐prediction problem for social

networks. Journal of the American society for information science and technology,

58(7), 1019-1031.

Lim, L. H. (2020). Hodge Laplacians on graphs. Siam Review, 62(3), 685-715.

Lü, L., & Zhou, T. (2011). Link prediction in complex networks: A survey. Physica A:

statistical mechanics and its applications, 390(6), 1150-1170.

Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-

based neural machine translation. arXiv preprint arXiv:1508.04025.

Ma, Y., Hao, J., Yang, Y., Li, H., Jin, J., & Chen, G. (2019). Spectral-based graph

convolutional network for directed graphs. arXiv preprint arXiv:1907.08990.

84

Madhu, P., Kosti, R., Mührenberg, L., Bell, P., Maier, A., & Christlein, V. (2019,

October). Recognizing characters in art history using deep learning. In Proceedings

of the 1st Workshop on Structuring and Understanding of Multimedia heritage

Contents (pp. 15-22).

Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., & Bronstein, M. M. (2017).

Geometric deep learning on graphs and manifolds using mixture model cnns. In

Proceedings of the IEEE conference on computer vision and pattern recognition

(pp. 5115-5124).

Mujkanovic, F., Geisler, S., Günnemann, S., & Bojchevski, A. (2022). Are Defenses

for Graph Neural Networks Robust?. Advances in Neural Information Processing

Systems 35 (NeurIPS 2022).

Nt, H., & Maehara, T. (2019). Revisiting graph neural networks: All we have is low-

pass filters. arXiv preprint arXiv:1905.09550.

Onuki, M., Ono, S., Shirai, K., & Tanaka, Y. (2017). Fast singular value shrinkage with

Chebyshev polynomial approximation based on signal sparsity. IEEE Transactions

on Signal Processing, 65(22), 6083-6096.f

Peng, S., Sugiyama, K., & Mine, T. (2022, October). SVD-GCN: A Simplified Graph

Convolution Paradigm for Recommendation. In Proceedings of the 31st ACM

International Conference on Information & Knowledge Management (pp. 1625-

1634).

Perozzi, B., Al-Rfou, R., & Skiena, S. (2014, August). Deepwalk: Online learning of

social representations. In Proceedings of the 20th ACM SIGKDD international

conference on Knowledge discovery and data mining (pp. 701-710).

85

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once:

Unified, real-time object detection. In Proceedings of the IEEE conference on

computer vision and pattern recognition (pp. 779-788).

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object

detection with region proposal networks. Advances in neural information

processing systems, 28.

Rossi, E., Chamberlain, B., Frasca, F., Eynard, D., Monti, F., & Bronstein, M. (2020).

Temporal graph networks for deep learning on dynamic graphs. arXiv preprint

arXiv:2006.10637.

Rossi, E., Frasca, F., Chamberlain, B., Eynard, D., Bronstein, M., & Monti, F. (2020).

Sign: Scalable inception graph neural networks. arXiv preprint arXiv:2004.11198,

7, 15.

Sandryhaila, A., & Moura, J. M. (2013). Discrete signal processing on graphs. IEEE

transactions on signal processing, 61(7), 1644-1656.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., & Monfardini, G. (2008). The

graph neural network model. IEEE transactions on neural networks, 20(1), 61-80.

Schlichtkrull, M., Kipf, T. N., Bloem, P., Berg, R. V. D., Titov, I., & Welling, M. (2018,

June). Modeling relational data with graph convolutional networks. In European

semantic web conference (pp. 593-607). Springer, Cham.

Shchur, O., Mumme, M., Bojchevski, A., & Günnemann, S. (2018). Pitfalls of graph

neural network evaluation. arXiv preprint arXiv:1811.05868.

Song, G., Ng, M. K., & Zhang, X. (2019). Robust tensor completion using transformed

tensor svd. arXiv preprint arXiv:1907.01113.

86

Sperduti, A., & Starita, A. (1997). Supervised neural networks for the classification of

structures. IEEE Transactions on Neural Networks, 8(3), 714-735.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the

inception architecture for computer vision. In Proceedings of the IEEE conference

on computer vision and pattern recognition (pp. 2818-2826).

Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., & Mei, Q. (2015, May). Line: Large-

scale information network embedding. In Proceedings of the 24th international

conference on world wide web (pp. 1067-1077).

Tong, Z., Liang, Y., Sun, C., Li, X., Rosenblum, D., & Lim, A. (2020). Digraph

inception convolutional networks. Advances in neural information processing

systems, 33, 17907-17918.

Tran, D. V., Navarin, N., & Sperduti, A. (2018, November). On filter size in graph

convolutional networks. In 2018 IEEE Symposium Series on Computational

Intelligence (SSCI) (pp. 1534-1541). IEEE.

van Dam, E. R., & Omidi, G. R. (2018). Directed strongly walk-regular graphs. Journal

of Algebraic Combinatorics, 47(4), 623-639.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017).

Graph attention networks. arXiv preprint arXiv:1710.10903.

Velickovic, P., Fedus, W., Hamilton, W. L., Liò, P., Bengio, Y., & Hjelm, R. D. (2019).

Deep Graph Infomax. ICLR (Poster), 2(3), 4.

Wang, H., & Raj, B. (2017). On the origin of deep learning. arXiv preprint

arXiv:1702.07800.

87

Wang, X., Ji, H., Shi, C., Wang, B., Ye, Y., Cui, P., & Yu, P. S. (2019, May).

Heterogeneous graph attention network. In The world wide web conference (pp.

2022-2032).

Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., & Weinberger, K. (2019, May).

Simplifying graph convolutional networks. In International conference on machine

learning (pp. 6861-6871). PMLR.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., ... & Dean, J.

(2016). Google's neural machine translation system: Bridging the gap between

human and machine translation. arXiv preprint arXiv:1609.08144.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Philip, S. Y. (2020). A comprehensive

survey on graph neural networks. IEEE transactions on neural networks and

learning systems, 32(1), 4-24.

Xu, K., Hu, W., Leskovec, J., & Jegelka, S. (2018). How powerful are graph neural

networks?. arXiv preprint arXiv:1810.00826.

Yan, S., Xiong, Y., & Lin, D. (2018, April). Spatial temporal graph convolutional

networks for skeleton-based action recognition. In Thirty-second AAAI conference

on artificial intelligence.

Yang, M., Zheng, X., Yin, J., & Gao, J. (2022). Quasi-Framelets: Another

Improvement to GraphNeural Networks. arXiv preprint arXiv:2201.04728.

Yang, Z., Cohen, W., & Salakhudinov, R. (2016, June). Revisiting semi-supervised

learning with graph embeddings. In International conference on machine learning

(pp. 40-48). PMLR.

Yun, S., Jeong, M., Kim, R., Kang, J., & Kim, H. J. (2019). Graph transformer

networks. Advances in neural information processing systems, 32.

88

Zhang, M., & Chen, Y. (2018). Link prediction based on graph neural networks.

Advances in neural information processing systems, 31.

Zhang, X., He, Y., Brugnone, N., Perlmutter, M., & Hirn, M. (2021). Magnet: A neural

network for directed graphs. Advances in Neural Information Processing Systems,

34, 27003-27015.

Zheng, X., Zhou, B., Gao, J., Wang, Y. G., Lió, P., Li, M., & Montúfar, G. (2021).

How framelets enhance graph neural networks. arXiv preprint arXiv:2102.06986.

Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., ... & Sun, M. (2020). Graph

neural networks: A review of methods and applications. AI open, 1, 57-81.

Zhuang, C., & Ma, Q. (2018, April). Dual graph convolutional networks for graph-

based semi-supervised classification. In Proceedings of the 2018 World Wide Web

Conference (pp. 499-508).

Zou, C., Han, A., Lin, L., & Gao, J. (2022). A Simple Yet Effective SVD-GCN for

Directed Graphs. arXiv preprint arXiv:2205.09335.

