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ABSTRACT

Spectral stability of travelling waves in the
Fisher-Kolmogorov-Petrovsky-Piskunov and Fisher-Stefan models

by
Thi Thu Huong Bui

The reaction-diffusion equations including the Fisher-Kolmogorov-Petrovsky-Piskunov
(Fisher-KPP) and Fisher-Stefan model have been used to study biological invasion. Such
travelling wave solutions have successfully illustrated invasive phenomena in the ecosys-
tem. In this thesis, we first consider the standing waves and travelling waves of the Fisher-
KPP equation and the behaviour of the dynamical system near the equilibrium points.

Next, we examine the existence of solutions to the Fisher-KPP model by construct-
ing a trapping region in the plane for the wave speed c ≠ 0. Then, we study stability
of standing waves and travelling waves of this model by looking at the point spectrum,
the asymptotic operator and the essential spectrum. We notice that the spectrum in the
right half of plane implies that the travelling waves are unstable when c > 0. However,
a limitation of the Fisher-KPP equation is that it cannot be used to model the extinction
of invasive populations in practical situations. Hence, the Fisher-Stefan equation is intro-
duced to simulate both biological invasion for c > 0 and recession for c < 0. This model is
reformulated from the Fisher-KPP equation and includes a moving boundary, which gives
rise to a spreading-vanishing dichotomy.

Moreover, we look at the existence and uniqueness of solutions to the Fisher-Stefan
equation. By analysing the phase portrait, numerical results and the perturbation solu-
tions, we can construct approximate solutions of the Fisher-Stefan equation. This phase
portrait of this model also suggests that the solutions of the Fisher-KPP model exist for
c < 2 but they are unstable. Therefore, these solutions are disregarded when c < 2 and
considered as not exist. This unstable solution has value in describing solution of Fisher-
Stefan problem. Thus, the stable solutions exist in the Fisher-Stefan problem.

Last, we consider the spectral stability of the Fisher-Stefan equation by analysing its
asymptotic operator, continuous spectrum and point spectrum. The results indicate that
there is no point spectrum of the Fisher-Stefan asymptotic solution for the eigenvalue pa-
rameter � > 1 at c ≥ 0.
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CHAPTER 1

Introduction

The Fisher-Kolmogorov-Petrovsky-Piskunov (Fisher-KPP) equation has been used to
model the invasion of species in populations and the spatial spreading of invasive species
in ecology [Fis37]. Initially, this model was to study population genetics where u indi-
cates the density of an advantageous gene and the travelling wave solution denotes the
spread of the gene. Canosa studied a non-linear eigenvalue problem to obtain the travel-
ling waves of Fisher’s non-linear diffusion equation and describe the propagation of the
mutant in a habitat [Can73]. The phase plane analysis of the wave profiles in [Can73]
demonstrated that the propagation speed of the waves was linearly proportional to their
thickness. Aronson and Weinberger also investigated the behaviour of solutions of the
semi-linear diffusion equation for large values of the time t [AW75]. They let the popu-
lation be distributed in a one-dimensional habitat and applied the Fisher formula. Their
research considered the gene at a specific locus in a particular chromosome pair occur-
ring in two forms called alleles. The population was then divided into three classes or
genotypes including homozygotes aa or AA and heterozygotes aA. They looked at the
linear densities of the genotypes at time t and incorporated the Fisher model to analyse
the birth and death rates. In another study by Sherratt, he discussed the linearisation of
the Fisher-KPP model about u = 0 and solved this equation using Laplace transforms
[She98]. The approach of Laplace transforms to solve a piecewise linear version of the
Fisher-KPP equation was also used by Sleeman and Tuma earlier [ST84]. However, Sher-
ratt concentrated on large time behaviour and linearising about u = 0 [She98]. Another
application of Fisher’s model of dispersal in ecology and evolutionary biology was re-
searched by Levin, Muller-Landau, Nathan and Chave [LMLNC03]. Their study looked
at the spread of advantageous alleles in a new linear habitat and assumed that population
growth was logistic [LMLNC03]. In another ecological context, Skellam considered the
rates of advance of invading species and the distribution in space of the density of a pop-
ulation by random dispersal [Ske51]. His work embedded Fisher’s problem in a broader
framework and looked at dispersal kernels in multiple spatial dimensions [Ske51]. The
idea of biological invasion particularly the stratified dispersal process was further inves-
tigated by Shigesada, Kawasaki and Takeda [SKT95]. Since the population expanded,
new colonies were created, which caused an accelerating range expansion, they applied
the Fisher model, a von Foerster equation and Skellam’s model to construct a stratified
diffusion model to describe the dynamics of the size distribution of colonies and estimate
the range expansion in terms of rate expansion [SKT95].

The focus of this thesis is on investigating the existence and stability of the travelling
waves and standing waves of the Fisher-KPP and Fisher-Stefan equations. The phase por-
trait analysis, numerical results and perturbation solutions of these models provide insights
into the asymptotic operator, the essential spectrum and the continuous spectrum of the
standing waves and the travelling waves.
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In one space dimension, the Fisher-KPP equation is written as:

(1.0.1) ut = Duxx + ru
(

1 − u
k

)

for x ∈ (−∞,∞) and t > 0,

where D > 0 is the diffusion coefficient, r > 0 indicates the population growth rate and
k > 0 is the population carrying capacity.

According to Fisher, equation (1.0.1) models the change in population density when
the population disperses through linear diffusion [Fis37]. The nonlinear reaction diffusion
equation (1.0.1) is described by Fisher [Fis37] as:

(1.0.2) ut = ku(1 − u) +Duxx.
By denoting

(1.0.3) t∗ = kt,
and

(1.0.4) x∗ = x
√

k
D
,

the logistic growth equation (1.0.2) can be non-dimensionalised as

(1.0.5) ut = uxx + u(1 − u).
We would like to examine the existence of solutions of the travelling waves and stand-

ing waves of equation (1.0.5) by considering u = u(x). In Chapter 2 Section 2.1, we look
at the plots of solutions u(x, t)with initial profileH(−x) on [−50, 50] versus x for different
wave speed c whereH(x) is usually defined as:

(1.0.6) H(x) =

⎧

⎪

⎨

⎪

⎩

0 when x < 0,

1 when x > 0.

Next, we transform to a moving frame z ∶= x − ct and look at solutions of the form
u(x, t) = u(z) for c ≠ 0. Our aim is to establish that there exists a bounded solution to
the travelling waves for c ≥ 0, which decays to 1 as z → −∞ and when c < 0, this
is not possible. To prove the existence of solutions, we construct a trapping region in
the plane for the orbit. By analysing the phase portrait of the Fisher-KPP equation when
c ≥ 0, we observe that the travelling wave solutions between the two equilibrium points
(u(z), v(z)) = (0, 0) and (1, 0) correspond to a heteroclinic trajectory. In this case, u(z)
and v(z) are defined as:

du
dz

= v,

and

dv
dz

= −cv − u(1 − u).
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The homoclinic orbit at c = 0 is the boundary of the trapping region. The heteroclinic
trajectory from (1, 0) enters the trapping region, never leaves this region and ends at (0, 0).
Hence, there is a travelling wave solution decaying to u = 1 as z→ −∞.

In Section 2.2 of Chapter 2, we study the stability of standing waves in the Fisher-KPP
equation as a dynamical system on an infinite dimensional space. We let

 (u) = uxx + u(1 − u)
and consider the standing wave solution ℎ(x) of the Fisher-KPP model by solving

(1.0.7) ℎxx + ℎ(1 − ℎ) = 0.
Ideally, we would look for the Jacobian of the fixed points of  and its eigenvalues. How-
ever, since we do not have a Jacobian for  , we consider the linear part of  , L and find
the operator which acts on the direction of perturbation. If L − �I is not an invertible
operator, where � ∈ ℂ, then � ∈ �(L) the spectrum of L. We will analyse the essential
spectrum and the point spectrum by finding � ∈ ℂ so that L − �I is not invertible. The
essential spectrum of L is found to be the set (−∞,−1]. We next look at solutions of

(1.0.8) pxx + (1 − 2ℎ(x))p = �p,
where � is the eigenvalue parameter with � > −1 so that there exists a decaying solution
as x→ ±∞, and ℎ is a solution to equation (1.0.7). Our results show that ℎ(x) is not stable
and the spectrum of the linear operator L is the set

(1.0.9) �(L) ∶= (−∞,−1] ∪
{−3
4

}

∪ {0} ∪
{5
4

}

.

In Section 2.3 of Chapter 2, we analyse the stability of travelling waves in the Fisher-
KPP equation. Since the travelling wave solutions vc(z) act as steady states of the par-
tial differential equation (PDE), we linearise about vc(z). We look for � ∈ ℂ such that
L(vc(z)) − � is not invertible. Our aim as before is to find a Green’s function in L2(ℝ).
Hence, we examine the constant coefficient (asymptotic) operator. The essential spectrum
and the point spectrum then shed the light on the stability of the travelling waves in the
Fisher-KPP equation. We found that for all c ∈ ℝ, the essential spectrum of L(vc(z)) is
the set bounded by two parabolas

(1.0.10) �± = −k2 ± 1 + ick
that open leftwards in the complex plane with vertices at±1, where k is the imaginary part
of the eigenvalue A±(�). In this case, A±(�) are matrices of the equation in the far-field
solutions and defined as:

(1.0.11)
(

p
q

)

z
=
(

0 1
� + 1 −c

)(

p
q

)

=∶ A−(�)
(

p
q

)

as z → −∞,

and

(1.0.12)
(

p
q

)

z
=
(

0 1
� − 1 −c

)(

p
q

)

=∶ A+(�)
(

p
q

)

as z → +∞.
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The spectrum between these two curves is the essential spectrum and the curves them-
selves are the continuous spectrum. For � to the right of both curves, the signature of
A±(�) is (−1, 1) and for � to the left of both curves, the signature ofA±(�) is (−1,−1). For
� between these two parabolas, A+(�) has two decaying solutions as z → −∞. Next, we
examine the point spectrum of the wave vc(z) for all real c values. We suppose there exists
an eigenvalue � to L(vc) for � to the right of the two parabolas and look for a decaying
solution p satisfying Lp = �p for p ∈ L2(ℝ). We conclude that there is no point spectrum
of L(vc) to the right of the parabolas when c ≥ 2.

In Chapter 3, we study the Fisher-Stefan model of the form

(1.0.13) ut = u(1 − u) + uxx for 0 < x < s(t) and t > 0,

(1.0.14) st = −�ux(s(t), t) at x = s(t),

and

(1.0.15) u(s(t), t) = 0 at t > 0,

where x = s(t) is the moving boundary and the parameter � relating the speed of the trav-
elling wave c to the shape of the density front.

The Fisher-Stefan model adapts the Fisher-KPP equation with a moving boundary.
This condition overcomes the limit of the Fisher-KPP model and replicates population ex-
tinction. Du and Lin investigated the diffusive logistic model with a free boundary in one
space dimension to describe the spreading of a new or invasive species [DL10]. They in-
troduced an idea of the spreading-vanishing dichotomy and proposed a different approach
to the understanding of the spreading of species with population density u(t, x) over a one
dimensional habitat. Their paper was an attempt to use the Stefan condition to study the
spreading of populations. They assumed that the species only invaded further into the en-
vironment from the right end of the initial region and the spreading front expanded at a
speed that was proportional to the population gradient at the front. Their research showed
that a spreading-vanishing dichotomy held for equation (1.0.13) which implied as t→ ∞,
the population either successfully established itself in the new environment (spreading)
i.e. s(t) → ∞ and u(t, x) → 1 or the population vanished eventually (vanishing) i.e.
s(t) → s∞ ≤ �

2
and u(t, x) → 0 in our case. Furthermore, they proved that for large time

and when the spreading occurred, the expanding front moved at a constant speed. In this
paper, since the Fisher-KPP equation does not allow the solution to go extinct, we look
at the Fisher-Stefan equation to overcome this limitation. By letting z̃ = ct − x and plot-
ting the phase portrait of the Fisher-Stefan equation on Mathematica, we show that for
0 ≤ c < 2, there exists a unique positive solution u(z) = uc(z) defined ∀z > 0 to the
following equation

⎧

⎪

⎨

⎪

⎩

u′′ − cu′ + u(1 − u) = 0,

u(0) = 0.
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From a dynamical systems point of view, this solution uc is the stable manifold of the fixed
point (1, 0) and v = u′(z) and u′(z) > 0. Moreover, we analyse the phase portrait of trav-
elling wave solutions of the Fisher-Stefan equation to further understand the existence of
solutions. By letting z = x − ct at c > 0, we find solutions of the form u(x, t) = u(z). We
investigate the numerical trajectory of the limiting solutions to the Fisher-Stefan equation
to compare it with the Fisher-KPP equation when 0 < c < 2 and −2 < c < 0. Our
observation is that both models have the same phase plane (u, v) with a different bound-
ary condition. We also consider the phase portrait of the Fisher-Stefan equation when
−2 < c < 0 and the density profile of travelling wave solutions of the Fisher-KPP equa-
tion to compare the existence and stability of solutions. Our findings indicate that at c < 2,
the solutions of the Fisher-KPP equation exist but are unstable. However, in the Fisher-
Stefan equation, there are stable solutions describing the problem [EHMJ+19].

In Chapter 4, we focus on the spectral stability of the travelling waves to the Fisher-
Stefan model. Following the research by El-Hachem and her colleagues [EHMJ+19] and
by looking at numerical solutions of this equation for negative c values, we can understand
the qualitative behaviour of the trajectories. Moreover, for small c < 2, we find perturba-
tion approximations to describe the shape of the travelling wave solutions of the Fisher-
Stefan equation. We investigate the numerical trajectories of the Fisher-Stefan model be-
tween the two equilibrium points (1, 0) and (0, 0) in the phase plane for various wave
speeds c. By comparing the accuracy of (1) and (c) perturbation solutions, we can
identify which curve provides a more accurate match to the shape of the numerical solu-
tions [EHMJ+19]. Our numerical trajectories show that the (1) perturbation solution
provide a more accurate match to the shape of the numerical solutions when c = −0.05.
However, this is not the case as c becomes larger. Thus, for 0 ≤ c ≤ 0.5, the (c)
perturbation solution is considered as being more desirable in terms of providing a more
accurate approximation to the shape of the numerical solutions to the Fisher-Stefan equa-
tion [EHMJ+19]. In addition, we look at the spectral stability of the asymptotic solution
to the Fisher-Stefan equation. Denoting such a solution by j(z, t), we would like to invert
(jc(z)) − � on ℝ+. As in Chapter 2, we need to find a Green’s function in L2(ℝ+) by
having decaying solutions in the far-field. We first examine the asymptotic operator and
continuous spectrum of the Fisher-Stefan model and then look for the spectrum of ∞ by
finding decaying solutions qualitatively depending on �. In this case, however we have
only one dispersion relation coming from −∞,

(1.0.16) �− = −k2 − 1 + ick.

This equation describes the continuous spectrum of the asymptotic waves to the Fisher-
Stefan equation, which is a parametrised curve opening leftwards for � ∈ ℂ. Next, we
analyse the point spectrum of the wave jc(z). We need to find a � to the right of the
continuous spectrum satisfying

(1.0.17) (jc)p = �p,

(1.0.18) p(0) = 0,

and
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(1.0.19) lim
x→−∞

p(x) = 0.

In a similar approach as in Chapter 2 of the Fisher-KPP model, we find that there is no
point spectrum of (jc) for � > 1 of the Fisher-Stefan model for all c > 0.

In Chapter 5, we summarise the similarities and differences between the Fisher-KPP
equation and the Fisher-Stefan equation in terms of comparing their phase planes, the
stability of the travelling waves and standing waves, the asymptotic operator and the con-
tinuous spectrum. Based on these findings, we conclude the existence of solutions for
each model and then further discuss about the numerical solutions of the Fisher-Stefan
equation. We also consider the possibility of the future work such as the Fisher-KPP and
the Fisher-Stefan model with the Allee effect or strong Allee effect.



CHAPTER 2

Existence and stability of waves in the Fisher-KPP equation

2.1. Existence of solutions - standing and travelling waves in the Fisher-KPP
equation

In this chapter, we analyse the standing and travelling waves in the Fisher-KPP equa-
tion. UsingMathematica, we plot the solutions u(x, t) to equation (1.0.5) with initial profile
H(−x) on [−50, 50] versus x for t = 0, 1, 5, 10 and 20 as shown in Figure 1. In this case,
H(x) = 0 for x < 0 and H(x) = 1 for x > 0. We let u = u(t), then equation (1.0.5)
becomes the logistic equation

(2.1.1) ut = u(1 − u).
If we let f (u) = u(1 − u), equation (2.1.1) has two fixed points at u = 0 and u = 1. This
implies that u increases in time since f ′(u) > 0, and u decreases in time since f ′(u) < 0.
Therefore, the fixed point u = 0 is unstable in time while the fixed point u = 1 is stable in
time.

Now we consider u = u(x), then equation (1.0.5) becomes

(2.1.2) u(1 − u) + uxx = 0.
In the phase portrait we have

ux = v,
and

vx = −u(1 − u).
Hence,

(2.1.3)
dv
dx
du
dx

=
−u(1 − u)

v
= dv
du

⟹ vdv = −u(1 − u)du

⟹
v2

2
= u3

3
− u2

2
+ C where C is a constant.

Therefore, the phase plane curves need to satisfy

(2.1.4) K(u, v) = v2

2
− u3

3
+ u2

2
= C.

13
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(A) (B)

(C) (D)

(E)

FIGURE 1. The plots of the solution u(x, t) to equation (1.0.5) with initial
profile equal to H(−x) on [-50,50] versus x for various values of t ≥ 0.
H(x) is the usual Heaviside function given by H(x) = 0 for x < 0 and
H(x) = 1 for x > 0. The solution instantly smooths out, and becomes a
travelling wave moving to the right.

The phase portrait curve can be seen in Figure 2 panel A. By transforming Fisher-KPP
equation to a moving frame z ∶= x − ct, we look for solutions of the form:

(2.1.5) u(x, t) = u(x − ct) = u(z),
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where u(x, t) moves at finite and constant speed c ≠ 0.

In the travelling wave coordinate, equation (1.0.5) reduces to a second order nonlinear
ordinary differential equation:

(2.1.6) d2u
dz2

+ c du
dz

+ u(1 − u) = 0 for z ∈ ℝ,

with the boundary conditions

(2.1.7) u(−∞) = 1, u(∞) = 0 and −∞ < z <∞.
We now examine the existence of the solutions in equation (2.1.6) by finding the trapping
region such that for c ≠ 0, the trajectory runs from (1, 0), enters the region that it cannot
leave and moves towards (0, 0). This argument follows the argument in [Ada17].

2.1.1. Phase portrait analysis of the Fisher-KPP equation.

We re-write equation (2.1.6) as a first order dynamical system

(2.1.8) du
dz

= v,

and

(2.1.9) dv
dz

= −cv − u(1 − u).

Equation (2.1.8) and equation (2.1.9) have two equilibrium points at (0, 0) and (1, 0).

The heteroclinic trajectory between these two equilibrium points corresponds to trav-
elling wave solutions. To prove the existence of a bounded solution for c ≥ 0, which
decays to 1 as z → −∞, we need to construct a trapping region in the plane for the orbit.
We use Mathematica to model the phase plane of the Fisher-KPP equation (2.1.8) and
equation (2.1.9) for c = 0, 0.5, 1, 1.5, 3 and 10 as shown in Figure 2. Figure 3 indiciates
the phase portrait of the travelling waves, the trapping region at c = 2 and the correspond-
ing heteroclinic trajectory between (0, 0) and (1, 0). We observe that the interior of the
homoclinic orbit when c = 0 in Figure 3 is a trapping region.

We now consider the vector field near (u, v) = (0, 0) when c ≠ 0 along the homoclinic
orbit by denoting F (u, v) as:

(2.1.10) F (u, v) =
(

u
v

)′

=
(

v
−cv − u(1 − u)

)

,

We have

F (u, v) ⋅ ∇K =

⟨

(

v
−cv − u(1 − u)

)

,
(

u(1 − u)
v

)

⟩

(2.1.11)

= −cv2.(2.1.12)
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where

∇K =
(

−u2 + u, v
)

(2.1.13)
= (u(1 − u), v) .(2.1.14)

The equation for the homoclinic orbit is found by solving equation (2.1.3), which results
in equation (2.1.4). In this case, C in equation (2.1.4) is also the value of the Hamiltonian
K(u, v) and C = 0 along the homoclinic. Figure 4 is the phase portrait of the standing
wave to the Fisher-KPP equation. The locus of the homoclinic orbit forms a trapping
region when c ≠ 0. These results establish the existence of a bounded solution to the
travelling waves ODE for c ≥ 0, which decays to 1 as z → −∞. Therefore, the travelling
wave solution to the PDE exists for every c value.

Now if we choose only the (�) term in equation (2.1.10) where u = u0 + �u1 +(�2)
and v = v0 + �v1 + (�2), then we obtain the linearisation

(

u
v

)′

= DF (u0, v0)
(

u
v

)

,

where DF is the Jacobian. At the fixed points of equation (2.1.10), we have

DF (0, 0) =
(

0 1
−1 −c

)

,

and

DF (1, 0) =
(

0 1
1 −c

)

.

According to the Hartman-Grobman theorem [Gro59], [Gro62], [Har60], [Har63], let
g be the flow (solution) of the non-linear ODE and f is the flow of the linearisation of
g at an equilibrium (u0, v0), then g solves equation (2.1.10). This implies that f and g
are topologically conjugate if there exists a homeomorphism H mapping an open set U
containing the origin onto an open set V containing the origin and

H−1
(

f
(

H
(

u
v

)))

= g
(

u
v

)

.

Thus, the behaviour of a dynamical system near the equilibrium point is the same as its
linearisation near this equilibrium point if no eigenvalue of the linearisation has a real part
equal to zero. This means if the eigenvalues ofDF (u0, v0) all have non-zero real part, then
near the point (u0, v0), the solution to equation (2.1.10) will be conjugate to the solutions
of:

(

u
v

)′

= DF (u0, v0)
(

u
v

)

.

The Hartman-Grobman theorem [Gro59], [Gro62], [Har60], [Har63] states that near
(1, 0), solution to equation (2.1.10) will be conjugate to solutions of:

(

u
v

)′

=
(

0 1
1 −c

)(

u
v

)

for c ≠ 0,
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(A) (B)

(C) (D)

(E) (F)

FIGURE 2. The phase portrait of the Fisher-KPP equation (2.1.8) and equa-
tion (2.1.9) when c = 0, 0.5, 1, 1.5, 3 and 10. The red curves represent the
corresponding heteroclinic trajectories that run between (0, 0) and (1, 0) for
each c value. When c = 0 in Figure (A), the homoclinic orbit forms a trap-
ping region. When 0 < c < 2, the heteroclinic orbit approaches (0,0) and
then spirals around the origin as seen in Figure (B), (C) and (D). However,
when c ≥ 2, the heteroclinic orbit between two equilibrium points (0, 0)
and (1, 0) does not spiral around the origin as seen in Figure (E) and (F).
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and near (0, 0), the solution to
(

u
v

)′

= DF (0, 0)
(

u
v

)

will be conjugate to solutions of:

(

u
v

)′

=
(

0 1
−1 −c

)(

u
v

)

for c ≠ 0.

At (0,0),

det
(

−� 1
−1 −c − �

)

= 0⇒ �2 + c� + 1 = 0.

Therefore,

(2.1.15) �± =
1
2
[−c ±

√

c2 − 4],

and (0, 0) is a stable node for c ≥ 2 and stable spiral if 0 < c < 2.

At (1,0),

(2.1.16) det
(

−� 1
1 −c − �

)

= 0⇒ �2 + c� − 1 = 0.

Hence,

(2.1.17) �± =
1
2
[−c ±

√

c2 + 4],

and (1, 0) is a saddle point ∀c ∈ ℝ.

The existence of solutions can be proved by comparing the eigenvectors of the lineari-
sation around the point (1, 0) and u′(z) = 0. We have

(2.1.18) u1 =
(

1
1

)

,

and

(2.1.19) u2 =
(

−1
1

)

.

At c ≠ 0, the unstable eigenvector of DF is

(2.1.20) u�0+ =
(

1
�0+

)

.

For c ≥ 0, the slope of this line is

(2.1.21) �0+ =
1
2

(

−c +
√

c2 + 4
)

for − 1 < �0+ ≤ 1.

We also notice that �0+ > 0 and �
0
+

|

|

|

|c=0
= 1, and



2.2. STABILITY OF STANDING WAVES IN THE FISHER-KPP EQUATION 19

(2.1.22) d
dc
�0+ =

1
2

(

−1 + c
√

c2 + 4

)

< 0.

This result indicates �0− =
1
2

(

−c −
√

c2 + 4
)

always decreases with increasing c. Hence,
the maximum value of the slope is at c = 0. For c ≠ 0, the part of the unstable manifold
with v > 0 is inside the homoclinic orbit and the entire solution in the phase plane lies
within the homoclinic orbit of the speed c = 0. This implies that the homoclinic orbit in
the standing wave phase plane is the boundary of a trapping region. Therefore, there is a
travelling wave solution decaying to 1 as z → −∞.

Moreover, from the phase portrait of the travelling waves to the Fisher-KPP equa-
tion (2.1.8) and equation (2.1.9) as shown in Figure 3 and the phase portrait of the standing
wave to the Fisher-KPP equation (2.1.10) as shown in Figure 4, we observe that the rele-
vant heteroclinic trajectory from the saddle point (1, 0) never leaves that region and thus,
by LaSalle’s invariance principle [Mei07], the trajectory must end at the stable node (0, 0).

Theorem 2.1.1. According to LaSalle’s invariance principle in [Mei07], suppose that L
is a weak-Lyapunov function on some compact, forward-invariant neighbourhood U of
the equilibrium point (1, 0). Let Z = {dL

dz
= 0} for equilibrium points in U be the set

where L is not decreasing. Then if the equilibrium point is the largest forward invariant
subset of Z, it is asymptotically stable and attracts every point in U .

The calculation in equation (2.1.13) shows that K is a weak-Lyapunov function and
Z = {dL

dz
= 0} is just the set (0, 0).

In this section, we considered constant solutions at two fixed points u = 0 and u = 1
in equation (1.0.5). We have also established that u = 0 is unstable in time and stable in
space whereas u = 1 is stable in time and unstable in space for travelling waves problem.
Moreover, we looked at the vector field near (u, v) = (0, 0) and the behaviour of the dy-
namical system near the equilibrium points. We have found that (0, 0) is a stable node for
c ≥ 2 and stable spiral if 0 < c < 2 whereas (1, 0) is a saddle point. We also showed the
existence of solutions by constructing a trapping region in the plane for the orbit of the
Fisher-KPP equation and comparing the eigenvectors of the linearisation around 0 at c = 0.

2.2. Stability of standing waves in the Fisher-KPP equation

Now, we view the Fisher-KPP equation (1.0.5) as a dynamical system on an infinite
dimensional space by letting

(2.2.1) u̇ =  (u),

where u̇ ∶= )tu and  (u) = uxx + u(1 − u).

A standing wave solution to equation (1.0.5) is one depending on x only. Let us con-
sider the solution at ℎ by solving:
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FIGURE 3. The phase portrait of the travelling waves of the Fisher-KPP
equation (2.1.8) and equation (2.1.9), the trapping region when the wave
speed c = 2 and the corresponding heteroclinic trajectory between the two
equilibrium points (0, 0) and (1, 0). The red curve represents a homoclinic
orbit when c = 0 and it is the boundary of a trapping region. The green
curve indicates a heteroclinic trajectory that runs between (1, 0) and (0, 0)
when c > 0. Asymptotically the wave lies within the trapping region then
decays to 1 as z → −∞.

(2.2.2) ℎxx + ℎ(1 − ℎ) = 0,

where ℎ(x) is a fixed point of equation (2.2.1) as  (ℎ) = 0.

If we impose boundary conditions

(2.2.3) ℎ(+∞) = ℎ(−∞) = 0,

such a solution to equation (2.2.2) can be explicitly described by the following formula:

(2.2.4) ℎ(x) = 1 − 3
2
sech2

(x
2

)

The plot of solutionℎ(x) described in equation (2.2.4) in the phase plane of equation (2.1.10)
is shown in Figure 4.

In ordinary dynamical systems, we focus onDF (x∗)which is the Jacobian of the fixed
point and the eigenvalues. Since we do not have a Jacobian for  , we consider the linear
part of as an operator which acts on the direction of perturbation. We look at (ℎ+�p(x))
and keep the (�) term to obtain an operator that acts on p as follows
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FIGURE 4. The phase portrait of the standingwave of the Fisher-KPP equa-
tion (2.1.10). The red curve represents the plot of solution ℎ(x) described
in equation (2.2.4) in the phase plane of equation (2.1.10). The locus of the
homoclinic orbit forms a trapping region for the heteroclinic orbit when
c ≠ 0.

 (ℎ + �p) =  (ℎ) + �Lp + (�2)(2.2.5)
= (ℎ + �p)xx + (ℎ + �p)(1 − ℎ − �p)(2.2.6)
= ℎxx + ℎ(1 − ℎ) + �(pxx + (1 − 2ℎ)p) − �2p2,(2.2.7)

where p is the perturbation of the function ℎ(x).

Thus, L is the linear operator given by

(2.2.8) Lp ∶= lim
�→0

)
)�

 (ℎ + �p) = pxx + (1 − 2ℎ(x))p.

We now consider the linear differential equation

(2.2.9) pt = Lp = pxx + (1 − 2ℎ(x))p.

Equation (2.2.9) indicates how p’s that start "near" ℎ evolve in time under the influence of
 for the short-term. Since we want the perturbation p to be "near" ℎ, this requires �p to
be "near" ℎ so the following is satisfied:

√

∫ℝ
[ℎ − (ℎ + �p)]2dx ≪ 1
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(2.2.10) ⟹ �

√

∫ℝ
p2dx ≪ 1.

Since we can pick � as small as we need, equation (3.2.10) is equivalent to:

∫ p2dx <∞.

The number � is called an eigenvalue and the corresponding p is called the eigenfunc-
tion. If Re(�) > 0, then ℎ is an unstable fixed point of equation (1.0.5). Thus, we define
p ∈ L2(ℝ) to be "near" ℎ if and only if it has a finite square integral.

We say that � ∈ ℂ is in the spectrum of L if L − �I is not an invertible operator and
write � ∈ �(L). We would like to know the spectrum by finding � ∈ ℂ such that L − �I
is not invertible. In inifite dimensions, a linear operator L is not invertible if and only if it
is not one-to-one or not onto [KP13].

Definition 2.2.1. According to Kapitula and Promislow [KP13], we let X be a Banach
space and let L ∶ D̃(L) ⊂ X → X be a closed linear operator with domain D̃(L) dense
in X. The operator L is Fredholm operator if
(a) ker(L) is finite-dimensional,
(b) R(L) is closed with finite codimension where R(L) denotes the range of L.
Hence, the spectrum of L consists of the following two sets:
(1) The essential spectrum of a Fredholm operator L, �ess(L), is the set of all � ∈ ℂ such
that either �I − L is not Fredholm, or �I − L is Fredholm, but ind(�I − L) ≠ 0.
(2) The point spectrum of a Fredholm operator L is the set defined by

�pt(L) = � ∈ ℂ ∶ ind(�I − L) = 0, but �I − L is not invertible.

The elements of the point spectrum are called eigenvalues of L. The equivalent definition
of Fredholm operator and index can also be found in Section 2.2.5 of [KP13].

In our case, )x − A is Fredholm if Re(�(A)) ≠ 0 and the index of an operator of the
form ()x − A) for A ∈ Mn(ℝ) is written as ind()x − A) which denotes the number of
negative eigenvalues of A.

Theorem 2.2.1. According to [KP13], the operatorL is a relatively compact perturbation
of L0 if (L0 − L)(�I − L0)−1 ∶ X → X is compact for some � ∈ �(L0). The stability
theorem for relatively compact perturbations of Fredholm operators is also referred to as
Weyl’s essential spectrum theorem in [KP13]. By letting L and L0 be closed linear oper-
ators in a Banach space X, if L is a relatively compact perturbation of L0 then:
(1) The operator �I − L is Fredholm if and only if �I − L0 is Fredholm.
(2) ind(�I − L) = ind(�I − L0).
(3) The operator L and L0 have the same essential spectra. In particular, �ess(L) =
�ess(L0).
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The operatorL (ℎ)−�will not be one-to-one if there exists p ≠ 0 such that (L (ℎ)−
�)p = 0. In particular, if we can find a � ∈ �(L) so that Re(�) > 0 and there is a solution
to

(2.2.11) pxx + (1 − 2ℎ(x))p = �p.
In order to determine the invertability of L, we will construct a Green’s function. We

want to solve

(2.2.12) (L − �)p = �(x − y).
The right hand side of equation (2.2.12) is the Dirac � function and is defined according
to three following conditions[Gri02]:

�(x) = 0 unless x = 0,

∫ℝ
�(x)dx = 1,

and

∫ℝ
f (x)�(x − a)dx = f (a) for any f ∈ C∞

0 (ℝ),

One way to view the Dirac � function is as the limit of the sequence of functions:

(2.2.13) dn(x) =
n

�(1 + (nx)2)
,

and

�(x) = lim
n→∞

dn(x).

From Figure 5, dn(x)will become sharper as n→∞, but the integral value is always equal
to 1.

Suppose we can find a solutionG�(x, y) to (L−�)G�(x, y) = �(y−x) for a given value
of � and any y ∈ ℝ. By applying (L − �) on both sides, the solution of (L − �)p = f can
be found as following:

(L − �)p = (L − �)∫ G�(x, y)f (y)dy(2.2.14)

= ∫ (L − �)G�(x, y)f (y)dy(2.2.15)

= ∫ �(y − x)f (y)dy(2.2.16)

= f (x).(2.2.17)
(2.2.18)
Here we call G�(x, y) a Green’s function.

We observe that for a given fixed y ∈ ℝ unless x = y, G�(x, y) is a solution to
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FIGURE 5. A plot of dn(x) in equation (2.2.13) for various values of n. In
this case, dn(x) becomes sharper as n →∞. However, the integral value is
always equal to 1.

(L − �)G�(x, y) = 0.
We also want G�(x, y) ∈ L2(ℝ), then G�(x, y) must decay to 0 as x → ±∞. By looking
at the far-field solutions limx→±∞ to (L − �)p = 0 at a fixed y ∈ ℝ, we observe that
limx→±∞ ℎ(x) = 0. Hence, from equation (2.2.11), the general solution to

(2.2.19) pxx − (� + 1)p = 0

is

p = c1e−x
√

�+1 + c2ex
√

�+1.
If the far-field operator does not contain solutions which decay to 0, then we cannot find a
Green’s function. We conclude that the operator L is not Fredholm when � < −1. Thus,
the essential spectrum of L consists of the set (−∞,−1]. Now, we look at solutions of
equation (2.2.11) where � > −1 so that there exists solutions p = cex

√

�+1 which decay to
0 as x→ ±∞.

2.2.1. Point spectrum of the standing waves.

First we establish that L has only real eigenvalues. Integrating by parts twice, for v
and v̄ are arbitrary and functions in L2, we have:

∫ vxxv̄dx = vxv̄
|

|

|

|

∞

−∞
− ∫ vxv̄xdx(2.2.20)

= −v̄xv
|

|

|

|

∞

−∞
+ ∫ vv̄xxdx(2.2.21)

= ∫ vv̄xxdx.(2.2.22)

Hence,
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∫ (vxx + (1 − 2ℎ)v)v̄dx = ∫ v(v̄xx + (1 − 2ℎ)v̄)dx(2.2.23)

= ∫ vLv̄dx.(2.2.24)

As a consequence,

∫ℝ
Lvv̄dx = ∫ℝ

vLv̄dx

If � is an eigenvalue of L

⟹ �∫ℝ
vv̄dx = �̄∫ℝ

vv̄dx.

This implies that � = �̄ or � ∈ ℝ.

We now look for a solution to equation (2.2.11) which decays to 0 as x→ −∞. Let us
call this decaying solution as pU (x; �). Using Mathematica, we can compute the solution
of equation (2.2.11) using ℎ(x) as given by equation (2.2.4) to be

pU (x, �) = e
√

�+1x
(

− 8
15
�
√

� + 1 + 1
5
(8� + 5) tanh

(x
2

)

− 2
√

� + 1 tanh2
(x
2

)

+ tanh3
(x
2

))

.

We also use Mathematica to compute the solution of equation (2.2.11) which decays at
x → +∞ and let us call this solution as pS(x; �):

pS(x, �) = e
√

�+1(−x)
( 8
15
�
√

� + 1 + 1
5
(8� + 5) tanh

(x
2

)

+ 2
√

� + 1 tanh2
(x
2

)

+ tanh3
(x
2

))

.

By setting q ∶= px, we can solve equation (2.2.11) as the linear system of equations:

(2.2.25)
(

p
q

)

x
=
(

0 1
� − 1 + 2ℎ(x) 0

)(

p
q

)

.

We observe that from continuous spectrum, for � > −1, if these solutions agree for a
single x, then due to the linearity of the system in equation (2.2.25), they must agree for
all x ∈ ℝ. Therefore, we choose x = 0 to examine whether these solutions agree for a
single x by evaluating the determinant

D(�) =
|

|

|

|

pU (0; �) pS(0; �)
(pU )x(0; �) (pS)x(0; �)

|

|

|

|

(2.2.26)

= 8
225

(
√

� + 1)�(4� − 5)(4� + 3).(2.2.27)

If � > −1 and D(�) = 0, the columns of the matrix are dependent. This implies that
pU = kpS for all x ∈ ℝ. Therefore, pU (x; �) = pS(x; �). This must be an eigenfunction
and � must be an eigenvalue. Thus, the spectrum of the operator L is the set

�(L) ∶= (−∞,−1] ∪
{−3
4

}

∪ {0} ∪
{5
4

}

.
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We observe that the wave ℎ(x) is not stable and the linear operatorL has three eigenvalues
and other values � where the operator is not invertible.

By using Mathematica and looking at the eigenfunctions for the three eigenvalues:

p̂2
(

x; −3
4

)

= 1
5
(−3 + 2cosh(x))sech3

(x
2

)

,

p̂1(x; 0) = 8csch
3(x)sinh4

(x
2

)

= −3
2
ℎx(x),

and

p̂0
(

x; 5
4

)

= sech3
(x
2

)

,

we can see that �0 > �1 > �2.

By using Mathematica, our normalised eigenfunctions are

p2
(

x; −3
4

)

=
√

75
32
× 1
5
(−3 + 2cosh(x))sech3

(x
2

)

(2.2.28)

=

√

6
8
(−3 + 2cosh(x))sech3

(x
2

)

,(2.2.29)

p1(x; 0) =
√

15
8
× 8csch3(x)sinh4

(x
2

)

(2.2.30)

= 2
√

30csch3(x)sinh4
(x
2

)

,(2.2.31)

and

p0
(

x; 5
4

)

=
√

15
32

sech3
(x
2

)

(2.2.32)

=

√

30
8

sech3
(x
2

)

.(2.2.33)

These eigenfunctions characterise the behaviour of the set of eigenvalues as stated in the
theory of Kapitula and Promislow [KP13].

According to theorem 2.3.2 in Kapitula and Promislow [KP13], the point spectrum,
�pt(L), contains a finite number, possibly zero, of simple eigenvalues, which can be enu-
merated in a strictly descending order

(2.2.34) �0 > �1 > �2 > −1 ∶= max{−1,−1}.

For j = 0, 1 and 2, the eigenfunction pj(x) associated with the eigenvalue �j can be nor-
malised so that pj has j simple zeroes and the eigenfunctions are orthonormal.
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2.3. Stability of travelling waves in the Fisher-KPP equation

In this section, we look at solutions of u(x, t) = v(z, t) which solve:

(2.3.1) vt = vzz + cvz + v(1 − v).

For a fixed v(z, t) = vc(z)which solves equation (2.1.6) and the set of boundary conditions
in equation (2.1.7), we linearise equation (2.3.1) about vc(z):

(2.3.2) v = vc(z) + �p(z, t).

Substituting equation (2.3.2) into equation (2.3.1) and keeping (�) terms, we obtain:

pt = pzz + cpz + (1 − 2vc(z))p(2.3.3)
= L(vc(z))p.(2.3.4)

We look for � ∈ ℂ such that (vc(z)) − � is not invertible by writing:

L(vc(z))p − �p = pzz + cpz + (1 − 2vc(z))p − �p

as a system:

(2.3.5)
(

p
q

)

z
=
(

0 1
� − 1 + 2vc −c

)(

p
q

)

=∶ A(z; �)
(

p
q

)

,

where q = pz. To find a Green’s function in L2(ℝ), we need to have decaying solutions in
the far-field. If

(2.3.6) lim
z→−∞

vc(z) = 1,

and

(2.3.7) lim
z→+∞

vc(z) = 0,

then as z→ −∞, equation (2.3.5) becomes:

(2.3.8)
(

p
q

)

z
=
(

0 1
� + 1 −c

)(

p
q

)

=∶ A−(�)
(

p
q

)

,

and as z→ +∞, equation (2.3.5) becomes:

(2.3.9)
(

p
q

)

z
=
(

0 1
� − 1 −c

)(

p
q

)

=∶ A+(�)
(

p
q

)

.
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2.3.1. The asymptotic operator and the essential spectrum.

We would like to examine the constant coefficient system:

(2.3.10)
(

p
q

)

z
=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

A−

(

p
q

)

for z < 0.

A+

(

p
q

)

for z > 0.

This comes from the non-continuous but constant coefficient (asymptotic) operator:

(2.3.11) L∞ ∶= )zz + c)z ∓ 1.
According to Weyl’s essential spectrum theorem in Kapitula and Promislow [KP13], any
essential spectrum of L∞ will be the same as the essential spectrum of L, �ess(L∞) =
�ess(L).

Equation (2.3.8) has the general solution:

(2.3.12)
(

p
q

)

= c1e�−(�)z
(

1
�−(�)

)

+ c2e�+(�)z
(

1
�+(�)

)

,

where �±(�) are the eigenvalues of the matrix A−(�).

The eigenvalues of A−(�) will be

(2.3.13) det(A − �) = �2 + c� − � − 1 = 0

(2.3.14) ⟹ �±(�) =
1
2

(

−c ±
√

c2 + 4(� + 1)
)

Equation (2.3.9) has the general solution:

(2.3.15)
(

p
q

)

= d1e!−(�)z
(

1
!−(�)

)

+ d2e!+(�)z
(

1
!+(�)

)

,

where !±(�) are the eigenvalues of the matrix A+(�).

The eigenvalues of A+(�) will be solutions to

(2.3.16) det(A − !) = !2 + c! − � + 1 = 0.

(2.3.17) ⟹ !±(�) =
1
2

(

−c ±
√

c2 + 4(� − 1)
)

.

We are going to invert operator  in equation (2.3.11) by finding decaying solutions to
the equation (2.3.12) and equation (2.3.15) which are parametrised by �. We begin with
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a real � ≫ 1 at �±(�) and !±(�). Our observation is that �−(�) > 0 while �+(�) < 0
and !−(�) > 0 while !+(�) < 0. As a result, we can see that part of the solution to
equation (2.3.12) corresponds to �+(�) decays as z→ +∞ and the solution corresponding
to !−(�) decays as z → −∞. At z = 0, there are two solutions:

�u(0) ∶= c2

(

1
�−(�)

)

,

and

�s(0) ∶= d1

(

1
!+(�)

)

.

In order to invert the constant coefficient operator L in equation (2.3.11) and find values
for c2 and d1, we need to solve (L∞−�)p = �x. This means we will find c2 and d1 so that:

(2.3.18)
(

1 −1
�−(�) −w+(�)

)(

c2
d1

)

=
(

0
−1

)

.

Solving equation (2.3.18) gives:

c2 =
1

!+(�) − �−(�)
,

and

d1 =
1

�−(�) − !+(�)
.

Next, we look at the values of � so that the real parts of �± and !± vanish. By letting
k ∈ ℝ, we solve det(A± − ik) = 0 to obtain

(2.3.19) �± = −k2 ± 1 + ick.
We define Ω1,Ω2 and Ω3 in Figure 6 as following:

(2.3.20) Ω1 ∶ ind()x − A+(�)) = 2 and ind()x − A−(�)) = 2,

(2.3.21) Ω2 ∶ ind()x − A+(�))) = 1 and ind()x − A−(�)) = 2,
and

(2.3.22) Ω3 ∶ ind()x − A+(�)) = ind()x − A−(�)) = 1.
Equation (2.3.19) represents a pair of parametrised parabolas that open leftwards in the
complex plane with vertices at ±1 and the parametric variable k is the imaginary part of
the eigenvalue A±(�) as seen in Figure 6. Therefore, for � to the right of both curves,
we have that the signature of A±(�) is (−1, 1) (both A+(�) and A−(�) have one negative
eigenvalue and one positive eigenvalue). For � to the left, we haveA±(�) is (−1,−1) (both
A+(�) and A−(�) have two negative eigenvalues). Along the red curve, A+(�) has signa-
ture (0,-1). Along the blue curve, A−(�) has signature (0,-1). In between the two curves,
we have thatA+(�) has signature (1,−1) (A+(�) has one negative eigenvalue and one posi-
tive eigenvalue) whileA−(�) has signature (−1,−1) (A−(�) has two negative eigenvalues).
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FIGURE 6. The essential spectrum of a travelling wave in the Fisher-KPP
model is the set bounded by the two parabolas in equation (2.3.19). These
parabolas open leftwards in the complex plane with vertices at ±1. The
parametric variable k ∈ ℝ is the imaginary part of the eigenvalue A±(�).
The regions Ω1,Ω2 and Ω3 are defined in equations (2.3.20) to (2.3.22).
The blue curve is the set of � ∈ ℂ where A−(�) has purely imaginary
eigenvalue and the red curve is the set where A+(�) has a purely imaginary
eigenvalue. For � to the right of both curves, i.e. inΩ3,A±(�) has signature
(−1, 1). For � to the left, i.e. in Ω1, A±(�) has signature (−1,−1). On the
red curve, the signature of A+(�) is (0,-1). On the blue curve, the signature
of A−(�) is (0,-1). In between these two curves, the signature of A+(�) is
(1,−1) (A+(�) and the signature of A−(�) is (−1,−1).

In this case, signature of a matrix as tripe of integers
(

u−, u+, u0
)

counting the number of
eigenvalues with negative, positive and zero real part respectively. The convention is to
drop u0 if the matrix is hyperbolic.

Since �+(�) ≠ !−(�) for � ∈ ℂ, we can write the Green’s function for � ∈ Ω3 of
equation (2.3.18) as:

G(z, � ; �) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

c2e�−(�)(z−� )
(

1
�−(�)

)

for z ≤ �,

d1e!+(�)(z−� )
(

1
!+(�)

)

for z ≥ �.

This result implies that we can find a Green’s function of the form
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FIGURE 7. The signature of A+(�) changes along the red curve, and the
signature of A−(�) changes along the blue curve. For � values between
these two curves, as z → −∞, A+(�) has two decaying solutions. Hence,
based on definition 2.2.1, L∞ − � is not invertible for � between these two
curves.

G(z, � ; �) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 for z ≤ �,

d1e!−(�)(z−� )
(

1
!−(�)

)

+ d2e!+(�)(z−� )
(

1
!+(�)

)

for z ≥ �,

where di are the solutions of the following system
(

1 1
!−(�) !+(�)

)(

d1
d2

)

=
(

0
−1

)

.

The solutions exist given the condition that !+(�) ≠ !−(�), i.e. except at � = 1 −
c2

4
. It

turns out that such a case, the general solution has the form of

(2.3.23)
(

p
q

)

= e
−cz
2

(

1 + cz
2

z
−c2z
4

1 − cz
2

)

(

d1
d2

)

.

This means that the operator L∞ − � is invertible for any � not between the red and blue
curves in Figure 6 and Figure 7 (the closure of Ω2).

Looking at the values of � between these two curves in Figure 7, we have as z→ −∞,
A+(�) has two decaying solutions. Therefore, according to definition 2.2.1, we conclude
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that for � between these two curves, ∞ − � is not invertible and we can find a solution
which decays as z → ±∞ by solving for d1 and d2:

(

1 1
!−(�) !+(�)

)(

d1
d2

)

=
(

1
�+(�)

)

.

2.3.2. Point spectrum of the travelling waves.

We look for a � ∈ Ω3 to the right of the essential spectrum so that

(2.3.24) L(vc)p = �p with p ∈ L2(ℝ).
Suppose we had an eigenvalue � to L(vc) for some � to the right of the two parabolas in
Figure 7. We have a solution p which satisfies Lp = �p where p is in L2(ℝ). Since p
decays, if there exists p→ 0 as z→ ±∞, then

lim
z→−∞

p ∼ e
z
(

−c
2 +
√

�+1+ c2
4

)

,

and

lim
z→+∞

p ∼ e
z
(

−c
2 −
√

�−1+ c2
4

)

.

We now look at functions of the form

q̃ = e
c
2 zp,

so that

p = e−
c
2 zq̃,

then if p ∈ L2ℝ, we must have

∫ℝ
e−czq̃2dz <∞,

and if q̃ ∈ L2, then we must have

∫ p2eczdz <∞.

We indicate this set of functions as

L2� ∶=
{

v
|

|

|

|

∫ℝ
e�zv2dz <∞

}

.

From equation (2.3.24), we have

(2.3.25) pzz + cpz + (1 − 2vc(z))p = �p.

q̃zz − cq̃z +
c2

4
q̃ − c2

2
q̃ + cq̃z +

(

1 − 2vc(z)
)

p = �q̃.

q̃zz +
(

1 − 2vc(z) −
c2

4

)

q̃ = �q̃.
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By multiplying both sides by q and the first term is obtained by integration by parts over
ℝ, we have:

(2.3.26) − ∫ℝ
q̃2zdz + ∫ℝ

(

1 − 2vc(z) −
c2

4

)

q̃2dz = �∫ℝ
q̃2dz.

Now, we would like to show that there are no eigenfunctions for � > 1. We re-write
� = 1 + �, thus equation (4.3.31) becomes

(2.3.27) − ∫ℝ
q̃2zdz − ∫ℝ

(

2vc(z) +
c2

4

)

q̃2dz = � ∫ℝ
q̃2dz.

If c ≥ 2, then 0 < v < 1 ∀z ∈ ℝ. Therefore, 2v + c2

4
> 0. This result implies that � ≤ 0.

This means there are no eigenvalues of equation (4.3.26) > 1 when c ≥ 2.

Remark. In summary, our findings indicate that:
(1) The spectrum located between two parabolas is called the "essential spectrum" and the
parabolas themselves are considered as the continuous spectra. It is worth noting that the
spectrum in the right half of plane indicates that the travelling waves are unstable for every
c > 0.
(2) There is no point spectrum of L(vc) for � > 1 when c ≥ 2.



CHAPTER 3

The existence of solutions of the Fisher-Stefan model

3.1. Introduction of the Fisher-Stefan model

Since the Fisher-KPP equation does not allow the solution to go extinct, the travelling
wave cannot replicate the extinction of invasive populations and predict the population
in practical situations [EHMJ+19]. The Fisher-Stefan model was introduced to over-
come this limitation of the Fisher-KPP model [DL10], [BDK12], [DG12], [DMW14],
[DMZ14], [DL15], [GSCR89]. The Fisher-Stefan model adapts the Fisher-KPP model
and includes a moving boundary x = s(t). It can be used to stimulate both biological in-
vasion when the travelling wave speed c > 0 and recession when c < 0 [EHMS21]. This
model is characterised by the parameter � relating the speed of the travelling wave c to the
shape of the density front at the moving boundary [EHMS21] and has the form

(3.1.1) ut = u(1 − u) + uxx for 0 < x < s(t) and t > 0,

(3.1.2) ux(0, t) = 0 at x = 0,

(3.1.3) st = −�ux(s(t), t) at x = s(t),

(3.1.4) u(s(t), t) = 0,

and

(3.1.5) s(0) = s0 and u(x, 0) = u0(x) 0 < x < s(0),

where u(x, t) denotes the density of the particular population and satisfies the Fisher-KPP
equation [EHMJ+19].

In this diffusive logistic problem, x = s(t) is the moving boundary that we need to
determine. We also have s0 and � as constants and the initial function u0(x) satisfies the
following condition [DL10]

(3.1.6) u0 ∈ 2, u′0(0) = u0(s0) = 0, and u0 > 0 in [0, s0}.

Since the domain of equation (3.1.1) is bounded to the right by the moving boundary
x = s(t), the population density vanishes at s(t). The population density u(x, t) ≥ 0
depends on the position 0 < x < s(t) and time t > 0. The parameter � > 0 in the Fisher-
Stefan model describes the time rate of change of s(t) with the gradient of the density ux.

34
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Reaction diffusion models with a linear term have been studied by Du and colleagues
[DMW14], [DMZ14], [DL15], [Du20]. They referred to the extinction or persistence of
the travelling waves as a spreading-vanishing dichotomy. In their papers, the initial func-
tion u0(x) represents the population of a new or invasive species at the early stage [DL10].
The Fisher-Stefan model assumes that the species invade in the environment from the right
end of the initial region, thus s′(t) = −�ux(s(t), t) [DL10]. The carrying capacity is scaled
to be u = 1 and u(x, t) denotes the density of a certain population. Their motility is rep-
resented by a constant diffusion coefficient and the population growth is governed by the
logistic growth term. The domain is bounded to the right by a moving boundary x = s(t)
at which the population density vanishes [MEHS22]. The loss of population at the mov-
ing boundary can be described as invasion when � > 0 or recession when � < 0.

The Fisher-Stefan model holds when � > 0. This implies the solutions are dependent
on � and c → 0+ as � → 0+ and c → 2− as � → ∞ [DL10], [Du20], [EHMJ+19]. This
behaviour differs from the Fisher-KPP solutions which evolve to travelling wave profiles
when c > 2 for 0 < x < ∞ and the solutions of the trajectories in the phase plane are
disregarded when 0 < c < 2 because the negative population densities grow too large.

We now consider the case at � < 0 and the moving boundary x = s(t) goes to the neg-
ative x-direction. Indeed, when −1 < � < 0 and s(0) is sufficiently large, the solutions of
equations (3.1.1) to (3.1.3) move towards receding travelling wave profiles given s(t)≫ 1
[EHMS21]. This corresponds to the trajectories in the phase-plane at a saddle point. The
shape of the travelling wave at −1 < � < 0 is qualitatively similar to the travelling wave
profiles at � > 0 except that the slope becomes steeper as � decreases [EHMS21].

In summary, the two main features distinguishing between the Fisher-Stefan model
and the Fisher-KPP model are:
(1) The Fisher-Stefan model includes the moving boundary condition at x = s(t) with
u(s(t), t) = 0 at t > 0.
(2) It allows population to go extinct.

3.2. The existence and uniqueness of solutions of the Fisher-Stefan model

In this section, we look at the boundary condition x = s(t)moving at a constant speed
as t → ∞ and let z̃ = ct − x. According to Du and Lin [DL10], when 0 ≤ c < 2, there
exists a unique positive solution u = uc for the following problem

(3.2.1)
⎧

⎪

⎨

⎪

⎩

u′′ − cu′ + u(1 − u) = 0 for z̃ > 0,

u(0) = 0,

(3.2.2) uc(0) = 0 for 0 < z̃ <∞,

and

(3.2.3) u′c(z̃) > 0 for z̃ ≥ 0.
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Theorem 3.2.1. According to lemma 2.2 in Du and Lin [DL10], we let (u, s) be a solution
to equations (3.1.1) to (3.1.3) defined for t ∈ (0, T0) for some T0 ∈ (0,+∞], then there
exist constants c1 and c2 independent of T0 such that:
0 < u(t, x) ≤ k1, 0 < s′(t) ≤ k2 for 0 ≤ x < s(t) and t ∈ (0, T0).

In our case, we have

(3.2.4) u′c1(0) > u
′
c2
(0) and uc1(z) > uc2(z̃) for x > 0 and c1 < c2.

For each � > 0, Du and Lin [DL10] have shown that there exists a unique c0 = c0(�) > 0
satisfying

(3.2.5) �u′c0(0) = c0,

where the constant c0 is the spreading speed.

Next, we would like to analyse equation (3.2.1) to see whether it has positive solutions
ul for all large l > 0 and c is positive. According to Du and Lin [DL10], there exists v(z̃)
such that:

v(z̃) =

⎧

⎪

⎨

⎪

⎩

ul(z̃) for 0 ≤ z̃ ≤ l,

0 for z̃ ≥ l.

Hence, v(z̃) is a lower solution of equation (3.2.1).

The upper solution of equation (3.2.1) for x ∈ [0,+∞) is

(3.2.6) u(∞) = 1.
Following the lower and upper solution argument from theorem 2.3 in Coster and Habets
[CH01], there exists at least one solution u(z̃) such that

(3.2.7) v(z̃) ≤ u(z̃) ≤ 1 in [0,+∞).

Theorem 3.2.2. According to the spreading-vanishing dichotomy in theorem 3.3 of Du
and Lin [DL10] papers, if we let (s(t), t)be the solution of the free boundary problem
equations (3.1.1) to (3.1.3), then the following alternative holds:
Either
(a) spreading: s∞ = +∞ and limt→+∞u(x, t) = 1 uniformly for x in any bounded set of
(0,+∞);
or
(b) vanishing: s∞ ≤ �

2
and limt→+∞||u(⋅, t)||C([s(t),0]) = 0.

From Du and Lin [DL10], these two alternatives occur in two cases:
(a) If the initial occupying area [s0, 0] is beyond a critical size particularly s0 ≥ �

2
, then

regardless of the initial population size u0(x) satisfying equation (3.1.5), spreading always
happens. Therefore, s∞ >

�
2
since s′(t) > 0 for t > 0.

(b) If s0 <
�
2
, then whether spreading or vanishing occurs is determined by the initial pop-

ulation size u0 and the coefficient � in the Stefan-KPP model (assuming other parameters



3.2. THE EXISTENCE AND UNIQUENESS OF SOLUTIONS OF THE FISHER-STEFAN MODEL 37

are fixed).

For such s0 with each given initial density u0, spreading or vanishing can happen.
This spreading-vanishing dichotomy implies that there exists a non-trivial, non-negative
solution of equation (3.2.1) that satisfies

0 < u(z̃) < 1 for x ∈ (0,+∞),
and u(z̃) increases as limx→+∞u(z̃) = 1.

We re-write equation (3.2.1) as

−e−cz̃u′′ + e−cz̃cu′ = e−cz̃u(1 − u).
Therefore,

(3.2.8) − (e−cz̃u′)′ = e−cz̃u(1 − u).

As 0 < u(z̃) < 1 for z ∈ (0,+∞), and u(1 − u) > 0. Thus,

−(e−cz̃u′)′ > 0 for z ∈ (0,+∞).
As a result, e−cz̃u′(z̃) is a decreasing function. Moreover, since u(z̃) is bounded on (0,+∞),
there exists a sequence z̃n → +∞ which satisfies u′(z̃n) → 0 as n → +∞. It follows that
u′(z̃) > 0 and u(z̃) is increasing.

In order to prove the uniqueness of the solutions to the Fisher-Stefan equation, we
suppose u1(z) and u2(z) are positive solutions of equation (3.2.1). We can claim that for
any � > 0, there is wi(z) = (1 + �)ui(z) to be determined by

−(e−cz̃w′
i)
′ ≥ e−cz̃wi(1 −wi) for i = 1, 2

Furthermore, since limt→+∞wi(z) = (1 + �), there exists l0 > 0 large satisfiying

w1(l) > u2(l), w2(l) > u1(l) ∀l ≥ l0.
It follows that

(1 + �)u1(z̃) ≥ u2(z̃), (1 + �)u2(z̃) ≥ u1(z̃) for 0 < z̃ < l ∀l ≥ l0.
We thus have (1 + �)u1(z̃) ≥ u2(z̃) and (1 + �)u2(z̃) ≥ u1(z̃) ∀z̃ ≥ 0. By letting � → 0, we
can deduce that u1 = u2. Consequently, we have proved the uniqueness of the solution to
equation (3.2.1).

In addition, if 0 ≤ c1 < c2 and u′ci(z̃) > 0, then

(3.2.9) − u′′c1 + c2u
′
c1
> −u′′c1 + c1u

′
c1
= u(1 − u) for z̃ > 0.

Therefore, for any � > 0, w ∶= (1 + �)uc1 satisfies

(3.2.10) − (e−c2z̃w′)′ ≥ e−c2z̃w(1 −w).

We now consider as � → 0.
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Theorem 3.2.3. According to the comparison principle in theorem 3.5.3 in Pucci and
Serrin [PS07], suppose that u(z̃) is locally bounded for x ∈ (0,+∞), c > 0, u1 and u2
are positive solutions of equation (3.2.1), if uc1(z̃) and uc2(z̃) satisfy equation (3.2.9), then
uc1(z̃) ≥ uc2(z̃) for z̃ > 0.

This result indicates that for c1 and c2 in equation (3.2.4), we have

u′c1(0) ≥ u′c2(0) for c1 < c2 < 2.
According to Du and Lin [DL10], we can evidently conclude that uc1(x) > uc2(x) when
x > 0. Hence, u′c(0) > 0 and u′c1(0) > u′c2(0). As a result, �(c) = c − �u′(0) is a strictly
increasing function for any fixed � > 0. Since c → uc is a continuous mapping from
[0,+∞) to C1

loc[0,+∞), �(c) is also a continuous function. It follows that:

�(0) = −�u′0(0) < 0,
and

�(+∞) = +∞.
Consequently, there exists a unique solution c0 = c0(�) > 0 that satisfies �(c0) = 0.

Since limt→∞s(t) = ∞, if s′(t) approaches a constant c0 and v(z̃) approaches a positive
solution u(z̃) as t → ∞, then u(z̃) must be a positive solution of equation (3.2.1) given
�u′(0) = c.

Remark. When 0 ≤ c < 2, the solution uc satisfying equations (3.2.1) to (3.2.3) is given
as the stable manifold of the fixed point (1, 0) with u′ > 0 in the phase portrait of equa-
tion (3.2.1).

Remark. The transformation z̃ = ct − x to z = x − ct changes the domain of uc, but not
the appropriately modified limiting behaviour i.e. with z → −z and so forth. The results
in this section also prove the existence of solutions of the Fisher-Stefan model under the
usual moving coordinate frame z = x − ct.

3.3. The phase portrait analysis of the Fisher-Stefan equation

The density profile analysis of the travelling wave solutions of the Fisher-KPP model
can provide insight to the properties and conditions of the Fisher-Stefan model as shown
in Figure 8. At c = 10 and 2, the solutions are positive and monotonically decreasing.
However, at c = 0.5, the heteroclinic orbit approaches (0,0) as a spiral, which implies
U (z) < 0 for various intervals in z [Mur02a]. This result indicates that the solutions of
the Fisher-KPP model exist for c < 2 but they are unstable. Thus, these solutions are often
disregarded when c < 2 and considered as not exist. This unstable solution has value in
describing solution of Fisher-Stefan equation when there are stable solutions to Fisher-
Stefan problem.

Previously, in Section 2.3, we have discussed about the travelling wave solutions of
the Fisher-KPP model by writing z = x− ct at c > 0 as in equation (2.1.5). We now look
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(A) (B)

(C) (D)

FIGURE 8. Density profiles for the Fisher-KPP equation (1.0.5) when
c = 0.5, 1, 2 and 10 respectively. We would like to investigate the density
profile of the travelling wave solutions of the Fisher-KPP equation as it pro-
vides insight to the properties and conditions of the Fisher-Stefan model.
At c = 2 in Figure (C) and at c = 10 in Figure (D), the solutions are pos-
itive and monotonically decreasing. However, at c = 0.5 and c = 1, the
heteroclinic orbit approaches (0,0) as a spiral, which implies U (z) < 0 for
various intervals in z as shown in Figure (A) and (B).

at the phase portrait analysis of the travelling wave solutions to the Fisher-Stefan model.

We would like to find solutions of the form u(x, t) = U (z). This transforms the Fisher-
Stefan equation to the second order nonlinear ordinary differential equation

(3.3.1) d2U
dz2

+ c dU
dz

+ U (1 − U ) = 0.

for −∞ < z < 0 along with the following boundary conditions [EHMJ+19]:

(3.3.2) U (−∞) = 1, U (0) = 0, and c = −�
dU (0)
dz

.

We will look at z = 0 as the moving boundary. Therefore, equation (3.3.1) can be
re-written as the first-order system
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(A) (B)

(C) (D)

FIGURE 9. The blue curve represents the numerical trajectory of the limit-
ing solutions to the Fisher-Stefan equations (3.1.1) to (3.1.3). The red curve
is the solution to the Fisher-KPP equation (1.0.5) when c = 0.05, 0.1, 0.2
and 0.5 respectively. We observe that both the Fisher-KPP and the Fisher-
Stefanmodels have the same phase planes (u, v) but with different boundary
condition when 0 < c < 2.

(3.3.3) dU
dz

= V ,

and

(3.3.4) dV
dz

= −cV − U (1 − U ).

with the equilibrium points (0,0) and (1,0). Equation (3.3.3) and equation (3.3.4) are also
the dynamical systems of the travelling wave solutions of the Fisher-KPP.
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(A) (B)

(C) (D)

FIGURE 10. The red curve indicates the numerical trajectory of the lim-
iting solutions to the Fisher-Stefan equations (3.1.1) to (3.1.3). The blue
curve represents the solution to the Fisher-KPP equation (1.0.5) when
c = −0.05,−0.1,−0.2 and −0.5 respectively. We conclude that when
−2 < c < 0, both the Fisher-KPP and the Fisher-Stefan models have the
same phase planes (u, v) for asymptotic in time.

Both the Fisher-KPP and the (time asymptotic) Fisher-Stefan equations have the same
phase planes (U, V ) but with different boundary condition as shown in Figure 9 and Fig-
ure 10. Using Mathematica, we observe that for −2 < c < 0, the heteroclinic orbit spirals
around (0, 0) in Figure 11 while at c ≤ −2 in Figure 12, it does not. El-Hachem and her
colleagues found that since the travelling wave solutions of the Fisher-Stefan model sat-
isfy a different boundary condition, the trajectory must intersect and terminate at the point
(

0,− c
�

)

[EHMJ+19]. Hence, the travelling wave solutions of the Fisher-Stefan model
exist for all c < 0.
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(A) (B)

(C) (D)

FIGURE 11. The phase portrait of the Fisher-Stefan equations (3.3.2)
to (3.3.4) at the wave speed c = 0, -0.1, -0.5 and -1 respectively. When
−2 < c ≤ 0, the hetericlinic orbit spirals around the origin. We observe
that the travelling wave solutions of the Fisher-Stefan model exist in this
case.
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(A) (B)

(C) (D)

FIGURE 12. The phase portrait of the Fisher-Stefan equation (3.3.3) and
equation (3.3.4) with the boundary conditions as in equation (3.3.2) at the
wave speed c = −2,−3,−5 and −10 respectively. When c ≤ −2, the
heteroclinic orbit does not spiral around the origin. However, travelling
wave solutions of the Fisher-Stefan model still exist.



CHAPTER 4

The stability of the travelling waves of the Fisher-Stefan model

4.1. Numerical results

We now look at the numerical results of the travelling solutions to the Fisher-Stefan
model for z = x − ct. According to the phase portrait in Figure 12, we observe that the
solutions of equation (3.3.1), which satisfy the boundary condition in equation (3.3.2),
exist for all travelling waves of speed c < 0. From equation (3.3.3) and equation (3.3.4),
as c → −∞,

(4.1.1) dV
dU

=
−cV + U (1 − U )

V
∼ −c,

which implies the relevant trajectories in the phase plane approach V = −c
(

U − 1
�

)

.
These results can be illustrated by the numerical solutions on the phase portrait in Fig-
ure 13.

In Figure 13 and Figure 14, the thick trajectory curve in green of the phase plane rep-
resents the travelling wave solutions to this model. Each case always begins at (U, V ) =
(1, 0) and extends across the fourth quadrant as the trajectories are truncated when c be-
comes more negative particularly at c = −0.1,−0.5,−1,−2 and −5. These results provide
us with understanding of the qualitative behaviour of the trajectories and allow us to es-
timate � corresponding to specific c and V 0 values in figure 14 where V 0 ∶= V (U = 0).
Since the Stefan condition is c = −�V 0, this gives us the estimation of � as the following
table:

c V 0 �
-0.1 -0.642639 -0.155851
-0.5 -0.928226 -0.538662
-1 -1.32811 -0.752950
-2 -2.21297 -0.903763
-5 -5.09695 -0.980979

Hence, the numerical simulations on Mathematica show that the solutions of the Fisher-
KPP equation for s(0)≫ 1 evolve toward the travelling profiles with the predicted values
of c [EHMS21].

4.2. The perturbation solution of the Fisher-Stefan model

In order to describe the shape of the travelling wave solutions to the Fisher-Stefan
model for small c < 2, we will find perturbation approximations. The perturbation ap-
proximation at c = 0 corresponding to the asymptotic expansion in the limit as c → 0

44
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(A) (B)

(C) (D)

(E)

FIGURE 13. Numerical solutions in the phase plane of the Fisher-Stefan
equation (3.3.1) at c = -0.1, -0.5, -1, -2 and -5 respectively. The thick
trajectory in green indicates that the solution to this equation satisfies the
boundary condition of the Fisher-KPP equation. All cases from (A) to (E)
always begin at (U, V ) = (1, 0) and extend across the fourth quadrant as
the trajectories truncate at the V-axis when c becomes more negative. We
also observe that the hetericlinic orbit has unstable spirals around the origin
from Figure (A) to (D). These results indicate the travelling wave solutions
of the Fisher-Stefan model exist in this case.Thus, the travelling wave so-
lutions of equation (3.3.1) exist when −∞ < c < 0. As a result, we can
predict the numerical values of � by solving c = −�V for a particular V
value, which allows us to determine the intermediate-time solutions to the
moving boundary problem of the Fisher-Stefan model in equation (3.1.1).
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(A) (B)

(C) (D)

(E)

FIGURE 14. Numerical solutions of the phase plane of the Fisher-Stefan
equation (3.3.1) and the estimation of V 0 values at c = −0.1,−0.5,−1,−2
and −5 respectively. As c = −�V 0 in the Fisher-Stefan condition, we can
estimate � values and analyse the qualitative behaviour of the trajectories.
At c = −0.1, � ≈ −0.155851, at c = −0.5, � ≈ −0.538662, at c = −1, � ≈
−0.752950, at c = −2, � ≈ −0.903763 and at c = −5, � ≈ −0.980979.

provides useful insight of the invading and receding travelling waves. First, we look at the
perturbation solution |c|≪ 1 by re-writing V (U ) as

(4.2.1) V (U ) = V0(U ) + cV1(u) + c2V2(U ) + (c3).

We know that the shape of the stationary travelling wave is
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(4.2.2) dV
dU

=
−cV − U (1 − U )

V
.

By substituting equation (4.2.1) into equation (4.2.2), we obtain [EHMJ+19]

(4.2.3)
dV0
dU

V0 + U (1 − U ) = 0 at V0(1) = 0,

(4.2.4)
dV1
dU

V0 +
dV0
dU

V1 + V0 = 0 at V1(1) = 0,

and

(4.2.5)
dV2
dU

V0 +
dV0
dU

V2 + V1

(

dV1
dU

+ 1
)

= 0 at V2(1) = 0.

The solutions of the differential equation (4.2.3) are

(4.2.6)
V 2
0

2
= U 3

3
− U 2

2
+ C.

At V0(1) = 0, we have

(4.2.7) 0 = 1
3
− 1
2
+ C.

It follows that at C = 1
6
,

(4.2.8) V0(U ) = −

√

2
(

U 3

3
− U 2

2
+ 1
6

)

,

and

(4.2.9) V0(U ) =

√

3(2U + 1)
3

(U − 1).

The solutions of equation (4.2.4) at V1(1) = 0 are

(4.2.10)
dV1
dU

V0 +
dV0
dU

V1 = −V0,

(4.2.11) d
dU

(

V1V0
)

= −V0,

(4.2.12) V1V0 = −∫ V0dU,

(4.2.13) ⟹ V1 =
− ∫ V0dU

V0
.
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(A) (B)

(C) (D)

FIGURE 15. Comparison of the approximate trajectories to the Fisher-
Stefan equation (3.3.1) between the equilibrium points (1, 0) and (0, 0) in
the phase plane at c = 0.05, 0.1, 0.2 and 0.5 respectively. The red curves
represents the (1) perturbation solution of equation (4.2.14) whereas the
green curve is the (c) perturbation solution of equation (4.2.15).

Since the Fisher-Stefan model satisfies the condition � = −c
V (0)

and V = V (U ), we can
estimate V (0) for |c|≪ 1 using the perturbation solution as following [EHMJ+19]

(4.2.14) (1) ∶ � = −c
V0(0)

,

(4.2.15) (c) ∶ � = −c
V0(0) + cV1(0)

,

and

(4.2.16) (c2) ∶ � = −c
V0(0) + cV1(0) + c2V2(0)

.

To compare the accuracy of (1) and (c) perturbation solutions for the shape of
the V (U ) curve, we use Mathematica NDSolve and generate numerical phase planes at
c = 0.05, 0.1, 0.2 and 0.5 as shown in Figure 9, Figure 15 and all three curves in Fig-
ure 16. According to Figure 16, the(1) perturbation solution in red curve provides more
accurate match to the shape of the numerical solutions in equations (3.1.1) to (3.1.3) at
c = 0.05. However, as c becomes larger even by c = 0.5, the (1) solution provides
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(A) (B)

(C) (D)

FIGURE 16. The perturbation solutions and numerical trajectories of the
Fisher-Stefan equation (3.3.1) between the equilibrium points (1, 0) and
(0, 0) in the phase plane for various c values. The red curve represents
the (1) perturbation solution of equation (4.2.14). The green curve is
the (c) perturbation solution of equation (4.2.15) and the blue curve is
the numerical trajectories of the Fisher-Stefan model which pass through
(

0, −c
�

)

. These plots show that the red curve (1) perturbation solution
provides more accurate match to the shape of the numerical solutions in
equations (3.1.1) to (3.1.3) at c = 0.05. However, as c becomes larger es-
pecially at c = 0.5, it gives poorer approximation. Moreover, the blue and
green trajectories resemble each other in the third and fourth quadrants.
Thus, the green curve (c) perturbation solution can provide a highly-
accurate approximation of the shape of the travelling wave solutions of the
Fisher-Stefan model at 0 ≤ c ≤ 0.5.

poorer approximation. Furthermore, the blue and green trajectories resemble each other
in the third and fourth quadrants. This result implies that the (c) perturbation solution
can provide a highly-accurate approximation of the shape of the travelling wave solutions
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of the Fisher-Stefan model when 0 ≤ c ≤ 0.5 [EHMJ+19].

4.3. Spectral stability of the asymptotic solution to the Fisher-Stefan problem

In this section, we look for solutions of u(x, t) = j(z, t) which solve

(4.3.1) jt = jzz + cjz + j(1 − j),

and the set of boundary condition equation (3.3.1) and equation (3.3.2).

We linearise equation (4.3.1) about a fixed jc(z) and obtain solutions of the form

(4.3.2) u(z, t) = jc(z) + �e�tp(z, t).

By substituting equation (4.3.2) into equation (4.3.1) and (�) terms, we have

�pt = pzz + cpz + (1 − 2jc(z))p(4.3.3)
= (jc(z))p,(4.3.4)

with the given conditions

(4.3.5) p(0) = 0,

and

(4.3.6) p(−∞) = 0.

We look at inverting (jc(z)) − � on L20 ((−∞, 0]) =∶  such that (jc(z)) − � is not
invertible, we need to find � ∈ ℂ satisfying the following inhomogeneous equation

(4.3.7) (jc(z))p − �p = pzz + cpz + (1 − 2jc(z))p − �p.
We rewrite equation (4.3.7) as a system

(4.3.8)
(

0 1
� − 1 + 2jc −c

)(

p
q

)

=∶ A(z; �)
(

p
q

)

,

where q = pz. Finding a Green’s function for  on  means we need to have decaying
solutions in the far-field. As z → −∞ and jc → 1, equation (4.3.8) given the boundary
condition in equation (3.3.2) becomes

(4.3.9)
(

p
q

)

z
=
(

0 1
� + 1 −c

)(

p
q

)

=∶ A−(�)
(

p
q

)

,

where

(4.3.10) lim
z→−∞

A(z; �) = A−(�),

and
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(4.3.11) lim
z→−∞

jc(z) = 1.

Next we will find decaying solutions and look at the continuous spectrum of the trav-
elling waves to the Fisher-Stefan model.

4.3.1. The asymptotic operator and continuous spectrum of the Fisher-Stefan
model.

We now consider solutions to the constant coefficient equation

(4.3.12)
(

p
q

)

z
= A−(�)

(

p
q

)

for z < 0,

where the asymptotic operator is defined as

(4.3.13) ∞ ∶= )zz + c)z − 1.

We look for the spectrum of ∞. As we have discussed in Chapter 2 and based on Weyl’s
essential spectrum theorem in Kapitula and Promislow, any spectrum of ∞ will be the
same as the spectrum of  up to the point spectrum [KP13].

The general solution to equation (4.3.9) is

(4.3.14)
(

p
q

)

z
= c1e�−(�)z

(

1
�−(�)

)

+ c2e�+(�)z
(

1
�+(�)

)

,

where �±(�) are the eigenvalues of the matrix A−(�).

The eigenvalues in equation (4.3.14) are the roots of its characteristic equation

(4.3.15) det(A−(�) − �) = �2 + c� − (� + 1) = 0.

We can express equation (4.3.15) in terms of � as following

(4.3.16) �−∞± (�) = 1
2

(

−c ±
√

c2 + 4(� + 1)
)

.

Wewould like to invert the operator∞ in equation (4.3.13) by finding decaying solutions
qualitatively depending on �. We will look at the values of � so that the real parts of �±
vanish for k ∈ ℝ. We begin with a real � ≫ 1 at �±(�) and observe that �−(�) > 0 when
�+(�) < 0. Hence, we have the solution corresponding to �+(�) decaying as z→ −∞.

At z = 0, the solution is

(4.3.17) �u(0) ∶= c2

(

1
�−(�)

)

.

In order to invert , we solve (∞ − �)p = �(x) and write the Green’s function as
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FIGURE 17. This is the continuous spectrum of the travelling waves of
the Fisher-Stefan model. It is shown as the purple curve, which represents
the set where A−(�) has a purely imaginary eigenvalue and k ∈ ℝ is the
imaginary part of the eigenvalue A−(�) in equation (4.3.19) at c = 2. This
continuous spectrum is strictly in the left half plane. For � to the right of
this curve, the signature of A−(�) is (−1, 1). For � to the left, the signature
of A−(�) is (−1,−1).

(4.3.18) G(z, �; �) = c2e�−(�)(z−�)
(

1
�−(�)

)

for z ≤ �.

Now we look for � so that the real parts of �± vanish by letting det(A± − ik) = 0 and
re-arrange for � to obtain

(4.3.19) �− = −k2 − 1 + ick.

Equation (4.3.19) is a parametrised curve of � ∈ ℂ, opening leftwards in the complex
plane. This single parabola represents the continuous spectrum of the travelling waves to
the Fisher-Stefan equation as shown in Figure 17. The parametric variable k is the imag-
inary part of the eigenvalue A−(�). In this case, the spectrum is always on the left half
plane. For � to the right of this curve, the signature of A−(�) is (−1, 1) (one negative
eigenvalue and one positive eigenvalue). For � to the left of this curve, the signature of
A−(�) is (−1,−1). The fact that A−(�) has two negative eigenvalues, this implies the as-
ymptotic operator ∞ is invertible according to lemma 3.1.10 in Kapitula and Promislow
[KP13].

4.3.2. Point spectrum of the Fisher-Stefan asymptotic solution.

In this part, we will look for a � ∈ Ω to the right of the continuous spectrum so that
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(4.3.20) (jc)p = �p,

and

(4.3.21) lim
x→−∞

x = 0.

We begin with solutions to equation (4.3.20) and let

(4.3.22) q = e
c
2 zp.

In order for p ∈ L2ℝ,

(4.3.23) ∫ℝ
e−czq2dz <∞,

and q ∈ L2, we must have

(4.3.24) ∫ p2eczdz <∞.

Let us denote this set of functions as

(4.3.25) L2� ∶=
{

j
|

|

|

|

∫ℝ
e�zj2dz <∞

}

.

We can also write equation (4.3.20) as

(4.3.26) pzz + cpz + (1 − 2vc(z))p = �p.

Therefore,

(4.3.27) qzz +
(

1 − 2vc(z) −
c2

4

)

q = �q.

By multiplying both sides by q and integrating over (−∞, 0], since

(4.3.28) ∫

0

−∞
qzzqdz = q(0)qz(0) − ∫

0

−∞
q2zdz = −∫

0

−∞
q2zdz,

we obtain

(4.3.29) − ∫

0

−∞
q2zdz + ∫

0

−∞

(

1 − 2v − c2

4

)

q2dz = �∫

0

−∞
q2dz.

Previously in section 4.3.1, we have shown that the continuous spectrum of (jc) in
the space  of the Fisher-Stefan model is strictly in the left half plane as in Figure 17.
Suppose we had an eigenvalue � to (jc) for some � to the right of this curve, then there
would exist a solution p satisfying p = �p for p ∈ L2(ℝ). Since p decays as z → −∞,
we must have
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(4.3.30) p ∼ e
z
(

−c
2 +
√

�+1+ c2
4

)

.
Wewould like to show that there are no eigenfunctions with � > 1. By rewriting � = 1+
 ,
equation (4.3.28) becomes

(4.3.31) − ∫

0

−∞
q2zdz − ∫

0

−∞

(

2v + c2

4

)

q2dz = 
 ∫

0

−∞
q2dz.

If c ≥ 0, then 0 < v < 1 for z ∈ (−∞, 0]. This result implies that there are no such � ∈ �
such that � > 1 ∀c ≥ 0. We can conclude that there is no point spectrum of (jc) for
� > 1 for all real c ≥ 0 in the Fisher-Stefan equation.

Remark. In a nutshell, our findings indicate that:
(1) The continuous spectrum of the travelling waves to the Fisher-Stefan model represents
the set A−(�), which has a purely imaginary eigenvalue and k ∈ ℝ is the imaginary part
of the eigenvalue A−(�) in equation (4.3.19) at c > 0. This continuous spectrum is strictly
in the left half plane and the asymptotic operator ∞ is invertible.
(2) There is no point spectrum of (vc) for � > 1 when c ≥ 0.



CHAPTER 5

Conclusion and future work

In this thesis, we focus on analysing the existence of the solutions, the phase plane (u, v)
and the stability of the standing waves and (asymptotic) travelling waves in the Fisher-KPP
and Fisher-Stefan models. We look at constant solutions at two fixed points u = 0 and
u = 1, the vector field near (u, v) = (0, 0) and the behaviour of the dynamical system near
these two equilibrium points. We have found that (0, 0) is a stable node for c ≥ 2 and
stable spiral for 0 < c < 2 whereas (1, 0) is a saddle point for all c ∈ ℝ. By discussing
about the asymptotic operator, the continuous spectrum and the point spectrum, we estab-
lish the similarities and differences between the two models. Our findings indicate that
in the Fisher-KPP case, the essential spectrum is located between two parabolas and the
parabolas themselves are called the continuous spectra. The spectrum in the right half
plane is unstable for every c value. There is no point spectrum of (vc) for � > 1 and
c ≥ 0. In the Fisher-Stefan case, the continuous spectrum is strictly in the left half plane.
Thus, the asymptotic operator ∞ is invertible. There is also no point spectrum (jc) for
� > 1 and 0 < c < 2.

Moreover, the analysis contained in this thesis considers the spectral stability of waves
in the Fisher-KPP and the Fisher-Stefan problems. The Fisher-KPP equation is a well-
known dynamical system and the stability of its waves has been studied by many re-
searchers [Can73], [DL10], [EK], [EHMJ+19], [GSCR89], [Mur02b]. In the study
by El-Hachem and her colleagues, they directly compared the travelling waves of these
two models [EHMJ+19]. A feature of the Fisher-KPP equation is that the waves of speed
c < 2 are unstable [EHMJ+19] due to their continuous spectrum in the right half plane.
This is a weakness of the Fisher-KPP equation according to Griffith and his colleagues
because small translocated populations do not always invade and can possibly go extinct
[GSCR89]. However, the Fisher-Stefan equation supports travelling wave solutions for
c < 2 and can predict the extinction of particular initial populations, which is referred
as the spreading-vanishing dichotomy [EHMJ+19]. In this thesis, our results demonstrate
that in the Fisher-KPPmodel, when c < 2, there are no stable waves whereas in the Fisher-
Stefan model, there exist waves that are stable in time for 0 < c ≤ 2. Du and Lin also
researched about the spreading-vanishing dichotomy and the asymptotic behaviour of the
solution to the Fisher-Stefan equation [DL10]. They proved that this was the time asymp-
totic solution [DL10], however they did not address the spectral stability of the problem.
This thesis provides further understanding of the Fisher-Stefan model and spectral justi-
fication for stability of these waves. Since these waves are potentially spectrally stable,
it is also possible to analyse them in terms of other types of stability such as non-linear,
asymptotic or linear stability, a topic for future study.

The numerical simulation of the Fisher-Stefan model allows us to construct approxi-
mate solutions and determine the relationship between � and c. By solving c = −�V 0 for

55
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a particular V 0 value, we can predict the numerical values of �. We also compare the nu-
merical trajectories of the Fisher-Stefan model between the equilibrium points (0, 0) and
(1, 0) in the phase plane for various wave speed c. Our numerical results show that (1)
perturbation solution provides a poor approximation as c becomes larger. However, (c)
perturbation solution gives a more accurate estimation between the shape of the travelling
waves solutions and c values when c < 0.5.

For future work, we would like to show full spectral stability, i.e. that there are no
eigenvalues to the Fisher-Stefan problem with � > 0 for c > 0. The study by Harley
and her colleagues demonstrated a geometric technique to show spectral stability of the
Fisher-KPP equation and by doing this, they vertified the absence of eigenvalues in the
right half plane [HvHM+15]. One avenue is to use a similar method developed by their
research to identify whether it is feasible to apply in the case of the half line.

We can also look at other classes of models using different source terms to analyse the
stability of travelling wave solutions including a nonlinear Allee effect. This method was
also examined earlier by Du and Guo [DG12]. They described the Allee effect as popu-
lations may shrink at very low densities [DG12]. This effect can be incorporated in the
Fisher-KPP model by replacing the logistic reaction term by a bistable reaction term. The
strong Allee effect is when a species begins with a small initial population and then even-
tually dies out [DPS19]. Such a model has a bistable reaction term. Further, in this paper,
Du, Peng and Sun introduced a protection zone, to save endangered species, and gov-
erned by the Fisher-KPP nonlinearity. Their work focused on investigating the dynamics
of a reaction-diffusion model, the strong Allee effect and the protection zone to prove a so-
called vanishing-transition-spreading trichotomy [DPS19]. Another study by Manoranjan
and co-authors focused on the Fisher-KPP population model and a time-dependent Allee
threshold [M+20]. They employed the generalised Riccati equation mapping approach to
find exact travelling wave solutions, and recovered the travelling wave solution of the de-
generate Fitzhugh-Nagumo equation when the time-dependent Allee threshold decayed to
a constant value [M+20]. Exploration of the effects of an Allee nonlinearity seems to be
a wide potential area for future study.
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