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Abstract 

Deep learning structures have achieved outstanding success in many 

different domains. Existing research works have proposed and presented 

many state-of-the-art deep neural networks to solve different learning 

tasks in various research fields such as speech processing and image 

recognition. Graph neural networks (GNNs) are considered as a type of 

deep neural network and their numerical representation from the graph 

does improve the performance of networks. In the real-world cases, data 

is not only in the form of simple graph, but also they could contain 

direction information in the graph resulting in the so-called directed 

graph data. 

This thesis will introduce and explain the first attempt in this domain to 

apply Singular Value Decomposition (SVD) on adjacency matrix for 

graph convolutional neural networks and propose SVD-GCN. This thesis 

also utilizes the framelet decomposition to help better filter the graph 

signals, thus to improve novel structure’s performance in node 

classification task and to enhance the robustness of the model when 

encountering high-level noise attack. The thesis also applies the new 

model on link prediction tasks. All the experimental results demonstrate 

SVD-GCN’s outstanding performances in both node-level and edge-

level learning tasks.  
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Chapter 1 

Introduction & Background 

Since the 1950s, machine learning techniques have achieved outstanding success in 

many different domains over the last few decades. Neural Networks are a subsection 

under the umbrella of machine learning, while it is also the subfield which originated 

the Deep Learning at the very beginning. During recent decades, deep learning has 

become a prevalent field of machine learning, and deep learning techniques have 

garnered tremendous success in a variety of domains (Alom et al. 2018). Since its 

inception Deep Learning has been showing remarkable success in almost all the 

application domains such as image analysis, computer vision, natural language 

processing and speech recognition (Alom et al. 2018).  

Deep learning techniques utilize the hierarchical structures to link the layers of nodes. 

The output of a lower layer will be feed forward as the input of a higher layer through 

certain calculations which could be linear or non-linear. These deep learning techniques 

could transform the features of raw data into the abstract features, and compared to 

machine learning architectures, deep learning techniques are much better on feature 

representation, especially on those complex datasets (Bronstein et al., 2017). For 

example, image and text are usually complex data and they could contain important 
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personal information, but machine learning technique is not sufficient and able to but 

to process these kinds of complex data.  

Learning approaches based on the representations of the data are usually called 

representation learning (Alom et al. 2018). While recent research works also 

demonstrate that Deep Learning based representation learning contains a hierarchy of 

concepts and features, in which high-level features are determined from the low-level 

ones. While Deep Learning has been defined as a universal learning method instead of 

being task specific towards certain kinds of problems in certain fields (Alom et al. 

2018).  

Meanwhile, with the rapid progress of computer technology such as increasing power 

of chips processing abilities and then the drastic reduction of the computational cost, 

and these factors provide strong impetus for deep learning architectures to develop even 

faster (Charikar et al., 2017). While nowadays, more and more applications on 

structural data have appeared in this field, such as recommendation system and social 

network, the deep learning algorithms have progressed a lot to better fulfil the 

requirements of processing the graph data which is one type of structural data. 

 

1.1 From Euclidean space to Non-Euclidean Geometry 

A Euclidean space is a finite dimensional vector space over the reals R, in which the 

points are designated by coordinates (one for each dimension); while Euclidean space 

Rn := R*R*…*R (n times), in which the elements R are the vectors with n real 

components. Euclidean geometry is also known as “plane geometry”, in which the 

interior angles of a triangle should add up to 180 degree and the shortest distance 

between two points should always be the straight line between them. And all these 
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examples are in a two-dimensional flat world, and they are bound by the laws of plane 

Euclidean geometry, and the data exist in this domain is called Euclidean geometric 

data. Deep learning architectures have been very successful when it comes to deal with 

signals like images and speech where the underlying structure is Euclidean or grid-like 

(Into the Wild: Machine Learning in Non-Euclidean Spaces · Stanford DAWN, 2019). 

Regarding the deep neural networks’ success, one of the leading reasons is that they 

can leverage data’s statistical properties – stationarity, locality and compositionality 

via local statistics, and these properties have formalized in the convolutional neural 

networks (CNNs) (Bronstein et al., 2017). For instance, in the task of image analysis 

we could regard pictures or images as functions in a plane Euclidean space, and 

sampled on a structure of grid, while Figure 1 clearly shows the procedure of CNN 

architecture in image classification task. In such condition, we can say that locality is 

the result of local connectivity, stationarity is because of the shift-invariance and 

compositionality is owed to the grids’ multi-resolution structure property. Those 

properties mentioned above are all accomplished because of the convolutional 

structures that consist of alternating convolutional layer and pooling layer (Bronstein 

et al., 2017).  

 
Figure 1 A typical example of CNN structure for the task of image classification (Alzubaidi et al, 2021) 
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The advantage of utilizing convolutions is that it could extract the local features which 

usually are shared across the image domain while it could also reduce the parameters’ 

amount without sacrificing the network’s capacity (Alzubaidi et al, 2021). However, 

not all the data could be presented in the format that deep neural networks required, 

and if we force some other complex data to be contorted into the grid, this will cause 

us to sacrifice some probably important relationship info in that complex data in favour 

of much more simple representation that neural networks can take as their input 

(Alzubaidi et al, 2021). 

However, many scientific study data are within a non-Euclidean space, for example, 

social networks in social science, medical imaging showing brain’s functional 

networks and genetics networks, and these are usually called non-Euclidean geometric 

data. In many real-world applications, such geometric data are usually very complex, 

and the scales are very large, for instance, the social network could be on the scale of 

millions or even billions (Bronstein et al., 2017). Thus, the non-Euclidean nature of 

complex data like this indicates that they do not have properties such as shift-

invariance, global parameterization, coordinate system or vector space structure.  

Therefore, convolutional operations which are taken for granted in the Euclidean 

geometry cannot even be defined correctly in the non-Euclidean cases, which causes 

the difficulty for deep learning techniques such as CNNs to process and deal with such 

complex data. Extending deep neural network architectures to the non-Euclidean 

domain could be referred to as geometric deep learning, recently more and more 

attention has been drawn into the application of deep learning techniques on non-

Euclidean geometric data (Bronstein et al., 2017). For instance, the sensor networks are 

actually graph models of the distributed inter-connected sensors, and their reading are 

regarded as time-dependent signals on the sensors (nodes); while the social networks 
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can be considered as social graph and the characteristics of the users (nodes) in the 

social graph can be modelled as signals on these vertices.  

 

1.2 Graph Data 

Graphs has many different complex types according to their connections and 

information on nodes and edges, in this section, different categorizations will be 

illustrated in more details.  

1.2.1 Directed and Undirected Graph 

While the edges in between the nodes could be undirected or directed by associating 

directionality to additionally specialize graphs and the directionality is also an 

important information attached with the graph. In the case of undirected graphs, the 

adjacency matrix A is symmetric, but when it comes to directed graph, the adjacency 

matrix A is asymmetric as the matrix size is not square size of |v|*|v| anymore, instead 

the size might be |n|*|m| or |x|*|y|. More details will be illustrated in more details in the 

following sections.  

 

There have been many types of graphs in the real world such as citation networks, while 

some kinds of data that we might not think could be graph-structured data in the first 

place. For example, text can be regarded as graphs, we actually can digitize the texts 

via associating indices to each token or word and representing the sentence or text as a 

sequence of these indices. This could generate a quite simple directed graph, in which 

Figure 2 Directed and Undirected Graph 
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each index is a node and is connected by the edge to the following index, just like the 

Figure 3 shown below. And its adjacency matrix for such text is a diagonal line as each 

token could only connect to its prior token and the following one. 

 

1.2.2 Heterogenous and Homogeneous Graph 

There are mainly two types of graphs under the umbrella of graph data, heterogeneous 

graphs and homogeneous graphs. A graph with just one single type of node and a single 

kind of edge is called homogeneous (Hu et al. 2019). An example of such homogeneous 

graph would be the Facebook social network, in which the nodes representing the 

individuals and edges representing the friendship between two individuals connected 

with each other. On the other hand, a heterogeneous graph can have nodes and edges 

that are different types. For instance, in the recommendation system, nodes could be 

products and customers, while edges could represent somebody buying something or 

someone returning something. 

Meanwhile the nodes and edges in the graph also could incorporate properties which 

can be named as features or attributes. For example, in the case of Facebook social 

media, a person node could have many features and attributes such as this person’s age, 

Figure 3 A sentence (text) and its diagonal adjacency matrix 
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location, university or high school they attended and hobbies, while an edge between 

two person nodes could have an attribute of date establishing the date that they added 

each other as friends. 

1.2.3 Dynamic Graphs & Static Graphs 

A graph is a kind of structure of data that comprise two parts: nodes and edges. A graph 

could be expressed as 𝐺	 = 	 (𝑉, 𝐸), in which 𝑉 represents nodes while	𝐸 represents 

those links/edges in between nodes. Officially, a weighted and undirected graph G 

could be written as a triple 𝐺	 = 	 (𝑉, 𝐸, 𝐴), in which the extra A is the adjacency matrix 

recording relationships between nodes. While the matrix 𝐴 should be a square matrix 

size of |v|*|v|. Information could be stored in each node, or each edge or the entire graph, 

where the nodes symbolise entities in the data such as the members in the social 

network and the edges represent the relationships between these entities. But in static 

graph, time information is not considered carefully (Rossi et al. 2020).  

Thus, when input features of the graph data vary with time, the graph is regarded as 

dynamic graph. There are two kinds of dynamic graphs, Discrerte-Time Dynamic 

Graph (DTDG) and Continuous-Time Dynamic Graph (CTDG). They both are 

observed on a timely manner and an update will occur to the existing graph, the 

difference is that DTDG is observed at regular intervals and generates a sequence of 

snapshots of the graph and the changes or event happened during the intervals are not 

recorded (Rossi et al. 2020). On the contrary, CTDG observes and records each change 

in the graph individually with its timestamp. The types of events or changes could be 

deletion of node or edge, creation of node and edge as well we the feature change of 

nodes and edges (Rossi et al. 2020). Thus, this consecutively recording activity allows 

the CTDG to track down the complete evolution of the graph, and it leads to the 
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minimal information loss during the whole evolution process. However, it is obvious 

that it is generally more complicated and difficult to develop models for CTDG as these 

models need to incrementally and efficiently incorporate new events and changes at 

test time and handle all different kinds of events (Rossi et al. 2020).  

 

1.3 Types of Deep Learning Approaches 

As deep learning methods could be classified into many different types: supervised, 

semi-supervised, and unsupervised, Additionally, there is also another section of 

learning method which is called Deep Reinforcement Learning (DRL) and this 

structure will also be introduced briefly later and this approach is sometimes under the 

scope of unsupervised or semi-supervised learning approach (Alom et al. 2018). 

1.3.1 Supervised Learning 

Supervised learning is one type of learning methods and it utilizes labelled data. When 

it comes to the case of supervised deep learning methods, the environment contains a 

group of inputs and corresponding outputs (𝑥t, 𝑦t)	~	𝜌. In particular, after processing 

the inputs xt, the intelligent agent will get a prediction result	𝑦!. = 𝑓(𝑥!), then the agent 

will receive a loss value of 𝑙(𝑦! , 𝑦!. ) between the ground truth label and predicted label. 

Afterwards, the agent will train the model and iteratively modify the parameters of the 

network to get better approximation for the desired outputs (Alom et al. 2018). After 

appropriate modification of the parameters, then the agent will get the best answers 

which is the closest one to the true answer to the problem. There are many kinds of 

supervised learning methods under Deep Learning structures, including Deep Neural 

Networks (DNN), Recurrent Neural Networks (RNN) such as Long Short-Term 

Memory (LSTM), Convolutional Neural Networks (CNN) (Alom et al. 2018). While 
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LSTM will be further explained in Section 1.6.2.3 and CNN will be described with 

more detail in Section 1.6.2.1. 

1.3.2 Semi-supervised Learning 

Semi-supervised learning is a learning process that is based on the partially labelled 

datasets, and it is often called as reinforcement learning. In some cases, reinforcement 

learning (Deep Reinforcement Learning) and Generative Adversarial Networks (GAN) 

are applied as semi-supervised learning methods. While RNN structures such as LSTM 

and GRU could also be utilized for semi-supervised learning (Alom et al. 2018). 

Generative Adversarial Networks (GAN) will be further described in Section 1.6.2.2. 

1.3.3 Unsupervised Learning 

Unsupervised learning is a learning type that can do the learning without the true labels 

of data. Thus, the agent will need to learn the important features or internal 

representation to find out the hidden relationships or latent structures among the input 

data. In the normal cases, either clustering, dimensionality reduction or generative 

techniques could be applied as a unsupervised learning method (Alom et al. 2018). 

Under the scope of deep learning structures, there are many networks which have 

advantages in non-linear dimensionality reduction and clustering, for example, Auto 

Encoders (AE) and Generative Adversarial Networks (GAN).  

1.3.4 Deep Reinforcement Learning (DRL) 

Deep Reinforcement Learning is a relatively recently proposed but outstanding 

learning technique to be utilized in the unknown environments. Deep Reinforcement 

Learning began in 2013 and several advanced structures have been introduced and 

proposed based on the technique of Reinforcement Learning (RL) since then (Alom et 

al. 2018).  
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In Reinforcement Learning, there is no straight forward loss function which makes the 

learning process even more complicated compared to the common supervised methods. 

The basic differences between reinforcement learning and supervised learning are: first 

of all, there is no full access to the functions that need to be optimized during the 

training process, and these functions need to be queried via interaction; secondly, the 

environment is state-based, which means that input 𝑥! depends on the previous actions 

and it updates its action as this process goes on (Alom et al. 2018). 

 

1.4 Learning Tasks for Graph Data 

This section will provide a brief information about three most common and major 

representation learning tasks for the graph data. 

1.4.1 Node Classification  

This is a node-level learning task, inferring some nodes’ incomplete attributes while 

given other neighbourhood nodes’ features values and structures in that network. The 

main purpose here is to find out the best representation for each graph node so that they 

could be further processed for the labelling phase, then put into the neural network 

models for further learning and classification (Asif et al., 2021). And this is a graph 

based supervised or semi-supervised learning problem, as the model is trained on a 

Figure 4 Category of Deep Learning Methods (Alom et al. 2018) 
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subset of nodes with true labels and then make prediction of those target nodes (Asif et 

al., 2021). 

1.4.2 Link Prediction  

This is an edge-level learning task, inferring missing relationship or finding out the 

hidden relationships in between the nodes in the network. Similar with the node 

classification problems, but the difference is that the subject is to assign labels to edges 

instead of nodes. The model will utilize the hidden representation of node pairs and 

then get the corresponding likelihood result of the link existence according to the nodes’ 

similarity scores (Asif et al., 2021). While deep neural networks models usually 

integrate the representations of node pairs which are learned from the input data 

altogether and then regard the link prediction problem as a binary classification 

problem (Asif et al., 2021). Similar with the node classification, link prediction is also 

a semi-supervised learning. 

1.4.3 Graph Classification  

This is a graph-level learning task, discriminating problem between graphs of different 

classes. As a dataset could have multiple or hundreds of graphs, and each of these 

graphs could be considered as instances to be assigned labels, and main task here is to 

find out a low-dimensional representation of each graph from the graph data and the 

output embedding of the graph will be passed to the readout layers such as fully 

connected network after the graph pooling phase (Asif et al., 2021). 

The node classification and link prediction learning tasks will be covered in more 

details with empirical studies in the later chapters.  
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1.5 Feature Learning  

The main difference between traditional machine learning methods and deep learning 

methods is the techniques they apply to extract features from the input data. The 

traditional machine learning methods utilize manually made features through applying 

feature extraction algorithms such as Local Binary Pattern (LBP). Then the machine 

learning algorithms including Random Forest (RF), Principal Component Analysis 

(PCA), Support Vector Machine (SVM) and many other structures are considered to 

be utilized for the classification task using those extracted features (Alom et al. 2018). 

In addition, boosting techniques such as AdaBoost and XGBoost are frequently 

implemented where several machine learning algorithms are applied on the features of 

the input data and the final output and decision is computed based on several outcomes 

from all the algorithms (Alom et al. 2018). 

While among the Deep Learning methods, features are usually learned automatically 

at the same time features’ representations are hierarchical in multiple levels, which is 

a main advantage of the deep learning techniques compared to the traditional machine 

learning methods (Alom et al. 2018).  

 

1.6 Deep Learning Structures 

In this section, a brief introduction of the history of graph neural network will be 

illustrated. Since 2006 when graph theory has gradually come in close contact with the 

machine learning techniques and then a new concept of Graph Neural Network 

architecture emerged (Li et al., 2021). The very first proposal regarding GNN appeared 

in 2006 by Scarselli and Gori, and then in 2008 the paper called “The Graph Neural 

Network Model” was subsequently published, whose authors laid the basic 
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mathematical foundations for the modern graph neural network afterwards (Li et al., 

2021). 

The proposed graph neural network consists of recursive neural networks and Markov 

chains, which both are commonly applied to graph problems as the recursive neural 

networks are neural network architectures whose input domain are usually directed 

acyclic graphs and they map a graph to a vector of reals but the graph needs to go 

through a pre-processing phase to make sure the model could handle different types of 

cyclic graphs (Li et al., 2021). While recursive neural networks are also similar to 

support vector machines (SVM) as they both utilize special kernels to process graph 

structured data and encode the input graph as a representation. 

Meanwhile, Markov chain model could imitate the processes in which the causal 

relationships among events are represented by the graphs, and the random walk theory 

also helps Markov chain models to be applied successfully to the web page ranking 

algorithm (Li et al., 2021). And this algorithm was exploited by internet search engines 

such as Google, to measure the relativity of the web pages. The paper “The Graph 

Neural Network Model” also extends these two techniques to make the model be able 

to directly deal with graph structured information and unifies them into a common 

framework (Li et al., 2021). And this proposed architecture could process a more 

general class of graph data such as undirected and cyclic graphs and can deal with node-

focused applications without any pre-processing phase (Li et al., 2021). Since advent 

of this milestone paper, there has been many amazing spikes in the graph deep learning 

world. 
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1.6.1 Convolutional Neural Network in Euclidean Domain 

In LeCun et al. (1989) paper, researchers developed a convolutional neural network 

which is designed for the handwritten zip code recognition and they utilize word 

“convolution” for the very first time. Convolutional neural network is a type of feed 

forward neural network which could extract multi-scale localized spatial features from 

the dataset with a convolutional structure (Zhou et al., 2020). The main advantages that 

CNN possesses are as follows,  

1) Shared weights. A same group of connected nodes could share the same 

weights, which could reduce the number of parameters. 

2) Local connections. Every neuron is not linked to all the neurons from its 

previous layers anymore, while this could help reduce the parameters as well 

and also speed up the convergence. 

3) Down-sampling dimensionality reduction (Zhou et al., 2020). This is a pooling 

layer that utilize the principle of an image’s local correlation to down-sample 

this image, and this process could also reduce the data amount at the same time 

keeping the useful information and reduce the parameters via removing those 

very trivial features. 

The three characteristics listed above make convolutional neural network (CNN) turn 

into one of the most influential and typical algorithms in the deep learning field for 

Euclidean data (Zhou et al., 2020). 

However, CNNs is only able to operate on regular Euclidean data like texts and images 

while these data could also be considered as graphs. When the graph is in non-

Euclidean space (Figure 5), it is quite difficult for CNN to define localized 

convolutional filters and the pooling operators, and this poses an obstacle in the 
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transformation of convolutional neural network from the Euclidean domain to non-

Euclidean domain (Zhou et al., 2020).  

Figure 5 Left: Image in Euclidean Space; Right: Graph in Non-Euclidean Space (Zhou et al., 2020) 

 

 

1.6.2 Neural Network on Non-Euclidean Space 

This section will present and explain several commonly studied neural networks 

utilized for graph exploitation. Generative models and discriminative models and the 

sequential model will all be discussed for better understanding of these common graph-

based neural architectures. 

Graph data is known to be relatively complicated compared to other data structures 

such as time series, that is because graph data can be irregular and have a different size 

of nodes in varying orders, thus, it hinders the application of machine learning 

architectures to the graph domain such as the operation of convolutions (Wu et al., 

2020). Moreover, there is a significant assumption when applying many existing 

machine learning models and that is all the nodes are independent from each other; 

however, when it comes to graph data, this assumption cannot hold any more because 

the nodes are related to each other via the edges (Wu et al., 2020).  



26 
 

Therefore, to better address the complexity issue of graph data and catch the hidden 

information from the graph data, graph neural network (GNN) has gradually become 

an effective method for graph learning tasks as the underlying principles of GNN is to 

transform the complex graph-structured data into another space which is low 

dimensional, and at the same time retain the structural information (Wu et al., 2020). 

1.6.2.1 Convolutional Neural Network  

The convolutional operation is also utilized in the graph neural network and nowadays 

modern computer vision architectures use convolutional neural network or convolution 

operation to learn image patches’ complicated features (Asif et al., 2021). Standard 

CNN uses fully connected layers via transforming the output into a simple single 

dimension. As for convolutional neural network, every pixel in the image is considered 

as the input unit in the input layer whose size is n1*1 where n1 represents the amount 

of input channels, and then trough the t kernels, the input vector with the size of k1*1 

is filtered via convolutional layer in the hidden layer (Asif et al., 2021). And the 

convolutional layer activation layer could be represented as follows: 

𝑦"(𝑝) = max	(0, 𝑏#(%) +8𝑘"#(%) ∗ 𝑥"(%)

#

) 

In which 𝑥"(%) is defined as the ith input and 𝑦#(%) is defined as the jth output activation, 

while 𝑏#(%) represents the the jth output’s bias and the * denotes the convolution, at the 

same time 𝑘"#(%) represents the convolution kernel between the input and output layer 

(Asif et al., 2021). 

1.6.2.2 Generative Models 

In the machine learning domain, there are two highly appreciated approaches – 

generative learning and discriminating learning. There are many structures have been 
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proposed so far such as generative adversarial network, auto-regressive networks, 

variational autoencoder and Markov models (Asif et al., 2021). While these 

architectures are also very applied in many real-life situations. Generative architectures 

are utilized to better process graph structure and among the existing generative models, 

Generative Adversarial Networks (GAN) has become very popular because of its 

adversarial training process, and the Figure 6 below illustrates the vanilla adversarial 

network process (Asif et al., 2021).  

At the beginning, Goodfellow et al. (2020) designed and proposed Fc layers for 

discriminator PD as well as Generator G. While the generator G is designed to fool the 

discriminator via developing the fake input samples and generates a distribution	𝑃' 	on 

the true data which is denoted as X, which mean that G will generate the synthetic data 

through an adversarial training process and make the fake samples as real as the 

distribution of the original real data (Asif et al., 2021). The objective function of G is 

expressed as follows: 𝐸(~*![log @1 − 𝑃'C𝐺(𝑧)EF]+
,"- , in which 𝑃'(𝑥) represents the 

probability which the data’s possible distribution is from the true data instead of the 

generated fake sample data. The equation is maximized when 𝑃' is correct and it is 

minimized when 𝑃' is wrong (Asif et al., 2021). The purpose of 𝑃' is to enhance the 

accuracy rate of the classification to better distinguish the fake synthetic data from the 

real data (Asif et al., 2021). The objective function for 𝑃' is as follows (Asif et al., 

2021): 

𝐸.~*"#$#[log	𝑃'(x)]	/
,01 	+ 𝐸(~*![log @1 − 𝑃'C𝐺(𝑧)EF], 

Therefore, the combined function for the whole generative architecture follows that 

min-max theory which could be defined as follow (Asif et al., 2021): 
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	𝐸.~*"#$#[log	𝑃'(x)]	/
,01 	+ 𝐸(~*![log @1 − 𝑃'C𝐺(𝑧)EF] 

 

 

1.6.2.3 Long Short-Term Memory Architecture 

The paper Hochreiter & Schmidhuberet (2017) first proposed the Long Short-Term 

Memory (LSTM) architecture which could reduce gradient vanishing issue from the 

normal Recurrent Neural Network (RNN). The Long Short-Term Memory (LSTM) 

model is comprised of recurrent networks in which each neuron/node of the hidden 

layers will be interchanged through those memory cells (Asif et al., 2021). While 

LSTM’s each memory cell architecture consists of self-connected recurrent edge which 

normally has a fixed weight. And the property mentioned above helps gradients flow 

through the networks successfully instead of vanishing during the process because of 

the little weights they have (Asif et al., 2021). Long Short-Term Memory (LSTM) 

model leverages long-term memory storage for a certain period in terms of short-term 

activations (Asif et al., 2021).  

The input sequence x(t) sends the input activation into input node when it is at present 

time step, then present time step will be further prepared according to its previous time 

hidden state which is denoted as h(t-1). Usually, the weighted sum is determined utilizing 

that tanh activation function in hidden layer, while the paper Hochreiter & 

Figure 6 Demonstration of GAN structure. G represents generator which helps sample 
fake data to D, where D defines the discriminator which calculates the probability 
regarding if this sample data is fake or real. 
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Schmidhuber (1997) uses the sigmoid activation function. Every memory cell is lined 

by the linear activation function which could represented by s(t) (Asif et al., 2021). 

While there are self-connected recurrent cells which are mentioned above, and they 

hold the internal state, whose edge circulates based on the time steps with the fixed 

value which is also weighted, and it could help avoid the explosion of gradient (Asif et 

al., 2021). While in Gers & Schmidhuber (2000) paper, the forget gate is introduced to 

help illustrate the method to remove the unimportant internal state part, which could 

allow the gradient to pass through the network more smoothly. 

During the phase of forward gradient propagation, the internal state is in control of the 

gradient via the activation function. If both output cell and internal cell are lcoked and 

closed, the activation will be detained completely in the memory cell and there will be 

no changes towards the intermediate time steps (Asif et al., 2021). While in the 

backward gradient propagation phase, the frequent error issue leads the structure to 

backpropagate based on time steps. Multiple memory cells could help enhance the 

Long Short-Term Memory (LSTM) model’s ability to learn more dependency 

information from the input sequence (Asif et al., 2021).  

It is obvious that LSTM network solves the problem of vanishing gradients in the 

existing recurrent neural networks, and it is also proved to be a robust sequential 

architecture. LSTM has been utilized and applied in many different industrial domains 

such as speech recognition, natural language processing and medical imaging (Asif et 

al., 2021). Among the modern deep learning techniques, LSTM is utilized to capture 

the long-term dependency information or the spatio-temporal information (Asif et al., 

2021). Therefore, LSTM model could better leverage the long-term information for the 

following learning processes which could eventually increase the accuracy of the 

learning tasks. However, it required much more computational capacity and higher 
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memory capability to do the task comparing to a normal recurrent neural network (Asif 

et al., 2021). 

1.7 Thesis Outline and Contribution  

There have been large number of literatures in graph-based deep learning methods, 

most of them only can perform on homogeneous graphs with only one type of entity or 

one kind of relationship, and there are some pioneer research works on dealing with 

directed graph data and architectures proposed in those works have become 

benchmarks.  

At the beginning, inspired by the paper (Song et al., 2019), in which researchers proved 

that the proposed tensor singular value decomposition (SVD) is very effective to help 

achieve better performances of recovery regarding robust tensor completion issue, we 

think that it could be worth to try to apply SVD into graph convolutional network and 

see whether the new model could increase the accuracy rate when dealing with directed 

graph’s learning tasks, though there have been some outstanding benchmark 

architectures which already achieved relatively high accuracy rate in both node 

classification and link prediction tasks.  

After trying to conduct convolutions on the spectral domain which was generated by 

the singular value decomposition (SVD) of the directed adjacency matrix, we 

implemented it in coding and propose and denote this model as SVD-GCN, and the 

preliminary results from the experiments showed that SVD-GCN performs better on 

directed graph on both node classification task and link prediction task compared to 

most of the state-of-the-art models’ results. We also leverage the graph framelets 

(Zheng et al., 2021) and quasi-framelets (Yang et al., 2022) for the multi-resolution 

analysis on the directed graph data because they could generate better model for high-
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pass as well as low-pass information. Thus, this proposed SVD-GCN architecture is 

the main contribution of this thesis, its application on link prediction task will also be 

presented and explain in the Chapter 3.  

To help better understand the contents, Chapter 2 will provide a more comprehensive 

background introduction for the research topic and will help readers have a better 

overview in this domain. Then Chapter 3 will present and explain in detail about the 

proposed SVD-GCN architecture and its performance in node classification and link 

prediction with all the experiments’ results and theorems. To close the thesis, Chapter 

4 will also summarize the contributions and discuss some potential follow-up works 

and potential directions for future research.  
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Chapter 2 

Literature Review 

This section will present a more comprehensive background in graph-cased deep 

learning on graph-structured data with more literatures. 

 

2.1 Graph Neural Network on Directed Graph Data 

Neural Network was first time applied on direction graph data in the paper Sperduti & 

Starita (1997), while this work handles the structured patterns that are represented as 

directed labelled graphs and proposed a generalization of recurrent neurons which 

could better represent the structured patterns than other statistical architectures. This 

research work constructed the foundation for graph neural network (GNN) structures 

application on the digraph data, and it motivated some early studies in this direction 

(Wu et al., 2020).  

The early research works focused a lot on the application of Recurrent Graph Neural 

Network (RecGNN) on digraph data, addressing issues such as the correlated 

maximum outdegree limit and the positional constraint in an image classification task 

(Sperduti & Starita, 1997). The experimental results also prove that the new RNN 

architecture could better handle directed acyclic graphs (DAGs). Recently, motivated 

by the successful application of convolutional neural networks (CNNs) in computer 
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vision, researchers developed new generalizations of operations and re-formulate the 

concepts of graph convolutions to better handle the complex graph data, and these new 

methods are generally called Convolutional Graph Neural Network (ConvGNN) (Wu 

et al., 2020). Quite different from the RecGNNs’ iterating node states with contractive 

constraints, ConvGNNs mainly stacks multiple graph convolutional layers with 

variable weights of each layer and develop the corresponding node representations or 

edge representation based on the different learning tasks (Wu et al., 2020). 

There are two major classes of convolutional graph neural networks (ConvGNN), 

spectral-based and spatial-based approaches. For spatial-based approaches, they define 

the graph convolutions by message passing or feature aggregation from each node’s 

neighbourhood nodes; while for spectral-based approaches, they apply convolution in 

the graph Fourier domain by eigen-decomposition (EVD) from the graph Laplacian 

(Zou et al., 2022), which are motivated by the concept of “filter” from the graph signal 

processing perspective. Both approaches could be applied to the directed graph data 

(Digraph), but compared to the spectral-based approaches, spatial-based methods are 

less favoured since they are not able to extract information at different frequencies. As 

explained in (Balcilar et al., 2021; Nt & Maehara, 2019), many spatial-based models 

have low-pass filters, which will fail to capture the high-frequency information while 

the information could be very useful in the learning tasks. 

Furthermore, it is not easy to generalize the spectral methods to digraph data because 

the asymmetric adjacency and Laplacian matrices cannot generate the orthonormal 

systems for the signal decomposition (Tong et al. 2020). If we ignore the direction 

information in the directed graph data and by only performing convolutions on the 

symmetric Laplacian or the Adjacency matrix, it will cause a very severe loss of 

information and the models’ performance in the learning tasks will be even worse. In 
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Ma et al. (2019) work, the convolution on the directed graph is generated on a 

symmetric Laplacian that is developed through the transition probability matrix. Tong 

et al. (2020) research work extends this idea in Ma et al. (2019) that only works for 

graphs which are strongly connected to the general graphs by adding a small teleport 

probability in the transition matrix. Meanwhile, this work also improved the network’s 

overall performance via generating the scalable receptive fields based on the idea of 

inception module in (Szegedy et al., 2016). And the corresponding experimental results 

also proves that this specialized model’s efficacy is better many other spatial-based 

approaches. In recent year, spatial-based ConvGNNs have developed very fast because 

of their high efficiency and flexibility and most of the existing ConvGNNs 

architectures are spatial-based. 

 

2.2 Spectral-based ConvGNNs 

Spectral-based methods depend on the spectral graph theory. In this network, the graph 

signals are filtered via eigen-decomposition of graph Laplacian (Balcilar et al., 2020), 

which is determined by 𝐿 = 𝐷 − 𝐴  while the normalized graph Laplacian is 

determined by 𝐿 = 	𝐼 − 𝐷2
%
&𝐴	𝐷2

%
& , in which 𝐴 is adjacency matrix,	𝐼  is the identity 

matrix, 𝐷 ∈ ℝ-'×-' represents the diagonal degree matrix with 𝐷",# =	∑ 𝐴#,"# . It could 

be decomposed into 𝐿 = 𝑈𝛬𝑈5  where 𝑈 is the eigenvectors matrix in the order based 

on the eigenvalues as this Laplacian is positive semidefinite, while 𝛬 denotes diagonal 

matrix of eigenvalues, while 𝛬""	 =	𝜆"   where  𝜆  denotes positive eigenvalues’ vectors. 

The eigenvectors from the normalized Laplacian matrix construct an orthonormal space 

and it can be denoted mathematically as 𝑈5𝑈 = 𝐼. While the graph Fourier convert to 

a signal 𝑥 from graph data can be denoted as 𝐹(𝑥) = 𝑈5 while the inverse version of 
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this graph Fourier transform could be written as 𝐹27(𝑥R) = 𝑈5𝑥R, in which 𝑥R represents 

the final result from the signal through the transform of the graph Fourier. The overall 

procedure is that the graph Fourier transform first coverts the input signal from the 

graph into the orthonormal space in which foundation is built utilizing the normalized 

graph Laplacian’s eigenvectors. Meanwhile the instances in this transformed signal 𝑥R 

represents the graph signal’s new coordinates in a new space, while the input signal is 

denoted as shown here: 𝑥 = ∑ 𝑥R"𝑢"" , that is also representation of the inverse version 

of graph Fourier transform. Then input signal 𝑥 graph convolution can be written and 

expressed as follow, 

𝑥 ∗ 𝑔	 = 𝐹27(𝐹(𝑥)	⨀	𝐹(𝑔)) = 𝑈(𝑈5𝑥	⨀	𝑈5𝑔) 

in which ⨀ represents the element-wise product, and filter could be denoted as 𝑔8 =

diag(U5𝑔), so the spectral graph convolution could be written as follows, 

𝑥 ∗ 𝑔8 	= 𝑈𝑔8 	𝑈5𝑥 

The equation above is the main principle of all the spectral-based ConvGNNs. While 

the difference among all different spectral ConvGNNs architectures is the different 

choice of the filter 𝑔8.  

Spectral Convolutional Neural Network holds the assumption that the filter 𝑔8 = Θ".#
(:) 

is a large group of learnable parameters and the filters are able to recognize the graph 

signals via the multiple channels (Wu et al., 2019). Meanwhile in the Spectral 

ConvGNN, a graph convolution layer could be a concatenation of all filtered signals 

with the activation function 𝜎 , for example, ReLU (Rectified Linear Unit), 

𝐻"
(:;7) = 𝜎\8𝑈	Θ".#

(:)	𝑈5𝐻"
(:)

<(

"=7

] 
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where for all  𝑙  is the layer index, 𝑓:  denote input channels’ number while 𝑓:;7 

represents output channels’ number, and 𝑗 ∈ {1, … , 𝑓:;7}, 𝐻(:) ∈ 	ℝ-×<( represents the 

input graph signal, while  Θ".#
(>)  represents a diagonal matrix containing learnable 

parameters. However, since spectral ConvGNNs utilizes eigen-decomposition of 

Laplacian matrix, spectral ConvGNNs have three main disadvantages. Firstly, any 

perturbation on a graph will lead to a change in the eigen-basis. Second of all, the 

learned filters are mainly based on the domain, and this means that these learned filters 

are specifically unique to each graph and cannot be generalized and implemented to a 

different-structured graph. Thirdly, eigen-decomposition needs computational 

complexity of 𝑂(𝑛?) and this workload is very heavy (Wu et al., 2019). There are other 

research works that have proposed new structures such as GCN and ChebNet (Kipf & 

Welling, 2016) which decrease the computational complexity to 𝑂(𝑚) via applying 

some approximations and simplification techniques. 

Chebyshev spectral ConvGNN (ChebNet) approximate graph filter 𝑔8  via the 

Chebyshev polynomials of the eigenvalues’ diagonal matrix. The ChebNet filters are 

localized in the local space and this is quite different from the normal spectral 

ConvGNNs because it proves that filters in this work could extract important local 

features in the graph size independently (Wu et al., 2019). 

Graph Convolutional Network (GCN) proposes the first-order approximation of 

ChebNet while GCN as a kind of spectral-based method, can be regarded as a spatial-

based approach as well. Because from the perspective of a spatial-based approach, 

GCN could also be regarded as putting all the feature information all together according 

to the target node’s neighbourhood nodes. While several papers have explored the 

alternative symmetric matrices to further improve this deep learning architecture. 
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Adaptive Graph Convolutional Network (AGCN) (Li et al., 2018) learns the hidden 

structural relations in the graph data via the graph adjacency matrix while it also 

generates an adjacency matrix for the graph residual utilizing a learnable distance 

function, that is able to regard two target nodes’ features as the inputs. 

Dual Graph Convolutional Network (DGCN) (Zhuang & Ma, 2018) introduces and 

proposes a dual graph convolutional structure, containing two layers of graph 

convolution in parallel, at the same time these two layers share the same parameters. 

While the two graph convolutional layers utilize the normalized adjacency matrix as 

well as the positive pointwise mutual information (PPMI) matrix, that can help capture 

the latent information about nodes’ co-occurrence via the random walks sampled from 

the original graph data. By ensemble outputs from the dual graph convolutional layers, 

Dual Graph Convolutional Network could encode both local and global structural 

information instead of stacking multiple graph convolutional layers (Wu et al., 2019). 

 

2.3 Spatial-based ConvGNNs 

Spatial-based ConvGNNs develop graph convolutions according to the target node’s 

spatial relations, and this is very similar with the convolutional operation from the 

normal CNN structure on the classification task for image analysis. Because images 

could be regarded as graph data as well where each pixel could be represented as a 

node and each pixel is linked to its neighbourhood nodes. A filter could be applied (add 

picture) to a 3*3 patch via taking the pixel value’s weighted average of the target node 

and its neighbours over all other channels (Wu et al., 2019). Likewise, the spatial-based 

graph convolutions exploit that target nodes’ representation and its neighbour nodes’ 

representations to generate target node’s new representation. The spatial graph 
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convolutional operation passes the nodes’ message via the links between the nodes (Wu 

et al., 2019) and spatial ConvGNNs share the similar information propagation concept 

in Recurrent GNNs.  

Diffusion Convolutional Neural Network (DCNN) (Atwood & Towsley, 2016) 

considers convolution operation on the graph as a process of diffusion, in which it 

assumes that information is propagated from one node to one of its neighbour nodes 

with a transition probability and then the information distribution will be able to reach 

equilibrium after several rounds of information propagation. DCNN’s diffusion graph 

convolution is defined as follows, 

𝐻(>) = 𝑓C𝑊(>)⨀𝑃>𝑋E, 

In which 𝑓(∙) denotes an activation function while 𝑃 ∈ ℝ-×- is probability transition 

matrix and it is calculated via the formula 𝑃 = 𝐷27𝐴.  In Diffusion Convolutional 

Neural Network model, the hidden representation matrix 𝐻(>) has the same dimension 

as the input feature matrix 𝑋. Then DCNN concatenates all the 𝐻(7), 𝐻(@), 𝐻(?), … , 𝐻(>) 

as the final output. Because a diffusion process’s stationary distribution is adding all 

the probability transition matrices’ power series, Diffusion Graph Convolution (DGC) 

(Li et al., 2017) gathers all the output results during every round of diffusion process 

to replace the concatenation operation. The diffusion graph convolution is written as 

follow,  

𝐻 =8𝑓C𝑊(>)𝑃>𝑋E
>

>=A

 

in which 𝑊(>) ∈ ℝ/×B  and 𝑓(∙) represents the activation function. While the power of 

a transition probability matrix could help the very distant neighbour node still pass 

information onto the central node. PGC-DGCNN (Tran et al., 2018) improve the 
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contributions of distant neighbour nodes according to the shortest path which is defined 

by the shortest path adjacency matrix 𝑆(#). Consider that the shortest path from a node 

𝑣  to another node 𝑢  is of length 𝑗 , then 𝑆C,D
(#) = 1  or it will be 0. There is a 

hyperparameter denoted as 𝑟 to help regulate size of that receptive field. While PGC-

DGCNN defines the corresponding convolutional operation as follow, 

𝐻(>) =∥#=AE 𝑓C(𝐷m(#))27𝑆(#)𝐻(>27)𝑊(#,>)E, 

in which ∥ represents the concatenation of the vectors, and 𝐷m""
(#) =	∑ 𝑆",:

(#)
: ,  𝐻(A) = 𝑋. 

However, the computation process of this shortest path adjacency matrix is very 

expensive and the computational complexity of 𝑂(𝑛?) at maximum. While Partition 

Graph Convolution (PGC) (Yan et al., 2018) partition all the neighbourhood nodes of 

the target node into 𝑃  groups. Then PGC generates 𝑃  adjacency matrices on the 

defined neighbourhood group. While PGC utilizes GCN (Kipf & Welling, 2016) and 

applies a different matrix on each neighbourhood group and gather all the results, 

𝐻(>) =8�̅�(#)𝐻(>27)𝑊(#,>)
*

#=7

 

where �̅�(#) = (𝐷m(#))2
%
&𝐴o(#)(𝐷m(#))2

%
&, 𝐴o(#) = 𝐴(#) + 𝐼, 𝐻(A) = 𝑋. 

Message Passing Neural Network (MPNN) (Gilmer et al., 2017) proposed a spatial-

based ConvGNN framework, which considers the graph convolution as a message 

passing step where all the information could be propagated from one node to another 

through that edge between them directly. While MPNN runs the k-step iterations of 

information propagation and this message passing function (spatial graph convolution) 

could be written as follows,  
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ℎC
(>) = 𝑈>(ℎC

(>27), 8 𝑀>(ℎC
(>27), ℎD

(>27), 	𝑥CDF
D∈H(C)

)) 

In which 𝑈>(∙)  and 𝑀>(∙)  represents the functions with learnable parameters and 

ℎC
(A) = 𝑥C . After generating the hidden representation for each node, ℎC

(>) could be 

passed to the output layer and perform a readout function to do a node-level or graph-

level learning task. While the readout function could construct a representation of the 

entire graph data according to the nodes’ hidden representations and this could be 

written and expressed as: ℎ+ = 𝑅(ℎC
(I)|𝑣 ∈ 𝐺 , in which 𝑅(∙)  denotes the readout 

function with parameters. And MPNN actually covers many existing GNNs, but the 

difference is that its forms of 𝑈>(∙),𝑀>(∙) and 𝑅(∙) is different. 

However, Graph Isomorphism Network (GIN) (Xu et al., 2018) realized that the 

MPNN-based architectures are not able to distinguish different graph structures based 

on the graph embeddings previously generated. To solve the problem, GIN could 

adjust the weight of the target node (central node) via a learnable parameter 𝜖(>). The 

graph convolution is GIN could be written as follow, 

ℎC
(>) = 𝑀𝐿𝑃(C1 + 𝜖(>)E	ℎC

(>27) + 8 ℎD
(>27)

D∈H(C)

)	 

Where 𝑀𝐿𝑃(∙)  denotes the multi-layer perceptron. In the real-world cases, the 

number of a node’s neighbours are usually different which could be a hundred or a 

million (Xu et al., 2018). So it might not be efficient to take the full size of the 

neighbourhood node when calculating and constructing the graph convolution. 

GraphSage utilizes random sampling to retain a fixed number of neighbour nodes for 

each target node and the graph convolution could be written as follow, 

ℎC
(>) = 𝜎(𝑊(>) ∙ 𝑓>(ℎC

(>27), uℎD
(>27), ∀𝑢 ∈ 𝑆H(C)w)) 
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Where ℎC
(A) = 𝑥C , 𝑆H(C)	 represents the random sample from the target node 𝑣 ’s 

neighbours, 𝑓>(∙)  is the aggregation function which is usually invariant to the 

permutations from the node orderings, such as a mean function (Xu et al., 2018). 

Graph Attention Network (GAT) (Velickovic et al., 2017) is also a very popular graph-

based deep learning structure recently. It holds the assumption that the contributions 

from the neighbour nodes to the target node are neither pre-determined like GCN (Kipf 

& Welling, 2016), nor identical like in GraphSage (Hamilton et al., 2017). GAT applied 

the attention mechanism to learn the relative weights between two connected nodes in 

the graph. The graph convolution layer in GAT is denoted as follows,  

ℎC
(>) = 	𝜎( 8 	𝛼CD

(>)

D∈H(C)∪C

𝑊(>)	ℎD
(>27)) 

Where ℎC
(A) = 𝑥C , and the attention weight 	𝛼CD

(>)  calculate the strength of the 

connectivity between the node 𝑣 and its neighbour 𝑢 and the corresponding formula is 

shown below, 

	𝛼CD
(>) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑔 @𝕒5~𝑊(>)	ℎC

(>27) ∥ 𝑊(>)	ℎD
(>27)�F) 

 Where 𝑔(∙) represents an activation function which might be ReLU function and 𝕒5 

is the vector of a learnable parameter and the softmax function is applied to make sure 

that the attention weights over the neighbour nodes of that central node could be 

summed up to 1 at the end. GAT then applies multi-head attention mechanism to 

improve the expressive ability of this architecture. The experimental results prove that 

GAT does achieves remarkable improvement over GraphSage (Hamilton et al., 2017) 

on the node classification task.   

Mixture Model Network (MoNet) (Monti et al., 2017) generates a different method to 

calculate the different weights on a central node’s neighbouring nodes. It proposed the 
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pseudo-coordinates of the target node to further calculate the relative position 

information in between this node and its neighbouring nodes. After all, a weight 

function will be applied to map out their relative position according to the calculated 

relative weights on each node. In this way, the parameters of a graph filter can be shared 

over different locations in the same graph data. 

Because many ConvGNNs requires considerable but unnecessary computational 

complexity when running, this research work (Wu et al., 2019) simplifies the complex 

and tedious structures of digraphs and reduces the complexity via repeatedly removing 

the nonlinearities between consecutive GCN layers and integrating the result function 

into a single linear transformation step. The researchers call this simplified architecture 

- Simple Graph Convolution (SGC) (Wu et al., 2019). They also find out that the 

resulting linear architecture could correspond to a fixed low-pass filter and a linear 

classifier, which then be added into the SGC model. Thus, SGC could smooth the 

features locally in the graph data at the same time maintain even improve the accuracy 

on the learning task such as node classification task. 

In graph neural network, the high computational complexity is always an issue and it 

usually could be alleviated through utilizing a sampling strategy, which retains a subset 

of nodes or graphs at training time step. In the Rossi et al. (2020) research work, 

researchers proposed a scalable and efficient graph deep learning structures, that can 

perform group sampling by utilizing different sizes graph convolutional filters which 

could allow fast inference and training. This novel model is called Simple Scalable 

Graph Neural Network (SIGN), motivated by the inception module (Szegedy et al., 

2016). And this architecture is suitable to do learning tasks on the large-scale graph. 

From the experimental result, SIGN with only one graph convolutional layer could still 
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obtain outstanding performances as the state-of-the-art architectures on several large-

scale graph datasets. 

 

2.4 Directed Graph 

Nowadays, the graph data extracted from the real world could contain more information 

in the graph such as direction, thus this direction information is also very important to 

be taken into consideration when it comes to learning tasks. Thus, it is a significant 

field to have more research so that people could better and more deeply understand and 

interpret directed graph information.  

Recently, more attention has been drawn to the learning from directed graph (digraph) 

data. Directed Graph Convolutional Network (DGCN) (Tong et al., 2020) was 

proposed to adapt to the digraph data. The main concept is that they re-define a 

symmetric normalized Laplacian Matrix for the digraph data by normalizing and 

symmetrizing the transition probability matrix. Compared to those state-of-the-art 

ConvGNNs, DGCN performs better on the digraph datasets in the node classification 

task. However, DGCN also has some disadvantages and limitations: 1). It requires large 

memory space and high-level computational capacity; 2). It holds the assumption that 

the digraph data should be strongly connected (Tong et al., 2020).  

In Monti et al. (2017), researchers introduced and proposed an architecture called 

MotifNet, which could handle the digraph data by applying the local graph motifs. The 

main idea is that the model utilizes the motif-induced adjacencies and at the same time 

generates graph filters just like convolution. Through the results using the real digraph 

datasets, it is proved that MotifNet has remarkable performance in directed graph data 

processing task without requiring higher computational cost.  
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While in Tong et al. (2020), researcher was inspired by the Inception Network module 

(Szegedy et al., 2016) and presented the Digraph Inception Convolutional Networks 

(DiGCN).  The researchers construct several scalable receptive fields and at the same 

time reduce those receptive fields that are unbalanced and generated by the non-

symmetric digraph data. The experimental results on various benchmarks demonstrate 

that DiGCN could learn digraph representation very effectively at the same time it 

outperforms many state-of-the-art methods. 

One of the common research ideas utilized in many architectures is to apply heuristics 

to generate and adjust the Laplacian matrix to further improve the model’s performance 

in learning tasks. In the very recent work, Zhang et al. (2021) presents a method called 

MagNet and the main idea is to define a Magnetic Laplacian as a complex Hermitian 

matrix which could then encode important direction information via these complex 

numbers. Meanwhile MagNet is also a very flexible approach that could be adapted to 

many spectral-based ConvGNN models. The experiments manifest that MagNet does 

outperform all other mainstream graph deep learning structures on the directed graph 

data’s learning tasks including node classification and link prediction (Zhang et al., 

2021). 

There has been increasing attention in digraph data, however, the digraph focused 

research is still limited compared to the amount of research work on the normal graph 

data. Thus, there is still potential in digraph data learning and improve the architectures’ 

performance accuracy by applying novel techniques on the existing models or 

proposing new structures based on new concepts or ideas from other fields. 



45 
 

2.5 Framelet-based Approach 

Framelet method will be applied in the proposed structure because framelet-based 

method is proved to have advantages of decomposing and reconstructing the signals 

from the data (Zheng et al). The paper Zheng et al. (2021) explores the graph framelet 

implementation and application, in which the main idea is that framelet decomposition 

will induce a graph pooling method by aggregating the graph features which comprised 

of feature values as well as geometric information of the graph data into high-pass and 

low pass spectra. While researchers also present shrinkage function as a novel 

activation function for the framelet convolution and this shrinkage function could assist 

threshold high-frequency information on different scale levels. The graph neural 

network with this proposed framelet method and pooling strategy has better 

performance on the node classification and graph prediction tasks compared to the 

existing ConvGNNs. Moreover, this framelet-based convolution method enjoys the 

benefit of fast algorithm during the process of decomposition and reconstruction on 

signals (Yang et al., 2022). 

Manifold defined Framelet-based convolution for signal processing (Dong, 2017) is 

also implemented and explored for graph signal in paper (Zheng et al., 2021). In Dong 

(2017) paper, the linear framelet function utilizes a single modulation function 𝑔(∙), 

and one set of modulation functions such as the scaling functions in the term of 

Framelet. Specifically, 𝑔I  is used to control the lower frequency at the same time 𝑔A is 

used to control the high frequency, while the others will be utilized to regulate all the 

frequencies left that are not included in 𝑔I and 𝑔A. The normal instances include the 

linear and quadratic framelet functions (Dong, 2017) and sigmoid and entropy quasi-

framelet functions (Yang et al., 2022). The representative linear framelet functions’ 

formula and entropy framelet functions’ formula are shown as follows, 
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Linear Framelet Functions (Dong, 2017): 

𝑔A(𝜉) = 𝑐𝑜𝑠@ �
𝜉
2� ;		𝑔7

(𝜉) =
1
√2

𝑠𝑖𝑛(𝜉);		𝑔@(𝜉) = 𝑠𝑖𝑛@ �
𝜉
2�.	 

Entropy Framelet Functions (Yang et al., 2022): 

𝑔A(𝜉) = 	�
�1 −	𝑔7@(𝜉)								𝜉 ≤ 𝜋/2

0	,																		𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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𝜉
𝜋 − 4𝛼 �

𝜉
𝜋�

@

		 ; 

𝑔@(𝜉) = 	�
�1 −	𝑔7@(𝜉)								𝜉 > 𝜋/2

0	,																		𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

In which 0 < 𝛼 ≤ 1 denotes a hyper-parameter and note that when 𝛼 = 1, 𝑔7@(𝜋𝜉) is a 

binary entropy function. 

Graph framelets (Dong, 2017) which is similar with the traditional wavelet method, 

provide multiresolution analysis for the graph signals (Zheng et al., 2021). While the 

fully tensorized framelet transformation makes sure that the efficient graph convolution 

combines both high-pass and low-pass information, and the transform process only 

requires graph Laplacian, Chebyshev Polynomial approximation and filter bank 𝜂 =

�𝑎; 𝑏(7), 𝑏(@), … , 𝑏(I)� ⊂ 𝑙A(𝑍) . Therefore, the group of modulation functions is 

designed according to the multiresolution analysis (MRA) using the filter bank and it 

could regulate the spectral frequency. However, Yang et al. (2022) further explored 

and found that the MRA is not necessary, and this paper proposed a group modulation 

function for quasi-framelets. 

Definition 2.1 Modulation functions for Quasi-Framelets 

Consider a group of modulation functions K + 1 which are positive and were defined 

on [0, 𝜋] and ℱ = {	𝑔A(𝜉), 𝑔7(𝜉), … , 𝑔I(𝜉)}; it is a quasi-framelet when it meets the 

identity condition requirements as follows, 
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𝑔A(𝜉)@ +	𝑔7(𝜉)@ +⋯+ 𝑔I(𝜉)@ ≡ 	1,									∀𝜉	 ∈ 	 [0, 𝜋] 

In which 𝑔> could increase from 0 to 1, and	𝑔A could decrease from 1 to 0 over the 

spectral domain of 	[0, 𝜋]. 

The paper Yang et al. (2022) developed filtering functions in the spectral domain from 

the perspective of spectral ConvGNNs. Researchers proposed and presented the 

undecimated quasi-framelet graph (QUFG) convolution for graph neural network via 

introducing two groups of novel modulation functions. The experimental results further 

proved QUFG’s outstanding denoising ability and flexibility in the node classification 

task and demonstrated its remarkable performance as the state-of-the-art benchmark 

architectures’. 

 

2.6 SVD Application in Adversarial Machine Learning and 

Recommendation System 

There has been more and more research studies about the effects of adversarial attacks 

on graph data and the robustness of the architecture’s defences as adversarial attack 

study is a very important field that could represent many complex problems among AI 

and machine learning domain and assist effectively to increase the architecture’s 

stability. In paper Entezari et al. (2020), because of the vulnerability of the node 

classification methods towards the adversarial attacks, thus it’s necessary to retain a 

very robust node classification approach. Then researchers applied the truncated SVD 

decomposition to compute and derive the low-rank approximation of the feature 

matrices and adjacency matrices, and further retrain the GCN model with these 

matrices to boost the performance of GCN when encountering an attacked graph data 

and compare with the performance of the GCN on a clean graph. And the experiment 
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results on real-world datasets further prove that using the low-rank (rank-10) SVD 

approximation of the feature matrices and adjacency matrices is robust enough to 

vaccinate the GCN model against the attacks in the graph data. 

The paper Mujkanovic et al. (2022) is mainly about the adversarial defence robustness, 

researchers point out the importance of utilizing custom adaptive attacks instead of the 

non-adaptive attacks which were normally used in the previous works leading to very 

optimistic robustness estimates. From the experiment result, it is very surprising that 

none of the assessed Graph Neural Network defense architectures are robust under 

adaptive attacks. One of the assessed defense model is the SVD-GCN which is 

introduced in the paper Entezari et al. (2020). And the preliminary experimental result 

shows that this SVD-GCN cannot achieve considerable robustness gains, compared to 

an undefended GCN model, not only under adaptive attacks but also non-adaptive 

attacks. 

The third paper I would like to compare here is the paper Peng et al. (2022), the 

researchers proposed a simplified GCN architecture and replaced the neighbourhood 

aggregation process with a truncated SVD which exploits the K-largest singular vectors 

and values, and it is basically designed for the recommendation system. The 

experimental results further prove that this SVD-GCN does show a positive effect in 

learning the user-user and item-item relations in the recommendation system while the 

renormalization trick they proposed to adjust the singular value gap could also 

significantly alleviate the over-smoothing issue caused by stacking many graph 

convolution layers in the original GCN architecture.  

While in this thesis, we research about the SVD implementation in the GCN 

architecture using the framelet approach (SVD-framelet) to perform the node 
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classification and link prediction problems. According to the experiments on several 

real-world directed graph datasets, it is proved that SVD could improve the original 

GCN’s performance on both tasks because it benefits from the advantages of the SVD-

framelets in filtering and transforming the signals from directed graph. 
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Chapter 3  

Deep Learning Structure for Directed Graph Data - 

SVD-GCN 

 

3.1 Motivation of using SVD and Background 

It has been proved by much research works that spectral-based Graph Neural Networks 

is very useful and powerful regarding node-classification task. This is constructed 

according to Laplacian on node or the 0th order Hodge Laplacian (Lim, 2020). Consider 

that 𝑋 is the graph data’s signals, so in spectral-based GNN the basic operation is that  

𝑌 = 𝐿	𝑋, where 𝐿 is the Laplacian matrix to process the graph signals and this graph 

Laplacian symmetric and positive semi-definite. For undirected graph, operating 

singular value decomposition (SVD) of a symmetric matrix is the same as the 

eigenvalue decomposition (EVD), but there is still a bit different as the only difference 

is the sign. Suppose that eigenvalue decomposition of normalized Laplacian matrix 

𝐿� = 𝐼 − 𝐴�  in which  𝐴� = (𝐷 + 𝐼)2
%
&(𝐴 + 𝐼)(𝐷 + 𝐼)2

%
& , because 𝐿� = 𝑈Λ𝑈5 = 𝑈(1 −

Σ)𝑈5, where 𝐴� = 	𝑈Σ𝑈5, the eigenvalues of 𝐴� falls in [-1,1] and the eigenvalues of 𝐿� 

fall in [0,2]. The Laplacian’s eigenvalues could be regarded as the frequencies of the 

signals from graph nodes. 
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However, when it comes to the case of directed graph, it would be a completely 

different story since we cannot have the advantage of Laplacian’s symmetric property 

anymore. Thus, a possible method based on the singular value decomposition (SVD) 

of the adjacency matrix which could be considered to address the issue. This alternative 

approach depends on the basic operation: 𝑌 = 𝐴	𝑋 , in which 𝐴  represents the 

adjacency matrix and this adjacency matrix is asymmetric for directed graph data. 

While this adjacency matrix is considered as the shift operator for the graph and this 

shift operator can replace the graph signal on the target node with the linear 

combination result of the neighbourhood nodes’ representations (Gavili & Zhang, 

2017).  

If the adjacency matrix is diagonalizable, then it doesn’t matter whether the graph is 

undirected or directed, we could always have the equation as 𝐴 = 𝑉Λ𝑉27  and the 

Fourier transform can be generalized as 𝑥R = 𝑉27𝑥. Noted that the adjacency matrix is 

diagonalizable for those graphs that are strongly connected and directed (van Dam & 

Omidi, 2018), but if the diagonalizable condition is violated then Jordan decomposition 

could be taken into consideration (Sandryhaila & Moura, 2013). Meanwhile it needs to 

be noted that generally for directed graph data, 𝑉27 ≠ 𝑉5 , and 𝑆  and 𝑉  are both 

normally complex-valued, that hinders the extension to use the classic framelet theories 

on directed graph data. 

To solve this problem, singular value decomposition (SVD) is considered as the graph 

shift operator, 𝐴 = 𝑈Λ𝑉5, in which 𝑈, 𝑉 represent two groups of orthonormal bases 

which contains positive and real singular values	Λ. Because SVD is a suitable approach 

to decompose and reconstruct the signal matrix utilizing orthogonal system and this is 

also the reason why singular value decomposition (SVD) is applied instead of other 

methods here. Utilizing this graph shift operator on the graph signal 𝑋  could be 
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considered as decomposing the signals via the two groups of bases which is based on 

the 𝑉’s columns then the decomposition result will be put into a scaling operation 

determined by Λ, then the scaled signal result will be transformed and reconstructed by 

another group of orthonormal bases determined by the 𝑈 ’s columns. Because the 

magnitude of Λ represents “frequency”, then Λ could be regulated by a modulation 

function 𝑔 and the filter could be defined as follows, 

𝑌 = 𝜎(C𝑉K(Λ)𝑈5E ∙ 𝑔8 ∘ C𝑈K(Λ)𝑉5𝑋E)                            (1) 

In short, this first motivation is the successful improvement via utilizing the multiple 

frequency separation for the graph signals through framelet decomposition while 

Framelet (Zheng et al. 2021) relies heavily on the Fourier decomposition of the graph 

signals and because it needs asymmetric adjacency matrix which is quite difficult for 

the directed graph to generate. However, SVD could provide a direct method to the 

graph signal decomposition, and it assists us to exploit the benefits of the frequency 

separation. 

The second motivation is that we would like to retain the superiority of the specialized 

spectral GNNs for the directed graph data at the same time avoid the demand of a 

carefully designed Laplacian matrix or adjacency matrix. We basically perform 

convolution over the spectral domain which is provided by the singular value 

decomposition of the directed adjacency matrix and this approach could be applied to 

any structured matrix of a directed graph data while it is not limited to the graph 

adjacency either.  
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3.2 Methodology 

3.2.1 SVD-Framelets 

A recent research paper regarding undecimated framelets-enhanced graph neural 

network architecture which is also called UFG achieved outstanding results in different 

learning tasks on graph data (Zheng et al. 2021). Because UFG is developed based on 

the framework of spectral graph signal analysis by utilizing multiresolution analysis 

developed by applying classic framelet theory (Dong, 2017), but it is quite limited to 

apply this classic framelet on the directed graph. While for directed graph data signals, 

it is important to figure out the method to explore the multiresolution lens. And this 

motivated us to look back to find out if there is any signal analysis technique that could 

be applied into the graph neural network on directed graph data. 

Consider that a directed graph (homogeneous) 𝐺 = (𝑉, 𝐸) with graph signal 𝑋 and n 

nodes in the graph; Suppose the 𝐴 ∈ ℝ-∗- represents its asymmetric adjacency matrix 

while 𝐷7is the in-degree diagonal matrix and 𝐷@ is the out-degree diagonal matrix. If 

we consider it as self-looped normalized adjacency matrix first, then the matrix could 

be written as 𝐴� = (𝐷7 + 𝐼)
2%&(𝐴 + 𝐼)(𝐷@ + 𝐼)

2%& . In the spatial-based GNN 

architectures, 𝐴� is usually utilized to determine the convolutional layer as follows, 

𝑋M =	𝐴�	𝑋	𝑊                                            (2) 

And now we set the SVD for the normalized adjacency matrix as follows, 

𝐴� = 𝑈	Λ	V5 ,                                            (3) 

In which 𝑉	holds the right singular vectors while 𝑈 holds the left vectors and Λ =

𝑑𝑖𝑎𝑔(𝜆7, 𝜆@, … , 𝜆H) represents all the singular values’ diagonal matrix and the singular 

values are listed in a decreasing order. Now integrating equation (3) into equation (2), 



54 
 

this step means the projection of the node signals 𝑋 on the graph onto the orthogonal 

system that was generated based on 𝑉’s columns, and then signals are reconstructed 

based on the dual orthogonal system which was constructed using 𝑈’s columns, at the 

same time this process is assisted by certain scaling function via singular values Λ. The 

procedure is about how to filter the graph signals from the directed graph data via the 

dual orthogonal systems. 

While motivated by concept about utilizing the undecimated framelets in the proposed 

orthogonal systems of Laplacian, we implemented framelets onto the orthogonal 

systems that are determined by SVD. Consider one group of framelet functions ℱ =

{𝑔A(𝜉), 𝑔7(𝜉), … , 𝑔I(𝜉)} which falls on the range [0,𝜋] (Yang et al., 2022; Zheng et al., 

2021), and given a multiresolution level L, then the framelet signal decomposition and 

reconstruction operators could be defined as follow,  

𝒲A,N = 𝑉𝑔A @
O

@)*+F ∙∙∙ 𝑔A @
O
@)
FΛ

%
&	𝑉5 ,𝒲>,A =	𝑉𝑔> @

O
@)
F Λ

%
&	𝑉5 , for 𝑘 = 1, 2, … , 𝐾,  

𝒲>,: = 𝑉𝑔> @
O

@)*(F 𝑔A @
O

@)*(,%F ∙∙∙ 	𝑔A @
O
@)
FΛ

%
&	𝑉5  for 𝑘 = 1, 2, … , 𝐾, 𝑙 = 1,2, … , 𝐿.  (4)         

and 

𝒱A,N = 𝑈Λ
%
&𝑔A @

O
@)
F ∙∙∙ 𝑔A @

O
@)*+F 𝑉5 , 𝒱>,A =	𝑈Λ

%
&	𝑔> @

O
@)
F 𝑉5 , for 𝑘 = 1, 2, … , 𝐾,  

𝒱>,: = 𝑈Λ
%
&𝑔A @

O
@)
F ∙∙∙ 𝑔A @

O
@)*+,%F𝑔> @

O
@)*+F	𝑉5 for 𝑘 = 1, 2, … , 𝐾, 𝑙 = 1,2, … , 𝐿.   (5) 

We then stack the corresponding equations together in the column direction as 𝒲 =

[𝒲A,N; 𝒲7,A; … ;𝒲I,A;𝒲7,7; … ;𝒲I,N] while stack them in the row direction as 𝒱 =

[𝒱A,N; 𝒱7,A; … ; 𝒱I,A; 𝒱7,7; … ; 𝒱I,N].  
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Theorem 3.1 The SVD-GCN layer could be applied via a step comprised of 

decomposition and reconstruction which are determined by operator 𝒲 and 𝒱, then 

taking these two operators into the SVD equation 𝐴� = 𝑈	Λ	V5, the result will be 

𝑋M =	𝐴�	𝑋	𝑊 = 𝒱	(𝒲𝑋𝑊). 

Proof. We will prove that 𝐴� = 	𝒲𝒱  from the equation shown above. While the 

framelet functions’ identity property will be utilized ∑ 𝑔>@(𝜉) ≡I
>=A 1, in accordance 

with the previous equations of matrices 𝒱 & 𝒲, the proof process is shown as follow, 
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The calculation process above completest the proof that 𝐴� = 	𝒲𝒱. 
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3.2.2 Decomposition and Reconstruction of SVD-Framelet Signal  

In this step, the graph SVD framelet needs to be defined to further construct the SVD-

GCN layer. 

Suppose that there are all singular vector triples and singular values for normalized 

adjacency 𝐴� in the set of {(𝜆" , 𝑢" , 𝑣")}"=7H  for graph  𝐺, in which there are 𝑁 nodes, and  

𝑢" represents the columns of 𝑈 and 𝑣" represents the columns of 𝑉, and {𝜆"} are in a 

decreasing order accordingly. While note that 𝛽A>(𝜉) = 𝑔> @
P
@)
F as well as  

𝛽:>(𝜉) = 𝑔> @
P
@)
F	𝑔A @

P
@),%F ∙∙∙ 𝑔A @

P
@),(F for 𝑙 = 1,2, … , 𝐿, 𝑘 = 1,2, … , 𝐾.  

Thus, consider a group of modulation functions ℱ = {𝑔A(𝜉), 𝑔7(𝜉), … , 𝑔I(𝜉)}, then 

the forward SVD framelet for a graph 𝐺 at scale level 𝑙 could be written as follows, 
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While the backward SVD framelet could be written as shown below, 
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F 𝑢"(𝑝)𝑣"(𝑞), 𝑙 = 1,2, … 𝐿; 𝑘 = 1,2, … , 𝐾.        (7)                                    

Where for all nodes 𝑞, 	𝜙:,%(𝑞) & �̄�:,%(𝑞) denote that at node 𝑝, the low-pass SVD 

framelet translated meanwhile 	𝜓:,%> (𝑞)	& 		𝜓° :,%
> (𝑞) denote the high-pass SVD framelet 

translated. 
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If the concept of undecimated framelet system (Dong, 2017) is applied as well, then 

the two SVD- Framelet operator could be defined as follows, 

SVD-UFS-𝐹N(ℱ, 𝐺) ≔ �𝜙Q,% ∶ 𝑝 ∈ 𝒱� 	∪ �	𝜓:,%> : 𝑝 ∈ 𝒱, 𝑙 = 0,1, … , 𝐿�
>=7

I
,   (8) 

SVD-UFS-𝐵N(ℱ, 𝐺) ≔ ��̄�Q,% ∶ 𝑝 ∈ 𝒱� 	∪ �	�̄�:,%> : 𝑝 ∈ 𝒱, 𝑙 = 0,1, … , 𝐿�
>=7

I
,   (9) 

While the signal transform 𝑥M = 𝐴�	𝑥 can also be applied in the SVD framelet transform 

operator and the theorem is shown below. 

Theorem 3.2 Transform of SVD-Framelet  

Consider the forward and backward SVD framelet systems’ definition, the signal 

transform could be represented as follows, 

𝑥M =	∑ ¶𝜙N,%%∈𝒱 , 𝑥⟩�̄�N,% + ∑ ∑ ∑ ¶	𝜓:,%>%∈𝒱
N
:=A

I
>=7 , 	𝑥⟩	𝜓° :,%>              (10) 

The decomposition process here is to re-write 𝑥M = 𝐴�	𝑥 , from the equation shown 

above, the transformed graph signal 𝑥M is indicated as a linear equation expression of 

integrating backward SVD framelet operator with the partial signal from the system of 

forward SVD framelet. Therefore, the filtering process of signals is mormally 

developed by filtrating forward SVD framelet coefficient ¶𝜓:,%> , 𝑥⟩. 

3.2.3 Model Architecture & Simplified SVD-Framelet Filtering  

According to the Theorem 3.1 & Theorem 3.2 shown above, the simplified SVD 

framelet filtering step could be presented as follows, 

𝑌 = 𝜎(∑ (𝑈Λ
%
&	𝑔>(I

>=A Λ)𝑉5) ∙ 𝑔8> ∘ (𝑉	𝑔>(Λ)Λ
%
&	𝑉5𝑋𝑊))			      (11) 

Where 𝑊 is the transformation weight of learnable features, 𝑔8> represents the filters 

based on each modulation function 𝑔>  and 𝜎  is the activation function. Because it 
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would be not always mandatory to further process the graph signal to that system of 

backward SVD-framelet. Thus, SVD framelet filtering process could be simplified via 

considering the transformation with only the forward SVD framelet operator as follows, 

𝑌 = 𝜎(∑ (𝑉Λ
%
&	𝑔>(I

>=A Λ)𝑉5) ∙ 𝑔8> ∘ (𝑉	𝑔>(Λ)Λ
%
&	𝑉5𝑋𝑊))											(12) 

Where the difference between (11) and (12) is that 𝑈 is replaced by 𝑉. 

In the Figure 7 below, it demonstrates how the SVD framelet layer works. Firstly, the 

normalized adjacency matrix 𝐴� is generated from the graph to get the framelet matrices 

𝒲  and 𝒱   at certain scale level 𝐿; secondly, the framelet matrices	𝒲  which is the 

primary matrices, is adapted into matrix  𝑋 of input node signal. Then the result will be 

passed into learnable filters 𝑔8 on each node. While the dual framelet matrices 𝒱 will 

be utilized to filter the signal and pass back to the transformed signal domain, which is 

represented as 𝑋M and this will be forwarded to the next layer for further processing. It 

is important to note that when several layers of SVD are implemented in the model, 

both framelet matrices 𝒲 and 𝒱 are shared throughout all those SVD layers. 

 

Figure 7 SVD-framelet System: SVD framelet layer transforms the feature X of the input node utilizing SVD framelet 
matrices W and V and applying learnable filters gθ on those new features Y; this process is illustrated in the 
simplified framelet parts (11) and (12). 
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3.2.4 Faster Filtering for Large Graphs  

In real world, there are many datasets that are in large scale, thus if we would like to 

utilize the proposed model to solve the real problems in the future, it is very significant 

to make sure that this architecture is applicable on the large-scale datasets because 

usually large-scale datasets have the issues of extremely high-level computational 

complexity. Implementing SVD technique on adjacency matrix of large graph data 

must be very costly. Thus, an approximated filter developed on Chebyshev 

polynomials is considered, we adapt the idea proposed in (Onuki et al., 2017) and 

construct the fast filtering. For the graph normalized adjacency matrix 𝐴� = 𝑈	Λ	𝑉5 =

	𝐴�	𝑉	𝑉5  and 𝐴�5𝐴� = 𝑉Λ@	𝑉5, which means that 𝑉’s columns provide the eigenvector 

systems for 𝐴�5𝐴�, and then framelet analysis can be finished for the Laplacian matrix. 

Given a group of framelet functions or quasi-framelet functions   	

𝐹 = {𝑔A(𝜉), 𝑔7(𝜉), … , 𝑔I(𝜉)} defined on [0,𝜋], the framelet signal decomposition and 

reconstruction operator are written as follows, 

𝒲A,N = 𝑉𝑔A @
O&

@)*+F ∙∙∙ 𝑔A @
O&

@)
F𝑉5 ,𝒲>,A =	𝑉𝑔> @

O&

@)
F𝑉5 , for 𝑘 = 1, 2, … , 𝐾, 

𝒲>,: = 𝑉𝑔> @
O&

@)*(F𝑔A @
O&

@)*(,%F ∙∙∙ 	𝑔A @
O&

@)
F𝑉5  for 𝑘 = 1, 2, … , 𝐾, 𝑙 = 1,2, … , 𝐿.     (13) 

These equations shown above are quite similar with the equation (4), while the 

difference is that the original Λ  is replaced by Λ@	in the 𝑔(∙), and no extra term of Λ
%
&. 

 

Meanwhile, the polynomial approximation method could also be considered to be 

applied to each modulation function 	𝑔#(𝜉) where 𝑗 = 0,1,2, … , 𝐾, to avoid the explicit 

SVD decomposition of 𝑉 . Thus, 	𝑔#(𝜉)  could be approximated by Chebyshev 

polynomials 𝒯#-(𝜉), in which 𝑛 is a fixed integer and it needs to be selected so that 
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Chebyshev polynomial approximation is of high precision. To simplify and get a less 

complicated expression of the equation, 𝒯#(𝜉) will be utilized in the equation below 

rather than using  𝒯#-(𝜉). Afterwards, the transformation equations of matrices’ SVD-

framelet can be written and determined as follow, 

𝒲A,N ≈ 𝒯A �
1

2,;N 𝐴
�5𝐴�� ∙∙∙ 𝒯A �

1
2, 𝐴

�5𝐴�� , 𝒲>,A ≈	𝒯> �
1
2, 𝐴

�5𝐴��, 

𝒲>,: ≈ 𝒯> @
7

@)*( 𝐴�5𝐴�F 𝒯A @
7

@)*(,% 𝐴�5𝐴�F ∙∙∙ 𝒯A @
7
@)
𝐴�5𝐴�F,                                    (14) 

where 𝑘 = 1, 2, … , 𝐾, 𝑙 = 1, 2, … , 𝐿. 

When it is not necessary to  always utilize the adjacency SVD to generate the framelet 

matrices. The large scale simplified SVD-Framelet-III when L = 0 could be denoted as 

follows and it will be further exploited in the experiments later, 

𝑌 = 𝜎(𝐴� ∑ 𝒲>,A
5 	I

>=A ∙ 𝑔8> ∘ (𝒲>,A	𝑋	𝑊))			                              (15) 

 

3.3 Node Classification Experiment 

In this project, the directed graph data utilized can be found in: https://pytorch-

geometric.readthedocs.io/, including dataset Citeseer, Citeseer_full and Cora_ml, all of 

them are citation networks, meanwhile the Amazon Photo (Amazon_photo) and 

Amazon Computers (Amazon_cs) which are both co-purchase network. The code for 

this experiment is available at https://github.com/ThisIsForReview/SVD-GCN. Brief 

descriptions of all the datasets will be provided below and Table 1 will summarize the 

datasets’ basic statistics. 
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3.3.1 Experimental Protocol 

3.3.1.1 Datasets 

Cora_ml & Cora_full (Bojchevski & Günnemann, 2017): Cora_ml dataset is a 

relatively small dataset that is taken from the original Cora dataset and they are classic 

citation network datasets as well as directed network datasets, in which nodes represent 

published papers and edges represent their citation relationship.  

Citeseer (Yang et al., 2016) & Citeseer_full (Chen et al., 2018): Citeseer dataset is 

also a popular citation network dataset, in which all the nodes means papers while edges 

denote the citation relationship between papers. The main difference between Citeseer 

and Citeseer_full dataset is that in Citeseer_full the data split type is full. 

Amazon_cs & Amazon_photo (Shchur et al., 2018): The dataset Amazon computer 

and dataset Amazon photo both are separately taken from the original Amazon co-

purchase network. While in both datasets, nodes represent products and goods such as 

computers or photos, while edges represent the relationship that these two products are 

bought together by clients frequently, meanwhile the products’ review are the features 

of the nodes. 

Table 1 Datasets Statistics 

Dataset Name # of Node # of Edges # of Classes # of Features 

Cora_ml 2,995 8,416 7 2,879 

Citeseer 3,312 4,715 6 3,703 

Citeseer_full 3,327 3,703 6 602 

Amazon_photo 7,650 143,663 8 745 

Amazon_cs 13,752 287,209 10 767 

Cora_full 19,793 65,311 70 8,710 
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3.3.1.2 Baseline Architectures 

In this node classification task, the proposed model SVD-GCN will be compared with 

fourteen existing state-of-the-art architectures, including spatial-based GNNs such as 

GAT (Velickovic et al., 2018) and GraphSage (Hamilton et al., 2017); spectral-based 

GNNs such as GCN (Kipf & Welling, 2016), ChebNet (Defferrard et al., 2016), 

APPNP (Klicpera et al., 2019), SGC(Wu et al., 2019), and InfoMax (Velickovic et al., 

2019); Digraph GNNs including DGCN (Tong et al., 2020); Graph Inception including 

SIGN (Rossi et al., 2020); Digraph Inception including DiGCN-PR (Tong et al., 2020), 

DiGCN-APPR-IB (Tong et al., 2020), DiGCN-APPR (Tong et al., 2020). Meanwhile 

UFG/QUFG generated based on Linear framelet functions (Zheng et al., 2021) and 

Entropy framelet functions (Yang et al., 2022) will also be utilized in the experiments. 

However, because both UFG and QUFG are designed for undirected graph data, before 

applying these two models on the directed graph, there will be a simple step to simply 

convert a directed graph to an undirected one by adding reversed edges.  

3.3.2 Training Setup 

In this experiment, the hyperparameter are selected as follows, 20 nodes are chosen for 

model training for one class, while 500 nodes are grouped as a validation set at the 

same time the rest of nodes are included in the testing set; the basic epoch is 200 and 

the two-level framelets (L=1) are utilized in the experiment, while the dilation scale in 

the framelets is also tested for values of 1.1, 1.5 and 2.0; the number of hidden layers 

is tested for values of 16, 32 and 64, while the dropout ratio is tested for values of 0.1, 

0.3 and 0.6 and the value with the best accuracy rate will be retained; the framelet 

modulation function is neither Entropy nor Linear and the hyperparameter 𝛼 will be 

tried at 0.1, 0.3, 0.5, 0.7 and 0.9, and it showed that both framelet modulation functions 

do not have large different effects on the final results, so all the reported results’ 
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experiments utilize the linear framelet modulation functions. Overall, this SVD-GCN 

architecture comprised of one SVD framelet layer, then followed by a fully connected 

linear layer then a softmax output layer to generate final outputs. 

3.3.3 Result Analysis 

The experimental results are listed in Table 2. The proposed SVD-GCN obtains 

outstanding performances in most cases on all five digraph datasets compared to all the 

state-of-the-art baseline architectures, if not it still achieves comparable performances. 

For each dataset, the highest accuracy rate is bolded for highlight in the table, and it is 

clear that most of the bolded results are obtained by SVD-GCN. For Citeseer,  

Citeseer_full and Cora_ml datasets, more than 1% increase in the accuracy rate has 

been achieved by the proposed method; while for the two Amazon datasets, the SVD-

GCN structure’s results are similar with the results of DiGCN-APPR model which 

obtains the highest accuracy rate. It is noticeable that in the experiment on dataset 

Citeseer_full, SVD-GCN achieves larger than 6% increase in accuracy rate compared 

to the highest rate obtained by model DiGCN-PR and DiGCN-APPR (Tong et al.) 

among the state-of-the-art models, and this could be called a remarkable improvement 

achieved by this proposed architecture. 

Tong et al, paper further presented and proposed the Digraph Inception Convolutional 

Networks (DiGCN-APPR-IB) where the directed graph’s convolution and kth-order 

proximity are utilized to construct larger receptive fields as well as to learn the multi-

scale features in directed graph data. This strategy is also applied and integrated with 

this SVD-GCN architecture, resulting model is called SVD-GCN-IB. The results are 

shown in the bottom two tows of Table 2. It clearly demonstrates that larger receptive 

fields could improve the performances of SVD-GCN.  
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While for each dataset, we did quick experiments using UFG and QUFG and the 

reported results were compared against the results’ of SVD-GCN. From the accuracy 

rates in the table, it is obvious that UFG/QUFG performs generally well and sometimes 

even better than the performances of some GNNs which are specifically designed for 

digraph data. Thus, it further proves that utilizing multiple-scale decomposition in 

Graph Neural Network is beneficial. 

 

Table 2 Results for Node Classification Accuracy (%); Note: OOM means “out of memory” 
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3.3.4 Fast Algorithm Experiment 

3.3.4.1 Experimental Protocol 

This experiment will further explore the fast SVD-Framelet-III introduced in the the 

previous chapter1. The dataset Cora_full is utilized and this dataset is also used in the 

Bojchevski & Günnemann, (2017). Cora_full is full extension of the other Cora dataset 

Cora_ml. From the dataset’s statistics table, it is clear that Cora_full is a quite large 

datasets compared to other datasets utilized in the node classification learning task, 

with 19,793 nodes ad 65,311 edges and the number of node classes is 70 while there 

are 8,710 feature dimensions. Usually, regarding the graph data with more than 15k 

nodes, we need to convert to use the CPU for slow training because the large dataset 

cannot fit on the GPU memory. 

The purpose here is to test the reliability of the proposed simplified version of SVD-

Framelet for fast algorithm called SVD-Framelet-III determined by the Chebyshev 

Polynomial approximation. While corresponding experiments will compare this SVD-

Framelet-III’s results with the very basic state-of-the-art model GCN. We also 

originally would like to compare with DiGCN-PR and DiGCN-APPR architecture, 

however we cannot even run these experiments on the CPU. Thus, the results cannot 

be provided.  

The related results are provided in Table 3. The coding parameters’ setup in python for 

this experiment is similar with the setting for the previous node classification learning 

task. 20 nodes per class is chosen for training, 500 random nodes are assigned to 

validation set and the rest of the nodes are assigned to the test set. The framelet scale 

 
1 We originally would like to conduct this experiment on the Large-scale dataset to test the proposed 
architecture’s reliability and efficiency, However, we didn’t find suitable large-scale directed graph 
dataset as some large-scale directed graph datasets do not have node labels or features, otherwise we 
would encounter nnz (number of non-zeros) overflow issue when conducting the experiment. 
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is set to 1.1, which means that linear framelet modulation functions are selected in this 

experiment and at the same time the dropout rate is set to 0.1, and ReLU is chosen as 

the activation function. The network model comprises of one layer of SVD-framelet, 

followed by one layer of fully linear and then output will be feed into the output softmax 

layer. Each experiment will be conducted on the replicate of 10 each time while it runs 

200 epochs with a fix 0.005 learning rate in each replicate.  

3.3.4.2 Result Analysis  

The corresponding average accuracy rate with its standard deviation is reported in the 

table below. The results demonstrate that the most ideal hidden unit size is 128 for this 

large dataset, while SVD-GCN achieved 1-3% increase in the accuracy rate in all cases 

compared to the GCN architecture. This further proves that the simplified fast SVD-

Framelet-III does help improve the architecture’s performances in node classification 

tasks when the dataset is relatively large.  

Table 3 Results between GCN and SVD-Framelet-III over Cora_Full 

 

 

3.3.5 Denoising Capability and Robustness 

3.3.5.1 Dataset and Baseline 

Experiments are set to be conducted to further evaluate the robustness of the SVD-

GCN and the results will be compared with the DiGCN-APPR model’s. The process to 

test the robustness is that we manually adjust the 𝜎 which is the standard deviation of 

the noises to add different levels of noise to the dataset, and the dataset utilized in this 
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experiment is Cora_ml. While to evaluate the denoising capability of the proposed 

model SVD-GCN, experiments are set up which is to randomly inject the “noise” of 0 

mean with 0.01-5 standard deviation into the dataset and then compare the results with 

the results from DiGCN-APPR architecture. 

3.3.5.2 Result Analysis  

In the Table 4 below, the results with all noise levels from 0.01 to 5.0 are reported. 

However, the results for DiGCN-APPR for noise level of 1.0 and 5.0 are not reported 

because the result figures are too poor and when the accuracy rate is less than 40%, it 

is usually considered as poor figures and not comparable. From the reported 

experimental results in Table 4, it is clear that SVD-GCN has much better ability of 

denoising because its accuracy rates keep at a high level when the injected noise level 

𝛼 is relatively large. When noise level 𝛼 becomes large than 0.01, the accuracy rate of 

DiGCN-APPR has dropped dramatically from 53.39% to 35.72%, while the proposed 

SVD-GCN architecture still has a comparable rate of accuracy. 

Table 4 Results between SVD-GCN and DiGCN-APPR on Cora_ml on Different noise levels 
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3.3.5.3 Sensitivity Analysis 

From the Table 4 above, it is quite clear that DiGCN-APPR fails in the denoising 

testing experiments However, SVD-GCN is more robust and has much better denoising 

capability compared to DiGCN-APPR because it has the advantage of framelet 

decomposition on the domain of the SVD “frequency” and the filtering step into 

learning process. More experiments are conducted using SVD-GCN on even larger 

noise level of 10.0, 20.0 and etc. and the results are utilized to draw a line graph to have 

a better overview of the test accuracy, shown in Figure 8. The yellow dot represents 

the accuracy rate on each noise level while the blue shade area represents the standard 

deviation of the accuracy rates. From the Figure 8 below, it is quite evident and 

apparent that when the noise level is at 50.0, the result is around 50% and the 

corresponding standard deviation is still acceptable. The results further prove and 

demonstrate that SVD-GCN is quite robust and consistent in its performance in node 

classification task when it is even facing much bigger attack from noise. 

 

Figure 8 Analysis of Node Attribute Perturbation on the Cora_ml dataset 
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3.3.6 Contribution and Discussion  

The application of framelets on the dual orthogonal system is further explored while 

this dual orthogonal system is constructed by singular vectors from the singular value 

decomposition (SVD) on the graph data. In this project, SVD-GCN is proposed for 

directed graph data. The SVD-GCN is proven to improve the original GCN’s 

performance on node classification task because it benefits from the advantages of the 

SVD-framelets in filtering and transforming the signals from directed graph. The 

results prove that SVD-GCN performs better than state-of-the-art architectures tested 

in this experiment on those five benchmark digraph datasets, which demonstrates that 

this proposed SVD-GCN has remarkable performance in processing digraph data. 

While the sensitivity analysis and the robustness experiments further manifest that 

SVD-GCN is robust and reliable to handle high-level noise attack.  

For the fast algorithm experiment, originally we would like to conduct this experiment 

on the Large-scale dataset to test the proposed SVD-GCN architecture’s reliability and 

efficiency. However, Cora_full is actually not large enough to be considered as a large-

scale dataset thus the related experiment might not be material to prove SVD-GCN’s 

reliability and improvement in processing large-scale dataset on node classification 

tasks. Meanwhile, we also consider using the OGBN-Arxiv which is much larger 

dataset with 169,343 nodes and 1,166,243 edges and it is more suitable to be utilized 

in the large-scale dataset experiment. However, it failed to run the coding on OGBN-

Arxiv dataset because of a nnz overflow issue from the sparse matrix. And some other 

large-scale directed graph dataset that is suitable in this experiment do not have node 

labels or features, which means that we still cannot run the experiments because of too 

few information. 
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3.4 Link Prediction Experiment  

This is an extension of the SVD-GCN application. In the previous sections, the 

proposed SVD-GCN is applied to do the node classification tasks while in the following 

section, it will be applied to do the link prediction task which is also a common edge-

level learning task.  

3.4.1 Background and Motivation  

There are many applications of graph link prediction in the real world, for example, 

product recommendation in the online shopping website, friend recommendation in the 

social network and knowledge graph completion (Cai et al., 2021). While there have 

been some research works in link prediction tasks such as the link existence prediction 

on the graph data (Liben-Nowell et al., 2007; Schlichtkrull et al., 2018; Al Hasan et al., 

2006; Lü & Zhou, 2011). Many heuristic methods have been presented and proposed 

to measure the similarity between the two connected nodes and then perform the link 

existence prediction tasks. However, most of the heuristic architectures are usually 

designed for certain network dataset specifically, and almost all of the heuristic 

methods hold strong assumption on when the two nodes have high possibility to have 

edge in between (Cai et al., 2021). Therefore, the heuristic approaches are quite limited 

to be utilized on different graph datasets with different conditions. 

To address the issues mentioned above, the “SEAL” architecture was proposed and 

presented to automatically learn the heuristic functions from the target nodes’ h-hop 

neighbourhood in the graph data and this model is able to extract the local enclosing 

subgraphs which are centred on the two target nodes and then learn and output a 

function mapping the subgraph patterns and information, then perform the link 
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existence prediction task based on the topology of the local enclosing subgraphs (Zhang 

& Chen, 2018). In this research work, researchers transform and convert the link 

prediction task into a graph classification task and present the “SEAL” structure which 

is a graph neural network structure for link prediction, and this novel model has been 

proved to outperform all heuristic methods, latent feature approaches as well as the 

state-of-the-art Weisfeiler-Lehman Neural Machine (WLNM) (Zhang & Chen, 2018). 

Compared to the research works on the normal graph data’s link prediction, the 

literatures on directed graph data’s link prediction are very limited. For a directed graph 

data, there are many sub-tasks under the category of edge-level learning task, not only 

that the existence of the link could be predicted, but also the direction of the link could 

be predicted which is a very important and informative learning task because the 

direction information contains significant relationship information between the two 

connected nodes (He et al., 2022). Therefore, for directed graph data, two more edge-

level experiments will be conducted, one is the experiment to predict the direction of 

the edge of the vertices pair 𝑢, 𝑣, for which for which either (𝑢, 𝑣) ∈ ℰ or (𝑣, 𝑢) ∈ ℰ; 

while the other experiment is to perform a three-class classification, which is to classify 

and predict if an edge between two target node is (𝑢, 𝑣) ∈ ℰ , (𝑣, 𝑢) ∈ ℰ  or 

(𝑣, 𝑢), (𝑢, 𝑣) ∉ ℰ (He et al., 2022). 

 

3.4.2 Experimental Protocol 

3.4.2.1 Datasets and Baselines 

Because there are not many existing research works and deep learning architectures 

specifically designed for directed graph data, while researchers in the paper He et al. 

(2022) conducted link prediction experiments utilizing DiGCN (Tong et al., 2020), 
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DGCN (Tong et al., 2020), MagNet (Zhang et al., 2021) and DiGCN-IB (Tong et al., 

2020). These four architectures are the benchmark structures specifically for directed 

graph data. Then SVD-GCN method will be applied on the same digraph datasets and 

results will be compared with the four models listed above. For convenience, the results 

for these four models are copied from the paper He et al. (2022). There are five digraph 

datasets in this experiment, among which the Cora_ml and Citeseer datasets are the 

same as the ones used in the previous node classification task and are both available 

from the link: https://github.com/flyingtango/DiGCN, while the other three WebKB 

datasets are available on the open-source website as well. 

In the following part, some brief description regarding the datasets will be provided 

and the basic statistics will be shown in the Table 5: 

Cora_ml (Bojchevski & Günnemann, 2017): This is a subset of the dataset that is 

extracted from the original classic citation network dataset Cora and Cora_ml is a 

directed graph dataset. 

Citeseer (Yang et al., 2016): It is also a popular citation network and its structure is 

similar with Cora_ml’s, whose nodes represent the publications and papers and edges 

represent the citation relationship. In Citeseet, the nodes are classified into six classes. 

WebKB-Cornell & WebKB-Texas & WebKB-Wisconsin2: These three datasets are 

all from the online Alchemy WebKB dataset. And this WebKB comprises of seven 

classes of hyperlinks and web pages from the computer science departments of four 

universities which are The University of Washington, The University of Texas, Cornell 

 
2 https://lig-membres.imag.fr/grimal/data.html 

Table 5 Statistics of Datasets 
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University and The University of Wisconsin. In this experiment, only three of them 

will be utilized, which are Texas, Cornell and Wisconsin. 

 

3.4.2.2 Experimental Setup 

In the graph link prediction task, the hyperparameters are set at follows: the basic epoch 

is 100, since we have tried several epoch values and found that the best result appears 

within 100 epochs in each rep, so it is not necessary to use 200 epochs in each rep. The 

two-level framelets (L=1) is also utilized and the dilation scale in the framelet is set to 

be 1.1 as usual. The number of hidden features is tested for 16, 32, 64 or 128 and is 

tested and adjusted during the experiment to make sure that the numbers are set to give 

the best output for each dataset. The dropout ratio is set to be 0.3 by default; while the 

framelet modulation function could be set to Entropy, Linear or Sigmoid. Usually if 

the framelet is Entropy, 𝛼	is usually set to be 0.5 but if the framelet is Sigmoid, 𝛼 will 

be set to be 20; if the framelet type is Linear, then any value of 𝛼 listed above can be 

utilized.  

As not only link existence prediction task will be performed, but also the link direction 

prediction will be done to test the SVD-GCN architecture’s performance in edge-level 

tasks, thus there are two new parameters in the parameter setting part, one is called 

“task” and the other one is called “num_class_link”. So when the experiment is about 

link existence prediction, then “task” should be set to 1 while “num_class_link” is not 

necessary to be set up because this is a parameter related to the link direction prediction. 
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When the experiment is about the two-class link direction prediction, the “task” should 

be set to 2 and “num_class_link” should be 2; but when the experiment is to predict the 

three-class link prediction task, then “task” should be 2 and the “num_class_link” 

should be set to 3. 

3.4.3 Result Analysis 

All the results for three prediction experiments are shown below in the three tables and 

for each dataset, the highest accuracy rate among all five architectures is bolded and 

highlighted in the tables. It is very clear that the proposed SVD-GCN architecture 

achieves remarkable performances in all three experiments. While in the link existence 

prediction task, the accuracy of SVD-GCN is the highest among all 5 datasets. In the 

link direction prediction experiment, SVD-GCN still achieves the highest accuracy in 

dataset WebKB-Cornell, WebKB-Texas and Citeseer while its performance in 

WebKB-Wisconsin and Cora_ml though is not the best, still ranked the second among 

all the structures. In the three-class link prediction, SVD-GCN still achieves the best 

performance in all the datasets except Cora_ml. Overall, the proposed SVD-GCN 

architecture outperforms the state-of-the-art benchmark models in the link prediction 

tasks for directed graph data. 
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Table 6 Direction Prediction (%) 

 

 

 

3.4.4 Conclusion and Discussion 

In this project, we extend to apply the proposed SVD-GCN on the link prediction tasks 

and based on the results of the three experiments, it has been proved that SVD-GCN 

could also achieve remarkable performances in edge-level learning tasks for digraph 

data. It further demonstrates that this proposed novel SVD-GCN structure is 

Table 7 Existence Link Prediction (%) 

Table 8 Three Classes Link Prediction (%) 
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convincingly useful and appropriate when it comes to handle the directed graph data 

and could be applied to address the real-world issues. 
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Chapter 4  

Conclusion 

This dissertation proposed a novel architecture, simple yet effective SVD-GCN and 

applied it on the learning tasks of node classification and link prediction. In this chapter, 

I will briefly summarize the contributions again, followed by a discussion about 

potential future research direction. 

4.1 Main Contribution  

The main contributions of this research thesis are included in Chapter 3 and can be 

five-fold: 

1) It should be the first attempt to utilize the adjacency SVD for the graph 

convolution neural networks. Quasi-framelet decomposition is applied to better 

filter the graph signals on spectral domain and improve performance of the 

proposed SVD-GCN as well as its robustness when encountering high level of 

noise attack. 

2) It is theoretically proved that the dual orthogonal systems provided by the SVD 

ensure the successful implementation of the graph signal decomposition and 

reconstruction which is in accordance with the spectral theory. 
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3) We investigate the method to scale up the proposed SVD-GCN for large graph 

datasets according to the Chebyshev Polynomial approximation via attaining 

the fast filtering for singular values while not running SVD. 

4) Experimental results from the node classification task prove that the node 

representation learning method by the framelet SVD-GCN is effective and the 

proposed SVD-GCN achieves better performance compared to the state-of-the-

art architectures for digraph data. 

5) SVD-GCN is also applied to perform on the link prediction tasks, and the results 

further prove its effectiveness and remarkable performances on link prediction 

on the directed graph data against the state-of-the-art structures. 

4.2 Future Research Directions 

In this thesis, the node-level task (node classification) and edge-level task (link 

prediction) have been explored, there is another possible extension of applying the 

SVD-GCN which is to perform on the graph-level tasks. Multi-Relational MR-GCN 

was proposed in Huang et al. (2020), the researchers utilized the generalized tensor 

product computation into the normal graph convolution theory and define the multi-

relational graph convolution operator (MR-GCO). While if the transformed tensor 

SVD (Song et al., 2019) is applied in the SVD-GCN, then it is possible to make the 

SVD-GCN better process the multi-relational graph data and the results could be 

outstanding as well because it has been proved that framelet SVD-GCN is really good 

and robust at the handling graph signals and make predictions for the graph 

classification task.  

 

 



79 
 

Reference 

Al Hasan, M., Chaoji, V., Salem, S., & Zaki, M. (2006, April). Link prediction using 

supervised learning. In SDM06: workshop on link analysis, counter-terrorism and 

security (Vol. 30, pp. 798-805). 

Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M. S., ... & 

Asari, V. K. (2018). The history began from alexnet: A comprehensive survey on 

deep learning approaches. arXiv preprint arXiv:1803.01164. 

Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., ... 

& Farhan, L. (2021). Review of deep learning: Concepts, CNN architectures, 

challenges, applications, future directions. Journal of big Data, 8, 1-74. 

Asif, N. A., Sarker, Y., Chakrabortty, R. K., Ryan, M. J., Ahamed, M. H., Saha, D. K., 

... & Tasneem, Z. (2021). Graph neural network: A comprehensive review on non-

euclidean space. IEEE Access, 9, 60588-60606. 

Atwood, J., & Towsley, D. (2016). Diffusion-convolutional neural networks. Advances 

in neural information processing systems, 29. 

Balcilar, M., Guillaume, R., Héroux, P., Gaüzère, B., Adam, S., & Honeine, P. (2021, 

May). Analyzing the expressive power of graph neural networks in a spectral 

perspective. In Proceedings of the International Conference on Learning 

Representations (ICLR). 

Balcilar, M., Renton, G., Héroux, P., Gauzere, B., Adam, S., & Honeine, P. (2020). 

Bridging the gap between spectral and spatial domains in graph neural networks. 

arXiv preprint arXiv:2003.11702. 

Bojchevski, A., & Günnemann, S. (2017). Deep gaussian embedding of graphs: 

Unsupervised inductive learning via ranking. arXiv preprint arXiv:1707.03815. 



80 
 

Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., & Vandergheynst, P. (2017). 

Geometric deep learning: going beyond euclidean data. IEEE Signal Processing 

Magazine, 34(4), 18-42. 

Cai, L., Li, J., Wang, J., & Ji, S. (2021). Line graph neural networks for link prediction. 

IEEE Transactions on Pattern Analysis and Machine Intelligence. 

Charikar, M., Chatziafratis, V., Niazadeh, R., & Yaroslavtsev, G. (2019, April). 

Hierarchical clustering for euclidean data. In The 22nd International Conference on 

Artificial Intelligence and Statistics (pp. 2721-2730). PMLR. 

Chen, J., Ma, T., & Xiao, C. (2018). Fastgcn: fast learning with graph convolutional 

networks via importance sampling. arXiv preprint arXiv:1801.10247. 

Chiang, W. L., Liu, X., Si, S., Li, Y., Bengio, S., & Hsieh, C. J. (2019, July). Cluster-

gcn: An efficient algorithm for training deep and large graph convolutional 

networks. In Proceedings of the 25th ACM SIGKDD international conference on 

knowledge discovery & data mining (pp. 257-266). 

Defferrard, M., Bresson, X., & Vandergheynst, P. (2016). Convolutional neural 

networks on graphs with fast localized spectral filtering. Advances in neural 

information processing systems, 29. 

Dong, B. (2017). Sparse representation on graphs by tight wavelet frames and 

applications. Applied and Computational Harmonic Analysis, 42(3), 452-479. 

Entezari, N., Al-Sayouri, S. A., Darvishzadeh, A., & Papalexakis, E. E. (2020, 

January). All you need is low (rank) defending against adversarial attacks on graphs. 

In Proceedings of the 13th International Conference on Web Search and Data 

Mining (pp. 169-177). 



81 
 

Gao, H., Wang, Z., & Ji, S. (2018, July). Large-scale learnable graph convolutional 

networks. In Proceedings of the 24th ACM SIGKDD international conference on 

knowledge discovery & data mining (pp. 1416-1424). 

Gavili, A., & Zhang, X. P. (2017). On the shift operator, graph frequency, and optimal 

filtering in graph signal processing. IEEE Transactions on Signal Processing, 

65(23), 6303-6318. 

Gers, F. A., & Schmidhuber, J. (2000, July). Recurrent nets that time and count. In 

Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural 

Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for 

the New Millennium (Vol. 3, pp. 189-194). IEEE. 

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., & Dahl, G. E. (2017, July). 

Neural message passing for quantum chemistry. In International conference on 

machine learning (pp. 1263-1272). PMLR. 

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... 

& Bengio, Y. (2020). Generative adversarial networks. Communications of the 

ACM, 63(11), 139-144. 

Gori, M., Monfardini, G., & Scarselli, F. (2005, July). A new model for learning in 

graph domains. In Proceedings. 2005 IEEE international joint conference on neural 

networks (Vol. 2, No. 2005, pp. 729-734). 

Grover, A., & Leskovec, J. (2016, August). node2vec: Scalable feature learning for 

networks. In Proceedings of the 22nd ACM SIGKDD international conference on 

Knowledge discovery and data mining (pp. 855-864). 



82 
 

Into the Wild: Machine Learning In Non-Euclidean Spaces · Stanford DAWN. (2019, 

October 10). Retrieved February 15, 2023, from 

https://dawn.cs.stanford.edu/2019/10/10/noneuclidean/ 

Hamilton, W., Ying, Z., & Leskovec, J. (2017). Inductive representation learning on 

large graphs. Advances in neural information processing systems, 30. 

He, Y., Zhang, X., Huang, J., Cucuringu, M., & Reinert, G. (2022). PyTorch Geometric 

Signed Directed: A Survey and Software on Graph Neural Networks for Signed and 

Directed Graphs. arXiv preprint arXiv:2202.10793. 

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural 

computation, 9(8), 1735-1780. 

Hu, B., Zhang, Z., Shi, C., Zhou, J., Li, X., & Qi, Y. (2019, July). Cash-out user 

detection based on attributed heterogeneous information network with a hierarchical 

attention mechanism. In Proceedings of the AAAI Conference on Artificial 

Intelligence (Vol. 33, No. 01, pp. 946-953). 

Huang, Z., Li, X., Ye, Y., & Ng, M. K. (2020). MR-GCN: Multi-Relational Graph 

Convolutional Networks based on Generalized Tensor Product. In IJCAI (pp. 1258-

1264). 

Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph 

convolutional networks. arXiv preprint arXiv:1609.02907. 

Klicpera, J., Bojchevski, A., & Günnemann, S. (2018). Predict then propagate: Graph 

neural networks meet personalized pagerank. arXiv preprint arXiv:1810.05997. 

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & 

Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition. 

Neural computation, 1(4), 541-551. 



83 
 

Levie, R., Monti, F., Bresson, X., & Bronstein, M. M. (2018). Cayleynets: Graph 

convolutional neural networks with complex rational spectral filters. IEEE 

Transactions on Signal Processing, 67(1), 97-109. 

Li, C., Qin, X., Xu, X., Yang, D., & Wei, G. (2020). Scalable graph convolutional 

networks with fast localized spectral filter for directed graphs. IEEE Access, 8, 

105634-105644. 

Li, R., Wang, S., Zhu, F., & Huang, J. (2018, April). Adaptive graph convolutional 

neural networks. In Proceedings of the AAAI conference on artificial intelligence 

(Vol. 32, No. 1). 

Li, Y., Yu, R., Shahabi, C., & Liu, Y. (2017). Diffusion convolutional recurrent neural 

network: Data-driven traffic forecasting. arXiv preprint arXiv:1707.01926. 

Li, Z., Liu, F., Yang, W., Peng, S., & Zhou, J. (2021). A survey of convolutional neural 

networks: analysis, applications, and prospects. IEEE transactions on neural 

networks and learning systems. 

Liben‐Nowell, D., & Kleinberg, J. (2007). The link‐prediction problem for social 

networks. Journal of the American society for information science and technology, 

58(7), 1019-1031. 

Lim, L. H. (2020). Hodge Laplacians on graphs. Siam Review, 62(3), 685-715. 

Lü, L., & Zhou, T. (2011). Link prediction in complex networks: A survey. Physica A: 

statistical mechanics and its applications, 390(6), 1150-1170. 

Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-

based neural machine translation. arXiv preprint arXiv:1508.04025. 

Ma, Y., Hao, J., Yang, Y., Li, H., Jin, J., & Chen, G. (2019). Spectral-based graph 

convolutional network for directed graphs. arXiv preprint arXiv:1907.08990. 



84 
 

Madhu, P., Kosti, R., Mührenberg, L., Bell, P., Maier, A., & Christlein, V. (2019, 

October). Recognizing characters in art history using deep learning. In Proceedings 

of the 1st Workshop on Structuring and Understanding of Multimedia heritage 

Contents (pp. 15-22). 

Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., & Bronstein, M. M. (2017). 

Geometric deep learning on graphs and manifolds using mixture model cnns. In 

Proceedings of the IEEE conference on computer vision and pattern recognition 

(pp. 5115-5124). 

Mujkanovic, F., Geisler, S., Günnemann, S., & Bojchevski, A. (2022). Are Defenses 

for Graph Neural Networks Robust?. Advances in Neural Information Processing 

Systems 35 (NeurIPS 2022). 

Nt, H., & Maehara, T. (2019). Revisiting graph neural networks: All we have is low-

pass filters. arXiv preprint arXiv:1905.09550. 

Onuki, M., Ono, S., Shirai, K., & Tanaka, Y. (2017). Fast singular value shrinkage with 

Chebyshev polynomial approximation based on signal sparsity. IEEE Transactions 

on Signal Processing, 65(22), 6083-6096.f 

Peng, S., Sugiyama, K., & Mine, T. (2022, October). SVD-GCN: A Simplified Graph 

Convolution Paradigm for Recommendation. In Proceedings of the 31st ACM 

International Conference on Information & Knowledge Management (pp. 1625-

1634). 

Perozzi, B., Al-Rfou, R., & Skiena, S. (2014, August). Deepwalk: Online learning of 

social representations. In Proceedings of the 20th ACM SIGKDD international 

conference on Knowledge discovery and data mining (pp. 701-710). 



85 
 

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: 

Unified, real-time object detection. In Proceedings of the IEEE conference on 

computer vision and pattern recognition (pp. 779-788). 

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object 

detection with region proposal networks. Advances in neural information 

processing systems, 28. 

Rossi, E., Chamberlain, B., Frasca, F., Eynard, D., Monti, F., & Bronstein, M. (2020). 

Temporal graph networks for deep learning on dynamic graphs. arXiv preprint 

arXiv:2006.10637. 

Rossi, E., Frasca, F., Chamberlain, B., Eynard, D., Bronstein, M., & Monti, F. (2020). 

Sign: Scalable inception graph neural networks. arXiv preprint arXiv:2004.11198, 

7, 15. 

Sandryhaila, A., & Moura, J. M. (2013). Discrete signal processing on graphs. IEEE 

transactions on signal processing, 61(7), 1644-1656. 

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., & Monfardini, G. (2008). The 

graph neural network model. IEEE transactions on neural networks, 20(1), 61-80. 

Schlichtkrull, M., Kipf, T. N., Bloem, P., Berg, R. V. D., Titov, I., & Welling, M. (2018, 

June). Modeling relational data with graph convolutional networks. In European 

semantic web conference (pp. 593-607). Springer, Cham. 

Shchur, O., Mumme, M., Bojchevski, A., & Günnemann, S. (2018). Pitfalls of graph 

neural network evaluation. arXiv preprint arXiv:1811.05868. 

Song, G., Ng, M. K., & Zhang, X. (2019). Robust tensor completion using transformed 

tensor svd. arXiv preprint arXiv:1907.01113. 



86 
 

Sperduti, A., & Starita, A. (1997). Supervised neural networks for the classification of 

structures. IEEE Transactions on Neural Networks, 8(3), 714-735. 

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the 

inception architecture for computer vision. In Proceedings of the IEEE conference 

on computer vision and pattern recognition (pp. 2818-2826). 

Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., & Mei, Q. (2015, May). Line: Large-

scale information network embedding. In Proceedings of the 24th international 

conference on world wide web (pp. 1067-1077). 

Tong, Z., Liang, Y., Sun, C., Li, X., Rosenblum, D., & Lim, A. (2020). Digraph 

inception convolutional networks. Advances in neural information processing 

systems, 33, 17907-17918. 

Tran, D. V., Navarin, N., & Sperduti, A. (2018, November). On filter size in graph 

convolutional networks. In 2018 IEEE Symposium Series on Computational 

Intelligence (SSCI) (pp. 1534-1541). IEEE. 

van Dam, E. R., & Omidi, G. R. (2018). Directed strongly walk-regular graphs. Journal 

of Algebraic Combinatorics, 47(4), 623-639. 

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017). 

Graph attention networks. arXiv preprint arXiv:1710.10903. 

Velickovic, P., Fedus, W., Hamilton, W. L., Liò, P., Bengio, Y., & Hjelm, R. D. (2019). 

Deep Graph Infomax. ICLR (Poster), 2(3), 4. 

Wang, H., & Raj, B. (2017). On the origin of deep learning. arXiv preprint 

arXiv:1702.07800. 



87 
 

Wang, X., Ji, H., Shi, C., Wang, B., Ye, Y., Cui, P., & Yu, P. S. (2019, May). 

Heterogeneous graph attention network. In The world wide web conference (pp. 

2022-2032). 

Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., & Weinberger, K. (2019, May). 

Simplifying graph convolutional networks. In International conference on machine 

learning (pp. 6861-6871). PMLR. 

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., ... & Dean, J. 

(2016). Google's neural machine translation system: Bridging the gap between 

human and machine translation. arXiv preprint arXiv:1609.08144. 

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Philip, S. Y. (2020). A comprehensive 

survey on graph neural networks. IEEE transactions on neural networks and 

learning systems, 32(1), 4-24. 

Xu, K., Hu, W., Leskovec, J., & Jegelka, S. (2018). How powerful are graph neural 

networks?. arXiv preprint arXiv:1810.00826. 

Yan, S., Xiong, Y., & Lin, D. (2018, April). Spatial temporal graph convolutional 

networks for skeleton-based action recognition. In Thirty-second AAAI conference 

on artificial intelligence. 

Yang, M., Zheng, X., Yin, J., & Gao, J. (2022). Quasi-Framelets: Another 

Improvement to GraphNeural Networks. arXiv preprint arXiv:2201.04728. 

Yang, Z., Cohen, W., & Salakhudinov, R. (2016, June). Revisiting semi-supervised 

learning with graph embeddings. In International conference on machine learning 

(pp. 40-48). PMLR. 

Yun, S., Jeong, M., Kim, R., Kang, J., & Kim, H. J. (2019). Graph transformer 

networks. Advances in neural information processing systems, 32. 



88 
 

Zhang, M., & Chen, Y. (2018). Link prediction based on graph neural networks. 

Advances in neural information processing systems, 31. 

Zhang, X., He, Y., Brugnone, N., Perlmutter, M., & Hirn, M. (2021). Magnet: A neural 

network for directed graphs. Advances in Neural Information Processing Systems, 

34, 27003-27015. 

Zheng, X., Zhou, B., Gao, J., Wang, Y. G., Lió, P., Li, M., & Montúfar, G. (2021). 

How framelets enhance graph neural networks. arXiv preprint arXiv:2102.06986. 

Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., ... & Sun, M. (2020). Graph 

neural networks: A review of methods and applications. AI open, 1, 57-81. 

Zhuang, C., & Ma, Q. (2018, April). Dual graph convolutional networks for graph-

based semi-supervised classification. In Proceedings of the 2018 World Wide Web 

Conference (pp. 499-508). 

Zou, C., Han, A., Lin, L., & Gao, J. (2022). A Simple Yet Effective SVD-GCN for 

Directed Graphs. arXiv preprint arXiv:2205.09335. 

 




