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Abstract

Wireless networks have undergone significant development in recent years, driven
by the increasing demand for wireless connectivity and data services. Radio resource
schedulers are developed to assign network users available resources, such as frequency
and time, based on network conditions to handle the growing user demands, providing
transmission opportunities for each user. Well-designed schedulers optimise wireless
resource allocation to ensure that all users receive a fair and high quality of service
(QoS) and that the network operates at its maximum performance. However, as new
types of wireless network services emerge, the existing schedulers can no longer satisfy
their QoS requirements and maximise the network performance objective. Thus, new
schedulers are urgently needed in wireless networks. In this thesis, we study scheduler
designs in cellular and Wi-Fi networks. We discuss the limitations of the existing
scheduler design methods and propose new methods to address these limitations.

We first develop a deep reinforcement learning (DRL) algorithm to flexibly design
wireless schedulers, where we consider the QoS requirements of the time-sensitive
traffic in 5G cellular networks. Since the scheduling policy is a deterministic map-
ping from channel and queue states to scheduling actions, it can be optimised as
a neural network (NN) using the deep deterministic policy gradient (DDPG) algo-
rithm. We show that a straightforward implementation of DDPG converges slowly,
has poor QoS performance, and cannot be implemented in real-world 5G systems.
To address these issues, we propose a theoretical DRL framework, where theoretical
models from wireless communications are used to formulate a Markov decision process
in DRL. To reduce the convergence time and improve the QoS of each user, we design
a knowledge-assisted DDPG (K-DDPG) that exploits expert knowledge of the sched-
uler design problem, such as the knowledge of the QoS, the target scheduling policy,
and the importance of each training sample, determined by the approximation error
of the value function and the number of packet losses. Furthermore, we develop an
architecture for online training and inference, where K-DDPG initialises the scheduler
off-line and then fine-tunes the scheduler online to handle the mismatch between off-
line simulations and real-world systems. Simulation results show that our approach
reduces the convergence time of DDPG significantly and achieves better QoS than
existing schedulers (reducing 30% ∼ 50% packet losses). Experimental results show
that with off-line initialisation, our approach achieves better initial QoS than random
initialisation, and the online fine-tuning converges in a few minutes.
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As scheduler designs are usually formulated as stochastic optimisation processes, in-
cluding the DRL algorithm developed above, they require considerable time to interact
with the network and optimise scheduler parameters. We then study the acceleration
of the scheduler design’s convergence using statistical channel state information (CSI).
Particularly, we consider the design of a class of widely used schedulers in cellular net-
works, namely max-weight schedulers (MWSs), which is applied to maximise a utility
function of users’ average data rates. MWSs schedule the user with the highest
weighted instantaneous data rate in each time slot. Existing stochastic optimisation
methods require hundreds of time slots to adjust the MWS’s weights according to
the instantaneous CSI before finding the optimal weights that maximise the utility
function. In contrast, our MWS design requires few slots for estimating the statis-
tical CSI. Specifically, we formulate a weight optimisation problem using the mean
and variance of users’ signal-to-noise ratios (SNRs) to construct constraints bounding
users’ feasible average rates. The formulated objective and optimisation variables are
the utility function and the MWS’s weights, respectively. We develop an iterative
solver for the problem and prove that it finds the optimal weights. We also design
an online architecture where the solver adaptively generates optimal weights for net-
works with varying mean and variance of the SNRs. Simulation results show that our
methods effectively require 4 ∼ 10 times fewer slots to find the optimal weights and
achieve 5% ∼ 15% better average rates than the existing methods.

The above methods are developed for scheduler designs where users are associated
with a single base station. We finally extend the research to the network-wise coordi-
nated design of schedulers across multiple base stations. We study how base stations
(or access points) can schedule the time slots based on the restricted access win-
dow (RAW) mechanism in Wi-Fi 802.11ah networks. RAW can manage contention
and interference by grouping users and allocating periodic time slots for each user
group’s transmissions. We will find the optimal user grouping decisions in RAW to
maximise the worst-case user throughput in the network. We review existing user
grouping approaches and highlight their performance limitations when applied to the
above problem. We then propose to formulate user grouping as a graph construc-
tion problem where vertices represent users and edge weights indicate the contention
and interference. This formulation applies the graph’s max cut to group users, and
it optimises the edge weights to construct the optimal graph whose max cut results
in the optimal grouping decisions. We develop an actor-critic graph representation
learning (AC-GRL) algorithm to construct the optimal graph. Specifically, the actor
NN is trained to estimate the optimal graph’s edge weights using path losses between
users and access points. A graph cut procedure uses semidefinite programming to
efficiently solve the max cut and return the grouping decisions for the given weights.
The critic NN approximates users’ throughput achieved by the above decisions and
is used to improve the actor. We also design an architecture that uses the online-
measured throughput to fine-tune the decisions in response to changes in the number
of users. Simulations show that our methods achieve 30% ∼ 80% higher worst-case
user throughput than the existing approaches and that the proposed architecture can
further improve the worst-case user throughput by 15% ∼ 35%.
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Chapter 1

Introduction

1.1 Schedulers in Wireless Networks

Wireless networks are critical in connecting people and devices in our modern world

[1], [2]. Wireless networks have evolved in the past decades [3]–[6] by adopting recent

theories and technologies to meet the growing demand for wireless connectivity and

data services. Specifically, past wireless networks provide human-oriented commu-

nication services with information exchange among people, such as text messages,

audio calls, and image/video sharing. Meanwhile, the recent development of wireless

networks has also focused on communication services to connect machines, enabling

a wide range of new application scenarios with diverse quality of service (QoS) re-

quirements, e.g., service categories of the 5G use-cases and network setups, includ-

ing ultra-reliable low latency communications (uRLLC), enhanced mobile broadband

(eMBB) and massive machine type communications (mMTC) [7]. The key perfor-

mance measures of these services are explained below.

• Low latency and jitter : The development of wireless networks leads to a funda-

mental change in industrial automation [8], [9] by enabling real-time interaction

among sensors, controllers and actuators. Specifically, the data packets for these

automation devices must be delivered within a short time and at a specific time
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window. In other words, the wireless links for this service should have a low

end-to-end (E2E) latency (less than 1 millisecond) with a small variance (or a

low jitter). Such networks are referred to as time-sensitive networking (TSN).

• High reliability and connectivity : The above applications are also sensitive to

network service failures, which impose the necessary minimum time interval

between two contiguous failures, e.g., one month to one year. Such requirements

can be translated into the decoding error probability of wireless transmissions

[9]. Since the required interval of service failures is large, the decoding error

probability is supposed to be extremely low; e.g., a typical reliability target of

packet transmissions is to have at least 99.999% decoding success rate [10].

• High throughput : Besides machine-to-machine services, emerging applications

demand human-to-machine interaction, such as extended reality services. These

services encompass augmented and virtual reality [11] to provide remote manual

control of machines. They require the delivery of a high-quality video stream

from the machine’s (real-world or virtual) cameras to headsets that project

the video to human eyes over wireless networks. To eliminate eye fatigue or

visual discomfort, the transmitted video needs to preserve depth perception

information as well as high resolution, which significantly increases the required

bandwidth to a range from 100 Gbps to 1 Tbps [12].

Two popular types of wireless networks can be chosen to provide communication

services with the above QoS. The first is the cellular network, standardised by the

3rd Generation Partnership Project (3GPP) [13]. The fifth-generation (5G) cellular

network has recently been released and attracted significant interest from industry

and academia [3]. 5G networks use orthogonal frequency-division multiple access

(OFDMA), where users share the wireless channel in frequency and time. Specifically,

users’ data are modulated and coded as orthogonal frequency-division multiplexing

(OFDM) symbols. Further, every twelve subcarriers in one transmission time interval

(fourteen contiguous OFDM symbols) form one resource block (RB). A scheduler

allocates RBs among users to control the transmission opportunities of users. Another
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widely used wireless technology is Wi-Fi networks [14], [15], standardised by the

Institute of Electrical and Electronics Engineers (IEEE) 802.11 groups. In a Wi-Fi

network, each user contends for channel access based on carrier-sense multiple access

with collision avoidance (CSMA/CA). Specifically, when a user detects other users

are transmitting on the channel, it will wait until the channel is free and will further

backoff for a random time before transmitting its packet. IEEE 802.11ah (Wi-Fi

HaLow) introduced a restricted access window (RAW) mechanism to manage the

contention and interference in the network, where the scheduler assigns users RAW

time slots for user transmissions. As a result, contention and interference do not occur

across different RAW slots, significantly improving the network performance.

As the schedulers [16] are responsible for allocating the available resources in the

wireless networks, they determine the transmissions’ QoS and the networks’ overall

performance. In other words, optimal schedulers maximise the network’s efficiency

and ensure a high-quality user experience. Therefore, it is essential to continue re-

search and innovation in methods of optimising scheduler design.

1.2 Research Problems and Contributions

Undoubtedly, the scheduler design in wireless networks is an active area of research,

with well-developed algorithms to meet the evolving demands of the users. This thesis

will focus on the following aspects of the scheduler design methods.

• Flexibility : With the development of wireless networks, new services with more

strict QoS requirements can be supported over the network. Since the QoS

requirements of these services are new, the existing schedulers are no longer

optimal for them. Thus, new schedulers need to be designed. Further, as these

services have diverse QoS requirements, it is inefficient to design and optimise

the scheduler for them manually. A flexible method that can automatically

generate the schedulers for these services is much needed.

• Convergence rate: When the scheduler is required to maximise a long-term

3



1.2. Research Problems and Contributions

network performance objective, the scheduler design needs to consider the long-

term network variations, e.g., the variations of the channel quality. However,

this requires the scheduler design algorithm to constantly interact with the net-

work and optimise the scheduler according to the instant channel state over

time, e.g., using stochastic optimisation. As a result, a significant length of

time is needed before the algorithm converges to the optimal scheduler, during

which the network operates in sub-optimal performance. How to improve the

convergence speed needs to be studied.

• Network-wise coordination: Most existing schedulers are designed for one base

station (BS) or access point (AP). Meanwhile, with the dense deployment of

the network, users associated with the different BSs (or APs) share the chan-

nel resources. Thus, they interfere with each other’s transmissions, negatively

impacting network performance. Clearly, coordinating the schedulers across

multiple BSs (or APs) in the network enables network-wise management of the

interference. It requires further investigation on the best way to design network-

wise coordinated scheduling schemes.

• Online implementation: Practical scheduler design should consider real-world

system constraints. For example, the limited computational resources at the

BSs (or APs) restrict the complexity of the scheduling algorithm. To address

this issue, edge servers can be connected with the BSs (or APs) to provide

the additional resources that run the algorithm. This raises the challenge of

designing the online architecture for scheduling algorithms in the edge server to

interact with wireless networks.

To address the above challenges, we propose three new scheduler design methods that

improve flexibility, convergence rate, and efficient network-wise coordination com-

pared with the existing methods. Also, we design the online architectures to deploy

the proposed methods in real-world networks. The contributions of this thesis are

listed as follows.
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1.2.1 Flexible Scheduler Design Using Deep Reinforcement

Learning

We enable the flexible scheduler design by training a neural network (NN) as the

scheduler in Chapter 3. Specifically, we consider the scheduler for the emerging TSN

service. We formulate the scheduler design problem as a Markov decision process

(MDP) by defining the network states, scheduling actions, and QoS-indicating re-

wards, where the optimal scheduler corresponds to the optimal MDP policy. Then,

we can apply a deep reinforcement learning (DRL) algorithm, namely deep determin-

istic policy gradient (DDPG), to optimise the scheduler. As such, the scheduler can

be automatically trained as the NN by the DRL algorithm. We find that straight-

forward implementation of the existing DRL algorithm to scheduler design does not

achieve a good performance. Thus, we provide a comprehensive study on improv-

ing the DRL algorithm’s efficiency in scheduler design problems by exploiting expert

knowledge in wireless communications. To the best of our knowledge, this work [J1] is

the first to provide an end-to-end solution of a DRL-based scheduler design from the-

oretical formulation to a real-time prototype. The main contributions of this chapter

are summarised as follows.

• We establish a theoretical DRL (T-DRL) framework for wireless scheduler de-

sign with the time-sensitive traffic in 5G systems. The framework uses existing

theoretical models and results in wireless communications to formulate the op-

timal control problem. Based on the formulation, we prove that the problem is

Markovian, and hence we can apply DRL algorithms to solve it [17]. Simula-

tion results show that the DRL algorithm with the T-DRL framework enables

the convergence of the scheduler, providing a satisfying QoS. Meanwhile, the

straightforward implementation fails to converge into a useful scheduler.

• We design a knowledge-assisted DDPG (K-DDPG) algorithm that integrates

DDPG with expert knowledge to improve the QoS of users and reduce the

convergence time. We use the multi-head critic, reward shaping and importance
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sampling in K-DDPG to exploit the knowledge of the QoS of each user, the

target scheduling policy, and the importance of training samples. As a result, the

K-DDPG algorithm reduces the convergence time significantly, and the trained

scheduler achieves 30% to 50% fewer packet losses than existing schedulers.

• We develop an architecture that enables online training and inference of K-

DDPG to fine-tune the scheduler in real-world networks. An edge server in

the architecture first initialises the scheduler offline in a simulation platform

built upon the T-DRL framework. Then, it keeps fine-tuning the scheduler

according to feedback from real-world networks. Meanwhile, the BS executes

the scheduling policy at every TTI and shares the feedback from real-world

networks with the edge server.

• We build a prototype of the proposed architecture using a standard-compliant

cellular network software suite that can communicate with commercial devices

[18]. In the prototype, the online training converges in a few minutes, and the

online inference can be executed within each TTI (1 millisecond). Thus, our

approach can be applied to scheduler design in 5G NR.

1.2.2 Acceleration of Convergence in Scheduler Design Using

Statistical Information of Wireless Channels

Wireless networks are stochastic systems mostly due to the randomness of the channel

conditions. The optimisation of the scheduler is usually formulated as a stochastic

optimisation process, such as the DRL algorithm designed above. These types of pro-

cesses require a long time for the algorithm to interact with the network and find the

optimal scheduler parameters that maximise the network performance. In Chapter 4,

we accelerate the scheduler design algorithm’s convergence using the wireless channels’

statistical information. Particularly, we consider the optimisation of a class of widely

used schedulers in cellular networks, namely the max-weight schedulers (MWSs), that

schedule the user with the highest weighted instantaneous data rate in every time slot.
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We formulate an optimisation problem to find the optimal weights in MWSs based on

limited statistical information, namely the mean and variance of users’ signal-to-noise

ratios (SNRs). To the best of our knowledge, this work [J2] is the first that proposes

to design MWSs based on limited prior knowledge of statistical CSI, such as the mean

and variance of users’ SNRs, that costs few samples to estimate. We summarise the

main contributions of this chapter as follows.

• We formulate the weight optimisation problem for MWSs using the mean and

variance of users’ SNRs to maximise a utility function of users’ average data

rates. This enables us to find the optimal MWS’s weights by measuring the

mean and variance of users’ SNRs and then solving the formulated weight op-

timisation problem to obtain the optimal weights. As a result, the proposed

method reduces the time complexity (i.e., the number of time slots required) in

optimising the MWS’s weights 4 ∼ 10 times compared to existing methods [19],

[20], which use no prior knowledge of statistical CSI and directly perform online

adjustment of weights, as shown by simulations.

• We design a new iterative solver for the weight optimisation problem, which has

less computational complexity than existing iterative solvers designed for our

problem structure [21]–[24]. Specifically, the designed solver updates weights in

each iteration via normalisation and a linear combination of vectors rather than

by solving an optimisation problem in each iteration as the existing iterative

solvers do. It reduces the complexity of weight updates, e.g., from polynomial

computational complexity in the existing solvers to the linear one in ours.

• We mathematically prove that the weights in the proposed solver converge to

their optimal value within O(K logK) iterations, where K is the number of

users. The optimal value of weights maximises the utility function in the weight

optimisation problem. The simulation results show that the designed iterative

solver converges to the optimal weights in tens of iterations at a high probability,

e.g., 90 ∼ 100%, when there are up to ten users.
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• We design an online architecture where the proposed solver continuously adjusts

the MWS’s weights based on the time-varying mean and variance of the SNRs

measured online. The simulation results show that the designed architecture

achieves 5 ∼ 15% better performance than the existing MWS approaches [19],

[20] in terms of the geometrical mean of users’ average rates (an equivalent

expression of the studied utility function).

1.2.3 Network-Wise Coordination in Scheduler Design Using

Graph Representation Learning

We investigate the coordination of the schedulers across multiple BSs (or APs) in the

whole wireless network in Chapter 5. We study how to schedule the RAW slots for

users for contention and interference management in the Wi-Fi HaLow networks. The

objective here is to avoid user throughput starvation by maximising the worst-case

user throughput. We construct a graph where each user is a vertex of the graph,

and weighted directed edges represent the contention and inter-user interference from

one user to another. Based on this graph, users are divided into a given number of

groups by the graph’s max cut. Then, each group is assigned a periodic RAW slot for

their transmissions, where the contention and interference between users in different

groups are eliminated. Here, we propose to construct the optimal graph whose max

cut results in the optimal grouping decisions maximising the worst-case user through-

put. We then design a machine learning (ML) algorithm to optimise an actor NN to

construct the above optimal graph. We efficiently solve the constructed graph’s max

cut using semidefinite programming [25]. A critic NN is trained to evaluate the graph

constructed by the actor, whose gradient is used to optimise the actor. Furthermore,

considering the mismatch between real-world networks and simulated networks used

in offline training, we study how to improve the actor-constructed graph based on on-

line measurements. To the best of our knowledge, this work [J3] is the first to propose

to formulate the user grouping problem in wireless networks as a graph construction

problem. Our contributions in this chapter are summarised as follows.
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• We propose an optimisation framework that formulates the user grouping prob-

lem in RAW as a graph construction problem in which the graph’s edge weights

are optimisation variables and the grouping decisions are computed from the

constructed graph’s max cut. Unlike the existing graph-based approach [26]–

[28] using heuristically constructed edges, the framework can flexibly optimise

edge weights in the network’s graph representation according to the specific net-

work performance objective, i.e., maximising the worst-case user throughput.

• We develop an actor-critic graph representation learning (AC-GRL) algorithm

that trains NNs to construct the optimal graph representing the impact of in-

terference in a wireless network. The interference in each individual user pair

is represented as the edge weight in the pair. Note that the edge weight in the

NN-constructed graph indicates how likely a pair of users belong to the same

group when the graph’s max cut is applied to obtain user grouping decisions.

This is unlike the existing ML-based approach [29], [30] that directly uses NNs

to generate user grouping decisions, which loses the above individual user-pair-

wise interference information by aggregating all neighbouring users’ features.

Consequently, these methods fail to return useful decisions in user grouping.

• We design an architecture for fine-tuning the NN-constructed graph based on

users’ throughput measured online. Specifically, we first initialise the actor

and critic using offline-trained NN parameters. Next, the offline-trained actor

constructs the graph based on the states of a given network. We then use

the offline-trained critic continuously updates the graph’s edge weights based

on the user index with the worst-case throughput measured from the network.

Meanwhile, user grouping decisions are also re-computed after each edge weight

update by using the graph cut procedure.

• We implement the proposed methods in a system-level simulation platform [31],

NS-3, compliant with Wi-Fi standards, where we also study and apply the exist-

ing Markov-model-based [32], [33], graph-based [26]–[28] and ML-based [29], [30]

approaches to the user grouping problem in RAW. Simulations show that our
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grouping decisions achieve around 30% ∼ 80% higher worst-case user through-

put than the existing approaches. Simulations also show that the proposed

architecture can improve the worst-case user throughput 15% ∼ 35% by online

fine-tuning the graph constructed by the offline-trained NNs.

1.3 Thesis Outline

The rest of this thesis is organised as follows. Chapter 2 briefly introduces the concepts

and methods used in the proposed schemes in this thesis. The main contributions of

this thesis can be found in Chapter 3-5. Chapter 3 focuses on the DRL-based scheduler

design in 5G cellular networks. In Chapter 4, we study the acceleration of scheduler

design using the statistical information of wireless channels. In Chapter 5, we present

the coordinated scheduler design in wireless networks for contention and interference

management. Finally, Chapter 6 summarises this thesis and its major findings, along

with some concluding remarks and future directions.

1.4 Notations

The notations used in this thesis are summarised as follows. The i-th element of a

vector, x, is denoted as xi. The j-th element of the i-th row of a matrix, X, is denoted

as Xi,j. We write the definition of elements in a matrix, X, as X ≜ [Xi,j|Xi,j = (· · · )],

where (· · · ) is the expression that defines the elements in X. diag{X} denotes the

elements in the diagonal of a matrix, X. ⟨x,y⟩ denotes the inner product of x and y.

∥x∥2 denotes the ℓ2-norm of x. x⊙ y and x⊘ y are element-wise multiplication and

division between x and y, respectively. A K-dimension vector, x, with non-negative

or positive elements are denoted as x ∈ RK
≥0 and x ∈ RK

>0, respectively. The i-th

element of a tuple, (x(1), . . . ,x(i), . . . ), is obtained as x(i) = proji[(x
(1), . . . ,x(i), . . . )].

The geometric mean of elements in a K-dimension vector, x, is expressed as GM(x) =

(
∏K

k=1 xk)
1
K , where xk is the k-th element of x. A K×K positive semidefinite matrix,

X, is denoted as X ⪰ 0, where positive semi-definiteness implies zTXz ≥ 0, ∀z ∈ RK .
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svd(X) is a singular value decomposition of X. sgn(x) is a vector of each element’s

sign (+1 or −1) in x. 1{··· } is an indicator function that equals 1 if the expression in

{· · · } is true or otherwise equals 0.
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Chapter 2

Background

In this chapter, we provide some background information on the mathematical tools

used in the analysis and optimisation in the thesis.

2.1 Channel Capacity

In communication systems, the data rate (or throughput) is one of the main char-

acteristics of the system’s performance. The mapping of the data payload into a

continuous-time signal that is transmitted over a communication channel can be de-

scribed by

NBLK = B · T , (2.1)

where B is the bandwidth of the channel in Hertz, T is the duration of the transmission

in seconds, and NBLK is referred to as the blocklength of the transmission. Note

that data transmissions over wireless channels suffer from uncontrollable ambient

noise, imperfections of the physical signalling, and interference from other concurrent

transmissions [16]. The channel capacity [34]–[36], expressed in bits per second, is

a fundamental limit on the amount of information that can be reliably transmitted

through the communication channel.
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2.1.1 Shannon Capacity

Shannon capacity is a term named after Claude Shannon, the father of modern in-

formation theory, who introduced the concept in 1948 [34]. In general, the Shannon

capacity determines the maximum amount of information per unit of time (i.e., data

rate: Rmax(NBLK, ϵ)) that can be achieved over a wireless channel when the trans-

mission blocklength approaches infinity (i.e., NBLK → ∞) and the error rate of the

transmissions, ϵ, is arbitrarily small. The asymptotic achievable rate of the additive

white Gaussian noise (AWGN) channel is given based on Shannon’s capacity as

C = lim
NBLK→∞,ϵ→0

Rmax(NBLK, ϵ)

= E[B log2(1 + |h|2ϕ)] (bit/second) ,

(2.2)

where ϕ is the transmissions’ SNR (or SINR when interference exists) and h is the

random normalised fading gain [37]. Here, the expectation in (2.2) is computed with

respect to the random variable h. If the channel has flat fading and is quasi-static (i.e.,

the channel coherent time is larger than the transmission duration), i.e., the channel

fading gain remains a constant during each transmission, the capacity is computed as

C = B log2(1 + ϕ).

2.1.2 Channel Capacity in Finite Block Length Regime

In the finite block length regime, i.e., when NBLK is small, the channel capacity is

modified from the theoretical limit described by the Shannon Capacity. In this regime,

the amount of information transmitted over a channel is limited by the finite size of

the data blocks, in addition to the channel’s noise level (or noise and interference) or

bandwidth. An accurate approximation of the achievable capacity in a short block-

length regime is given by [35], [36], [38], [39] as

R ≈ C −
√

V

NBLK

f−1
Q (ϵ) (bit/second) , (2.3)
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where C is the Shannon capacity in (2.2) and f−1
Q is the inversion function of the tail

distribution function of the standard normal distribution, i.e., fQ(x) = 1√
2π

∫∞
x
e−

u2

2 du.

Here, V in (2.3) is the channel dispersion computed as

V = t′ V[log2(1 + |h|2ϕ)] + 1− E2

[
1

1 + |h|2ϕ

]
, (2.4)

where h is the random normalised fading gain and t′ is the channel coherent time.

When the channel has flat fading and quasi-static, the channel dispersion is computed

as V = 1 − 1/(1 + ϕ)2. In such a case, if we assume that each transmission block

contains one packet with length L in bits, then the above approximation can be used

to estimate the error probability of transmissions as

ϵ ≈ fQ

(−L ln 2 +NBLK ln(1 + ϕ)√
NBLKV

)
. (2.5)

2.2 Radio Resource Scheduling in Wireless Net-

works

This section explains the radio resource scheduling mechanisms in two common wire-

less networks, e.g., cellular and Wi-Fi networks. We will start with the transmission

scheme used in each type of network and how they utilise space-time resources for the

transmissions. Then, we will explain how these resources are scheduled.

2.2.1 Radio Resource Scheduling in Cellular Networks

Modern cellular networks establish communications with user equipment and base

stations (BSs) using standardised wireless communication protocols by the 3rd Gen-

eration Partnership Project (3GPP) [13]. For example, the recently developed 5th-

generation cellular network (5G) uses orthogonal frequency-division multiple access

(OFDMA). Specifically, the transmitter modulates the data as orthogonal frequency-

division multiplexing (OFDM) symbols, where coded data bits are mapped to the
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subcarriers. The number of subcarriers in one OFDM symbol depends on the band-

width and the subcarrier spacing configured in the networks as

Ns ≈
B

fs
, (2.6)

where B is the bandwidth of the channel used in the transmissions in Hertz, fs is

the subcarrier spacing in Hertz, and Ns is the number of subcarriers used in the

transmissions. Further, every fourteen contiguous OFDM symbols are transmitted as

one transmission time interval (TTI). Every twelve subcarriers in one TTI (fourteen

contiguous OFDM symbols) form one resource block (RB). An illustration of RBs

is shown in Fig. 2.1. The scheduler in cellular networks assigns users RBs to carry

… … …

…

…

14 OFDM symbols
in 1 TTI

1 resource block

12 subcarriers

Figure 2.1: Illustration of resource blocks in cellular networks.
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their transmission data. Specifically, for simple single-input single-output (SISO)

transmissions (considered in this thesis), each RB is assigned to a single user and

cannot be shared by multiple users. Also, one user can be assigned multiple RBs in

one TTI. Consider a user’s transmission with a given number of RBs. The number

of information bits coded and modulated in scheduled RBs in this transmission is

decided based on the modulation and coding scheme (MCS) selected by the scheduler

to satisfy the decoding error rate requirement. The number of information bits in

each transmission can be calculated as

L ≈ 12× 14×NRB × log2(M)×R , (2.7)

where NRB is the number of RBs assigned to the transmission, M is the modulation

order (e.g., 2 for binary phase-shift keying and 4 for quadrature phase shift keying

etc.) and R is the code rate.

2.2.2 Radio Resource Scheduling in Wi-Fi Networks

The Institute of Electrical and Electronics Engineers (IEEE) 802.11 task groups stan-

dardise the communication protocol in Wi-Fi networks. In Wi-Fi networks, the de-

vices requiring network connection services are referred to as stations, and the devices

providing these services are referred to as access points (APs). In this thesis, we re-

fer to the stations as the users, consistent with the ones used in cellular networks.

Users communicate with APs using a carrier sense multiple access/collision avoidance

(CSMA/CA) method. Specifically, each device contends for channel access by listen-

ing to the channel and waiting until it is free before transmitting a packet. Random

backoff is used to manage situations where multiple devices try to access the channel

simultaneously. For example, each device randomly chooses a backoff time before

transmitting the packet. This helps to distribute transmissions over time among the

devices and avoid collisions. Note that when one device cannot sense another, they

can make simultaneous packet transmissions that cause interference at the receiving

devices, which increases packet decoding errors.
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The 802.11 ah standard [15] introduces a restricted access window (RAW) mechanism

in the Wi-Fi network to manage contention and interference. Specifically, each user

can be assigned a periodic RAW time slot in which the user transmits packets only.

For example, as shown in Fig. 2.2, user 1 is assigned to slots 1, 3, 5, . . . , while user 2

is assigned to slots 2, 4, 6, . . . . In such a case, the contention and interference between

user 1 and user 2 are eliminated. By scheduling RAW slots for users, we can manage

the contention and interference in Wi-Fi networks. Scheduling of RAW slots will be

further explained in Chapter 5.

Packets of user 1 Packets of user 2

1st RAW slot

Time

2nd RAW slot 3rd RAW slot 4th RAW slot

…
Figure 2.2: Illustration of RAW time slots in Wi-Fi 802.11 ah networks.

2.3 Deep Learning

Deep learning (DL) is a family of machine learning methods that train neural net-

works (NN) to approximate a desired function, where a NN, µ(·|θµ) : X → Y is a

function with adjustable parameters, θµ. Each NN requires a predefined functional

structure to accommodate these parameters in the NN. For example, as explained be-

low, two common structures of NNs are fully-connected NNs (FNN) and graph NNs

(GNN).

2.3.1 Fully-connected Neural Networks

When we use a FNN as µ(·|θµ), it consists of multiple fully-connected layers, where

the mathematical expression from one layer to the next layer is

yl+1 = σl(Wlyl + bl) , l = 1, · · · , χ− 1 , (2.8)
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where χ is the number of layers, y1 and yχ are referred to as the input layer and

output layer, respectively, and yl, l ̸= 1, l ̸= χ are referred to as the hidden layers.

Further, Wl and bl in the above are the adjustable matrix-shaped weights and vector-

shaped biases in the l-th layer. These are the adjustable parameters of the NN, i.e.,

θµ = {Wl,bl|l = 1, · · · , χ}. Also, σl is a non-linear activation function in the l-th

layer, e.g., ReLU(·) or Sigmoid(·) [40]. Since the input and output layers must have a

corresponding dimension with the weights and biases in these two layers, FNNs have

a predefined input and output dimension. Thus, FNN is not flexible in approximating

the function with varying input and output dimensions.

2.3.2 Graph Neural Networks

We can model the function’s inputs as vertex or edge features on a graph whose size

is scalable according to input and output dimensions. Then, GNNs can process the

inputs and obtain the outputs by repeatedly aggregating the features on neighbouring

vertices and edges. For example, this thesis considers a fully-connected directed graph,

G, with a set of vertices V and a set of edges E , where G ≜ (V , E) and

V ≜ {1, . . . , K} , E ≜ {(i, j)|∀i, j ∈ V , i ̸= j} , (2.9)

where K is the number of vertices in the graph and (i, j) is the edge from vertex i to

vertex j. GNNs first map inputs to the features on the vertices and edges and then

process them using multiple layers of GNN operators. For example, layers of GNN

operators [41] can be expressed as

xl+1
i = gl

(
xl
i,⊕i ̸=jh

l
(
xl
i,x

l
j, ei,j|θh

l)|θgl) , l = 1, . . . , χ− 1 , (2.10)

where χ is the total number of layers, xl
i is the features on vertex i in the l-th layer, and

ei,j is the features on the edge from vertex i to vertex j. Here, ⊕(·) in the above is the

differentiable function aggregating all neighbouring features (e.g., sum, max and mean

functions) and hl(·|θhl
) and gl(·|θgl) denote two differentiable parameterised functions
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such as FNNs in the l-th layer, where θh
l

and θg
l

are the adjustable parameters of the

GNN, i.e., θµ = {θhl
, θg

l |l = 1, · · · , χ}.

2.3.3 Stochastic Gradient Descent

The NN-based function approximation will serve two purposes in this thesis. The

first purpose is to imitate an unknown function using the NN, µ(·|θµ) (either a FNN

or a GNN). The training algorithm samples random input-output pairs of the func-

tions and optimises the NN’s parameters to minimise a loss function measuring the

difference between the NN and the target function, e.g.,

L(θµ) = Ex∼pX

[
d
(
µ(x|θµ), f(x)

)]
, (2.11)

where f : X → Y is the target function, pX is the distribution of the target function’s

input, and d(·, ·) is the measure of the difference between the NN’s and the target func-

tion’s outputs, e.g., ℓ2-norm or cross-entropy. The second purpose of the NN-based

function approximation is to train the NN, µ(·|θµ), as an optimiser minimising an

objective function. Here, the loss function can be expressed mathematically as

L(θµ) = Ex∼pX

[
f
(
x, µ(x|θµ)

)]
, (2.12)

where f : X ×Y → R is the objective function, x ∈ X is system states specifying the

objective function, and pX is the distribution of x. The parameters of the NN, θµ, are

optimised for the above two purposes by performing the stochastic gradient descend

method [42] as

θµ ← θµ − η∇θµL(θµ) , (2.13)

where η is the learning rate to control the update step size of the parameters.
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2.4 Deep Reinforcement Learning

2.4.1 Markov Decision Process

A Markov decision process (MDP) is a mathematical framework for modelling decision-

making problems where the consequence of the decision is uncertain. The MDP can

be described by a 4-tuple, (S,A,P, r), explained as follows.

• State space S: the set of all possible states that the system can be.

• Action space A: the set of all possible actions in each state.

• Transition probabilities P: the probabilities of moving from one state to another,

given the state and the action taken.

• Reward function r: the reward received by the decision-maker for taking a

particular action in a given state.

Note that the MDP is assumed to be stationary in time, i.e., the above properties of

MDP do not change over time. In this thesis, we consider discrete-time MDPs where

the system time is slotted as 1, . . . , t, . . . . The state is measured at the beginning of

each slot as s(t), and then the action is taken in each slot as a(t), where t = 1, 2, . . . .

Note that s(t) ∈ S and a(t) ∈ A, ∀t, and we refer to s(t) and a(t) as the present state

and the present action in the t-th slot, respectively. The reward received by taking

the action in the t-th slot is r(t), t = 1, 2, . . . , where r(t) is a function on the present

state and action. Then, the system transits to the next slot, and its state becomes

s(t + 1), which follows the transition probabilities in P. The transitions in MDPs

are memoryless, i.e., they only depend on the present state and action. They are not

relevant to the states and actions in the previous slots, which can be mathematically

written as

Pr[s(t+ 1)|s(1), a(1), . . . , s(t), a(t)]

= Pr[s(t+ 1)|s(t), a(t)] , ∀s(1), a(1), . . . , s(t), a(t) ,
(2.14)

where Pr[s(t+ 1)|s(t), a(t)] is one of the element in P and can be written as p
(
s(t+

1), s(t), a(t)
)

. The goal of the MDP is to find a stationary policy, i.e., a mapping
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from the state to the action in each slot, that maximises the long-term reward over

time as

G(t) ≜ r(t) + γr(t+ 1) + γ2r(t+ 2) + . . . =
∞∑
t′=t

γ(t
′−t)r(t′) , (2.15)

where γ ∈ [0, 1) is referred to as a discount factor that indicates how much future

rewards contribute to the long-term rewards in present. Let π : S → A denote any

one of the feasible stationary policies, then a state-action value function of this policy

can be defined as

Qπ
(
s(t), a(t)

)
≜ E

[
G(t)|s(t), a(t), a(t′) = π

(
s(t′)

)
, ∀t′ > t

]
, ∀t , (2.16)

which shows the value of the long-term reward when taking a(t) given s(t) and then

using π as the policy in all following states. A state value function can be also defined

based on the given policy, π, as

V π
(
s(t)
)
≜ E

[
G(t)|s(t), a(t′) = π

(
s(t′)

)
, ∀t′ ≥ t

]
= Qπ

(
s(t), π(s(t))

)
, ∀t , (2.17)

which represents the value of the long-term reward achieved by π given that the

present state is s(t). The above two functions can be decomposed by using the

Bellman equation as

Qπ
(
s(t), a(t)

)
= E

[
r(t)|s(t), a(t)

]
+ γ E

[
Qπ
(
s(t+ 1), π

(
s(t+ 1)

)
|s(t), a(t)

]
, ∀t ,

V π
(
s(t)
)

= E
[
r(t)|a(t) = π

(
s(t)
)]

+ γ E
[
V π
(
s(t+ 1)

)
|a(t) = π

(
s(t)
)]
, ∀t .

(2.18)

The optimal policy satisfies the following equation as

V π∗(
s
)

= max
a∈A

{
E
[
r|s, a

]
+ γ Es′∼P

[
V π∗(

s′
)
|a = π(s)

]}
, ∀s ∈ S , (2.19)

where s′ is the next-slot state of s given action a. The above equality is referred to as

the Bellman optimality equation and V π∗(
s
)

is referred to as the optimal state value

function. Also, we can define the optimal state-action value function based on the
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optimal state value function as

Qπ∗(
s, a
)

= E
[
r|s, a

]
+ γ Es′∼P

[
V π∗

(s′)|a = π(s)
]
, ∀s ∈ S, ∀a ∈ A , (2.20)

The optimal value functions in the above can be solved by using dynamic program-

ming methods [17], [43], such as value iteration or policy iteration, when the reward

function and all transition probabilities are explicitly known. However, this can be

difficult to achieve in a practical system, where the above information is unknown and

requires extensive time and complexity to measure. To address this issue, reinforce-

ment learning can be used to solve MDP and find the optimal policy without knowing

the reward function and transition probabilities, as explained as follows.

2.4.2 Reinforcement Learning

Reinforcement learning solves MDPs, where an agent interacts with the process and

learns the best action in each state. For example, Q-learning [44] is one of the well-

known reinforcement learning algorithms. Q-learning uses a table to save all state-

action values for all combinations of state-action pairs, e.g., Q(s, a) ∀s ∈ S and

∀a ∈ A. Then, the agent in Q-learning selects the best action in each state based on

values saved in the table. Also, to explore all possible actions, the agent randomly

selects one of the actions with a small probability. The above action generation can

be written mathematically as

a(t) =

arg maxa∈AQ
(
s(t), a

)
, with probability 1− ϵ ,

randomly select an action in A , with probability ϵ ,

∀t , (2.21)

where ϵ is the exploration rate. After the action is taken, the process transits to the

next state and the agent updates its table based on this transition as

Q
(
s(t), a(t)

)
← (1− α)Q

(
s(t), a(t)

)
+ α

[
r(t) + γ arg max

a∈A
Q
(
s(t+ 1), a

)]
, (2.22)
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where α is the learning rate and Q
(
s(t), a(t)

)
is the entry in the table that represents

the learned state-action value function at
(
s(t), a(t)

)
. It is shown that the above

learning algorithm converges to the optimal state-action value function Qπ∗
(assuming

that α follows time sequences that decrease to zero over time) [17].

Such a tabular approach suffers from the curse of dimensionality. Specifically, if the

state space or the action is large or continuous, then we cannot efficiently save all

state-action values in the table in practice due to the memory and storage limitations

of a real-world computing system. To address this issue, one can train a NN to

approximate the state-action value function for a given policy π [45] as

Q(s, a|θQ) ≈ E
[
r|s, a

]
+ γ Es′∼P

[
V π(s′)|a = π(s)

]
, ∀s ∈ S, ∀a ∈ A , (2.23)

which is referred to as the critic. Also, particularly when the action space is large,

solving maxaQ
(
s(t), a

)
in each slot and finding the action as (2.21) is difficult. Thus,

another NN can be trained to approximate the optimal action that maximises the

value function in each state as

π(s|θπ) ≈ arg max
a
Q
(
s, a
)
, ∀s ∈ S , (2.24)

which is referred to as the actor. Then, the actor and critic can be optimised by using

the deep deterministic policy gradient (DDPG) [46], which will be further explained

in Chapter 3 when we apply it to our scheduler design problem.

2.5 Convex Optimisation

Convex optimisation [47] is a branch of optimisation theory that deals with the min-

imisation of a convex function (or the maximisation of a concave function) over a

convex set of optimisation variables. A general form of the convex optimisation prob-
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lem can be written as

min
x

f0(x)

s.t. fi(x) ≤ 0 , i = 1, . . . ,m ,

gi(x) = 0 , i = 1, . . . , p ,

(2.25)

where m and p are the numbers of inequality constraints and equality constraints,

respectively. There are three requirements for the above problem (2.25) to be a

convex optimisation problem:

• the objective function, f0(x), is a convex function.

• the inequality constraints, {f1(x), . . . , fp(x)}, are convex functions.

• the equality constraints, {g1(x), . . . , gp(x)}, are affine, i.e., they have the struc-

ture as aTx− b = 0 with a vector a and a real number b.

Additionally, generalised inequality constraints can be added to the convex problem

formulation to specify that the optimisation variables belong to a convex cone. For

example, this thesis considers the generalised inequality defined on the cone of positive

semidefinite matrices, e.g., ⪰SK
+

, where SK
+ is the cone of K×K positive semidefinite

matrices. We write the matrix X belonging to this cone as

X ⪰SK
+

0 , or in short, X ⪰ 0 . (2.26)

The convex optimisation problem, including generalised inequality constraints, can

be written as

min
X

f0(X)

s.t. fi(X) ≤ 0 , i = 1, . . . ,m ,

gi(X) = 0 , i = 1, . . . , p ,

X ⪰ 0 ,

(2.27)

where X is a K×K matrix and f0(X), {f1(X), . . . , fp(X)} and {g1(X), . . . , gp(X)} are

convex objective function, convex constraints and affine constraints on the elements of

X, respectively. It is well-known that a convex optimisation problem can be solved in
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the polynomial time of the problem’s descriptive size, e.g., the dimension of X.

2.5.1 Semidefinite Programming

Semidefinite programming (SDP) is a type of convex optimisation that involves opti-

mising a linear function over the set of positive semidefinite matrices with only affine

constraints as

min
X

tr(CTX)

s.t. tr(AT
i X) = 0 , i = 1, . . . ,m ,

X ⪰ 0 ,

(2.28)

where tr(·) denotes the trace of a matrix, e.g., tr(YTX) =
∑

i,j Yi,jXi,j for two square

matrices Y and X. One of the important applications of SDPs is to relax combina-

torial optimisation problems that are typically at non-deterministic polynomial-time

hardness (NP-hard), and then to approximate optimal solutions of the original prob-

lems in polynomial time.

The Goemans-Williamson Algorithm

For example, works in [25] use the SDP relaxation to solve a graph cut problem known

as NP-hard. Consider a directed graph, G, with a set of K vertices, V and a set of

edges E, where

G = (V , E) , V = {1, . . . , K} , E ⊆ Ê ≜ {(i, j)|∀i, j ∈ V , i ̸= j} , (2.29)

where Ê is the set of all possible edges in a fully-connected directed graph with K

vertices. Each edge is associated with a weight as Wi,j, ∀(i, j) ∈ E , assuming Wi,j ≥ 0.

The graph cut problem is to divide the vertices into two subsets to maximise the

summation of weights between these two subsets. Let yk = 1 if the k-th vertex is

divided in the first subset and yk = −1 if divided in the second subset, k = 1, . . . , K.
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We can formulate

max
y

∑
(i,j)∈E

Wi,j

(1− yiyj
2

)
s.t. yk ∈ {−1, 1}, ∀k ,

(2.30)

where (1−yiyj)/2 is equal to 0 if vertices i and j are in the same subset, or 1 otherwise.

The problem in (2.30) is referred to as the max-cut problem of G. Define a K × K

matrix X as

X ≜ yyT , (2.31)

One can verify that [48]

yk ∈ {−1, 1},∀k ⇐⇒ X ⪰ 0, diag{X} = 1, Rank(X) = 1 , (2.32)

where X is defined as (2.31) and Rank(·) is the rank of a matrix. Then, the right-

hand side of in (2.32) can be used to substitute the constraint and the optimisation

variables in (2.30), which reformulates the max-cut problem as

max
X

∑
(i,j)∈E

Wi,j

(1−Xi,j

2

)
s.t. X ⪰ 0, diag{X} = 1, Rank(X) = 1 .

(2.33)

Next, by removing the constraint on the rank of X, the above problem in (2.33) can

be relaxed as

max
X

∑
(i,j)∈E

Wi,j

(1−Xi,j

2

)
s.t. X ⪰ 0, diag{X} = 1.

(2.34)

This is a SDP problem that can be converted into the standard form in (2.28). It is

referred to as a max-cut SDP problem that can be solved by the convex optimisation

solver [49].

Once the solver finds the optimal X, X∗, that maximises the objective in (2.34), a

rounding method is used to convert X∗ to the cutting decisions y. Specifically, the

singular value decomposition (SVD) is performed on X∗, and because X∗ is a positive
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semi-definite matrix, a SVD can be found in the structure as [48]

UΣ(U)T = svd(X∗) , (2.35)

where U and Σ are both K × K square matrices and Σ is also a diagonal matrix

with with non-negative eigenvalues of X∗ on its diagonal. The cutting decisions are

rounded as

y = [y1, . . . , y2] = sgn
(
U(Σ)

1
2 δ
)
, (2.36)

where δ is a random vector in RK . It has been proved [25] that this method achieves

at least 0.87854 of optimal achievable max cut objective in (2.30), which provides a

near-optimal solution for max cut over given edge weights.
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Chapter 3

Knowledge-Assisted Deep

Reinforcement Learning for

Flexible Scheduler Design

A scheduler in wireless networks maps the network state to some scheduling decision

(or action) according to a quality of service (QoS) indicator. It is simple to define the

state and the action by checking what network information the scheduler has access to

and what transmission configurations the scheduler can control, respectively. Also, the

QoS indicator can be obtained by directly translating the service requirement. However,

the optimal logic of the scheduler is somewhat hard to obtain, especially when the

network system and the service requirement are complex. Thus, it is difficult to apply

the classic analysis-based method. Furthermore, modern wireless networks can be

flexibly configured for each individual service, where the optimal logic of schedulers

for each case is different. Manually optimising the schedulers one by one for different

cases seems impractical. Recently, machine learning (ML) methods have been widely

applied in solving optimisation problems. The advantages of ML methods are twofold:

1) they do not require comprehensive system analysis; 2) they retain the same structure

when addressing the same class of problems (though their detailed techniques differ).
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These features denote the possibility of enabling a flexible scheduler design using ML

methods, which will be studied in this chapter.

3.1 Introduction

5th generation (5G) cellular networks are expected to support emerging applica-

tions with time-sensitive traffic, such as autonomous vehicles, factory automation,

tactile internet, and virtual/augmented reality [50]–[52]. Time-sensitive traffic has

stringent QoS requirements, including reliability and latency requirements on ultra-

reliable low latency communications (uRLLC) [7] as well as low jitter [9], which differ

from the design goal of the previous generations of cellular networks, i.e., pursu-

ing higher data rates. Existing schedulers like proportional fair [53], round-robin

[54], earliest-deadline-first [55], and maximum throughput [56] were not developed

for time-sensitive traffic. Thus, wireless schedulers should be re-designed to meet the

QoS requirements of time-sensitive traffic in 5G.

A wireless scheduler in 5G is a multi-dimensional function that takes the queue state

information (QSI) and the channel state information (CSI) as its input and outputs

the amount of resources allocated to users. Such a problem can be formulated as an

optimal control problem of a Markov decision process (MDP), which can be solved by

reinforcement learning [J5]. Classic reinforcement learning algorithms and dynamic

programming suffer from the curse of dimensionality and are only applicable to prob-

lems with small state-action spaces. One can apply deep Q-learning to overcome this

difficulty, where the state-action value function is approximated by a neural network

(NN) [45]. With deep Q-learning, the scheduler needs to find the optimal action that

maximises the value function in each transmission time interval (TTI) in 5G New Ra-

dio (NR). Since the action space could be very large, the scheduler struggles to solve

the optimisation problem in one TTI. More recently, actor-critic deep reinforcement

learning (DRL) algorithms have been developed to handle this issue, where two NNs

approximate the policy and the long-term rewards, respectively [17]. If the optimal
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policy is deterministic, which is the usual case in most optimal control problems [17],

the actor-critic DRL algorithms become a deep deterministic policy gradient (DDPG)

algorithm [46].

Since DDPG is a model-free algorithm that requires no transition probabilities of the

MDP, it usually converges very slowly. However, communication environments in real-

world networks are non-stationary. Once communication environments change, the

pre-trained scheduling policy cannot achieve good QoS. Therefore, to apply DDPG

in scheduler design, we must fine-tune the policy online and reduce its convergence

time in real-world networks. On the other hand, the feed-forward inference of the

scheduler, i.e., computing the output of the NN for a given input at the base station

(BS), must be completed within each TTI (0.125 ∼ 1 ms). This poses a challenge for

implementing learning-based schedulers in real-world 5G systems [53].

3.1.1 Related Works

Schedulers for Time-sensitive Traffic

How to develop a scheduler for time-sensitive traffic in wired networks has been dis-

cussed in time-sensitive networking standardisation [57], [58]. For example, the au-

thors of [58] developed an urgent-based scheduler and analysed the worst-case latency.

Wireless schedulers were investigated to serve time-sensitive traffic with deterministic

packet arrival processes in wireless communications in [59], [60]. Specifically, semi-

persistent scheduling was adopted in 5G NR for periodic transmissions of control

signals [59]. A system-level simulator for evaluating schedulers’ end-to-end (E2E)

performance when supporting deterministic traffic was used in [60]. In the above

publications, either the channels (wired networks in [57], [58]) or the arrival processes

(control signalling and data packets in [59], [60]) are assumed to be deterministic.

However, both wireless channels and arrival processes are stochastic in various 5G

applications, such as machine-type communications, vehicle safety applications, and

ultra-reliable and low-latency communications [61]–[63]. For these applications, how

to achieve low latency and low jitter with high reliability remains an open chal-
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lenge.

DDPG in Wireless Networks

DDPG has been widely applied to solve optimal control problems in wireless net-

works. The authors of [64] used DDPG to select a radio resource scheduling policy

from existing schedulers and resource allocation policies. Considering that network

slicing will be adopted in 5G to serve different kinds of services, DDPG was used

to allocate resources among different slices in [65] and among different users in [66].

To further implement DDPG in wireless networks, an online architecture was imple-

mented in virtual radio access networks for jointly controlling computing resources

and the modulation and coding scheme, where a controller sends actions to virtual

BSs every 20 seconds [67]. Another online DDPG architecture for network slicing was

implemented in the 4G radio access networks in [68], where the controller allocates

resources among different slices every 20 ∼ 100 ms. None of the existing architectures

can be used for 5G scheduler design, where the scheduler takes actions in every TTI

at a time resolution of ∼ 0.1 ms. Thus, an online architecture that enables DDPG in

5G scheduler design is much needed.

Knowledge-Assisted Learning in Communications

How to improve the training efficiency with the assistance of expert knowledge in

vertical industries remains an important issue [69]. This knowledge is referred to

as the design principles and insights that human experts exploit to design learning

algorithms rather than specific data or information. Based on the expert knowledge

of physical layer communications, the authors in [70], [71] designed the structures of

NNs to improve training efficiency. Since the experts in wireless communications have

developed many optimisation algorithms and heuristic solutions, the existing policies

can be used to generate training samples for DRL algorithms [72]. Nevertheless,

further research is needed on how to establish a DRL framework for scheduler design,

and how to improve the training efficiency and the QoS of each user by exploiting

expert knowledge in wireless communications.
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3.1.2 Our Methods

In the remainder of this chapter, we first investigate a straightforward implementation

of DDPG in 5G scheduler design for time-sensitive traffic, where no communication

model or expert knowledge of the wireless scheduler design problem is exploited.

Straightforward implementation suffers from several issues related to problem formu-

lation, training, and online implementation, which are listed with our solutions in

Table 3.1. The contributions of this chapter have been outlined in Chapter 1.

3.2 Scheduler for Time-Sensitive Traffic in 5G

3.2.1 Wireless Scheduler in 5G NR

Packets for 
different users

… Wireless 
Channels

Downlink
Scheduler

…

Users

HoL Delays Downlink SNRs
Figure 3.1: Illustration of a downlink scheduler.

We consider a downlink scheduler in 5G NR, where K users are served by one BS,

as shown in Fig. 3.1. Packets of the k-th user are waiting in the k-th queue in the

buffer of the BS, and each queue is served according to the first-in-first-out (FIFO)

order. The duration of one slot is equal to the duration of one TTI in 5G NR, and is

denoted by ∆0.

We leverage indicators xk(t), k = 1, ..., K, to represent whether users are scheduled in

the t-th slot. If the k-th user is not scheduled in the t-th slot, xk(t) = 0. Otherwise,

xk(t) = 1 and one packet will be transmitted to the user. The packet size of the

k-th user and the number of resource blocks (RBs) allocated to it in the t-th slot

are denoted by Lk (bits) and nk(t), respectively. Since orthogonal frequency division
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3.3. Straightforward Implementation of DDPG for Scheduler Design

multiplexing is adopted in 5G NR systems, nk(t) can be adjusted in each slot by

subcarrier allocation. As illustrated in Fig. 3.1, a scheduler determines xk(t) and

nk(t) according to the QSI and CSI of all users, such as head-of-line (HoL) delays and

downlink signal-to-noise ratios (SNRs) of users at the t-th slot. These are denoted by

dk(t) and ϕk(t), respectively, for k = 1, . . . , K.

3.2.2 QoS Requirements of Time-Sensitive Traffic

The time-sensitive traffic has stringent QoS requirements, including delay, jitter, and

reliability [9], [57], [73]. To satisfy the delay requirement, the delay experienced by

packets should be larger than the minimum and smaller than the maximum delay

bounds, which are denoted by Dmin and Dmax, respectively [9], [73]. Such a constraint

also guarantees that the jitter does not exceed Dmax −Dmin. The reliability of a user

is defined as packet loss probability. A packet is lost if dk(t) /∈ [Dmin, Dmax] or the

decoding at the receiver fails. For typical time-sensitive traffic, as shown in 3GPP

standards [9], the maximum delay bound is around 1 to 10 ms. Also, the jitter needs to

be less than two TTIs, and the target reliability varies from 99.9% to 99.999%.

3.3 Straightforward Implementation of DDPG for

Scheduler Design

In this section, we introduce a straightforward implementation of DDPG for scheduler

design.

3.3.1 Preliminaries of DDPG

Training of DDPG

As shown in Fig. 3.2, DDPG is an actor-critic reinforcement learning algorithm [46],

where the actor and the critic are two NNs that determine the action in a given state

and evaluate the long-term reward of the state-action pair (taking an action in a
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Update the actor and the critic

Replay Memory

Actor CriticEn
vi

ro
nm

en
t A batch

Figure 3.2: Illustration of DDPG.

state), respectively. Given a system state, the action to be executed is obtained from

the actor as

a(t) = µ
(
s(t)|θµ

)
, (3.1)

where s(t) and a(t) are the state and action in the t-th slot, µ(·|θµ) represents the

actor, and θµ represents the parameters of the actor, i.e., weights and biases.

Given s(t) and a(t), the long-term reward is estimated by a state-action value function

as

Q
(
s(t), a(t)

)
= E

[ ∞∑
i=0

γir(t+ i)
∣∣∣ s(t), a(t), a(t′) = µ

(
s(t′)|θµ

)
,∀t′ > t

]
, (3.2)

where r(t+i) is the instantaneous reward in the (t+i)-th slot and γ is the discount fac-

tor that measures the importance of future rewards. The state-action value function in

(3.2) is approximated by the critic Q(·|θQ), where θQ represents its parameters.

DDPG initialises the parameters of the NNs, θµ and θQ, as random values. In each

time slot, the system observes the current state and generates an action according

to a(t) = µ(s(t)|θµ) + N (t), where N (t) is an exploration noise. After taking a

certain action at the t-th slot, the system observes the instantaneous reward and

the state in the (t + 1)-th slot. The transition between the two slots, i.e., T (t) ≜

⟨s(t), a(t), r(t), s(t + 1)⟩, is stored in a replay memory with the size of |I|, where I

is the set of time indices of transitions saved in the memory. After that, a batch

of transitions are selected from the memory and used as the training samples to

optimise the parameters of the NNs. The i-th transition in the selected batch is
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3.3. Straightforward Implementation of DDPG for Scheduler Design

T (ti) = ⟨s(ti), a(ti), r(ti), s(ti + 1)⟩, ti ∈ Ntr, where Ntr = {t1, . . . , tNtr} is the set of

indices of transitions in the batch and Ntr is the batch size.

To optimise the parameters of the critic, we use Bellman equation [17],

Q
(
s(ti), a(ti)

)
= E

[
r(ti) + γQ

(
s(ti + 1), µ

(
s(ti + 1)|θµ

))∣∣∣s(ti), a(ti)
]
. (3.3)

The realisation of the right-hand side of (3.3) in the ti-th slot is defined as y(ti) ≜

r(ti) + γQ
(
s(ti + 1), µ

(
s(ti + 1)|θµ

)
|θQ
)
. To obtain an accurate approximation of the

long-term reward, the DDPG algorithm minimises the difference between y(ti) and

Q
(
s(ti), a(ti)|θQ

)
. Thus, the parameters of the critic are optimised by minimising the

following loss function as

L(θQ) =
1

Ntr

Ntr∑
i=1

[
y(ti)−Q

(
s(ti), a(ti)|θQ

)]2
. (3.4)

Since the optimal policy maximises the state-action value function, the loss function

of the actor is defined as

L(θµ) = − 1

Ntr

Ntr∑
i=1

Q
(
s(ti), µ

(
s(ti)|θµ

)
|θQ
)
, (3.5)

which is minimised during training.

DDPG with discrete actions

The original DDPG requires the actions to be continuous variables. Thus, they

can be directly obtained from the continuous output of the actor. If the action

space, A, is discrete, we need to map the continuous output of the actor to the

discrete action. Using the method in [65], we can find the closest valid action as

arg mina(t)∈A ∥a(t)− µ(s(t)|θµ)∥2, where ∥x∥2 is the ℓ2 norm of a vector x.
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3.3.2 Problem Formulation

In the straightforward implementation, we define the state, action, and reward by

using the control signalling or observations that are directly available from 5G NR

systems.

Action of the scheduler

The scheduler determines the number of RBs that will be allocated to each user.

Thus, the action of the scheduler in the t-th slot is given by

a(t) ≜ [n1(t), . . . , nK(t)]T , (3.6)

where nk(t) is the nearest integer to the kth element of µ
(
s(t)|θµ

)
. If nk(t) = 0, the

k-th user will not be scheduled in the t-th slot.

State of the network

Since HoL delays and downlink SNRs are available at 5G BSs, we define the normalised

state in the t-th slot as

s(t) ≜

[
d1(t)

Dmax

, . . . ,
dK(t)

Dmax

,
log ϕ1(t)

log ϕmax

, . . . ,
log ϕK(t)

log ϕmax

]T
, (3.7)

where ϕmax is the maximum SNR represented by the maximum channel quality indi-

cator [74].

Reward of the scheduler

According to the QoS requirements in Section 3.2.2, the total instantaneous reward

in the t-th slot of the system is defined as the total number of packets successfully

received by users in this slot, which is mathematically written as

r(t) ≜
K∑
k=1

rk(t) , (3.8)
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3.4. Issues in the Straightforward Implementation of DDPG

where rk(t) is the number of packets received by the k-th user in the t-th slot, i.e.,

rk(t) =

1{Dmin≤dk(t)≤Dmax} · 1dec
k (t), if xk(t) = 1 ,

0 , if xk(t) = 0 ,

(3.9)

where 1{Dmin≤dk(t)≤Dmax} and 1dec
k (t) are two indicators. Specifically, if the packet is

scheduled when dk(t) ∈ [Dmin, Dmax], then 1{Dmin≤dk(t)≤Dmax} equals 1; otherwise, it

equals 0. In the case that the packet is successfully decoded, 1dec
k (t) = 1, otherwise,

1dec
k (t) = 0.

Finally, the optimal control problem that maximises the long-term reward of a sched-

uler can be formulated as

max
µ(·|θµ)

E
[ ∞∑

i=0

γir(t+ i)
]
. (3.10)

In this work, we only consider time-sensitive traffic. To extend the work to 5G net-

works with other network services, we can formulate different scheduler design prob-

lems for other network services by changing the reward function. For example, we

can use the long-term average rate as the reward function to maximise the fairness

and the throughput of the system. However, in this case, PF is the optimal scheduler.

Note that there is no need to use DRL or DDPG in scenarios where the optimal sched-

ulers are available. For time-sensitive traffic, the optimal scheduler is not available.

Therefore, we use learning-based methods to design the scheduler.

3.4 Issues in the Straightforward Implementation

of DDPG

It seems that DDPG can be directly applied in scheduler design. However, as shown

in this section, there are some issues to be addressed in the straightforward imple-

mentation.
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3.4.1 Issues in Problem Formulation

Large action space

Denote the total number of RBs assigned to time-sensitive traffic by N . Thus, the

possible number of RBs allocated to a user varies from 0 to N . With K users, the

size of the action space in the straightforward implementation, |A|, is (N + 1)K based

on (3.6). In a 5G NR system, the value of N can be higher than 100 depending on

the total bandwidth and the bandwidth of each RB. Thus, the action space could

be extremely large. A reinforcement learning algorithm converges as the number of

visits to each state-action pair approaches infinite [17]. When the action space is

large, finding the optimal scheduler is nearly impossible in practice.

Low flexibility of states

Furthermore, the actor in the straightforward approach is a mapping from HoL delays

and SNRs in (3.7) to the numbers of RBs in (3.6). The total number of RBs assigned

to time-sensitive traffic, N , the bandwidth of each RB, W , and the duration of each

TTI, ∆0, are hidden variables that are not included in the input of DDPG, and

hence are assumed to be constant. According to the standard of 3GPP, these hidden

variables are flexible in 5G NR [74]. When W , ∆0 and N become different, we need

to train a new scheduler by using DDPG, which is inflexible and inefficient.

Poor reliability evaluation

In addition, for time-sensitive traffic, the required reliability can be up to 99.999%.

The long-term reward in (3.10) is linear with the reliability. Thus, by increasing the

reliability of all users from 99.99% to 99.999%, the long-term reward only increases

0.01%. As a result, the gradient of (3.5) will be very small. Since the gradient descent

method is used to update the parameters of the actor, the convergence time of the

actor will be very long.
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3.4.2 Issues in Training Algorithm

Unaware of individual QoS

The output of the critic is a single scalar value estimating the long-term reward of all

users. Thus, it is not aware of the QoS of each user, and some users may suffer from

poor QoS.

Delayed reward/Sparse reward

Due to the requirement on jitter, the scheduler receives positive rewards if packets are

scheduled with HoL delays in [Dmin, Dmax]. When dk(t) < Dmin, the instantaneous

reward is 0 no matter whether the packet is scheduled or not. In other words, the

scheduler needs to take a series of actions to get a delayed non-zero reward. For

example, only by taking the following actions, nk(t) = 0 when dk(t) < Dmin, and

nk(t) > 0 when dk(t) ∈ [Dmin, Dmax], the scheduler can receive a positive reward. Due

to the fact that the non-zero rewards are sparse, such an issue is also referred to as

sparse reward in [17]. Since the scheduler is not told which actions to take in order

to get the non-zero reward, it is difficult for DDPG to learn the correct actions.

Inaccurate critic at rarely visited state-action pairs

To train the parameters of the critic, DDPG selects a batch of transitions from the

replay memory with equal probabilities. The state-action pairs that are visited with

high frequency are more likely to be selected than those that are rarely visited. When

the packet loss probability is small, the state-action pairs with packet losses are rarely

visited and the critic is inaccurate at these state-action pairs. As a result, it is difficult

for DDPG to achieve high reliability.
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Signal Processing

Duration 
of one TTI

Signal Processing

Processing delay violation

Uplink signal processing
Scheduling
Downlink signal processing

(a) (b)

Figure 3.3: Processing in the BS: (a) low-complexity scheduler, (b) high-complexity
scheduler.

3.4.3 Issues in Online Implementation

Poor initial QoS performance

Since the parameters of the actor and critic are randomly initialised in DDPG, the

QoS performance is poor during the first a few slots, which leads to high packet loss

probability. Since the algorithm interacts with real-world networks, random initiali-

sation will cause severe QoS violations.

Processing delay violation in each TTI

The BS needs to perform scheduling and the baseband signal processing (i.e., decoding

uplink packets and encoding downlink packets) within each TTI. As shown in Fig. 3.3,

if the processing of the feed-forward inference and the baseband signal processing is

not finished in one TTI, radio signals cannot be transmitted in the assigned time slots,

leading to radio link failures. We refer to this issue as processing delay violation.

3.5 Theoretical DRL Framework

To address the issues in problem formulation, we propose a T-DRL framework to sim-

plify the optimal control problem, where we exploit theoretical models and results to

1) reduce the action space, 2) generalise the state, and 3) evaluate the reliability.
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3.5.1 Theoretical Models and Results

The number of packets that arrive at the queue of the k-th user in the t-th slot

is denoted by bk(t). For typical time-sensitive traffic, such as mission-critical IoTs

and vehicle networks, the packet arrival processes follow Bernoulli processes, i.e.,

bk(t) ∈ {0, 1} [61]–[63] and the packet size is small, e.g., 20 or 32 bytes [63]. We

assume that with probability pk, one packet arrives in the slot, bk(t) = 1. With

probability 1− pk, no packet arrives in the slot, bk(t) = 0.

When transmitting a small packet, the required bandwidth is assumed to be smaller

than the coherence bandwidth. We assume that the duration of each TTI is smaller

than the channel coherence time. Thus, the wireless channel is flat fading and quasi-

static, and the blocklength of channel codes is short. To transmit Lk bits of data to

the k-th user, the decoding error probability in the short blocklength regime can be

accurately approximated by [38] as

ϵk(t) ≈ fQ

(
−Lk ln 2 + ∆0Wnk(t) ln

[
1 + ϕk(t)

]√
∆0Wnk(t)Vk(t)

)
, (3.11)

where fQ is Q-function, W is the bandwidth of each RB, Vk(t) in (3.11) is the channel

dispersion defined as Vk(t) = 1− 1/
[
1 + ϕk(t)

]2
[38].

To avoid long transmission delays and large jitters, retransmission cannot be used to

improve reliability. In this case, if a packet is not successfully decoded by the user,

it is lost. To achieve high reliability, the target decoding error probability of the k-th

user should not exceed a threshold, i.e.,

ϵk(t) ≤ ϵmax . (3.12)

Since the decoding error probability in (3.11) decreases with the number of RBs, nk(t),

the minimum number of RBs required to satisfy the constraint in (3.12), denoted by

n∗
k(t), can be obtained via binary search [75].
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3.5.2 Action Space Reduction

If the k-th user is scheduled, the number of RBs required to guarantee the reliability in

(3.12), n∗
k(t), can be obtained by substituting (3.11) into (3.12). Thus, the scheduler

only needs to determine which users to be scheduled. We define the action of the

scheduler as

â(t) = [x1(t), ..., xK(t)]T , (3.13)

where xk(t), k = 1, . . . , K, are binary variables that are obtained from the output

of the actor according to Section 3.3.1. Thus, the number of possible actions is 2K ,

which is much smaller than that of the straightforward implementation, i.e., (N+1)K ,

according to the definition of actions in (3.6). Given â(t) in (3.13), the number of

RBs allocated to the k-th user can be obtained from the following expression as

nk(t) =


xk(t)n∗

k(t) , if
∑K

k=1 xk(t)n∗
k(t) ≤ N ,⌊

xk(t)n
∗
k(t)∑K

k=1 xk(t)n
∗
k(t)

N
⌋
, if

∑K
k=1 xk(t)n∗

k(t) > N .

(3.14)

3.5.3 Generalisation of State

To enable DRL in 5G NR with flexible configurations, we replace log ϕk(t)
log ϕmax(t)

in (3.7)

with
n∗
k(t)

N
, which is obtained from the theoretical formulas in (3.11) and (3.12) and

depends on ϕk, N , W and ∆0. Based on the theoretical models and results, the

generalised state of the system in the t-th slot is given by

ŝ(t)≜

[
d1(t)

Dmax

, . . . ,
dK(t)

Dmax

,
n∗
1(t)

N
, . . . ,

n∗
K(t)

N

]T
. (3.15)

3.5.4 Reliability Evaluation

From the definition of the decoding error probability in (3.11), we have E[1dec
k (t)] =

1− ϵk(t). By replacing 1dec
k (t) in (3.9) with 1− ϵk(t), the reward of the k-th user can

43



3.6. Knowledge-assisted DDPG

be expressed as

r̃k(t) =

1{Dmin≤dk(t)≤Dmax}(1− ϵk(t)), if xk(t) = 1,

0, if xk(t) = 0 .

(3.16)

As mentioned in Section 3.4.1, when r̃k(t) is close to 1, the training efficiency of DDPG

is low. To handle this issue, we define the reward of the k-th user in the t-th slot

as

r̂k(t) = − log
[
1− r̃k(t)

]
. (3.17)

It is worth noting that the reward function in (3.17) is not well defined in the straight-

forward implementation. This is because the reward in (3.9), rk(t), is a binary number

that may be equal to 1. With the definition in (3.17), the expectation of r̂k(t) is more

sensitive to the scheduling policy than the expectation of r̃k(t). For example, by in-

creasing the reliability from 99% to 99.99%, E[r̃k(t)] increases by 1%, but E[r̂k(t)] is

doubled.

The total reward is defined as the summation of the rewards of all users, i.e.,

r̂(t) =
K∑
k=1

r̂k(t) . (3.18)

3.5.5 Markov Property

To apply DRL, we need to prove that transitions of the system follow an MDP.

Otherwise, DRL algorithms may not converge [17]. By assuming that the wireless

channel fading is Markovian [76], the Markov property holds for the scheduler design

problem (see proof in Appendix).

3.6 Knowledge-assisted DDPG

To address issues in the training phase of the straightforward implementation, we

propose K-DDPG by exploiting expert knowledge, which is formally defined as the
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Figure 3.4: Illustration of (a) single-head critic and (b) multi-head critic.

design principles and insights from human experts. Specifically, for scheduler design,

the expert knowledge includes 1) the rewards of multiple users, 2) the target scheduling

policy, and 3) the importance of transitions. With the help of knowledge, K-DDPG

improves the QoS of each user and reduces the convergence time.

3.6.1 Multi-head Critic for Individual QoS Evaluation

The single-head critic in Fig. 3.4 is not aware of the reward of each component in the

system, e.g., the QoS of each user, r̂k(t), k = 1, . . . , K. Since there are multiple users,

the total long-term reward is the summation of the long-term reward of each user,

according to (3.18). Based on the knowledge of the reward structure, we decompose

the reward into K components for K users. We denote the rewards of all users at the

t-th slot as

r̂(t) ≜ [r̂1(t), . . . , r̂K(t)] . (3.19)

The decomposed long-term rewards are approximated by the state-action value func-

tion denoted by Q1(s, a), . . . , QK(s, a), where Qk(s, a) is the state-action value func-

tion of the k-th user, defined as follows,

Qk(ŝ(t), â(t)) = E
[ ∞∑

i=0

γir̂k(t+ i)
∣∣∣ŝ(t), â(t), â(t′) = µ

(
ŝ(t′)|θµ

)
,∀t′ > t

]
. (3.20)
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3.6.2 Reward Shaping for Instantaneous Feedback

Exploring the optimal policy with delayed rewards/sparse rewards is time-consuming.

To handle this issue, we apply reward shaping [69] to generate non-zero instantaneous

feedback in each slot. According to the requirement on jitter, a target scheduling pol-

icy should only schedule users with dk(t) ∈ [Dmin, Dmax]. For users with dk(t) < Dmin,

they should not be scheduled. Based on the knowledge of the target scheduling pol-

icy, we define a potential function, Ψ(dk(t)), which generates non-zero instantaneous

reward according to

ṙk(t) = r̂k(t)−Ψ
(
dk(t)

)
+ γΨ

(
dk(t+ 1)

)
, (3.21)

which is the shaped reward of the k-th user. To illustrate the relation between the in-

stantaneous feedback and the potential function, we considered an example in Fig. 3.5,

where the potential function increases linearly with dk(t) when dk(t) < Dmin. When

dk(t) < Dmin, r̂k(t) = 0 no matter whether the user is scheduled or not. If the user

is not scheduled, dk(t + 1) = dk(t) + 1, then −Ψ
(
dk(t)

)
+ γΨ

(
dk(t + 1)

)
> 0, since

γ is closed to 1. In other words, the scheduler will receive a positive instantaneous

reward. On the other hand, if the user is scheduled, then dk(t + 1) < dk(t) and

−Ψ
(
dk(t)

)
+ γΨ

(
dk(t + 1)

)
< 0. In this case, the scheduler will receive a negative

instantaneous reward.

When reward shaping is used in reinforcement learning, the state-action value func-

tion, denoted by Q̇k(ŝ(t), â(t)), will be different from the original Qk(ŝ(t), â(t)). The

Bellman equation can be re-expressed as

Q̇k (ŝ(t), â(t)) = E
[
ṙ(t) + γQ̇k

(
ŝ(t+ 1), µ(ŝ(t+ 1)|θµ)

)∣∣∣ŝ(t), â(t)
]
, (3.22)

where k = 1 . . . , K. By substituting (3.21) into (3.22), we can derive that (see the

details in [69])

Q̇k(ŝ(t), â(t)) = Qk(ŝ(t), â(t))−Ψ
(
dk(t)

)
. (3.23)
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HoL Delay

Figure 3.5: Illustration of the potential function for reward shaping.

Since Ψ
(
dk(t)

)
does not depend on the action to be taken, the actor that maximises

Q̇k(ŝ(t), â(t)) is the same as the actor that maximises Qk(ŝ(t), â(t)), i.e.,

arg max
µ(·|θµ)

Q̇k(ŝ(t), µ(ŝ(t)|θµ)) = arg max
µ(·|θµ)

Qk(ŝ(t), µ(ŝ(t)|θµ))−Ψ
(
dk(t)

)
= arg max

µ(·|θµ)
Qk(ŝ(t), µ(ŝ(t)|θµ)) .

(3.24)

Therefore, the optimal actor does not change with the potential function [69].

After reward shaping, the multi-dimensional state-action value function of the K users

is defined as Q (ŝ(t), â(t)) ≜ [Q̇1 (ŝ(t), â(t)) , . . . , Q̇K (ŝ(t), â(t))]T [77]. As illustrated

in Fig. 3.4b, Q (ŝ(t), â(t)) is approximated by a multi-head critic,

Q
(
ŝ(t), â(t)|Θq

)
≜
[
Q̇1

(
ŝ(t), â(t)|Θq

)
, . . . , Q̇K

(
ŝ(t), â(t)|Θq

)]T
, (3.25)

which is a NN with parameters Θq.

3.6.3 Importance Sampling

To train the critic, the original DDPG selects a batch of training samples from |I|

transitions in the replay memory. All transitions will be selected with the same prob-

ability, 1/|I|. However, transitions are not with the same importance. In scheduler

design, transitions with higher approximation errors of the state-action value function

or with more packet losses are more important than the other transitions. Specifically,
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3.6. Knowledge-assisted DDPG

we define a weight, w(t), of transition T̂ (t), t ∈ I. The probability that transition

T̂ (t) will be selected is given by [78]

ptr(t) =
w(t)∑
i∈I w(i)

. (3.26)

We set the initial weight of the transition generated in the t-th time slot, T̂ (t), as

the maximum weight of all transitions that have been stored in the replay memory

during the previous (t − 1) slots, w(t) = maxi∈I w(i). For the transition generated

in the first slot, the weight is set as a small positive number in order to avoid zero

weight.

Based on the selected batch, we first update the weights of transitions in the batch

based on the approximation error of the critic and the number of packet losses,

i.e.,

w(ti)←
K∑
k=1

{[
ẏk(ti)− Q̇k

(
ŝ(ti), â(ti)|Θq

)]2
·
[
1 + (1− xk)1{dk(t)=Dmax} + xk1{dk(t)/∈[Dmin,Dmax]}

]}
,

(3.27)

where ẏk(ti) = ṙk(ti) + γQ̇k

(
ŝ(ti + 1), µ

(
ŝ(ti + 1)|θµ

)
|Θq
)

is the realisation of the

right-hand side of (3.22) in the ti-th slot. The first part in (3.27) is the approximation

error of the critic. The second part in (3.27) depends on the number of packet losses.

Specifically, if the k-th user is not scheduled when dk(t) = Dmax or is scheduled when

dk(t) /∈ [Dmin, Dmax], there is a packet loss. If there is a packet loss, the second part

is equal to 2. Otherwise, it is equal to 1.

To optimise the multi-head critic, we minimise the following loss function as 1

L(Θq) =
1

Ntr

Ntr∑
i=1

u(ti)
K∑
k=1

[
ẏk(ti)− Q̇k

(
ŝ(ti), â(ti)|Θq

)]2
, (3.28)

1Since transitions are not selected with the same probability from the replay memory,
1

Ntr

∑Ntr

i=1

∑K
k=1

[
ẏ(ti) − Q̇k

(
ŝ(ti), â(ti)|Θq

)]2
is no longer the average of the approximation error

of the state-action value function.
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3.7. Online DDPG Architecture

where the co-efficient u(ti) is defined as

u(ti) =
1

ptr(ti)|I|
, (3.29)

which corrects the bias caused by importance sampling.

To find the optimal actor maximising the total state-action value,
∑K

k=1 Q̇k

(
ŝ(t), â(t)

)
[77], we optimise the parameters of the actor to minimise the following loss function

as

L(θµ) = E
[
−

K∑
k=1

Q̇k

(
ŝ(t), â(t)

)]
= − 1

Ntr

Ntr∑
i=1

u(ti)
K∑
k=1

Q̇k

(
ŝ(ti), µ

(
ŝ(ti)|θµ

)
|Θq
)
.

(3.30)

The temporal copies of the Θq and θµ are denoted by Θ̂q and θ̂µ, respectively. We

first optimise Θ̂q and θ̂µ and then update Θq and θµ “softly”. From (3.28) and (3.30),

we can derive the gradients of L(Θ̂q) and L(θ̂µ), respectively, i.e.,

∇Θ̂qL(Θ̂q)

=
1

Ntr

Ntr∑
i=1

u(ti)
K∑
k=1

{
2
[
ẏk(t)− Q̇k

(
ŝ(ti), â(ti)|Θ̂q

)]
×∇Θ̂qQ̇k

(
ŝ(ti), â(ti)|Θ̂q

)}
,

(3.31)

∇θ̂µL(θ̂µ) = − 1

Ntr

Ntr∑
i=1

u(ti)
K∑
k=1

[
∇aQ̇k

(
ŝ(ti), a|Θ̂q

)
|a=µ(ŝ(ti)|θ̂µ) ×∇θ̂µµ(ŝ(ti)|θ̂µ)

]
.

(3.32)

The pseudo-code of K-DDPG is provided in Algorithm 1.

3.7 Online DDPG Architecture

In this section, we address the issues in the real-world implementation of DDPG by

proposing an architecture for online training and inference. As shown in Fig. 3.6, the
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3.7. Online DDPG Architecture

Algorithm 1 Knowledge-assisted DDPG

1: Initialise the parameters of the NNs, Θq and θµ.
2: Initialise temporal copies of the parameters: Θ̂q ← Θq and θ̂µ ← θµ.
3: Initialise a replay memory with a size of I.
4: for episode m = 1, . . . ,M do
5: Set the system to an initial state, e.g., set queues of users as empty.
6: for t = (m− 1)T + 1, . . . ,mT do
7: Observe state ŝ(t).
8: Generate action from â(t) = µ(ŝ(t)|θµ) +N (t), and execute the action.
9: Evaluate reward r̂(t) from (3.11), (3.16) and (3.17), and observe the next

state ŝ(t+ 1).
10: Save transition T̂ (t) = ⟨ŝ(t), â(t), r̂(t), ŝ(t + 1)⟩ and its weight w(t) =

maxi∈I w(i).
11: Select Ntr transitions as a batch of training samples based on (3.26).
12: Update weights of selected transitions based on (3.27).
13: Compute ∇Θ̂qL(Θ̂q) and ∇θ̂µL(θ̂µ) from (3.31) and (3.32), respectively.

14: Optimize Θ̂Q and θ̂µ with the SGD algorithm.
15: Update Θq and θµ based on Θ̂q and θ̂µ:

Θq ← (1− τ)Θq + τΘ̂q ; θµ ← (1− τ)θµ + τ θ̂µ .
16: end for
17: end for
18: Return Θq and θµ for online fine-tuning.

online DDPG architecture includes the scheduler at the BS and an edge server.

3.7.1 Off-line Initialisation

Before executing DDPG in the online architecture, we need to initialise the actor

and the critic off-line in a simulation platform, which is built upon the configurations

of the real-world network and the theoretical models. The basic idea is to generate

transitions from the simulation platform and train the actor and the critic by using

Algorithm 1. Considering that the simulation is not exactly the same as the real-world

network, the actor and the critic are fine-tuned in the online architecture, which is

introduced below.
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Figure 3.6: Proposed online DDPG architecture.
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Figure 3.7: Parallel processing in the BS.

3.7.2 Scheduler at the BS

After off-line initialisation, the BS fetches the parameters of the actor, θµ. In the

t-th TTI, the BS observes the state ŝ(t), and generates an action according to the

actor, â(t) = µ(ŝ(t)|θµ). To avoid processing delay violation mentioned in Section

3.4.3, tasks for the action generation and the baseband signal processing are executed

in parallel, as shown in Fig. 3.7. The generated action is saved in a local memory
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before it is executed in scheduling. The numbers of RBs allocated to the scheduled

users are given by (3.14). After the action is executed, the BS computes the reward

from (3.17) and observes the state in the next TTI, ŝ(t + 1). Finally, the transition

T̂ (t) = ⟨ŝ(t), â(t), r̂(t), ŝ(t+1)⟩, is uploaded to the edge server and saved in the replay

memory.

3.7.3 Online Training in the Edge Server

In the edge server, the actor and the critic are initialised with the method in Section

3.7.1. Then, the server fine-tunes the actor and the critic by using transitions from

the real-world scheduler at the BS. Specifically, this is achieved by executing lines

11-15 of Algorithm 1, iteratively. Once the actor and the critic are updated in each

iteration, the parameters of the actor are sent to the scheduler. In order to enable

the exploration in the real-world network, the server can add a noise in the parameter

space of the actor according to θµ ← θµ · (1 +N(0, v2) · e−λt∆0), where N(0, v2) · e−λt∆0

are Gaussian noises that attenuate over time, v is the variance of the noise and λ is

the attenuation rate [79].

As shown in the online architecture in Fig. 3.6, the rewards of users, r̂(t), are uploaded

to the edge server in each slot by the BS, where three kinds of knowledge are exploited

in the K-DDPG algorithm. First, based on the knowledge that the QoS of the whole

system depends on the QoS of each user, we use the multi-head critic in the edge server

to approximate the long-term rewards of different users. Second, the shaped rewards,

ṙ(t), are obtained from (3.21), where the form of the potential function Ψ(dk(t)) is

designed by human experts based on their understanding of the knowledge of the

target scheduling policy. Third, the knowledge of the importance of transitions is

updated according to (3.27), where the weight of each transition depends on the

approximation errors of the value function and the number of packet losses.
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3.8 Simulation Results

3.8.1 Simulation Platform

In the simulation platform, users randomly move with the velocity of 5 meters/second

in a cell with a radius of 100 meters. The channel models are the same as that in

Section 3.5.1. The path loss model is 45+30 log(l) dB, where l is the distance between

a user and the BS in meters. At the beginning of each episode, we set each user at

a random position in the cell. We assume that BS is in a factory and the small-scale

channel gain follows a Rician distribution [76]. The ratio of the average power in the

Line-of-Sight path to that in the Non-Line-of-Sight paths is set as 0.6. We consider

a discrete-time channel model in the simulation. Given the small-scale channel gain

in the current slot, with probability 80%, it remains the same in the next slot; with

probability 20%, it varies according to Rician fading.

For hyper-parameters in DRL (i.e., exploration rates, learning rates, and soft-updating

rate in Table 3.2), we tried different values and chose the best ones in this section.

Both the actor and the critic have one input layer, one output layer, and two hid-

den layers. The number of neurons in each layer depends on the number of users.

Specifically, the dimensions of the four layers of the actor are 2K, 20K, 20K and K,

respectively. The activation functions of the two hidden layers are ReLU functions.

To ensure the output of the actor lies in [0, 1], the activation function of the output

layer is 1
2
Tanh(·) + 1

2
. For the critic, the dimensions of the four layers are 3K, 30K,

30K, and K, respectively. The ReLU function is used as activation functions of the

two hidden layers, and no activation function is used in the output layer. In the

simulation, the exploration noise, N (t) ≜ [N1(t), . . . ,NK(t)]T, is added to the output

of the actor, where Nk(t) = Nk(t − 1) + δ · N(0, σ2). N(0, σ2) is a Gaussian variable

with zero mean and variance σ2. The parameter δ is an adjustable exploration rate.

The simulation setup is summarised in Table 3.2, unless mentioned otherwise.
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3.8.2 Performance of the T-DRL Framework and K-DDPG

Algorithm

To illustrate the benefits of the T-DRL framework and the K-DDPG algorithms, Figs.

3.8 and 3.9 show the packet loss probabilities during off-line training in the simulation.

The packet loss probabilities are measured every 5 episodes. When the number of

users is small (K = 5 in Fig. 3.8), DDPG converges after 25 minutes in the T-DRL

framework, while the straightforward implementation of DDPG does not converge to

a policy with low packet loss probabilities. With different types of expert knowledge

of the scheduler design problem, K-DDPG can further reduce 50% of convergence

time compared with DDPG (in the T-DRL framework). When the number of users is

large (K = 15 in Fig. 3.9), DDPG can hardly obtain a satisfactory scheduler without

the assistance of knowledge. The results in Figs. 3.8 and 3.9 indicate that by applying

K-DDPG in T-DRL framework, the scheduler learns faster than the cases without the

knowledge or theoretical models.

We then compare the reward of different DDPG algorithms in the T-DRL framework,

including the original DDPG (with legend “DDPG”), an extension of DDPG in [72]

(with legend “mDDPG”), and our K-DDPG (with legend “KA”). Fig. 3.10a shows

the average reward of users achieved by these three schemes in a 40-minute training

phase. The results show that the algorithm in [72] achieves a higher reward at the

beginning of the training phase. This is because a human-written scheduler is used in

exploration, which performs better than the randomly initialised actor in our scheme.

However, our K-DDPG learns faster and achieves better performance than the other

two algorithms by the end of the training phase. The reward of the worst-case user is

shown in Fig. 3.10. The result indicates that K-DDPG is much better than the two

other schemes.

To better illustrate the benefits of different kinds of knowledge, we illustrate the

reward achieved by different algorithms: 1) original DDPG; 2) DDPG that exploits

knowledge of the reward structure by using a multi-head critic (with legend “MH”); 3)
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(a) Average reward of users.

(b) Reward of the worst-case user.

Figure 3.10: Rewards of different DDPG in the T-DRL framework, where K = 15
and N = 50.

DDPG that exploits knowledge of the target scheduling policy by using reward shaping

(with legend “RS”); 4) DDPG with both multi-head critic and reward shaping (with
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(a) Average reward of users.

(b) Reward of the worst-case user.

Figure 3.11: Rewards of DDPG with the assistance of different kinds of knowledge in
the T-DRL framework, where K = 15 and N = 50.

legend “MH+RS”). The result in Fig. 3.11 indicates that the multi-head critic helps

improve the average reward and the reward of the worst-case user significantly. For
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example, the average reward of “MH” in Fig. 3.11a is 3 times higher than the average

reward of DDPG. From the results in Fig. 3.11b, we can see that if reward shaping is

further applied, the convergence time can be reduced by 80% from 140 minutes to 30

minutes. Note that the reward of “MH+RS” starts to decrease after 150 minutes of

training. This is due to the overfitting of NNs. In practice, we only need to train the

actor for 30 minutes with “MH+RS”.

Figure 3.12: Reliability of scheduler for different total numbers of RBs, where K = 15.
(a) Average packet loss probability of all users; (b) Packet loss probability of the worst-
case user.

The reliability achieved by different schedulers is shown in Fig. 3.12. The packet loss

probabilities are evaluated over 2000 episodes. To show the benefit of importance

sampling, we evaluate the reliability of K-DDPG with and without it (with legends

“KA” and “KA-No-IS”, respectively). In addition, we also evaluate the reliability of

three existing schedulers: the round-robin scheduler (with legend “RR”), the earliest-

deadline-first scheduler (with legend “EDF”) and the maximum throughput scheduler

(with legend “MT”). The average packet loss probabilities of all users and the packet

loss probabilities of the worst-case user are provided in Fig. 3.12a and Fig. 3.12b,

respectively. The results indicate that without importance sampling, the scheduler

can hardly achieve high reliability, while by using importance sampling, K-DDPG can

reduce the packet loss probability by 30% ∼ 50% compared with the three existing

schedulers.
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3.9 Prototype of Online Architecture and Experi-

mental Results

In this section, we show how to implement the proposed online DDPG architecture in

a real-world network. Since 5G NR testbed [81] is still under development and is not

available, we use an open-source Long Term Evolution (LTE) software suite [18] to

build the prototype, in which we measure the processing time in both inference and

training as well as the E2E latency and rewards experienced by users.

3.9.1 Prototype

Proposed architecture

The diagram of the prototype is shown in Fig. 3.13. We built K-DDPG based on the T-

DRL framework by using PyTorch in Python [40]. The algorithms run on a Dell 7820

workstation equipped with an RTX2080Ti graphics processing unit (GPU) and two

Intel Xeon Gold 6134 central processing units (CPUs) with 8 cores each. The action

generation process is developed based on libtorch in C++ [40]. We constructed the

standard-compliant cellular network based on the open-source LTE software suite de-

veloped by Software Radio System (srsLTE) [18], which consists of eNodeB (srsENB,

the BS), evolved packet core (srsEPC, the core network) and user equipment (srsUE,

the user). We embedded the action generation process in the scheduler of srsENB.

srsENB and srsEPC run on a Dell 7060 computer that has an Intel i7-8700 CPU with

6 cores, and srsUE run on Dell 7050 computers equipped with an Intel i7-6700 CPU

with 4 cores. The radio transceivers for the BS and users are universal software radio

peripheral (USRP) B210. We developed the communication protocol between the

server and the BS in Google Protocol Buffers, which can automatically compile the

protocol into Python and C++. We set the number of RBs, N , as 15. The duration

of each slot, ∆0, is 1 ms and the bandwidth of each RB, including 12 subcarriers in

LTE, is W = 180 kHz.
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Figure 3.13: Diagram of the experiment setup.

Measurement platform

We developed a measurement platform to carry out experiments and measurements.

In the platform, the packet source sends user datagram protocol (UDP) packets to the

packet destinations. The packet size is 150 bytes and the arrival rate is 0.1 packet/ms.

The E2E latency of a packet is measured at the packet destination by comparing the

time it is sent by the source and the time the destination receives it. This requires

the clocks of the computers to be highly synchronised. To achieve this goal, we im-

plemented a time synchronisation system based on precision time protocol, which

synchronises the clocks of the computers at a sub-microsecond level and allows ac-

curate E2E latency measurements. Note that the clock synchronisation system is
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not required to deploy T-DRL framework and K-DDPG in a commercial cellular

network.

3.9.2 Mismatch in Simulated and Real-world Networks

In the simulation, the time is discretised into slots (i.e., TTIs). Thus, the HoL delays

are integers. In the real-world BS, the measured HoL delays are with nanosecond

precision, denoted by d̂k, for k = 1, . . . , K. We convert it to the number of slots from

dk = round(d̂k/∆0), where round(x) is the closest integer to x. Furthermore, the CSI

in the real-world BS is reported by users, i.e., a four-bit binary number referred to

as the channel quality indicator. We can map this channel quality indicator to SNR

based on the method in [80], [82]. E2E latency in the real-world network includes the

delay from the packet source to srsENB, Dsrc, the queuing delay at the srsENB, dk(t),

the transmission delay, Dtx, and the delay from srsUE to the packet destination, Ddest,

We denote the total delays excluding the queuing delay as Dother ≜ Dsrc +Dtx +Ddest.

To meet the QoS requirements of time-sensitive traffic, the E2E latency should lie in

[Dmin + Dother, Dmax + Dother]. We assume that Dsrc ≪ Dtx and Ddest ≪ Dtx. Then,

Dother ≈ Dtx = 4 ms in the LTE system [83].

3.9.3 Tests in a Real-world Network

Fig. 3.14a compares the cumulative distribution function (CDF) of the E2E latency

experienced by two users, which is measured in the prototype for 2 minutes. The

results show that with a high probability, the latency achieved by NNs initialised with

random parameters (with legend “Random”) does not lie in [Dmin + Dother, Dmax +

Dother]. For the actor trained off-line in the simulation platform and directly applied

in the real-world network without fine-tuning (with legend “Off-line training”), with

high probability d2(t) ∈ [Dmin + Dother, Dmax + Dother], but only around half of the

packets are delivered to the first user with d1(t) ∈ [Dmin + Dother, Dmax + Dother].

This is because the simulation platform is not exactly the same as the prototype. To

handle this issue, the online DDPG architecture is applied to fine-tune the pre-trained
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(a) E2E latency in the prototype.

(b) Average rewards during online training.

Figure 3.14: Results of online training in the proposed architecture.

actor and critic in the prototype with a 15-minute online training phase, where we

tried different configurations of the parameter space noise for online exploration as

θµ ← θµ · (1 + N(0, v2) · e−λt∆0), which is described in Section 3.7.3. We set the
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parameters as v = 0.1 and λ = 5 × 104, because these values can achieve the best

performance according to our experience. With the fine-tuned actor (with legend

“Fine-tuned”), the probability that d1(t) ∈ [Dmin +Dother, Dmax +Dother] is improved

remarkably, and the second user’s performance is also improved slightly. The average

rewards of two users during online training are shown in Fig. 3.14b. The parameters of

the actor and the critic are either initialised off-line in our simulation platform (with

legend “Off-line Init”) or initialised with random variables (with legend “Random

Init”). It shows that off-line initialisation not only significantly improves the initial

performance but also reduces the convergence time of users by at least 40%. If the

environment is highly dynamic (e.g., high mobility, burst traffic pattern, and frequent

user list update), we might not be able to adjust the hyper-parameters of the actor

and the critic in time, e.g., adjusting the number of hidden layers and the number

of neurons in each layer. To handle this issue, one may consider applying few-shot

learning methods [84] to further reduce the time needed for online fine-tuning. Also,

one can use graph neural networks to transfer the trained NNs into scheduler design

problems with different scales [29].

We measured the processing time of the feed-forward inference of the actor that runs

on the Intel i7-8700 CPU at the BS. The average processing time of the inference

is 0.036 ms and the maximum processing time is 0.067 ms, which is less than the

duration of the shortest TTI in 5G NR, e.g., 0.125 ms. This result indicates that our

scheduler can be operated at every TTI in real-world 5G systems. We also observed

that the processing time grows as the sizes of the NNs increase. When the sizes of the

NNs are large, we may need GPUs, field-programmable gate arrays or application-

specific integrated circuits at the BS in order to avoid processing delay violation.

Furthermore, we measured the average processing time of each training iteration in

the edge server, i.e., around 5 ms. Thus, the online DDPG architecture can update

the actor according to real-world networks every few milliseconds.
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3.10 Summary

In this chapter, we developed the scheduler design method based on DDPG. We

studied the straightforward implementation of DDPG and identified its limitations.

To address these issues, we proposed the T-DRL framework to formulate the state,

action and rewards of DDPG. Also, we designed the K-DDPG algorithm that exploits

expert knowledge in communication systems to improve training efficiency. Finally,

we developed the online architecture to fine-tune the NNs according to the real-time

measurements from the BS. We conducted extensive simulations, showing our methods

significantly improve the convergence of DDPG in scheduler design. Furthermore, we

implement the online architecture prototype in a standard-compliant cellular network,

which validates the practicality of our methods.
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Chapter 4

Opportunistic Scheduling Using

Statistical Information of Wireless

Channels

In the last chapter, we have developed a scheduler design algorithm based on deep rein-

forcement learning (DRL), where the algorithm interacts with the system and gradually

optimises the scheduling policy based on the measurement and feedback from the net-

work. Although we have designed several methods to improve the convergence time of

the scheduler design algorithm, it still requires a long time to find the optimal sched-

uler. This is because the algorithm needs to interact with the network and “learn” the

network’s stochastic behaviours. Assume that the complete statistical information of

the network is known, then the above interaction is no longer needed. Meanwhile, mea-

suring statistical information still requires time. This poses the questions of how to

use the statistical information in the scheduler design and what statistical information

should be used to reduce the overall time needed to find optimal schedulers eventually.

In this chapter, we study these questions and provide a solution to accelerate the

scheduler design’s convergence using the network’s statistical information.
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4.1 Introduction

Since time-varying channels limit the performance of multi-user wireless networks

[85], scheduling policies for users’ transmissions according to the stochastic variation

of channel states is the key to optimising long-term system objectives of wireless

networks. These objectives are framed as utility functions designed specifically to

track networks’ performance metrics [86], such as fairness or maximisation of data

rates. Such scheduling strategies are referred to as opportunistic schedulers (OSs).

Two OS classes have been reported in the open literature [86], [87], Markov decision

process (MDP)-based OSs (including the one studied in the previous chapter) [J1],

[88]–[93] and max-weight schedulers (MWSs) [19], [20], [94]–[97].

4.1.1 Related Works

MDP-based OSs

MDP-based OSs maximise the long-term utility function by calculating the optimal

selection of users to be scheduled at each channel state, assuming a full prior knowledge

of statistical channel state information (CSI), e.g., transition probabilities of channel

states [88]–[91]. The calculated optimal user selections are saved in a lookup table

that will be referred to for the channel state in each time slot [17]. Alternative to

the above tabular approach, the MDP-based OS can also use a neural network (NN)

to map the channel state into the optimal user selection in each slot, e.g., the DRL

algorithm design in the last chapter. The NN’s parameters can then be stochastically

optimised by DRL based on the channel state, user selection and a well-designed

reward signal in every slot [J1], [92], [93] without any knowledge of statistical CSI.

As the NN contains many parameters that require optimisation, DRL methods take

a long time to find the optimal MDP-based OS [J1].
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Max-Weight Schedulers

The second OS class, namely MWSs [19], [20], [94]–[97], schedule a user with the

highest weighted instantaneous utility, e.g., instantaneous rate, in each time slot,

which is widely used in cellular networks. These methods continuously adjust the

MWS’s weights for each slot based on every past channel state and user selection to

maximise the long-term utility function. This approach requires no prior knowledge

of statistical CSI. Since MWS designs only need to optimise a vector of weights, they

have a much lower implementation complexity than the lookup table or the NN of

MDP-based OSs mentioned above. Unfortunately, these MWS approaches still require

hundreds of time slots in trials of adjusting weights before they find optimal ones,

leading to sub-optimal system performance. Applying statistical CSI in the MWS

design is a possible direction to save time slots in the online adjustment of weights

[87]. However, time slots are still required to measure instantaneous CSI and further

estimate the statistical CSI. Further research is needed on how to design MWSs based

on the prior knowledge of statistical CSI that costs few slots to obtain.

4.1.2 Our Methods

In this chapter, we propose a new method that uses limited prior knowledge of statis-

tical CSI to effectively reduce the number of time slots required in the MWS design.

We find the optimal MWS’s weights to maximise the utility function as the sum of the

logs of users’ average scheduled bit rates in the multi-user wireless network [19], [20],

[86], [87]. This utility function is commonly used to formulate the service require-

ments of high data rate applications in enhanced mobile broadband (eMBB) [7], e.g.,

video streaming [98]. In this work, users’ signal-to-noise ratios (SNRs) are considered

as CSI, which can be measured from radio signals, e.g., 5G cellular networks’ CSI ref-

erence signals [74]. We first derive each user’s average rate for given MWS’s weights

from the full prior knowledge of statistical CSI, namely the probability density func-

tions (PDFs) of users’ SNRs [99]–[101]. To use limited prior knowledge of statistical

CSI instead, we re-derive the computation of users’ average rates for given MWS’s
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Figure 4.1: Illustration of a wireless scheduler.

weights as an optimisation problem based on only the mean and variance (i.e., the first

and the second moment of the PDF [102]) of users’ SNRs, referred to as a rate estima-

tion problem. Here, we use the mean and variance of SNRs to construct constraints

that bound users’ feasible average data rates. Next, we formulate mean-variance-

based weight optimisation (MVWO) that maximises the above utility function. We

construct this problem as a bi-level optimisation problem (BLOP) [23], [24] with the

MWS weights as optimisation variables. The rate estimation problem is embedded

in the BLOP to specify the average rates at given weights. We design an iterative

solver for the BLOP and mathematically prove that it returns the optimal MWS’s

weights in MVWO. Furthermore, since real-world networks have varying mean and

variance of SNRs, e.g., due to the mobility of users, we study how to use the proposed

MVWO method to adjust the MWS’s weights based on online SNR measurements.

This chapter’s contributions have been summarised in Chapter 1.

4.2 SystemModel and Problem Formulation of Op-

portunistic Scheduling

In this section, we present the system model of the multi-user wireless network and

formulate the optimisation problem of the MWS design. Further, we study the issues

of using PDFs of users’ SNRs to design MWSs.
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4.2.1 System Model

We consider a wireless link of the BS shared by K users in time slots, as shown in Fig.

4.1. The duration of each slot in the system is ∆0 in seconds. The bandwidth of the

link is B in Hertz. A binary indicator of the user selection decision, xk(t), represents

whether the BS transmits the data of the k-th user, k = 1, . . . , K, in the t-th slot or

not, t = 1, 2, . . . , i.e.,

xk(t) ∈ {0, 1} , ∀t, k . (4.1)

For example, xk(t) = 1 if the k-th user occupies in the t-th slot and the BS transmits

this user’s data, otherwise xk(t) = 0. We assume that only one user can access the

channel in each slot, which is mathematically written as

K∑
k=1

xk(t) ≤ 1 , ∀t . (4.2)

The user scheduling actions in the t-th slot are defined as

x(t) ≜ [x1(t), . . . , xK(t)]T . (4.3)

We assume that the channel of the k-th user has a stationary SNR, whose value is

ϕk(t) in the t-th slot and is assumed to be i.i.d. in each slot. We define the channel

state in the t-th slot as

s(t) ≜ [ϕ1(t), . . . , ϕK(t)]T . (4.4)

The mean and the variance of ϕk(t) are denoted as

mϕ
k ≜ E[ϕk(t)] , vϕk ≜ V[ϕk(t)] , ∀k . (4.5)

The SNRs of different users are assumed to be independent. The spectrum efficiency of

the k-th user in the t-th slot is calculated by using Shannon capacity as log2

(
1+ϕk(t)

)
.

The amount of instantaneous bits scheduled for the k-th user in the t-th slot is then

given as xk(t)∆0B log2

(
1 + ϕk(t)

)
. We define a vector of scheduled instantaneous bit
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rate for K users as

v
(
x(t), s(t)

)
≜
[
x1(t)∆0B log2

(
1 + ϕ1(t)

)
, . . . , xK(t)∆0B log2

(
1 + ϕK(t)

)]T
,∀t ,

(4.6)

where x(t) and s(t) are defined in (4.3) and (4.4), respectively.

At each slot t, any scheduler, ω, decides the binary user scheduling actions based on

the channel states as

∀t , x(t) = ω
(
s(t)
)
, s.t. (4.1) (4.2) . (4.7)

The average rates scheduled by any scheduler for users 1, . . . , K, r = [r1, . . . , rK ]T is

given as

r ≜ lim
T→∞

1

T

T∑
t=1

v
(
x(t), s(t)

)
, (4.8)

where x(t), t = 1, 2 . . . can be binary user scheduling actions decided by any scheduler,

ω, as shown in (4.7). We define the feasible rate region, F , that contains all possible

values of the average rates achieved by any scheduler as follows,

F ≜ {r|(4.1) and (4.2)} , (4.9)

which is a compact convex set based on the justification in [20].

4.2.2 MWS Design Problem Formulation

The utility function of the system is the sum of the logs (or proportional fairness [16],

[103]) of users’ average rates, expressed as

f(r) ≜
K∑
k=1

ln rk , (4.10)

and it is strictly increasing and concave. We use MWSs as OSs to schedule users at

each time slot. We first define w ≜ [w1, . . . , wK ]T, ∥w∥2 = 1 and w ∈ RK
>0, as weights
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of the MWS for K users, which are fixed for time T . The MWS, µ, decides the user

scheduling action, x(t), based on the channel state, s(t), at the t-th slot as

∀t , x(t) = µ
(
s(t)|w

)
≜ arg max

x′(t)
⟨w,v

(
x′(t), s(t)

)
⟩ s.t.(4.1) (4.2) . (4.11)

Here, the values of the weights in MWSs control the probability that users are selected

for every time slot. The average rates achieved by MWSs in (4.8) for users 1, . . . , K,

r∼µ(·|w) = [r
∼µ(·|w)
1 , . . . , r

∼µ(·|w)
K ]T, can then be written as

r∼µ(·|w) ≜ lim
T→∞

1

T

T∑
t=1

v
(
µ
(
s(t)|w

)
, s(t)

)
. (4.12)

Note that r∼µ(·|w) are feasible rates that belong to F . The problem formulation of

finding the optimal weights of MWSs that maximise (4.10) is

max
w

f(r∼µ(·|w)) , s.t. w ∈ RK
>0 , ∥w∥2 = 1 , (4.12) . (P1)

The numerical value of r∼µ(·|w) at given w is needed to solve (P1), which can be

calculated based on the full knowledge of statistical CSI, namely PDFs of the SNRs

[99]–[101], as follows.

4.2.3 Rate Estimation Using Full Knowledge of Statistical

CSI

The k-th user’s average rate achieved by MWSs, r
∼µ(·|w)
k , k = 1, . . . , K, in (4.12) can

be further calculated as

r
∼µ(·|w)
k = E[∆0Bxk(t) log2

(
1 + ϕk(t)

)
]

(a)
=∆0B E[xk(t)]E[log2

(
1 + ϕk(t)

)
|xk(t) = 1]

=∆0B Pr[xk(t) = 1]

∫
ϕ

qk(ϕ|xk(t) = 1) log2(1 + ϕ)dϕ

(b)
=∆0B

∫
ϕ

qk(ϕ) Pr[xk(t) = 1|ϕk(t) = ϕ] log2(1 + ϕ)dϕ, ∀k,

(4.13)
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where (a) is because xk(t) is binary and (b) uses Bayes’ theorem [99]. Here, qk(ϕ)

and qk(ϕ|xk(t) = 1) in (4.13) are the PDFs of the k-th user’s SNRs in all T time

slots and in those time slots where this user is scheduled, respectively. Furthermore,

Pr[xk(t) = 1|ϕk(t) = ϕ] in (4.13) is the probability that the k-th user is scheduled in

the t-th slot for a given value of its SNR, ϕ. Such probability can be calculated for

the MWS, µ(·|w), as

Pr[xk(t) = 1|ϕk(t) = ϕ]
(a)
=
∏
j ̸=k

Pr[wj log2

(
1 + ϕj(t)

)
< wk log2

(
1 + ϕ

)
]

=
∏
j ̸=k

Pr[ϕj(t) < (1 + ϕ)
wk
wj − 1] =

∏
j ̸=k

∫ (1+ϕ)

wk
wj −1

0

qj(ψ)dψ , ∀k , t ,w ,

(4.14)

where (a) uses the definition of MWSs in (4.11) that a user occupies a slot when

it has the highest weighted spectrum efficiency among other users in this slot. By

substituting (4.14) into (4.13), the average rates of MWSs can be rewritten as

r
∼µ(·|w)
k =∆0B

∫
ϕ

qk(ϕ)
(∏

j ̸=k

∫ (1+ϕ)

wk
wj −1

0

qj(ψ)dψ
)
· log2(1 + ϕ)dϕ, ∀k, w . (4.15)

Here, r
∼µ(·|w)
k can be calculated if PDFs of all users’ SNRs are known. Such an

approach for the calculation of r∼µ(·|w) suffers from two issues. First, estimating

PDFs of the SNRs has a high time complexity, or in other words, it requires a large

number of time slots to collect samples of channel states such that each state is

counted sufficient times. Second, even though the PDFs are obtained, it is difficult to

numerically calculate the integrals in (4.15), and additional estimators of the integrals

are required [99]. These issues in PDF-based rate estimation are difficult to address.

Thus, we propose a new method to estimate the average rates in the sequel.
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4.3 Rate Estimation Using Mean and Variance of

SNRs

In this section, we propose a new method for calculating the average rates, r∼µ(·|w),

achieved by MWSs, µ(·|w), in order to solve (P1). The proposed method only uses

the mean and variance of the SNRs defined in (4.5) to approximate the average rates

of MWSs.

4.3.1 Bounding the Feasible Rate Region

As we cannot use (4.15) directly, we formulate a rate estimation problem that calcu-

lates r∼µ(·|w) based on the feasible rate region, F , defined in (4.9) as

Corollary 1. ∀w ∈ RK
>0, ∥w∥2 = 1,

r∼µ(·|w) = arg max
r
⟨w, r⟩ , s.t. r ∈ F . (4.16)

Proof. The proof is in the appendix.

Next, we aim at using the mean and variance of the SNRs, defined in (4.5), to construct

a convex set, G, that represents F . In this way, we can find an estimation of r∼µ(·|w) by

solving the optimisation problem at the right-hand side (RHS) of (4.16), in which F

is replaced by G. To achieve this, we will construct convex expressions1 as constraints

based on the mean and variance of the SNRs to govern the randomness of x(t), s(t)

and the correlation between them, which also specify the range of the value of users’

feasible average rates in F .

First, let us consider any feasible values of the average rate of the k-th user, rk,

k = 1, . . . , K, including the average rates achieved by MWSs in (4.12). We note that

1We will focus on explaining our methods without explicit proof of the claim on the convexity
of inequalities, equalities and optimisation problems. If interested, readers can use the checker
implemented in [49] to validate the claimed convexity.
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users’ average rates are non-negative, which can be expressed in constraints as

rk ≥ 0, ∀k . (C1)

An upper bound on any feasible values of the k-th user’s rate, rk, k = 1, . . . , K, is

obtained as2

rk =∆0B E[xk(t) log2

(
1 + ϕk(t)

)
] = ∆0B E[xk(t)]E[log2

(
1 + ϕk(t)

)
|xk(t) = 1]

(a)

≤∆0B E[xk(t)] log2

(
1 + E[ϕk(t)|xk(t) = 1]

)
, ∀k ,

(4.17)

where (a) uses Jensen’s inequality on the expected value of the concave function,

log2

(
1+(·)

)
. Here, E[ϕk(t)|xk(t) = 1] in (4.17) is each user’s average SNR in scheduled

slots, calculated by

E[ϕk(t)|xk(t) = 1] =
E[xk(t)ϕk(t)]

E[xk(t)]
=
yk
pk

, ∀k , (4.18)

where yk and pk are defined as

yk ≜ E[xk(t)ϕk(t)] , pk ≜ E[xk(t)] , ∀k . (4.19)

Then, we substitute (4.18) and (4.19) into (4.17) as

rk ≤ ∆0B · pk · log2

(
1 +

yk
pk

)
, ∀k . (C2)

Note that pk is the expected value of a binary number, xk(t), as defined in (4.1), which

implies

0 ≤ pk ≤ 1 , ∀k . (C3)

2Note that the channel capacity in this chapter does not consider fading. We can extend the
method to channel with fading by calculating the capacity as E[B log2(1+ |hk|2ϕk(t))] in the t-th slot
for user k, where hk is the random normalised fading gain of user k. Regardless of the fading model,
the amount of instantaneous bits scheduled for the k-th user in the t-th slot can be upper-bounded
as xk(t)∆0B E[log2(1 + |hk|2ϕk(t))] ≤ xk(t)∆0B log2(1 + E[|hk|2]ϕk(t)) = xk(t)∆0B log2(1 + ϕk(t)),
using Jensen’s inequality. This derivation will lead to the same upper bound of users’ data rates.
Thus, the MVWO method still applies.
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The summation of xk(t) for k ∈ {1, . . . , K} is less than 1 at each slot, as stated in

(4.2), leading to a constraint on pk as

K∑
k=1

pk ≤ 1 . (C4)

Next, we study the relationship between yk and pk, k = 1, . . . , K, in the covariance

matrix of binary indicators of user selection decisions, xk(t), and SNRs of users, ϕk(t),

k = 1, . . . , K, as

H ≜

 Hxx Hxϕ

(Hxϕ)T Hϕϕ

 . (4.20)

H is a 2K × 2K matrix and each submatrix in H has K ×K dimension. (·)T here is

the transpose of a matrix. Elements in the diagonal Hxϕ are the covariance between

xk(t) and ϕk(t), k ∈ {1, . . . , K}, and is calculated based on yk and pk as

Hxϕ
k,k = yk − pkmϕ

k , ∀k , (C5)

where mϕ
k is the mean of ϕk(t), as defined in (4.5).

The lower-right part of H, Hϕϕ, is the covariance matrix of ϕi(t) and ϕj(t), i, j ∈

{1, . . . , K}, whose elements are

Hϕϕ
i,j =

v
ϕ
k , if i = j,

0 , if i ̸= j,

∀i , j ∈ {1, . . . , K} , (C6)

where vϕk is the variance of of ϕk(t), as defined in (4.5). Note that SNRs of users are

independent. Thus, all off-diagonal elements in Hϕϕ are 0 in (C6).

Hxx is the covariance matrix of xi(t) and xj(t), i, j ∈ {1, . . . , K}. Note that xi(t)

and xj(t) are binaries. The covariance of two binary random numbers is calculated
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as

Hxx
i,j = cov(xi(t), xj(t)) = E[xi(t)xj(t)]− E[xi(t)]E[xj(t)]

= Pr[xi(t) = 1, xj(t) = 1]− E[xi(t)]E[xj(t)] , ∀i , j ∈ {1, . . . , K} .
(4.21)

As stated in (4.2), if i ̸= j, xi(t) and xj(t) cannot be simultaneously equal to 1 for a

given t. This means that Pr[xi(t) = 1, xj(t) = 1] = 0 if i ̸= j. Also, when i = j, we

have Pr[xi(t) = 1, xj(t) = 1] = Pr[xi(t) = 1] = pi. Therefore, the elements in Hxx in

(4.21) can be written as

Hxx
i,j =

pi − p
2
i , if i = j,

−pipj, if i ̸= j,

∀i , j ∈ {1, . . . , K} . (4.22)

Note that the above equalities are not convex constraints. In order to construct

convex constraints for G, we can relax the above constraints in (4.22) into convex

ones as

Hxx
k,k ≤ pk − p2k , ∀k , (C7)

where constraints on the elements in the main diagonal and the off-diagonal of Hxx

are changed into inequalities and removed, respectively. Also, we observe that the

summation of all elements in Hxx in (4.22) is

K∑
i=1

K∑
j=1

Hxx
i,j =

K∑
i=1

pi −

(
K∑
i=1

pi

)2

, (4.23)

which can be relaxed into a convex constraint as

K∑
i=1

K∑
j=1

Hxx
i,j ≤

K∑
i=1

pi −

(
K∑
i=1

pi

)2

. (C8)

The positive semidefiniteness of covariance matrices is the constraint on all elements

in H as

H ⪰ 0 . (C9)
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We note that (C1), (C2), . . . , (C9) are all convex constraints.

Finally, the collection of (C1)-(C9) defines a convex set, E , that contains all possible

values of tuple (r,p,y,H) as

E ≜ {(r,p,y,H)|(C1)-(C9)} , (4.24)

where tuples’ elements are defined as r ≜ {r1, . . . , rK}, p ≜ {p1, . . . , pK}, y ≜

{y1, . . . , yK} and (4.20). Also, we define the set of all possible values of r in all

tuples of E as

G ≜ {r|r = proj1[(r,p,y,H)],∀(r,p,y,H) ∈ E} , (4.25)

which can be interpreted as a projection of tuples in E at their coordinates of r. Note

that (C1)-(C9) are all convex, which implies the set E defined in (4.24) is convex and

further implies the projection of E , G, defined in (4.25) is also convex [47].

4.3.2 The Proposed Rate Estimation for MWSs

By using G as an approximation of F , we then can rewrite the rate estimation problem

in (4.16) that estimates the average rates of the MWS with weights, w, as

r∼µ(·|w) ≈ r
∼µ(·|w)
G ≜ arg max

r
⟨w, r⟩ , s.t. r ∈ G , (4.26)

where r
∼µ(·|w)
G is the estimated value of r∼µ(·|w) in (4.12). As G can be represented by

(C1)-(C9) according to (4.24) and (4.25), we can further rewrite the problem in the

RHS of (4.26) as

max
r,p,y,H

⟨w, r⟩ , s.t. (C1)-(C9) , (4.27)

Note that the optimal r from (4.27) is equal to the optimal r from the RHS of (4.26),

i.e., r
∼µ(·|w)
G in (4.26). Since (C1)-(C9) are all convex constraints and the objective

function in (4.27), ⟨w, r⟩, is affine, the optimisation problem in (4.27) is a convex

optimisation problem [47]. Note that G must be a bounded set so that the estimated

78



4.4. Proposed MVWO for MWS Design

rates in (4.26) or (4.27) have meaningful values; otherwise, they will be infinite and

meaningless. We prove the boundedness of G in the appendix. We refer to G as the

bounding set of F .

4.4 Proposed MVWO for MWS Design

By replacing (4.12) with (4.27) as the constraint in (P1), we can then rewrite the

optimisation of the utility function in (P1) as

max
w,r,p,y,H

f(r) ,

s.t. w ∈ RK
>0 , ∥w∥2 = 1 ,

r,p,y,H = arg max
r′,p′,y′,H′

⟨w, r′⟩, s.t. (C1)-(C9) .

(P2)

We use the optimal w of the above problem to approximate the weights of an optimal

MWS. Note that (4.27) is embedded in (P2), resulting in (P2) having a standard form

of BLOPs with known iterative solvers [23]. We refer to the embedded (4.27) as the

lower-level problem (LLP) of (P2), and (P2) as the upper-level problem (ULP) of the

embedded (4.27), respectively. We refer to (P2) as the MVWO since its formulation

only uses the mean and variance of users’ SNRs.

4.4.1 Issue of Existing Iterative Solvers for the BLOP

We study how to solve (P2) by using iterative solvers. We first briefly explain the

process of iterative solvers for BLOPs [23], [24]. Let w(i), i = 1, 2, . . . , denote the

weights in the i-th iteration of an iterative solver. In each iteration, the LLP is

first solved when the weights in its objective, ⟨w, r′⟩, are w(i). Next, the process

calculates the weights in the next iteration, w(i+1). In the existing iterative solvers

[23], the calculation of w(i+1) is done by solving an additional optimisation problem

formulated based on the Lagrangian of the LLP, the utility function and the solution

of the LLP (i.e., the value of r, p, y and H when the weights, w in the LLP are w(i))

in the i-th iteration. Such methods have a high computational complexity. Thus, a
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low-complexity method is required to update the weights.

4.5 Proposed Iterative Solver for MVWO

In this section, we design an iteration solver to solve the MVWO problem in (P2).

The designed solver iterates the weights, w(i), until the rates in the solution of the

LLP (i.e., the value of r when w(i) is the weights in the LLP) maximise the objective

of (P2), f(r).

4.5.1 Initialisation of the Proposed Iterative Process

To achieve the above, the designed solver first finds the optimal rates, r∗, in the

bounding set, G, that maximise the objective of (P2), f(r), which is defined as

r∗ ≜ arg max
r′

f(r′) , s.t. r′ ∈ G , (4.28)

and the value of r∗ can be obtained by solving the following problem as

r∗,p∗,y∗,H∗ = arg max
r′,p′,y′,H′

f(r′) , s.t. (C1)-(C9) . (4.29)

Here, (C1)-(C9) in (4.29) are used to represent G in (4.28), as defined in (4.24) and

(4.25). Also, (4.29) is a convex optimisation problem because its constraints are

convex and its objective is to maximise a concave function, f(·). Note that (4.29) is

only solved once before the following iterative process starts, where we initialise the

weights in the first iteration, w(1), as

w(1) ≜ [
1√
K
, . . . ,

1√
K

]T . (4.30)
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4.5.2 Low-Complexity Iterative Updates of Weights

Next, the LLP for the given weights in the i-th iteration, w(i), is solved as

r(i),p(i),y(i),H(i) = arg max
r′,p′,y′,H′

⟨w(i), r′⟩ s.t. (C1)-(C9) . (4.31)

To calculate the weights in the i+1-th iteration, we first perform an intermediary step

to calculate a vector, u(i), that is a linear combination of w(i) and r∗ − r(i) as

u(i) ≜ (a(i) + b(i))w(i) + (r∗ − r(i)) , (4.32)

where r∗ and r(i) are from (4.29) and (4.31), respectively. a(i) and b(i) in (4.32) are

configured as

a(i) ≜
∥r∗ − r(i)∥22
⟨w(i), r(i) − r∗⟩

, b(i) ≜ −min{(r∗ − r(i))⊘w(i)} . (4.33)

By normalising u(i) in (4.32), we obtain the weights in the i+ 1-th iteration as

w(i+1) =
u(i)

∥u(i)∥2
. (4.34)

The update of weights in (4.32)-(4.34) has a linear computational complexity that

is lower than the polynomial complexity of solving the additional optimisation prob-

lem in existing methods [23]. Furthermore, note that the weights in each iteration

follow

Corollary 2. If w(i) ∈ RK
>0 and ∥w(i)∥2 = 1, then w(i+1) ∈ RK

>0 and ∥w(i+1)∥2 = 1.

Proof. The proof is in the appendix.

Since the weights in the first iteration, as defined in (4.30), satisfy the constraints

on weights in (P2), i.e., w(1) ∈ RK
>0 and ∥w(1)∥2 = 1, the weights in all following

iterations satisfy those constraints based on Corollary 2, i.e., all iterated weights are

feasible in the above process.
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Algorithm 2 Proposed Iterative Solver for the MVWO

1: Find r∗ via solving (4.29).
2: Initialise w(1) as (4.30).
3: for i = 1, 2, . . . do
4: Construct Problem (4.31) based on w(i).
5: Find the solution of Problem (4.31) as r(i).
6: if |⟨w(i), r(i) − r∗⟩| < ϵ̂ then
7: break and terminate.
8: else
9: Calculate a(i) and b(i) as (4.33).
10: Calculate u(i) and w(i+1) as (4.32) and (4.34).
11: end if
12: end for
13: return w(i).

4.5.3 Termination Condition of the Proposed Iterative Pro-

cess

The iterated weights, w(i), are optimal when r∗ is the optimal rates of the LLP in

(4.31) because no other rates, r, in G can lead to higher f(r) than f(r∗), as defined in

(4.28). We use the difference between the value of the LLP’s objective function at r(i)

and the one at r∗ to indicate whether r∗ is the optimal rates of the LLP or not in the

i-th iteration. Such difference is expressed as |⟨w(i), r(i)⟩−⟨w(i), r∗⟩|, whose minimum

value is 0 and is achieved only if r∗ is the optimal rates of the LLP in the i-th iteration.

In practice, if |⟨w(i), r(i)⟩ − ⟨w(i), r∗⟩| is less than a small positive number, ϵ̂, then we

stop the iteration and return w(i) as the optimal weights of (P2).

Algorithm 2 summarises the process of the proposed iterative solver. The analysis of

the convergence of Algorithm 2 is presented in the following section.

4.6 Convergence of Proposed Iterative Solver

In this section, we prove that Algorithm 2 converges. Also, we study the computa-

tional complexity of the proposed solver.
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4.6.1 Convergence of Algorithm 2

We define the convergence of Algorithm 2 as that |⟨w(i), r(i) − r∗⟩| converges to 0,

i.e., for any positive number, ϵ̂, |⟨w(i), r(i) − r∗⟩| is less than ϵ̂ after a number of

iterations. Note that the above convergence defined for Algorithm 2 also implies that

w(i) converges to the optimal weights that maximise f(r) in (P2), as discussed in

Section 4.5.3. To prove the convergence of Algorithm 2, we study the relationship

between the iterated weights, w(i) and the optimal weights of (P2). We denote the

set of all optimal weights of (P2) as W . Considering an arbitrary vector of weights

w∗ from W , the inner product between w(i) and w∗ has following properties.

Lemma 1. 1) If Algorithm 2 is not terminating in the i-th iteration, then ∀w∗ ∈ W,

⟨w(i+1),w∗⟩
⟨w(i),w∗⟩

>

[
1− (⟨w(i), r(i) − r∗⟩)2

2R̂2

]− 1
2

> 1 . (4.35)

Here, R̂ in (4.35) is a finite number representing the maximum Euclidean distance be-

tween any two vectors in G, defined as R̂ ≜ maxra,rb∈G ∥ra−rb∥2. 2) 1√
K
≤ ⟨w(i),w∗⟩ ≤

1, ∀i and ∀w∗ ∈ W.

Proof. The proof can be found in the appendix.

Lemma 1 shows that ⟨w(i),w∗⟩ is strictly increasing as i increases. Its supremum is

defined as

o(w∗) ≜ sup
i
⟨w(i),w∗⟩ , ∀w∗ ∈ W , (4.36)

where o(w∗) is a finite number less than or equal to 1 because ⟨w(i),w∗⟩ is less than

or equal to 1, ∀i, as shown in Lemma 1. We consider following inequalities in the i-th

iteration that use the definition of o(w∗) in (4.36), ∀w∗ ∈ W ,

⟨w(i+1),w∗⟩ ≤ o(w∗)⇒ ⟨w
(i+1),w∗⟩
⟨w(i),w∗⟩

≤ o(w∗)

⟨w(i),w∗⟩
. (4.37)
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By applying (4.35) of Lemma 1 to (4.37), we obtain

1 <

[
1− (⟨w(i), r(i) − r∗⟩)2

2R̂2

]− 1
2

︸ ︷︷ ︸
(a)

<
o(w∗)

⟨w(i),w∗⟩
,∀w∗ ∈ W .

(4.38)

Note that ⟨w(i),w∗⟩ converges to o(w∗) based on the monotone convergence theorem

of a sequence, which implies o(w∗)

⟨w(i),w∗⟩ converges to 1. Thus, the value of (a) in (4.38)

is between 1 and a real number converging to 1. This implies that the value of (a) in

(4.38) also converges to 1 as

[
1− (⟨w(i), r(i) − r∗⟩)2

2R̂2

]− 1
2 → 1,⇒ |⟨w(i), r(i) − r∗⟩| → 0 , (4.39)

which proves the convergence of Algorithm 2.

4.6.2 Computational Complexity of the Proposed Iterative

Solver

Next, we study the computational complexity of Algorithm 2, specifically in terms

of the number of iterations required for Algorithm 2 before it converges. Assuming

that Algorithm 2 terminates at the I-th iteration, i.e., |⟨w(i), r(i) − r∗⟩| is less than ϵ̂

at the I-th iteration (for simplicity, we assume that I is greater than 1), we obtain

|⟨w(i), r(i) − r∗⟩| ≥ ϵ̂, ∀i, which can be applied into (4.35) as

⟨w(i+1),w∗⟩
⟨w(i),w∗⟩

>

[
1− ϵ̂2

2R̂2

]− 1
2

, ∀i = 1, . . . , I − 1 . (4.40)

By multiplying both sides of the above inequalities for i = 1, . . . , I−1, we obtain

⟨w(I),w∗⟩
⟨w(1),w∗⟩

>

[
1− ϵ̂2

2R̂2

]− 1
2
(I−1)

. (4.41)
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Note that ⟨w(1),w∗⟩ is greater than or equal to 1√
K

and ⟨w(I),w∗⟩ is less than or equal

to 1 according to Lemma 1. By applying the above facts into (4.41), we obtain

[
1− ϵ̂2

2R̂2

]− 1
2
(I−1)

<
⟨w(I),w∗⟩
⟨w(1),w∗⟩

<
√
K ,⇒ I <

logK

− log
[
1− ϵ̂2

2R̂2

] + 1 ≈ 2R̂2 logK

ϵ̂2
.

(4.42)

Note that ϵ̂ is a small positive constant and R̂ is roughly in proportion to
√
K.

Thus, the number of iterations of Algorithm 2 can be written as O( 1
ϵ̂2
K logK) (or

O(K logK) if we assume that ϵ̂ is a constant). We note that this computational

complexity describes the number of iterations required for updating the weights in

Algorithm 2. Meanwhile, the computational complexity of solving the LLP in (4.31)

in each iteration depends on the specific implementation of convex optimisation solver

that typically has a polynomial complexity [104]. Also, the update of weights in each

iteration has a linear computational complexity, as mentioned in Section 4.5.2.

4.7 Online MVWO Architecture for Varying Mean

and Variance of SNRs

In this section, we propose an online architecture to apply our proposed MVWO

method in networks with non-stationary wireless channels, e.g., users have mobility

and distances between users and BSs change. In such cases, the statistics of SNRs,

i.e., the mean and variance of users’ SNRs, change over time. As shown in Fig. 4.2,

the online MVWO architecture includes the scheduler at the BS and an edge server.

In each time slot, the scheduler at the BS observes the channel state, s(t), and gen-

erates a binary user scheduling action, x(t) according to the MWS defined in (4.11).

In real-world networks, e.g., 5G New Radio networks, SNRs can be measured based

on the CSI reference signals transmitted with data signals in the wireless channel

[74] and binary user scheduling actions can be mapped into radio resource configu-

rations, including modulation-and-coding schemes and resource block allocations in
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Figure 4.2: The proposed online MVWO architecture.

each transmission as shown in [J1]. Meanwhile, the scheduler continuously estimates

the mean and variance of users’ SNRs through a moving average over the observed

values of the SNRs in the past slots in two following steps,

mϕ
k ←

1

β

β−1∑
τ=0

ϕk(t− τ) , vϕk ←
1

β

β−1∑
τ=0

(
ϕk(t− τ)

)2 − (mϕ
k)2 ,∀k , (4.43)

where β is the number of the past time slots used in averaging. The measured mean

and variance of the SNRs are uploaded to the edge server that calculates the weights

of the MWS.

The edge server first constructs the constraints in (C1)-(C9) and constantly updates

the constraints’ parameters based on the latest sent mean and variance of the SNRs

from the scheduler. Then, the convex optimisation problem in (4.29) is constructed

and solved to find r∗ defined in (4.28) based on (C1)-(C9). Next, the iterations in

lines 3-12 of Algorithm 2 are executed to solve (P2) based on (C1)-(C9) and r∗, whose

return value, w, is sent to the scheduler as the weights of the MWS. The above process

in the edge server is then repeated until the BS terminates.

86



4.8. Evaluation of Proposed Methods

4.8 Evaluation of Proposed Methods

In this section, we provide the simulation results that evaluate our proposed meth-

ods.

4.8.1 Simulation Configurations

We set ∆0 = 1 (second) and B = 1 (Hertz) for simplicity in simulations as they

linearly scale the average rates while not affecting the performance of our methods.

We vary the number of users, K, for different cases. Unless specifically stated, each

user’s mean of the SNRs, mϕ
k , k = 1, . . . , K, (i.e., the large-scale fading gain) in decibel

(dB) is normally distributed with the mean of 10 dB and the standard deviation of

5 dB for different episodes [76], [105], and it remains constant within one episode.

The variance of the SNRs depends on the small-scale fading gains of users, which are

i.i.d. in each slot and follow the same normalised Rician distributions as the ratio

of the average power in the line-of-sight path to that in the non-line-of-sight paths

of 10 dB [76], [105]. With the above configurations, the SNRs of all users have the

variance of 0.17(mϕ
k)2 or 4.00 in decimal or in decibel representation, respectively,

where k = 1, . . . , K.

4.8.2 Other OS Approaches Compared in Simulation

MWS using no prior knowledge of statistical CSI

We compare our MVWO method with the MWS approaches in [19], [20] that can find

the optimal MWS’s weights to maximise the studied utility function, as defined in

(4.10). Specifically, the weights in these approaches are tuned in every slot as

λk ← (1− 1

γ
)λk +

1

γ
xk(t) log2

(
1 + ϕk(t)

)
, wk ←

1

λk
, ∀k, (4.44)

where λk denotes an exponential average of the scheduled instantaneous bit rate of

the k-th user (its initial value is set to a small positive number, e.g., 10−5, to avoid
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division by zero). γ in (4.44) denotes the size of the exponential average time window,

e.g, 100, 1000 or 10000. Note that the studied utility function is maximised by the

above methods when γ approaches infinity and the MWS’s weights are tuned after

sufficient time [16]. Since these approaches use no statistical CSI, we refer to them as

statistics-unaware weight optimisation (SUWO). We denote the weights tuned after T̃

slots by using the SUWO methods with γ as wSUWO∼γ

T̃
, where T̃ is varied for different

cases and wSUWO∼γ

T̃
is normalised after tuning. We denote the average rates achieved

by the MWS, µ(·|wSUWO∼γ

T̃
), as r∼µ(·|wSUWO∼γ

T̃
).

MWS using prior knowledge of the mean of CSI

Also, a heuristic MWS will be compared, whose weights are designed based on only

the mean of CSI. The studied utility function is a throughput fairness criterion. We

can provide fair scheduling decisions for users by setting the weight of the k-th user

as the inverse of the average spectrum efficiency, i.e.,

wk ←
1

E[log2(1 + ϕk(t))]
, ∀k , (4.45)

which prevents the MWS from starving users with low spectrum efficiency. We refer

to the MWS in (4.45) as a heuristic fairness scheduler (HFS). We denote weights in

the HFS calculated based on the T̃ -slot averaged spectrum efficiency as wHFS
T̃

.

MDP-based OS using no prior knowledge of statistical CSI

Additionally, we will compare our method with the MDP-based OS optimised by DRL

that uses no statistical CSI. The reward signal for the studied utility function in every

slot is designed in [92] as

δk(t) = xk(t) log2(1 + ϕk(t)) ·
[1
t

t∑
τ=1

xk(τ) log2(1 + ϕk(τ))
]−1

, ∀k. (4.46)

The state and the action in the MDP are the channel state and the user scheduling

actions in every slot, s(t) and x(t), defined in (4.4) and (4.3), respectively. We use
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the actor-critic DRL algorithm [J1], [92] to train the NN, π(·|θ), as the MDP-based

OS, where θ are the parameters of the NN. We denote the NN trained after T̃ slots

as π(·|θDRL
T̃

), and its initial values are randomised.

4.8.3 Performance of Proposed Rate Estimation Method

We first compare the estimated value of the average rates scheduled by µ(·|w) in

(4.26), r
∼µ(·|w)
G , and their measured value, r∼µ(·|w), for two users, i.e., K = 2. Two

users’ weights are varied as w1 = sin(0.005i · π
2
) and w2 = cos(0.005i · π

2
) for i =

1, . . . , 199, which are all feasible weights, i.e., w ∈ RK
>0 and ∥w∥2 = 1 for all i. In each

case of w, r
∼µ(·|w)
G is calculated by solving the rate estimation problem in (4.26), and

r∼µ(·|w) is measured by averaging the scheduled instantaneous rates in one episode

with 105 slots. In Fig. 4.3a, the estimated average rates scheduled by the MWS

and their actual value measured from the simulation with the same w (with legends

“r
∼µ(·|w)
G ” and “r∼µ(·|w)”, respectively) are connected with a line (with legend “Pair”).

Two users have the mean of the SNRs as mϕ
1 = 3.16 and mϕ

2 = 10 in decimal format

(or mϕ
1 = 5 and mϕ

2 = 10 in dB), or mϕ
1 = 5 dB and mϕ

2 = 15 dB in Fig. 4.3a. The

variance of the SNRs follows the configuration in Section 4.8.1. The results indicate

that the estimated and measured average rates at given weights are close to each

other. Also, note that they form two boundaries of F and G, respectively, due to

the structure of (4.16) and (4.26) (e.g., maximisation of the weighted sum of a vector

that belongs to a convex set) according to [106]. Since two boundaries show the same

shape and are close to each other, this implies that G is a close approximation of

F .

Next, we use the optimal rates in the bounding set, r∗ defined in (4.28), to estimate

the average rates of MWSs, r∼µ(·|wSUWO∼γ

T̃
), which is designed by the SUWO methods

[19], [20]. We vary the number of users, K, as 6 and 9 and set γ = 10000 and

T̃ = 1000K, which is sufficiently large for the SUWO methods to find the weights that

achieve optimal rates. For each case of K, we run 1000 episodes where users’ SNRs are

configured as stated in Section 4.8.1 and r∼µ(·|wSUWO∼γ

T̃
) is measured in 105 slots of each
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(a) Sweeping w when K = 2.

(b) w = wSUWO∼γ

T̃
when K = 6 or 9.

Figure 4.3: The average rates achieved by µ(·|w) and their estimated values in (4.26)
for different w.

episode. Note that the k-th element of r∗ and r∼µ(·|wSUWO∼γ

T̃
), r∗k and r

∼µ(·|wSUWO∼γ

T̃
)

k , are

the estimated value and the measured value of the k-th user’s average rate achieved
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by µ(·|wSUWO∼γ

T̃
), respectively, k = 1, . . . , K, and all users are equivalent to each

other. Thus, we only compare the first user’s estimated and measured average rate,

e.g., r∗1 and r
∼µ(·|wSUWO∼γ

T̃
)

1 , in terms of the ratio of the difference in the estimated and

measured values to the measured value as ν ≜ (r∗1 − r
∼µ(·|wSUWO∼γ

T̃
)

1 )/r
∼µ(·|wSUWO∼γ

T̃
)

1 ,

whose cumulative distribution function (CDF) is shown in Fig. 4.3b. The results

indicate that over 90% of the estimated values of the average rates of MWSs are

overshot, or in other words, are bigger than the measured ones, e.g., ν > 0. The

results also indicate that the estimated average rates differ from the measured ones

by approximately 0 ∼ 20%, which implies that the estimated average rates of MWSs

in the proposed method are close to their measured values.

4.8.4 Evaluation on the Convergence of Algorithm 2

Fig. 4.4a shows the value of |⟨w(i), r(i) − r∗⟩| in each iteration of Algorithm 2, where

the number of users are 5 and 10 (with legends “K = 5” and “K = 10”, respectively).

The k-th user’s mean of the SNRs is configured as mϕ
k = k+ 5 dB, k = 1, . . . , K, and

users’ variance of the SNRs follows the same configuration as explained in Section

4.8.1. We set ϵ̂ = 10−4. With the above configurations, Algorithm 2 converges in 7

and 16 iterations, i.e., I = 7 and 16, for K = 5 and 10, respectively, as shown in Fig.

4.4a. This validates the proof in Section 4.6.1.

Additionally, we validate the monotone convergence of the sequence, ⟨w(i),w∗⟩, in

Fig. 4.4b. Specifically, we show the values of this sequence when we take the weights

in the last iteration of the solver, w(I), as the optimal weights, w∗ (with legend

“w∗ = w(I)”), where I is 7 and 16 for K = 5 and 10, respectively, as mentioned

before. We also show the values of the sequence when the weights optimised by

the SUWO methods [19], [20], wSUWO∼γ

T̃
, are considered as the optimal weights, w∗,

(with legend “w∗ = wSUWO∼γ

T̃
”), where γ and T̃ are set to sufficiently large values

as 10000 and 1000K, respectively. The results indicate that the values of ⟨w(i),w∗⟩

monotonically increase to 1 during iterations, which is consistent with the proof in

Lemma 1. This also implies that the Euclidean distance between w(i) and wSUWO∼γ

T̃
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(a) The convergence of |⟨w(i), r(i) − r∗⟩|.

(b) The monotone convergence of ⟨w(i),w∗⟩.

Figure 4.4: Evaluation of the convergence of Algorithm 2 when K = 5 or 10 and
ϵ̂ = 10−4.

decreases to 0 because ∥w(i) −w∗∥22 = 2− 2⟨w(i),w∗⟩.

Next, we measure the probability that the convergence of Algorithm 2 occurs within
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(a) Occurrence of convergence in 20 iterations.

(b) Occurrence of convergence in 50 iterations.

Figure 4.5: The probability that the convergence of Algorithm 2 occurs in given
iterations.

a given number of iterations. We vary the number of users, K, as 3, 6 and 9. For

each case of K, we run Algorithm 2 for 200 times where the mean and variance of

users’ SNRs in each run are randomised, as explained in Section 4.8.1. Figs. 4.5a

and 4.5b show the probability that Algorithm 2 converges in 20 and 50 iterations,

respectively. The results indicate that the algorithm is less likely to converge when

K is larger or ϵ̂ is smaller. When the allowed number of iterations increases from 20

to 50, the probability of convergence increases significantly. The algorithm converges

approximately 90 ∼ 100% in 50 iterations when ϵ̂ is large. The above observation

complies with the computational complexity analysis in Section 4.6.2.
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4.8.5 Performance and Time Complexity of MVWO

(a) K = 3.

(b) K = 6.

Figure 4.6: Values of the utility function achieved by MWSs optimised by the proposed
MVWO method and the SUWO methods when T̃ time slots are used.

Next, we compare the time complexity (i.e., the number of time slots required) to
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(a) K = 3.

(b) K = 6.

Figure 4.7: Difference in the utility function achieved by MWSs optimised by the
proposed MVWO method and the SUWO methods when T̃ ∗ and T̃ time slots are
used, respectively.

optimise the weights in the proposed MVWO method and the SUWO methods [19],

[20]. We denote the optimal weights found by solving the MVWO in (P2) based on the
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mean and variance of the SNRs, estimated with T̃ slots as wMVWO
T̃

. Fig. 4.6 illustrates

the difference in the value of the utility function, f
(
r∼µ(·|w)), achieved by different

MWSs, µ(·|w), where the weights, w, are found either by the SUWO methods [19], [20]

and the proposed MVWO method (with legends “w = wSUWO∼γ

T̃
” and “w = wMVWO

T̃
,

our method”, respectively). Here, γ are varied as 100, 1000 and 10000 in the SUWO

methods. ϵ̂ is set to 10−4 in the proposed MVWO method. The number of users,

K, is set as 3 and 6 in Figs. 4.6a and 4.6b. Each point in Fig. 4.6 is plotted based

on the average value of f
(
r∼µ(·|w)) in 100 episodes. In each episode, we configure the

mean and variance of users’ SNRs as explained in Section 4.8.1. The values of r∼µ(·|w)

are averaged over 105 slots for given weights in each episode. The results in Fig. 4.6

indicate that more slots spent in the estimation of the mean and variance of the SNRs

help improve the performance of the weights found by the proposed MVWO method.

This is because the estimated mean and variance are more accurate when more slots

are used. Also, we observe that the performance of the proposed MVWO method

reaches the highest value when it uses approximately 80 slots, while the performance

of the SUWO methods reaches the same value in approximately 320 ∼ 640 slots. This

indicates that the proposed MVWO method costs 4 ∼ 8 times fewer system time slots

to find the optimal weights. Our method finds optimal weights because the proposed

rate approximation method closely estimates the feasible rate region and the average

rates for given weights. This estimation accurately represents the system’s behaviours

and MWSs’ performance; consequently, no online weight adjustment is required.

We keep the same configuration as the above and fix the number of time slots used to

estimate the mean and variance of SNRs in our MVWO method as T̃ ∗, while varying

the number of time slots spent in weight tuning in the SUWO methods [19], [20] as T̃ ,

where γ is set to 1000. We measure the difference between the averaged value of the

utility function for various ratios of T̃ to T̃ ∗ when T̃ ∗ is 20, 40 and 60. Figs. 4.7a and

4.7b indicate that the proposed MVWO method performs better than the existing

SUWO methods when the ratio T̃ /T̃ ∗ is less than 10 and otherwise when the ratio is

larger than 10. This implies that our methods spend 10 times fewer time slots than
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Figure 4.8: Values of the utility function achieved by the MWS optimised by our
MVWO method, the HFS in (4.45), and the MDP-based OS optimised by DRL [92]
when K = 3.

the SUWO methods to reach the same performance, and our method’s performance

is better when the same number of time slots are used (i.e., when T̃ /T̃ ∗ = 1).

Overall, the simulation results in Fig. 4.6 and Fig. 4.7 indicate that our method has

a much lower time complexity than existing SUWO methods. This is because our

method directly uses the measured statistical CSI, while it does not depend on user

selection decisions of the MWS. In contrast, the existing SUWO methods require a

time average of scheduled instantaneous bit rates, as shown in (4.44), which converges

only after each user is scheduled sufficient times.

In Fig. 4.8, we further use the same configuration when K = 3 and compare the values

of the utility function achieved by the MWS optimised by our MVWO method (with

legend “µ(·|wMVWO
T̃

)”), the HFS in (4.45) (with legend “µ(·|wHFS
T̃

)”), and the MDP-

based OS optimised by the DRL method [92] (with legend “π(·|θDRL
T̃

)”). The results

show that the HFS has a close convergence speed to our method. This is because

both methods configure their weights based on the estimation of the statistical CSI.
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However, the HFS performs worse than our method when both converge. This is

because our MVWO method exploits the correlation between scheduling actions and

channel states based on their first and second moments, which cannot be done by

the HFS (which only uses the first moment of the channel’s statistics). The results

also show that the DRL method has much slower convergence and performs worse

than ours. This is because the NN in the DRL method contains significantly more

parameters than MWSs, which are difficult to train within a short time (e.g., within

1000 time slots). This observation on the time complexity of DRL is consistent with

[92].

4.8.6 Performance of Online MVWO Architecture for Vary-

ing Mean and Variance of SNRs

We then compare the performance of the MVWO method in the proposed online

architecture in Section 4.7 to the SUWO methods [19], [20] in the network where the

mean and variance of the SNRs are varying over time. Unlike in the previous case, the

scenario in this simulation is closer to real-world networks as users have time-varying

large-scale fading due to their mobility. We assume the number of users K is 3, and

each user moves 5 meters per second backwards and forwards between two points on

the ray line from the BS, which are 20 and 35 meters away from the BS. The initial

position of the k-th user is at 20 + 7.5k meters away from the BS, k = 1, . . . , K. The

BS’s transit power spectrum density is 0 dBm/Hz and the noise spectrum density is

−90 dBm/Hz. The large-scale fading follows a path loss model as 45 + 30 log10(l) dB,

where l is the distance between a user and the BS in meters. The small-scale fading is

the same as in Section 4.8.1. We use a typical periodicity of user’s feedback on SNRs

as the duration of a time slot, e.g., ∆0 is 10 milliseconds [74], and the bandwidth,

B, is set as 5 MHz. We measure users’ average rates every 1 second (or every 100

time slots) during 20 seconds (or 2000 time slots) and we denote the measured average

rates achieved by our method and the SUWO methods [19], [20] as rMVWO and rSUWO,

respectively. Since the users’ rates are averaged every 100 time slots, the exponential
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(a) The utility functions achieved by the MVWO and SUWO methods.

(b) Difference between the utility functions achieved by the MVWO and SUWO methods

Figure 4.9: The difference in the performance of MWSs optimised by the online
MVWO architecture and the SUWO methods [19], [20], where K = 5.

average window, γ of (4.44), in the compared SUWO methods is set to the same time

scale, e.g., γ = 100 [16]. For our method, we set β = 20 in (4.43) and ϵ̂ = 10−4 in

Algorithm 2. Note that the difference between the utility function in the above two

methods can be written as

f(rMVWO)− f(rSUWO) =
K∑
k=1

ln rMVWO
k −

K∑
k=1

ln rSUWO
k

= ln

∏K
k=1 r

MVWO
k∏K

k=1 r
SUWO
k

= K ln
GM(rMVWO)

GM(rSUWO)
,

(4.47)
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where rMVWO
k and rSUWO

k represent the k-th user’s rate in rMVWO and rSUWO, respec-

tively. We quantitatively compare the performance of the two methods in terms of the

ratio between the geometric mean of users’ average rates, GM(rMVWO)/GM(rSUWO),

as shown in (4.47). Fig. 4.9a shows the value of the utility function every second

in our method and the SUWO methods (with legends “f(rMVWO), our method” and

“f(rSUWO), SUWO”, respectively), which indicates that our method achieves a higher

value of the utility function. Fig. 4.9b illustrates the ratio of the geometric mean of

the average rates in two methods, where our method has a 5 ∼ 15% improvement

in geometrically averaged rates of users. This is because our MVWO method finds

the optimal weights faster than other methods when the channel’s statistics change

as users move.

4.9 Summary

In this chapter, we investigated the methods that use CSI’s mean and variance for

the MWS scheduler design. We first estimated the feasible rate region of MWSs by

using the mean and variance of users’ SNR. This formulated the MVWO problem to

find the optimal weights that maximise the utility function. We designed the solver

for the MVWO problem and studied the solver’s convergence. Since the mean and

variance only require a few slots to estimate, our methods significantly reduce the

number of time slots needed in optimising the MWSs, compared to other existing

methods that optimise the weights via interaction with the network. We designed

the online architecture to tune the weights according to the time-varying mean and

variance of users’ SNRs, which improves the average rates of users compared to other

methods.
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Chapter 5

Scheduler Design Using Graph

Representation Learning for

Contention and Interference

Management

In the previous two chapters, we have studied the methods to design a scheduler in a

single base station (BS), where users are scheduled with orthogonal radio resources,

and no interference exists in the network. Meanwhile, in most networks, the spec-

trum is reused at multiple BSs. Users associated with different BSs share the wireless

channels and interfere with each other when transmitting simultaneously, especially in

Wi-Fi networks, where users contend for transmission opportunities using a random

channel access scheme. Since this scheme can lead to simultaneous transmissions that

cause collisions and interference at receiving access points (APs), the network-wise

coordination of transmissions is much needed. Note that the native Wi-Fi standards

do not support the scheduling of the transmissions, while IEEE 802.11ah (or Wi-Fi

HaLow) introduce a restricted access window (RAW) mechanism to allocate orthogo-

nal time slots for users to schedule their transmissions. In this chapter, we investigate
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the scheduling of RAW time slots to manage the contention and interference in Wi-Fi

HaLow networks.

5.1 Introduction

With the increasing demands for wireless connectivity, the IEEE task group ah has

now developed a dedicated standard, namely IEEE 802.11ah (or Wi-Fi HaLow), which

provides low-power and long-range wireless connections to network users [5], [15]. Like

most 802.11 families, Wi-Fi HaLow users contend for channel access based on carrier-

sense multiple access with collision avoidance (CSMA/CA). Specifically, when a user

senses other users are transmitting on the channel, it will wait until the channel is free

and further backoff for a random time before transmitting its packet to avoid packet

collisions with other users.

Two issues exist in the Wi-Fi HaLow’s channel access scheme [107]. First, when the

user can sense many other users’ transmissions, e.g., it is geographically surrounded by

many users, it will experience a significant waiting and backoff time before each trans-

mission, triggered by the surrounding users’ transmissions. Hence, the user struggles

to make its packet transmissions. Second, when two users cannot sense each other’s

transmissions due to large distance separation, i.e., hidden from each other, they can

make concurrent transmissions causing inter-user interference at the receiving APs.

Thus, the APs can barely decode transmissions due to low signal-to-interference-plus-

noise ratios (SINR). The above two issues can cause users to suffer from throughput

starvation.

The Wi-Fi HaLow network defines the restricted access window (RAW) mechanism

[15], [108] to reduce the contention and interference among users. Specifically, users

are divided into multiple groups in RAW. APs periodically schedule a RAW time slot

for each user group’s transmissions. Then, the users in each group contend for packet

transmissions only during the assigned slots. Therefore, transmissions from users

of other groups do not trigger the waiting time and backoffs in contention, which
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increases the time for transmissions. Also, the interference between two hidden users

is eliminated if they are assigned to different RAW time slots. The open literature

has not studied how to design a user grouping scheme in scheduling RAW slots to

avoid throughput starvation. Several existing approaches can potentially be applied

to design user grouping schemes in RAW as follows.

5.1.1 Related Works

Markov-model-based Approach

Research has been made to model each Wi-Fi user’s channel access process as Markov

chain [109]. Works in [32], [33] show that this model [109] can be used to formulate the

optimisation problem of user grouping problem in RAW, e.g., to balance the channel

utilisation [32] and the energy efficiency [33] for user groups. Note that the Markov

chain in [109] only models the contention of users without considering the inter-user

interference caused by hidden users in the network. The model developed in [110]

can also be used, which extends the works in [109] by modelling the interference from

hidden users. Thus, it achieves more accurate throughput estimation and can better

capture the user throughput starvation effect in the network when applied to the user

grouping problem. However, applying this model [110] requires prior knowledge of all

hidden-user pairs whose measurements introduce significant overheads in the network.

The overheads limit the performance of Wi-Fi HaLow networks since the networks’

radio resources, e.g., bandwidth and power, are limited.

Graph-based Approach

Wireless network optimisation problems [26]–[28] can be formulated as graph theory

problems [111]. Specifically, the graph’s vertices represent users, and edges represent

the contention or interference between vertices. Works in [26] construct an unweighted

undirected graph by connecting two users if an AP can detect both users’ transmis-

sions. Then, a graph colouring problem assigns time slots as colours (or groups) to

users such that no adjacent users occupy the same slot. Authors in [27], [28] con-
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struct weighted graphs with edges to indicate interference levels in user pairs. Here,

undirected edges [27] assume the interference equally impacts both users’ through-

put, while directed edges [28] differentiate the interference power made by two users.

Then, the graph’s max cut divides users into a given number of groups by maximis-

ing the sum of edge weights between groups, and each group is assigned orthogonal

frequencies to manage the interference. Note that the above works [26]–[28] heuris-

tically construct the graph’s edges using fixed rules predefined according to human

intuition on how contention and interference affect network performance. Whether

or not these graph constructions are optimal for the user grouping problem in RAW

is unknown, and how to flexibly optimise the graph construction in wireless networks

requires further investigation.

Machine Learning Approach

Machine learning (ML) methods have recently been widely applied to solve wireless

network optimisation problems [112]. Typically, ML methods use network data to

train a neural network (NN) that returns the optimal network control decisions for

given network states [J1]. Thus, they do not require explicitly modelling the network

behaviours such as contention and interference. Note that classic fully-connected NNs

(FNNs) have pre-determined input and output dimensions, which is not flexible to

varying dimensions of the problems, e.g., due to varying numbers of users in the

network. Instead, graph neural networks (GNN) can be used with flexibility [113].

This is because GNNs can take network states as features on a graph whose size is

adaptive to the dimensions of the problem. Then, GNNs obtain the control decisions

by repeatedly aggregating features of neighbouring vertices (or edges) along with

trainable parameters [29], [30]. Nevertheless, research has not been done on applying

the ML-based approach and designing NN structures to solve the user group problem

in RAW.
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5.1.2 Our Methods

This chapter studies scheduling RAW slots in Wi-Fi HaLow networks to avoid user

throughput starvation. This is achieved by finding optimal user grouping decisions

in RAW that maximise the worst-case user throughput [114]. This objective avoids

service outages and ensures service continuity in low-power and long-range wireless

devices used for massive machine type communications (mMTC) [7], e.g., sensors

used for continuous data collections [115]. We use path losses from users to APs

as the network states to make the decisions, which are measurable at APs using

signals sent by users [116] without additional measurement overheads. First, we

construct a fully-connected weighted directed graph (or simply the graph onwards) to

represent the network. Here, each user is a vertex. Each directed edge represents the

asymmetric contention and interference between users, and the edge weight indicates

how negatively one user’s transmissions impact another user’s throughput. We apply

the graph’s max cut with the given edge weights to group users. Then, we propose

adjusting the edge weights to construct the optimal graph whose max cut results in the

optimal decisions. Next, we design an ML algorithm that trains a graph-constructing

actor (a FNN) to approximate optimal mapping from each user pair’s states to the

edge weights between them. The algorithm contains a graph cut procedure using

semidefinite programming [25] to efficiently solve the max cut of the given actor-

constructed graph, which returns the grouping decisions. Also, a graph-evaluating

critic (a GNN) is trained to estimate users’ throughput for the given graph and states

when using the above decisions, whose gradient optimises the actor. Here, we design

the actor and the critic’s structures so they can abstract contention and interference

information from states, e.g., a part of NNs is optimised to infer probabilities of

hidden user pairs. Furthermore, since real-world networks can differ from those in

offline training, we study how to adjust the graph based on online measurements.

The contributions of this chapter have been listed in Chapter 1.
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5.2 System Model and Problem Formulation

In this section, we present the system model of the wireless network, including the

measured network configurations and network states. Then, we formulate the user

grouping problem in RAW for contention and interference management.

5.2.1 Configurations of the Wireless Network

APsUsers

User 𝑘𝑘

AP 𝑎𝑎

𝑠𝑠𝑘𝑘,𝑎𝑎

…

…

Figure 5.1: Illustration of a wireless network.

We consider a random-access-based wireless network, e.g., a Wi-Fi 802.11ah network,

which consists of K users and A APs, as illustrated in Fig.5.1. We assume that all

users and APs operate in the same channel with a bandwidth of B in Hertz (Hz). We

denote the transmission power of users as P0 in dBm and the noise power spectral

density as N0 in dBm/Hz. We denote the path loss from the k-th user to the a-th

AP as s̃k,a in dB, ∀k, a. We assume each user is associated with and transmits to the

AP with the minimum path loss to the user. The AP that the k-th user is associated

with is denoted as â(k), e.g.,

â(k) ≜ arg min
a
s̃k,a , ∀k . (5.1)

We assume that each user has a stationary packet arrival process with the packet size

L in bits. Packets arrived at each user are stored in a first-in-first-out queue with a
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constant queue size, where the oldest packet is discarded when a new packet arrives

and the queue is full. The duration to transmit each L-bit packet of user k, dk in

seconds, depends on the modulation and coding scheme (MCS). We configure the

MCS of each user to satisfy that the decoding error probability without interference,

ϵk, is lower than a threshold, ϵmax. Here, ϵk can be approximated as [38]

ϵk ≈ fQ

(
−L ln 2 + dkB ln(1 + ϕ)√

dkBV

)
, ∀k, (5.2)

where ϕ = (P0/s̃k,â(k))/(N0B) is the signal-to-noise-ratio (SNR) of user k. Also, fQ

is the tail distribution function of the standard normal distribution, and V is the

channel dispersion defined as V = 1− 1/
[
1 + ϕ

]2
[38] in (5.2). Here, since P0, N0, B

and L in (5.2) are all assumed to be a constant, the packet duration of each user only

depends on the path loss to its associated AP, s̃k,â(k), ∀k.

Each user operates a CSMA/CA process to access the channel and transmit their

packets [14], avoiding collisions with other users’ packet transmissions. Specifically,

each user first senses whether or not any other user is transmitting in the channel.

If the above is true, the user continues to monitor the channel until the channel is

sensed as idle. Then, the user backs off and stops transmitting for a random time,

which helps reduce the probability of collision with other users also waiting for a

transmission opportunity. If the channel is sensed as busy again during the backoff,

the backoff countdown is paused and resumed again after the channel is sensed as idle.

After the backoff ends, the user will transmit the oldest packet from its queue over

the channel. If some users cannot sense this transmission, meaning they are hidden

from that user, they will make simultaneous transmissions. These transmissions will

cause interference at the receiving AP and raise the decoding error probability of

the transmitted packet. In the event of a failed packet transmission, a negative

acknowledgement from AP is received. Then, the user will retry transmitting the

same packet upon failed packet transmission until successful delivery. Retransmissions

will continue until the user receives an acknowledgement or reaches the maximum
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attempts. The user will then transmit the next packet in the queue using the same

process.

5.2.2 Network States

We assume that if the path loss between a user and an AP is greater than a threshold,

s̃max in dB, then the user’s transmissions cannot be detected and received at the AP.

Thus, this path loss cannot be measured from the network. We write the measured

path from the k-th user to the a-th AP as

sk,a ≜

s̃k,a , if s̃k,a ≤ s̃max ,

2s̃max , if s̃k,a > s̃max ,

∀k, a , (5.3)

where if s̃s,a > s̃max, we set the value of sk,a as 2s̃max, indicating that it is immea-

surable. Note that the path loss to each user’s associated AP is always measurable

because it is the user’s minimum path loss to APs (otherwise, the user is not con-

nected in the network), i.e., s̃k,â(k) = sk,â(k), ∀k. Each user’s states are its measured

path losses to APs, defined as

sk ≜ [sk,1, . . . , sk,A]T , ∀k , (5.4)

and the whole network’s states is a A ×K matrix that contains all users’ measured

path losses, defined as

S ≜ [s1, . . . , sK ] . (5.5)

5.2.3 User Grouping Problem in RAW

Fig. 5.2 illustrates a user grouping scheme in RAW of the Wi-Fi HaLow networks.

We assume that all users and APs are synchronised in time, and the time is slotted

in RAW with indices as 1, . . . , t, . . . . The duration of each RAW slot is denoted

as ∆0 in seconds. We can simultaneously reduce the contention and interference in

the network by dividing users into Z groups (for simplicity, we assume that Z is
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Slot 1

Time

Slot 2 Slot 3 Slot 4

Group 1 Group 2 Group 1 Group 2
User 1’s packets User 2’s packets User 3’s packets

Figure 5.2: Illustration of user grouping in RAW, where K = 3, Z = 2, z1 = 1 and
z2 = z3 = 2.

an exponent of 2). Then, different groups of users transmit their packets in separate

periodical RAW slots. Specifically, We denote the group that user 1, . . . , K is assigned

to as z ≜ [z1, . . . , zK ]T, where zk is user k’s group satisfying

zk ∈ {1, . . . , Z} , ∀k , (5.6)

Then, users in z-th group are {k|zk = z}, and they transmit only in periodical time

slots t = z, z + Z, z + 2Z, . . . . As a result, contention and interference only happen

among users within the same group and are eliminated between any two groups. For

example, in Fig. 5.2, three users (K = 3) are grouped into two groups in RAW

(Z = 2), with user 1 in group 1 and user 2 and 3 in group 2. Then, group 1 (user

1) and group 2 (user 2 and 3) transmit in slots 1, 3, 5 . . . and 2, 4, 6 . . . , respectively.

This user grouping scheme eliminates the contention and interference between user

1 and 2 and between user 1 and 3. We use uk(t) to denote the number of packets

successfully transmitted by the k-th user within RAW slot t. Note that uk(t) = 0 if

t ̸= zk, zk+Z, zk+2Z, . . . because users cannot transmit packets in slots other than the

slot assigned to them. We denote the throughput of user 1, . . . , K as r ≜ [r1, . . . , rK ]T,

where rk is defined as

rk ≜ lim
T→∞

1

T

T∑
t=1

uk(t) ,∀k, (5.7)

which is the average number of packets transmitted over time.
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We write E[rk|S, z], ∀k, as the expected throughput of user k for given network states,

S, and grouping decisions, z. We aim to maximise the network performance objective

as the worst-case user throughput by controlling z as

max
z

min
k

E[rk|S, z] , s.t. (5.6) , (5.8)

where mink E[rk|S, z] is the worst-case user throughput for given S and z. The above

straightforward formulation of the user grouping problem is hard to solve since no clear

structure shows how to map the given network states, S, to the grouping decisions,

z. We will propose a framework to reformulate the problem to address this issue in

the sequel.

5.3 Proposed User Grouping Framework for Wire-

less Networks

This section presents the framework that formulates the user grouping problem as

the graph construction optimisation that optimises a graph representing the wireless

network.

We model the network as the fully-connected directed graph as G = (V , E), where

V and E are the set of vertices representing users and the set of edges representing

the contention and interference between users, respectively. Specifically, V and E are

defined as

V ≜ {1, . . . , K} , E ≜ {(i, j)|∀i, j ∈ V , i ̸= j} , (5.9)

where (i, j) is the edge from the i-th to the j-th vertex. The edge direction from i to

j expresses the contention and interference that user i’s transmissions cause to user j.

Each edge has a weight, Wi,j, representing how the contention and interference caused

by user i negatively impact user j’ throughput. We assume that each edge weight is

a bounded non-negative real number, i.e., Wi,j ∈ [0, 1] (Without loss of generality, we

assume that the upper bound of weights is 1), ∀i, j = 1, . . . , K and i ̸= j. Here, the
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larger value of Wi,j implies that user j’s throughput is more negatively affected by

user i’s transmissions. Note that Wi,j is generally not equal to Wj,i due to differences

in two users’ packet duration and path losses to APs. We collect all edge weights in

the graph’s adjacency matrix as

W ≜
[
Wi,j

∣∣Wi,j ∈ [0, 1],∀i ̸= j;Wk,k = 0,∀k
]
. (5.10)

where W is a K ×K matrix whose diagonal, Wk,k, ∀k, is equal to 0, meaning that

the graph has no self-loop edge on vertices.

Note that we can obtain the user grouping decisions by the max cut on the above

graph as

max
z

∑
i ̸=j

Wi,j1{zi ̸=zj}, s.t. (5.6) , (5.11)

which maximises the contention and interference, represented by edge weights, elimi-

nated between different groups. Here, 1{zi ̸=zj} in (5.11) is the indicator function that

equals to 1 if user i and j are assigned to different groups or otherwise equals to 0.

In the above max cut problem, the higher the edge weights between two users, the

more likely they are divided into two groups, leading to minimum contention and

interference within each group. Based on this fact, we reformulate the user grouping

problem in (5.8) as a bi-level optimisation problem as

max
Wi,j ,∀i ̸=j

min
k

E[rk|S, z] ,

s.t. Wi,j ∈ [0, 1], ∀i ̸= j ,

z = arg max
z′

∑
i ̸=j

Wi,j1{z′i ̸=z′j}, s.t. (5.6).

(5.12)

where the max cut problem in (5.11) is embedded as the lower-level problem (LLP),

and z is decided as the solution of the LLP. We can show that

Lemma 2. Define the optimal solutions of edge weights as W ∗
i,j, ∀i ̸= j, that max-

imises the network performance objective in (5.12), and define z∗ as the optimal solu-

tion of the LLP of (5.12) for the above optimal edge weights. Then, z∗ also maximises
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the objective in (5.8).

Proof. The proof is in the appendix.

The above statement implies that we can find the optimal grouping decisions in (5.8)

by solving the problem (5.12) instead. Also, note that the grouping decisions in (5.12)

only depend on the edge weights, as shown in the LLP of (5.12). As a result, the

formulation in this section transforms the user grouping problem into the problem

that finds the optimal construction of the graph representation of the network, e.g.,

by optimising edge weights in the graph.

Furthermore, we assume that each of the optimal edge weights in the graph, W ∗
i,j, is

a function of user i and user j’ states, si and sj, as

W ∗
i,j = µ∗(si, sj) ,∀i ̸= j , (5.13)

where µ∗(·) is the optimal function that maps each user pair’s states to the edge

weights between them. Here, we note that si and sj are parts of S as defined in

Section 5.2.2. Based on the formulation in (5.12) and the assumption in (5.13), the

user grouping problem in (5.8) can be solved by finding the optimal graph-constructing

function that uses network states to generate the edge weights in the graph. We then

study how to use ML methods that train NN to approximate such a function in the

next.

5.4 Proposed Actor-Critic Graph Representation

Learning Algorithm

In this section, we develop the AC-GRL algorithm that trains NNs rather than uses

fixed functions to generate optimal edge weights in the graph [117]. Note that optimal

weights maximises the network performance objective in (5.12) for given network

states, S = [s1, . . . , sK ] defined in Section 5.2.2. As shown in Fig. 5.3, the AC-GRL
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𝐒𝐒

𝐫𝐫

Graph-
Evaluating
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Graph-
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Graph Cut
Procedure

𝐖𝐖

𝐳𝐳

Actor’s stochastic gradient decent
maximizing min𝑘𝑘 𝔼𝔼[𝑟𝑟𝑘𝑘|𝐒𝐒, 𝐳𝐳].

Critic’s stochastic gradient decent
approximating 𝔼𝔼 𝑟𝑟𝑘𝑘 𝐒𝐒, 𝐳𝐳 ,∀𝑘𝑘.

Simulated Wireless 
Networks

Figure 5.3: The overall structure of the AC-GRL algorithm.

algorithm consists of 1) the graph-constructing actor that uses S to infer probabilities

of hidden users and generate the graph’s edge weights collected in the adjacency

matrix, W defined in Section 5.3. 2) the graph cut procedure that performs the

graph’s max cut to generate the user grouping decisions, z, based on the LLP of (5.12)

with given W, and 3) the graph-evaluating critic that performs the same hidden user

inference as the actor and further evaluates how good is the graph for the given W

and S based on measured users’ throughput, r defined in Section 5.2.3.

The remaining section first presents the design of the above three components in

Section 5.4.1, 5.4.2 and 5.4.3 and then explains the flow of the AC-GRL algorithm in

Section 5.4.4.
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𝑠𝑠𝑖𝑖, �𝑎𝑎(𝑗𝑗)

𝐬𝐬𝑖𝑖 , 𝐬𝐬𝑗𝑗

𝜇̇𝜇
𝑊𝑊𝑖𝑖,𝑗𝑗

𝑠𝑠𝑗𝑗, �𝑎𝑎(𝑗𝑗)

𝑂𝑂𝑖𝑖,𝑗𝑗𝜔𝜔
𝐬𝐬𝑖𝑖 , 𝐬𝐬𝑗𝑗

𝑠𝑠𝑖𝑖, �𝑎𝑎(𝑖𝑖)

Figure 5.4: The structure of the actor.

5.4.1 Design of the Graph-Constructing Actor

We use a NN, µ(·|θµ), with trainable parameters θµ, to approximate the optimal

mapping from the users’ states to edge weights, µ∗(·) defined in (5.13), as

Wi,j ≜ µ(si, sj|θµ) ≈ µ∗(si, sj) ,∀i ̸= j . (5.14)

where µ(·|θµ) is referred to as the graph-constructing actor. In the actor, we pre-

process the network states of the user pair to help the actor abstract the information

on the contention and interference. Specifically, for a given pair of users, i and j,

i ̸= j, we can describe the contention and interference from user i to user j based on

the following information contained in si and sj:

• The path loss from user j to its associated AP, sj,â(j), which determines receiving

signal power at the AP.

• The path loss from user i to user j’s associated AP, si,â(j), which determines the

interference power at the AP.

• The path loss from user i to its associated AP, si,â(i), which determines the

duration of packets sent by user i, i.e., the duration of the interference made by

user i.

• Whether or not user j can sense user i’s transmissions, or the opposite, whether

user i is hidden from user j.
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Note that the network states do not measure whether or not two users can sense each

other. Thus, we use a FNN, ω(·|θω), to infer this information from the network states

as

Oi,j ≜ ω(si, sj|θω)

≈ Pr
[
user j can sense user i’s transmissions

∣∣si, sj] , (5.15)

where we note that 1−Oi,j indicates how likely user i is hidden from user j for given

si and sj. Finally, we design the structure of the actor in (5.14) based on the above

contention and interference information as

Wi,j = µ(si, sj|θµ)

= µ̇(sj,â(j), si,â(j), si,â(i), Oi,j|θµ̇)

= µ̇
(
sj,â(j), si,â(j), si,â(i), ω(si, sj|θω)

∣∣θµ̇) , ∀i ̸= j ,

(5.16)

where ω(·|θω) is referred to as the inference NN. Here, ω(·|θω) is considered as a part

of the actor, and µ̇(·|θµ̇) is also designed as a FNN. The above actor-generated edge

weights are collected and returned as the graph’s adjacency matrix, W (note that

diagonal elements of W are 0, as defined in (5.10)).

5.4.2 Design of the Graph Cut Procedure

The graph cut procedure solves the graph’s max cut problem in (5.11) for given actor-

generated edge weights, W, which cuts the graph, G, into Z parts and equivalently

groups the graph’s vertices (or the users), V . As Z is assumed to be a power of 2,

as mentioned in Section 5.2.3, we can cut the graph, G, recursively by first dividing

V into two subsets and repeatedly dividing each subset into two until there are Z

subsets, where each division of sets aims to disconnect the edges with higher weights.

Fig. 5.5 illustrates a tree diagram of the graph cut process. There are log2(Z) + 1

levels of graph cut. In the β-th level, the subsets of users are Vβ,c, where c = 1, . . . , 2β

and β = 0, . . . , log2(Z), and the users in Vβ,c are

Vβ,c ≜ {kβ,c1 , . . . , kβ,c|Vβ,c|} , (5.17)
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𝒱𝒱0,1 = 𝒱𝒱

𝒱𝒱1,2𝒱𝒱1,1

𝒱𝒱2,4𝒱𝒱2,3𝒱𝒱2,1 𝒱𝒱2,2 𝛽𝛽 = 2

𝛽𝛽 = 1

𝛽𝛽 = 0

Recursive calls on DoGraphCut(⋅) Returns of  the recursive calls 

Initial call on 
DoGraphCut(𝑍𝑍,𝐖𝐖,𝒱𝒱, 0,1)

Figure 5.5: Tree diagram illustrating the recursive graph cut when Z = 4 and β =
1, . . . , log2(Z).

which are further divided into two subsets, Vβ+1,2c−1 and Vβ+1,2c, in the next level.

The edge weights between vertices in Vβ,c are collected as Wβ,c, a |Vβ,c|×|Vβ,c|matrix,

whose elements are determined by the original graph’s adjacency matrix, W, as

Wβ,c ≜
[
W β,c

i,j

∣∣W β,c
i,j = Wkβ,ci ,kβ,cj

, ∀kβ,ci , kβ,cj ∈ Vβ,c
]
. (5.18)

We use the Goemans and Williamson’s method [25] to divide a given set (or subset)

of vertices. In detail, let us define an indicator yβ,ci for each user kβ,ci in Vβ,c, where

yβ,ci = −1 if user kβ,ci is divided into Vβ+1,2c−1 and otherwise, yβ,ci = +1, i.e., it

is divided into Vβ+1,2c. Then, we can write the sub-problem to maximise the sum

of weights on the disconnected edges between the vertices in Vβ+1,2c−1 and Vβ+1,2c

as

max
yβ,c

∑
i ̸=j

W β,c
i,j

1− yβ,ci yβ,cj

2
,

s.t. yβ,ci ∈ {−1,+1} , ∀i = 1, . . . , |Vβ,c| ,

(5.19)

where yβ,c ≜ [yβ,c1 , . . . , yβ,c|Vβ,c|]
T. Here, (1 − yβ,ci yβ,cj )/2 in (5.19) is equal to 1 if kβ,ci

and kβ,cj are not in the same subset or 0 otherwise, which indicates whether or not

edge (kβ,ci , kβ,cj ) is disconnected. This problem in (5.19) can be relaxed into a convex
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optimisation problem [25] as

X̂β,c = arg max
Xβ,c

∑
i ̸=j

W β,c
i,j

1−Xβ,c
i,j

2
,

s.t. , diag{Xβ,c} = 1 , Xβ,c ⪰ 0 .

(5.20)

Here, Xβ,c in (5.20) is a |Vβ,c| × |Vβ,c| matrix whose elements, Xβ,c
i,j , is a real number

that approximates the multiplication, yβ,ci yβ,cj , in (5.19), ∀i, j. The above problem can

be solved by existing convex optimisation solvers [49].

After solving the problem in (5.20), we can obtain the graph cut indicators, yβ,c, by

a rounding method [25]. Specifically, it performs singular value decomposition (SVD)

on the optimal solution, X̂β,c, that maximises the objective in (5.20). Since X̂β,c

is positive semidefinite, we can obtain a SVD of X̂β,c with the following structure

[48],

Uβ,cΣβ,c(Uβ,c)T = svd(X̂β,c) , (5.21)

where Uβ,c and Σβ,c are both |Vβ,c| × |Vβ,c| matrices and further Σβ,c is a diagonal

matrix with non-negative eigenvalues of X̂β,c on its diagonal. Then, we randomly

select a vector in R|Vβ,c| as δβ,c and set yβ,c as1

yβ,c = [yβ,c1 , . . . , yβ,c|Vβ,c|]
T = sgn

(
Uβ,c(Σβ,c)

1
2 δβ,c

)
. (5.22)

We then configure Vβ+1,2c−1 and Vβ+1,2c as

Vβ+1,2c−1 = {kβ,ci |y
β,c
1 = −1, i = 1, . . . , |Vβ,c|} ,

Vβ+1,2c = {kβ,ci |y
β,c
1 = +1, i = 1, . . . , |Vβ,c|} .

(5.23)

1Each row of Uβ,c(Σβ,c)
1
2 is a unit vector, and the size of the angle between the i-th and j-th

row indicates how likely user i and j should be assigned in the same subset, ∀i ̸= j (smaller the

angle, more likely they are in the same subset). Then, by multiplying Uβ,c(Σβ,c)
1
2 with a random

vector, users’ grouping indicators generated by (5.22) are more likely to have the same sign if the
angle between their corresponding row vectors is smaller. It has been proved [25] that this method
achieves at least 0.87854 of optimal achievable max cut objective in (5.19), which provides a near-
optimal solution for max cut over given edge weights.
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Next, we repeat the graph cut process on Vβ+1,2c−1 and Vβ+1,2c. Finally, when the

process at the (log2(Z)−1)-th level is done, we have Z disjoint groups, Vβ,1 . . . ,Vβ,Z ,

where β = log2(Z), and the grouping decisions, z, is obtained as

zk = c, ∀k ∈ Vβ,c, β = log2(Z), ∀c = 1, . . . , Z. (5.24)

Algorithm 3 summarises the recursive graph cut procedure, namely DoGraphCut(·).

The initial call of this procedure at the root of its tree diagram is DoGraphCut(Z,W,

V ′ = V , β = 0, c = 1), as shown in Fig. 5.5. Here, Z, W and V are the number of

groups required, the adjacency matrix and the vertices of G, respectively, as defined

before. We denote the user grouping decisions computed based on this procedure

as

z = DoGraphCut(Z,W,V , 0, 1) . (5.25)

Note that the problem in (5.20) is a semidefinite programming problem that can

be solved in polynomial computational complexity [47], [104]. Also, note that the

graph cut procedure requires solving Z − 1 (or
∑log2(Z)−1

β=0 2β) times of the problem in

(5.20). Since Z is constant in the grouping problem, the whole graph cut procedure,

DoGraphCut(Z,W,V , 0, 1), has polynomial computational complexity.

Algorithm 3 Recursive Graph Cut Procedure

1: procedure DoGraphCut(Z,W,V ′, β, c)
2: if β = log2(Z) then
3: Set zk = c, ∀k ∈ V ′.
4: else
5: Set Wβ,c as (5.18), where Vβ,c = V ′.
6: Construct the problem in (5.20) and find X̂β,c.
7: Generate Vβ+1,2c−1 and Vβ+1,2c using (5.21)(5.22)(5.23).
8: Call DoGraphCut(Z,W,Vβ+1,2c−1, β + 1, 2c− 1).
9: Call DoGraphCut(Z,W,Vβ+1,2c, β + 1, 2c).
10: end if
11: return
12: end procedure
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Figure 5.6: The structure of the critic.

5.4.3 Design of the Graph-Evaluating Critic

We use a NN, Q(·), to approximate the expected value of the users’ throughput, r,

for the given network state, S, and the given edge weights, W, in the graph as

E[r|S, z]

=E
[
[r1, . . . , rK ]T|S,DoGraphCut(Z,W,V , 0, 1)

]
≈Q(S,W|θQ) = [Q1(S,W|θQ), . . . , QK(S,W|θQ)]T

(5.26)

where z is the grouping decisions generated based on (5.25) and Qk(S,W|θQ) is the

k-th element in the output of Q(S,W|θQ) that approximates rk, ∀k. The overall

structure of the critic is shown in Fig. 5.6a. To help the critic abstract information
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on the contention and interference from the network states, we apply the same pre-

processing on the network states in the actor’s design from Section 5.4.1. Note that

we define the vector and matrices to collect all user’s pre-processed states and simplify

the notations as

ŝ ≜ [s1,â(1), . . . , sK,â(K)] ,

I ≜
[
Ii,j
∣∣Ii,j = si,â(j),∀i ̸= j; Ik,k = 0,∀k

]
,

O ≜
[
Oi,j

∣∣Oi,j = ω(si, sj|θω),∀i ̸= j;Ok,k = 0,∀k
]
.

(5.27)

Here, ŝ contains all path losses from users to their associated APs, determining the

receiving signal power and the packet duration of users. I contains path losses from

each user to all other users’ associated APs, indicating the interference power. O

indicates how likely each pair of users can sense each other. Then, the critic has a

structure as follows

Q(S,W|θQ) = Q̇(ŝ, I,O,W|θQ̇)|Oi,j=ω(si,sj |θω),∀i ̸=j , (5.28)

where we note that ŝ and I can be directly taken from S, while O is computed based

on S by using the inference NN, ω(·|θω) defined in (5.15). Thus, ω(·|θω) is a shared

part of both the actor and the critic.

The structure of Q̇(·) is designed based on GNNs that are flexible to the dimensions

of its inputs, ŝ, I, O and W, as follows. First, we use a FNN, referred to as the

edge feature embedder (EFE), to embed the user-pair-wise state information, I and

O and the actor-generated edge weights, W, into E embedded edge features, e.g.,

G1, . . . ,GE, whose the (i, j)-th elements are

[G1
i,j, . . . , G

E
i,j]

T = EFE(Ii,j, Oi,j,Wi.j),∀i ̸= j , (5.29)

and we set Ge
k,k = 0, ∀e, k. Also, we use a FNN, namely the node feature embedder

(NFE), to embed the per-user-wise state information, ŝ, into a higher dimension
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as

H1 ≜ [h1
1, . . . ,h

1
K ]T

=
[
NFE(s1,â(1)), . . . ,NFE(sK,â(K))

]T
,

(5.30)

where h1
1, . . . ,h

1
K are M -dimensional vectors and H1 is a K ×M matrix that is the

input of the first hidden critic layer (HCL). There are ζ HCLs in the critic, e.g., HCLl

is the l-th HCL, l = 1, . . . , ζ. HCLl has two parts of inputs as 1) the embedded node

features from the previous HCL’s output (or from the NFE’s output when l = 1), Hl,

and 2) the embedded edge features from the EFE, G1, . . . ,GE, as

Hl+1 ≜ [hl+1
1 , . . . ,hl+1

K ]T = HCLl(Hl,G1, . . . ,GE),∀l, (5.31)

where the internal structure of each HCL is shown in Fig. 5.6b. Specifically, we use

E graph convolutional networks (GCNs) [118]2, GCNl,e, e = 1, . . . , E, in HCLl to

aggregate Hl and Ge into hidden node features as

H̃l,e ≜[h̃l,e
1 , . . . , h̃

l,e
K ]T = ReLU

(
GCNl,e(Hl,Ge)

)
=ReLU

(
(Dl,e)−

1
2 (Ge + IK)(Dl,e)−

1
2HlΘl,e

)
, ∀l, e ,

(5.32)

where ReLU(·) is the rectified linear activation function and Θl,e are trainable param-

eters of GCNl,e. Here, IK is a K ×K identity matrix and Dl,e is the diagonal degree

matrix of Ge + IK (i.e., Dl,e
i,i =

∑K
j=1G

e
i,j + 1) in (5.32). Next, a FNN, namely hidden

node feature embedder (HNFE), aggregates each user’s hidden node features from all

GCNs as

Hl+1 ≜ [hl+1
1 , . . . ,hl+1

K ]T

=

[
HNFEl

([
(h̃l,1

1 )T, . . . , (h̃l,E
1 )T

]T)
, . . . ,HNFEl

([
(h̃l,1

K )T, . . . , (h̃l,E
K )T

]T)]T
,∀l ,

(5.33)

where HNFEl is the HNFE in the l-th layer and Hl+1 is forwarded to the next HCL.

2we use GCNs to construct the critic because most inputs of the critic in (5.28) are user-pair-wise
features (e.g., I, O and W) that can be viewed as edge features on a graph, as GCNs dedicated for.
Alternatively, other GNNs can take edge features as inputs can be used, e.g., GNNs listed in [119].
However, what the optimal GNN structure is for the critic is not the focus of this work.

121



5.4. Proposed Actor-Critic Graph Representation Learning Algorithm

Last, a FNN is used as a readout function (ROF) to map the node features from

the output of the last HCL and the initial per-user-wise network states, ŝ, into the

approximated average throughput of users as

Q̇(ŝ, I,O,W|θQ̇) =
[
ROF(hζ+1

1 , s1,â(1)), . . . ,ROF(hζ+1
K , sK,â(K))

]T
, (5.34)

where hζ+1
k , ∀k, are computed as (5.29)-(5.33).

5.4.4 The Flow of the AC-GRL Algorithm

Finally, we explain the flow of the AC-GRL algorithm that trains NNs in the above

components, where the initial values of all NN parameters are randomly initialised.

Pre-training of the Inference NN

We first train the inference NN, ω(·|θω), that is the shared part of the actor and the

critic. In each training step, we simulate a realisation of the wireless network where

we measure the network states, S. We also acquire whether or not each pair of users

can sense each other as a K ×K matrix of binary indicators, defined as

O∗ ≜
[
O∗

i,j

∣∣O∗
i,j = 1{user j can sense user i},∀i ̸= j;O∗

k,k = 0,∀k
]
. (5.35)

We note that O∗ does not need to be measured when deploying our methods in a

real-world network. Then, the parameter of ω(·|θω) is optimised by minimising a loss

function as the cross entropy between the inferred expected value of O∗
i,j, Oi,j, and its

true value, e.g.,

L(θω) = E
[∑

i ̸=j

−O∗
i,j log(ω(si, sj|θω))− (1−O∗

i,j) log(1− ω(si, sj|θω))
]
, (5.36)
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where we update θω using the stochastic gradient descent (SGD) method [42] based

on the gradient of (5.36) as

∇θωL(θω) =
∑
i ̸=j

(−O∗
i,j

Oi,j

−
1−O∗

i,j

1−Oi,j

· (−1)
)
∇θωω(si, sj|θω) . (5.37)

The training step of the inference NN is repeated N times.

Main Training Process of the AC-GRL Algorithm

After the inference NN is trained to estimate the probability of hidden users, we

train the remaining parameters of the actor and the critic, as shown in Fig. 5.3.

We measure S from a randomised realisation of the wireless network at the start of

each training step. Then, the graph-constructing actor generates W as (5.16). With a

probability of ν (ν ∈ [0, 1]), we set edge weights in the off-diagonal of W with random

numbers in [0, 1] for the purpose of exploration of good edge weights. After that, the

graph cut procedure computes the grouping decisions, z, based on W by calling

DoGraphCut(·) in Algorithm 3 as (5.25). Then, we measure the users’ throughput, r,

from the network for the given z. The measured users’ throughput is used to optimise

the graph-evaluating critic that approximates the throughput for given network states

and edge weights. Thus, the loss function of the critic is the difference between the

estimated throughput and the actual measured users’ throughput from the network

as

L(θQ) = E
[ K∑

k=1

(
rk −Qk(S,W|θQ)

)2]
, (5.38)

whose gradient of L(θQ) with respect to θQ̇ is

∇θQ̇L(θQ) =
K∑
k=1

{
2
[
rk − Q̇k(ŝ, I,O,W|θQ̇)

]
×∇θQ̇Q̇k(ŝ, I,O,W|θQ̇)

}∣∣∣
Oi,j=ω(si,sj |θω),∀i ̸=j

.

(5.39)

Also, the critic is used to optimise the actor. Note that the actor is optimised to

generate the best edge weights that maximise the worst-case user throughput in (5.12),
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which can be expressed as a loss function based on the critic as

L(θµ) = E
[
−min

k
Qk

(
S,W|θQ)|Wi,j=µ(si,sj |θµ)

]
, (5.40)

where minkQk(·) is the worst-case user throughput approximated by the critic and

we can derive the gradients of L(θµ) with respect to θµ̇ as

∇θµ̇L(θµ) = −∇W min
k
Qk

(
S,W|θQ)×∇θµ̇W

= −
∑
i ̸=j

∂mink Q̇k(ŝ, I,O,W|θQ̇)

∂Wi,j

×∇θµ̇µ̇(sj,â(j), si,â(j), si,â(i), Oi,j|θµ̇)
∣∣
Oi,j=ω(si,sj |θω),∀i ̸=j

.

(5.41)

Then, the SGD method updates the actor and the critic’s parameters based on the

above gradients in (5.39) and (5.41), respectively. Here, we repeat N times the train-

ing step for the actor and the critic.

Algorithm 4 summarises the NNs’ training process, where lines 2-6 are the inference

NN’s training process and lines 7-16 are the actor and the critic’s training process.

Note that η is the learning rate of the NNs.

5.5 Proposed Online Fine-Tuning Architecture

In this section, we explain the online architecture that further fine-tunes the graph’s

edge weights for a given realisation of the wireless network, as shown in Fig. 5.7.

Note that we assume that Algorithm 4 has returned the trained parameters of the

inference NN, the actor, and the critic. We will not make any updates on them in the

online architecture.

Specifically, to fine-tune the edge weights for a given network, we measure the network

states S as defined in Section 5.2.2 and infer Oi,j, ∀i ̸= j as (5.15). Then, we compute

W using the actor as (5.14), and we then use computed W to generate the user

grouping decisions as (5.25). Next, we measure the average throughput of users, rk,
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5.5. Proposed Online Fine-Tuning Architecture

Algorithm 4 Proposed Actor-Critic Graph Representation Learning Algorithm

1: Randomly initialise NNs’ parameters, θω, θQ̇ and θµ̇.
2: for step n = 1, . . . , N do
3: Generate a network randomly.
4: Measure S and O∗ from the network.
5: Compute ∇θωL(θω) as (5.37) and perform the SGD on the inference NN as

θω ← θω − η∇θωL(θω).
6: end for
7: for step n = 1, . . . , N do
8: Generate a network randomly.
9: Measure S from the network.
10: Generate W as (5.16) using the graph-constructing actor.
11: With probability ν, randomly set the values in W.
12: Compute z as (5.25) using the graph cut procedure.
13: Execute z in the network and measure r.
14: Compute ∇θQ̇L(θQ) as (5.39) using the graph-evaluating critic and perform the

SGD on the critic as
θQ̇ ← θQ̇ − η∇θQ̇L(θQ).

15: Compute ∇θµ̇L(θµ) as (5.41) using the actor and the critic and perform the
SGD on the actor as

θµ̇ ← θµ̇ − η∇θµ̇L(θµ).
16: end for
17: return θω, θQ̇ and θµ̇ for online fine-tuning.

Wireless 
Network

Central Server

Generate 𝐖𝐖
using the graph-constructing actor.  

𝐳𝐳

𝐒𝐒

𝐫𝐫

Generate 𝐳𝐳
using the graph cut procedure.

Find 𝑘𝑘∗ and update 𝐕𝐕 and 𝐖𝐖
using the graph-evaluating critic.

Interaction between the network and the server

Flow of fine-tuning of the graph

…

…

Figure 5.7: The proposed online fine-tuning architecture.

k = 1, . . . , K, over T RAW slots and find the worst-case user’s index as

k∗ ← arg min
k
rk . (5.42)
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The elements in W are then fine-tuned based on the worst-case user’s index and the

trained critic by minimising the following loss function,

L(W) = −Q̇k∗(ŝ, I,O,W|θQ̇) (5.43)

In order to prevent the updated weight values from going out of the bounds on weights,

i.e., [0, 1], we update an intermediate K ×K matrix, V, instead, where

V ≜
[
Vi,j
∣∣Vi,j = Sigmoid−1(Wi,j),∀i ̸= j;Vk,k = 0, ∀k

]
. (5.44)

Here, Sigmoid−1 is the inverse of the Sigmoid function with the output range as [0, 1].

Then, V is updated based on the gradient of the critic as

∇VL(W) = −∇VQ̇k∗(ŝ, I,O,W|θQ̇)

= −∇WQ̇k∗(ŝ, I,O,W|θQ̇)×∇VW ,
(5.45)

where ∇VW can be computed based on the derivative of the Sigmoid function in

(5.44). Next, V and W are updated as

V← V − η∇VL(W) ,W← Sigmoid(V) , (5.46)

where η is the learning rate. After each time that W is updated, we regenerate the

grouping decisions as (5.25) and measure users’ throughput again for the next T RAW

slots. Then, the worst-case user is found as (5.42). Finally, the update of V and W

in (5.45) and (5.46) is repeated until the network stops.

5.6 Evaluation of Proposed Methods

This section provides the simulation results that evaluate our proposed methods.
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5.6.1 Simulation Configurations

We use NS-3 [31], [120] to simulate Wi-Fi HaLow networks, where all devices are

located in a 2km × 2km squared area. We assume there are 4 APs (A = 4), and

they are located at the grid in the simulated area. Unless specifically stated, we set

the number of users, K, as 20, and they are randomly distributed in the simulated

area. The duration of a RAW slot, ∆0, is configured as 10 milliseconds. The channel

bandwidth, B is set as 1 MHz at a 1 GHz carrier frequency. The transmission power

of users is set as P0 = 0 dBm, and the noise power spectral density is set as N0 = −90

dBm/Hz. The path losses between any two devices (including APs and users) follow

Friis model [121] as 10 log 10(λ2/(4πd)2) in dB, where λ is the wavelength at 1 GHz

and d is the distance in meters between two devices. The threshold on path losses

where a user can sense a transmission, s̃max, is set to 95 dB. The packet size, L, is

800 bits, the maximum queue size is 5, and each user has a Poisson packet arrival

process with intervals of 20 milliseconds. The maximum decoding error probability,

ϵmax, for each user with no interference is 10−5. The decoding error probability of

each transmitted packet is computed using the same equation in (5.2), where ϕ is the

signal-to-interference-plus-noise of each transmission instead.

All FNNs used in the actor and the critic have one input layer, one output layer, and

two hidden layers. The activation functions of all hidden layers in FNNs are set as

ReLU functions. Further, the size of each layer and the output activation functions

(OAFs) of FNNs are listed in Table 5.1, where M = E = 5. The size of trainable

parameters of GCNs in (5.32), Θl,e, is M ×M , ∀l, e. The exploration rate, ν, is set to

10%, and the learning rate of NNs, η, is set to 10−4. The number of training steps,

N , in Algorithm 4 is set to 1000.
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Table 5.1: Configurations of FNNs in the Actor and the Critic

NNs Dimensions of layers OAFs

ω 2A, 20A, 20A, 1 Sigmoid(·)
µ̇ 4, 40, 40, 1 Sigmoid(·)

EFE 3, 30, 30, E ReLU(·)
NFE 1, 10, 10,M ReLU(·)

HNFEl, ∀l EM, 10EM, 10EM,M ReLU(·)
ROF M + 1, 10(M + 1), 10(M + 1), 1 None

5.6.2 Compared Methods in Simulations

Applying Heuristics

We compare our method to the heuristics method that simply randomly allocates

users in each group with equal probability, referred to as the “RAND” scheme. We

also compare a method that uniformly balances the number of users in each group,

referred to as the “UNIF” scheme. Specifically, we sort the users based on their

associated AP’s index as k′1, . . . , k
′
K , where â(k′1) ≤ â(k′2) ≤ · · · ≤ â(k′K). Then, we

set zk′i = (i mod Z) + 1, ∀k, which balances the number of users in different groups

for each AP.

Applying Markov-model-based Approach

We apply the Markov-model-based approach to the user grouping problem, where the

Markov models in [109], [110] are used to estimate each user’s throughput following

the approach taken in [32], [33]. Note that the model in [110] requires full knowledge

of whether each pair of users are hidden users or not. Since this information is not

measured in the network states, the model [110] cannot be applied directly to the user

grouping problem in this work. Thus, we estimate the users’ throughput using the

original model [109] that assumes all users can sense each other, i.e., no hidden users.

Here, the grouping decision is generated by using the iterative algorithm developed

in [32]. Specifically, In each iteration, the algorithm selects the best user among all

un-grouped users and the best grouping decision of the selected user to maximise

the worst-case user throughput in grouped users. Then, the selected user is marked
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as grouped, and another un-grouped user will be selected in the next iteration until

all users are grouped. We refer to the above method as the “MC-based” scheme in

simulations.

Applying Graph-based Approach

We also applied the graph-based approach in the grouping problem in RAW. Note that

the works in [26] formulate the user grouping problem as a graph colouring problem

in which an edge connects the users if the same AP can detect them. Then, connected

users must have different colours/groups and be assigned different RAW slots. This

approach requires many groups in dense networks since users will be densely connected

in the above graph construction. This is unsuitable for the problem in (5.8) where the

number of groups/slots in RAW, Z, is limited. Then, we consider using the max-cut-

based schemes in [27], [28], which computes the user grouping decisions as (5.11) but

using some manually designed rules to generate the graph’s edge weights. For example,

since the user throughput is mostly affected by the contention and interference in the

network, we can design the edge weights as Wi,j = Oi,j, ∀i ̸= j, where Oi,j is computed

using the trained inference NN as (5.15), indicating how likely user j can sense user

i, i.e., how likely user i can trigger the CSMA/CA contention of user i. Alternatively,

we can set the edge weights as Wi,j = 1 − Oi,j, ∀i ̸= j, to indicate how likely users

are hidden or how likely they will make concurrent transmissions causing interference.

Also, we can set edge weights, Wi,j, ∀i ̸= j, to indicate the interference caused by user

i to the associated AP of user j, e.g., Wi,j = ϕ′
i,j = (P0/sj,â(j))/(N0B + P0/si,â(j)).

We referred to the above max-cut-based schemes, e.g., setting Wi,j as Oi,j, 1 − Oi,j

and ϕ′
i,j, ∀i ̸= j, as the “MCON”, “MHID” and “MINT” schemes, respectively.

Applying ML-based Approach

The ML-based approach is also applied to the problem, where a NN is trained to

directly generate grouping decisions, z, based on network states, S. For example, we

use the random-edge GNN (REGNN) design in [29], whose structure of each layer
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is

gl+1 = σ(

ξ∑
n=1

αl
n(I)ngl) , l = 1, . . . , χ− 1. (5.47)

where I is defined in (5.27) and gi are K-dimensional vectors (g1 is set as ŝ defined

in (5.27)). Here, χ is the number of layers in the REGNN, αl
n, ∀n, l, are trainable

parameters in each layer, and σ is the activation function (e.g., ReLU(·)) of each layer.

Note that REGNNs only output one scalar feature for each user. Thus, We encode

user grouping decisions zk, k = 1, . . . , K, as a binary number, e.g., zk = 1, 2, 3, 4

as zk = 00, 01, 10, 11, and use two REGNNs with different parameters, where each

one REGNN outputs one bit of the grouping decisions. we can also use message-

passing GNN (MPGNN) that is studied in [30] to generate the user grouping decisions,

e.g.,

gl+1
i = σ

(
FNN2

(
gl
i,max

j ̸=i
FNN1(gl

i, si,â(j))
))
, l = 1, . . . , χ− 1, i = 1, . . . , K , (5.48)

where FNN1 and FNN2 are two FNNs, gl
i is the user-wise feature of i-th user in the

l-th layer and g1
i can be set as si for the problem. We use a policy gradient algorithm

[29], [122] to train the REGNN and the MPGNN.

5.6.3 Performance of Proposed AC-GRL Algorithms

We evaluate the performance of the AC-GRL algorithm in Algorithm 4 as follows.

Performance of the inference NN

We show the training information of the inference NN in Fig. 5.8, which is the first

part of Algorithm 4 (lines 2-6). In Fig. 5.8a, the value of the loss function in (5.38)

decreases over training steps and converges around 400 steps. Also, we measure the

accuracy of the inference NN during training. For example, we sample the binary

value O′
i,j from Oi,j computed as (5.15) and measure the probability that O′

i,j is equal

to its true value, O∗
i,j, as shown in Fig. 5.8a. The results show the accuracy of the

inference NN also converges around 400 steps. Further, we measure the accuracy of
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the NN separately for two possible values of O∗
i,j in Fig. 5.8b. The results show that

the accuracy converges in either case, which implies that the inference NN makes no

biased guess on the value of O∗
i,j, e.g., simply guessing one of the possible values, and

also implies that the inference NN is well-trained and can be used in the following

part of the algorithm.

Performance of the actor and the critic

Next, we evaluate the training of the actor and the critic in Algorithm 4 (lines 7-16).

We measure the worst-case user throughput, mink rk, and the average throughput of

users, 1
K

∑
k rk, during training in Fig. 5.9a and Fig. 5.9b, respectively. We compare

our AC-GRL method (with legend “Proposed”) with the methods directly using the

REGNN or the MPGNN as the user grouping policy. The results show that our

method converges after 500 training steps, and it achieves over 80% more throughput

than two other schemes without degradation in the average throughput of users. This

is because the NNs, REGNN and MPGNN, aggregate all neighbour users’ information

of a given user, e.g., due to the matrix-vector multiplication, (I)ngl, or max function

in (5.47) and (5.48), respectively, and thus, they struggle to express the user-pair-

wise correlation between grouping decisions, i.e., how likely a pair of users should be

assigned in the same slot. However, our method uses a max cut process to generate

the user grouping decisions, where the correlation between pairwise of users’ decisions

is retained and indicated by the edge weights between each user pair.

5.6.4 Performance of Designed User Grouping Decisions

Next, we use the trained actor to generate the graph’s edge weights and compare the

user grouping decisions made by the graph cut procedure with the decisions made by

other methods. We measure all users’ throughput and the worst-case user’s through-

put in 1000 random realisations of the network and plot the cumulative distribution

functions (CDFs) of them in Fig. 5.10. Fig. 5.10a shows the CDFs of user throughput

achieved by the trained NN in our methods (with legend “Proposed”) and achieved by
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(a) The value of the loss function and the accuracy of the inference NN during training.

(b) The accuracy of the inference NN for two different cases of O∗
i,j , ∀i, j, during training.

Figure 5.8: The training information of the inference NN.

heuristic schemes, RAND and UNIF, and the MC-based schemes. The results show

that the RAND heuristic scheme performs the worst since it randomly allocates users

in RAW slots, which can possibly allocate highly contended or interfered users into the
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(a) The worst-cause user throughput during training.

(b) The averaged user throughput during training.

Figure 5.9: The training information of the actor and the critic.

same slot. Also, the UNIF and the MC-based schemes have close performance because

both methods have a strategy that balances the number of transmissions in each slot.

Further, the proposed method performs the best, e.g., 65% ∼ 100% higher worst-cast
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(a) Comparison with heuristic and Markov-model-based methods

(b) Comparison with max-cut-based methods

Figure 5.10: Comparison of the proposed method with other methods.

user throughput on average, which is due to well-exploitation on the contention and

interference information in the optimised edge weights. Further, we compare the CDF

of user throughput achieved by our method and achieved by max-cut-based methods
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in Fig. 5.10b. The results show that the MCON and MHID schemes achieve higher

worst-case user throughput than the other max-cut-based method, MINT. This is

because MCON and MHID aim to cut more edges between either contending or hid-

den users (the two main causes of throughput starvation), which is not considered in

MINT. Also, it is shown that our proposed methods achieve better worst-case user

throughput than the MCON and MHID scheme (around 30% on average). This is

because our method considers the path losses from users to APs as the input when

deciding the edge weights, whose values thus have more information on the contention

and interference in the network, e.g., the interference power/duration, etc. Further-

more, the CDFs of all users’ throughput in Fig. 5.10a and Fig. 5.10b show that

the improvement in the worst-case user’s throughput has a minor reduction in users’

throughput above the median.

Fig. 5.11 shows the locations of users with low throughput with respect to the lo-

cation of APs in four schemes, namely RAND, MC-based, MHID, and our scheme.

Specifically, we show the locations of users whose throughput is in the range of [0, 2.5)

and [2.5, 5) in the 1000 random realisations of the network. The results show that our

methods significantly reduce the number of users with low throughput and improve

the users’ throughput far from the APs, e.g., on the boundary of the simulated area.

5.6.5 Performance of Proposed Online Architecture

We then evaluate the performance of the proposed online architecture that fine-tunes

the edge weights. We measure the users’ throughput and update the weights as

Section 5.5 every 2 seconds (i.e., every 200 RAW slots) for 200 seconds. We use the

NNs trained with 20 users to generate the edge weights. Then, we use the architecture

to fine-tune the edge weights in networks with 10, 20 and 40 users, as shown in Fig.

5.12a, 5.12b and 5.12c, respectively. Specifically, we perform the moving average of

user throughput measured every 10 seconds. Then, we compute the ratio of average

throughput during 200 seconds to their initial value in the first 10 seconds. We plot
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Figure 5.12: Ratios of worst-case and average user throughput to their initial values
during fine-tuning for different numbers of users, K.

the above ratios for both the worst-case user throughput and the average throughput

(with legends “mink rk” and “ 1
K

∑
k rk”, respectively), and we further average the

above ratios in 100 realisations of networks for each case. The results show that

the proposed architecture can further improve 15 ∼ 20% of the worst-case user’s

throughput compared to its initial value when 20 users are in the network. Also,

the results show that when the number of users is small (e.g., 10 users), there is no

significant improvement, while a large improvement, 30 ∼ 40%, of the worst-case

user’s throughput is achieved when more users are in the network (e.g., 40 users).

This is because when there are fewer users, users are sparsely located in the area,

causing less contention and interference with each other. Thus, the margin of system
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5.7. Summary

performance is small. Meanwhile, when more users exist in the network, they are

more densely located and make heavy contention and interference in the network,

where fine-tuning the edge weights can significantly improve the network performance.

Also, the results show that fine-tuning the edge weights does not decrease the average

user throughput. Further, the results also indicate that the proposed method can

optimise the network performance for the varying number of users, which validates

the scalability of the method.

5.7 Summary

In this chapter, we have designed the GRL method that trains NN to generate edge

weights representing the contention and interference between each user pair. Such a

weighted graph is then cut to divide users into multiple groups, and each user group

transmits their packets in a periodical RAW slot. We optimise the edge weights such

that the grouping decisions can maximise the worst-case user throughput. Simulation

results show that our method can significantly improve the worst-case user throughput

compared to existing methods. We also developed the architecture that fine-tunes

the edge weights according to online measurements, further improving the worst-case

user throughput compared to the one achieved by edge weights that offline-trained

NN generates.
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Chapter 6

Conclusion

In this thesis, we studied scheduler design methods in wireless networks. We proposed

several schemes to enable automatic scheduler design with flexibility, to improve the

convergence rate of the scheduler design algorithm and to coordinate scheduling deci-

sions across the network. This chapter provides a summary of the content, contribu-

tions and results in the thesis, and sheds light on potential future directions.

6.1 Summary of Content and Results

In Chapter 3, we developed the DRL algorithm, K-DDPG, in wireless scheduler design

for time-sensitive traffic in 5G NR. We found that the straightforward implementation

of DDPG converges slowly, has poor QoS performance, and can hardly be implemented

in real-world 5G NR systems. We first proposed a T-DRL framework based on the

theoretical models and results to address these issues. Then, different kinds of expert

knowledge of the scheduler design problem were exploited to reduce the convergence

time and improve each user’s individual QoS. Furthermore, we developed an online

DDPG architecture that enables offline initialisation and online fine-tuning. Our

simulation and experimental results indicated that by using K-DDPG in the T-DRL

framework, the convergence time and the individual QoS of each user can be improved

significantly. In addition, with our online architecture, the scheduling policy can be
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6.1. Summary of Content and Results

updated according to real-world feedback every few milliseconds and executed in each

TTI in 5G NR.

Next, in Chapter 4, we proposed a method to design schedulers using limited prior

knowledge of statistical CSI. Specifically, we considered the optimisation of weights in

MWSs. We computed MWSs’ average rates by solving the rate estimation problem

based on the mean and variance of users’ SNRs. We formulated the MVWO prob-

lem based on the estimated MWSs’ rates and proposed an iterative solver, where the

iterated weights are proved to converge to the optimal weights. Also, we designed

an online architecture to apply our MVWO method in networks with varying SNRs’

mean and variance. We conducted simulations to validate the accuracy of the rate

estimation, the convergence of the proposed solver, and the optimality of the weights

designed by our MVWO method. Simulations show that our MVWO method con-

sumes 4 ∼ 10 times fewer time slots in finding the optimal weights and achieves

5 ∼ 15% better average data rates of users than SUWO methods.

Finally, In Chapter 5, we investigate the coordination of the scheduling decisions

of RAW slots for multiple APs. We studied how to use the RAW mechanism in

Wi-Fi HaLow to improve worst-case user throughput. We proposed the framework

that formulates the user grouping problem in the RAW slot assignment as the graph

construction problem. Here, the graph’s edge weights are adjusted to represent the

contention and interference in each user pair, and the graph’s max cut can obtain

the user grouping decisions. We developed the AC-GRL algorithm to train NNs

that generate the optimal edge weights based on users’ path losses measured at AP.

Further, we designed the architecture to fine-tune the edge weights generated by

trained NNs according to online feedback. Simulation results show that our approach

achieves much better worst-case user throughput than the existing approaches. Also,

our online architecture can further improve worst-case user throughput by fine-tuning

the NN-generated edge weights.

We also summarised the connections between proposed schedulers. Specifically, the

proposed DRL-based and MVWO-based schedulers are designed for per-BS scheduling
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6.2. Future Directions

problems. They can be combined to flexibly approximate schedulers using NNs and

accelerate the NN training process using the statistics of channels. Furthermore, since

the proposed GRL-based scheduler coordinates the radio resource allocation across

multiple BSs (or APs), we can use it to decide the available resources for the proposed

DRL-based and MVWO-based schedulers in multiple BSs (or APs).

6.2 Future Directions

To conclude this thesis, we list several promising research directions from the works

conducted herein.

6.2.1 Extension to DRL-Based Scheduler Design

The current DRL-based scheduler uses an FNN to approximate the scheduling policy

that is not scalable in the user population, i.e., the FNNs need to be trained for each

number of users. We can extend the work by using GNNs as the policy instead. As a

result, a trained policy can be used for different numbers of users. We can also extend

the DRL-based scheduler design to 5G networks with multiple network services. One

possible approach is to define the system’s reward as the weighted sum of utility

functions of different service classes. We can define one reward function for each

class of users (or flows) and combine reward functions by scalarisation (e.g., linear

weighted average). The state and the action are the available measurements, e.g.,

delays and data rate, and the scheduling decisions, e.g., indicators of which user (or

flow) transmits or when the user (the flow) transmits. In order to train NNs that can

differentiate multiple classes (or flows), the NNs will be constructed using a shared

part and dedicated parts for different classes (or flows), where each dedicated part

approximates one class’s utility function or scheduling policy. The current scheduler is

designed for orthogonal user transmissions, while we can extend it to non-orthogonal

multiple access (NOMA). In such a case, the rewards are the summation of both

primary and secondary users in NOMA, and scheduling actions can be designed to
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6.2. Future Directions

select which users are primary or secondary [123]. Also, we have shown how much

training time can be saved by offline initialisation in the prototype, compared with

direct online training with un-initialised NNs. We can apply other learning methods

intended to speed up the adaption of NN to the changing environment. For example,

few-shot learning can be used by adjusting NNs within a few transitions, reducing

the online training time further [84]. Additionally, the transition samples can be

collected from multiple BSs over the whole network. This can introduce significant

communication, computation, and storage loads on edge servers. How to efficiently

manage these loads requires further study.

6.2.2 Extension to MVWO-Based Scheduler Design

The MVWO-based scheduler design only considers the variance of each user’s CSI.

We can extend it to the case where the users’ channels are correlated. In other words,

the off-diagonal elements of the covariance matrix of users’ CSI are non-zero. Efficient

covariance estimation methods can be applied to reduce the memory requirements and

the computational complexity [124]. For multiple service classes, we need to express

each class’s utility function in terms of the scheduling actions and the correlation

between scheduling actions and CSIs. Then, the MVWO problem can be formulated

and solved to find the optimal weights. Similarly, for NOMA, the utility function needs

to be expressed in the data rate of primary and secondary users, and the correlation of

the scheduling decisions on primary and secondary users needs to be expressed in the

convex constraints of the MVWO problem. Also, the network state’s correlation over

time, including the queue state and the channel state, can be considered in formulating

the feasible rate region, which may lead to the time-efficient scheduler design for

more complicated utility functions. Finally, our works only give the boundness of the

feasible rate region while it is not studied how tight the bound is. Note that the core

of estimating the feasible rate region is the SDP problem. It might be possible to

design a rounding method [25] to find the approximation ratio of MVWO.
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6.2.3 Extension to GRL-Based Scheduler Design

We can extend the GRL-based scheduler design to consider more network performance

objectives, e.g., latency and jitter, and study how to design the graph representation

of the network in these cases. Moreover, we can extend the work to support mul-

tiple service classes based on the extension methods for the DRL-based scheduler

mentioned before. Also, note that the proposed method requires measurement of the

existence of the hidden users. We can investigate the method that can efficiently

measure this information from the network with minimum overheads and keep the

algorithm continuously optimising the network simultaneously. Further, we can de-

sign a two-level learning algorithm by combining the previously developed DRL-based

and MVWO-based methods to exploit the network states’ short-term variation, e.g.,

queue and channel states. In such a case, how to design the interaction between these

two levels of the algorithm requires further study.
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Appendix A

Proofs of Chapter 3

Proof of the Markov Property of the System

To apply DRL, we prove the Markov property in this subsection. We first derive the

transition probability of HoL delay.

The 1st packetThe 2nd packet

Figure A.1: Illustration of the queuing model.

If the k-th user is scheduled in the t-th slot, the transition probability is denoted by

pk,+i,j = Pr{dk(t + 1) = j | dk(t) = i, xk(t) = 1}, where i is the HoL delay in the t-th

slot and j is the HoL delay in the t + 1-th slot. Since users with empty buffers will

not be scheduled, we have i > 0. To derive the transition probability, we consider

the following three cases: 1) 0 < i < j, 2) 0 < j ≤ i and 3) 0 = j < i. As shown in

Fig. A.1, the queuing delays of the first and the second packets in the t-th slot are i

and j−1, respectively. The inter-arrival time between the first and the second packet

is i− (j − 1). Since the inter-arrival time is strictly positive, we have i− (j − 1) > 0

and j ≤ i. This means that for all 0 < i < j, pk,+i,j = 0. For the case 0 < j ≤ i, pk,+i,j
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equals to the probability that the second packet arrived at the buffer i− (j − 1) slots

later than the first packet. For the Bernoulli arrival process, pk,+i,j = pk(1 − pk)i−j.

For the case j = 0, the buffer becomes empty in the (t+ 1)-th slot. It means that no

packet arrived at the buffer during the past i slots. Thus, pk,+i,j = (1− pk)i.

If the k-th user is not scheduled in the t-th slot, the transition probability is denoted

by pk,−i,j = Pr{dk(t + 1) = j | dk(t) = i, xk(t) = 0}. To derive pk,−i,j , we consider three

cases: 1) the buffer is empty, i = 0, 2) 0 < i < Dmax and 3) i = Dmax. When the

buffer is empty in the t-th slot, i = 0. With probability pk, a packet arrives at the

buffer in the t-th slot and j = 1. Otherwise, j = 0. When the HoL delay is smaller

than the maximum delay bound, 0 < i < Dmax, the HoL delay will increase by one

slot. When the HoL delay equals the maximum delay bound, i = Dmax, the first

packet will be discarded. The HoL delay in the next slot depends on the queuing

delay of the second packet. If the second packet arrived within the previous Dmax

slots, pk,−i,j = pk(1− pk)Dmax−j. Otherwise, pk,−i,j = (1− pk)Dmax .

Since the above transition probabilities only depend on the states and actions in the

t-th slot, the HoL delay is Markovian. By assuming that the wireless channel fading is

Markovian, the problem is an optimal control problem of a Markov decision process.

This completes the proof.
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Appendix B

Proofs of Chapter 4

Appendix: The Proof of Corollary 1

Proof. By applying the linearity of the inner product, we obtain

⟨w, r∼µ(·|w)⟩ = ⟨w, lim
T→∞

1

T

T∑
t=1

v
(
µ(s(t)|w), s(t)

)
⟩

= lim
T→∞

1

T

T∑
t=1

⟨w,v
(
µ(s(t)|w), s(t)

)
⟩

(a)

≥ lim
T→∞

1

T

T∑
t=1

⟨w,v
(
ω(s(t)), s(t)

)
⟩

=⟨w, lim
T→∞

1

T

T∑
t=1

v
(
ω(s(t)), s(t)

)
⟩ = ⟨w, r⟩,∀r ∈ F ,

(B.1)

where (a) uses the fact that µ(·|w) maximises ⟨w,v
(
x(t), s(t)

)
⟩ in each slot, as shown

in (4.11). Thus, r∼µ(·|w) maximises ⟨w, r⟩ among all other elements in F , which proves

the statement.
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Appendix: Proof of the Boundedness of the Bound-

ing Set

Proof. For a given k ∈ {1, . . . , K}, let the elements of a vector, z, be 0 except its k-th

and (k+K)-th element, zk and zk+K . Then, the positive semi-definiteness of H leads

to

zTHz = (zk)2Hxx
k,k + 2zkzk+KH

xϕ
k,k + (zk+K)2Hϕϕ

k,k ≥ 0 , ∀(zk, zk+K) ∈ R2 ,∀k ,
(B.2)

which implies Hxx
k,kH

ϕϕ
k,k ≥ (Hxϕ

k,k)2, ∀k. By substituting (C5)(C6)(C7) into the above,

we obtain

pk(1− pk) · vϕk ≥ (yk − pkmϕ
k)2 , ⇒ yk ≤

√
pk(1− pk) · vϕk + pkm

ϕ
k ,∀k . (B.3)

Consider the inequality in (C2), where we assume ∆0 = 1 and B = 1 in order to

simplify the notation without generality,

rk ≤ pk log2(1 +
yk
pk

)
(a)

≤ pk log2(1 +
[
√
pk(1− pk) · vϕk + pkm

ϕ
k ]

pk
)

(b)

≤ pk log2(1 +

√
vϕk +mϕ

k

pk
) ,

(B.4)

where (a) uses the inequality in (B.3) and (b) uses the fact that pk ≤ 1 and 1−pk ≤ 1

in the numerator of the fraction. We write αk ≜
√
vϕk + mϕ

k to simplify the above

notation as

rk ≤ pk log2(1 +
αk

pk
) = (pk + αk) log2(pk + αk)− αk log2(pk + αk)− pk log2(pk),∀k.

(B.5)
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Because (pk +αk) log2(pk +αk) ≤ (1 +αk) log2(1 +αk), αk log2(pk +αk) ≥ αk log2(αk)

and pk log2(pk) ≥ 1
e

log2
1
e
, we obtain an upper bound on rk as

rk ≤ (1 + αk) log2(1 + αk)− αk log2(αk)− 1

e
log2

1

e
,∀k . (B.6)

Also, rk ≥ 0, ∀k, as shown in (C1), which implies rk is bounded ∀k. Since all

dimensions of r are bounded, r is bounded and so is G.

Appendix: Proof of Corollary 2

We first check the sign of a(i) and b(i). Note that r(i) is the optimal solution of

(4.31), which implies ⟨w(i), r(i)⟩ > ⟨w(i), r∗⟩. Based on this fact, we can determine

that a(i) > 0. Suppose b(i) ≤ 0, then min{(r∗ − r(i)) ⊘ w(i)} ≥ 0. This implies

(r∗ − r(i)) ∈ RK
≥0 and ⟨w(i), r∗ − r(i)⟩ ≥ 0, which is contradictory to the optimality of

r(i). Therefore, b(i) > 0.

Based on sign of a(i) and b(i), we can prove that u(i) ∈ RK
>0. To achieve this, we first

check the sign of the elements in b(i)w(i) + (r∗ − r(i)), whose k-th element is

b(i)w
(i)
k + r∗k − r

(i)
k = w

(i)
k (b(i) +

r∗k − r
(i)
k

w
(i)
k

)

≥ w(i)(b(i) + min{(r∗ − r(i))⊘w(i)}) = 0 , ∀k .

(B.7)

This implies b(i)w(i) + (r∗ − r(i)) ∈ RK
≥0. By adding a(i)w(i) to the above, we obtain

that u(i) ∈ RK
>0. Also, w(i+1) is normalised u(i), which implies w(i+1) ∈ RK

>0 and

∥w(i+1)∥2 = 1.

148



Appendix: Proof of Lemma 1

Proof. To prove the first statement, we substitute (4.32) and (4.34) into ⟨w(i+1),w∗⟩

as

⟨w(i+1),w∗⟩ = ⟨a
(i) + b(i)

∥u(i)∥2
w(i) +

1

∥u(i)∥2
(r∗ − r(i)),w∗⟩

=
a(i) + b(i)

∥u(i)∥2
⟨w(i),w∗⟩+

1

∥u(i)∥2
⟨r∗ − r(i),w∗⟩

(a)
>
a(i) + b(i)

∥u(i)∥2
⟨w(i),w∗⟩ ,

(B.8)

where (a) is because ⟨w∗, r∗⟩ > ⟨w∗, r(i)⟩. Also, we have

⟨u(i), r∗ − r(i)⟩ = ⟨(a(i) + b(i))w(i) + (r∗ − r(i)), r∗ − r(i)⟩

=
∥r∗ − r(i)∥22
⟨w(i), r(i) − r∗⟩

⟨w(i), r∗ − r(i)⟩+ ⟨b(i)w(i), r∗ − r(i)⟩+ ∥r∗ − r(i)∥22

=0 + b(i)⟨w(i), r∗ − r(i)⟩
(a)
< 0 ,

(B.9)

where (a) uses the fact that ⟨w(i), r∗⟩ < ⟨w(i), r(i)⟩. The square of ℓ2-norm of u(i) is

∥u(i)∥22 = ⟨u(i),u(i)⟩ = ⟨(a(i) + b(i))w(i) + (r∗ − r(i)),u(i)⟩
(a)
<⟨(a(i) + b(i))w(i),u(i)⟩ = (a(i) + b(i))2 + (a(i) + b(i))⟨w(i), r∗ − r(i)⟩

(B.10)

where (a) uses the inequality in (B.9). By dividing (a(i) + b(i))2 at each term in the

last inequality, we obtain

(
∥u(i)∥2
a(i) + b(i)

)2

< 1 +
⟨w(i), r∗ − r(i)⟩
a(i) + b(i)

⇒
(
∥u(i)∥2
a(i) + b(i)

)2

< 1− (⟨w(i), r(i) − r∗⟩)2

(a(i) + b(i))⟨w(i), r(i) − r∗⟩
,

(B.11)
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and substituting a(i) and b(i) of (4.33) into the denominator in the RHS of the above

(a(i) + b(i))⟨w(i), r(i) − r∗⟩

=∥r∗ − r(i)∥22 + ⟨b(i)w(i), r(i) − r∗⟩ = ∥r∗ − r(i)∥22 +
∑
k

b(i)w
(i)
k (r

(i)
k − r

∗
k)

<∥r∗ − r(i)∥22 +
∑

k:r
(i)
k −r∗k≤0

r
(i)
k − r∗k
w

(i)
k

w
(i)
k (r

(i)
k − r

∗
k) +

∑
k:r

(i)
k −r∗k>0

b(i)w
(i)
k (r

(i)
k − r

∗
k)

≈∥r∗ − r(i)∥22 +
∑
k

r
(i)
k − r∗k
w

(i)
k

w
(i)
k (r

(i)
k − r

∗
k) = 2∥r∗ − r(i)∥22 ,

(B.12)

where we note that both r(i) and r∗ are vectors in G, which implies ∥r∗ − r(i)∥2 ≤ R̂

based on the definition of R̂. By applying (B.12) into (B.11), we can obtain

(
∥u(i)∥2
a(i) + b(i)

)2

< 1− (⟨w(i), r(i) − r∗⟩)2

2R̂2
< 1 ,

⇒ ∥u(i)∥2
a(i) + b(i)

<

[
1− (⟨w(i), r(i) − r∗⟩)2

2R̂2

] 1
2

< 1 .

(B.13)

Note that R̂ is finite because G is bounded. By substituting (B.13) in (B.8), we obtain

(4.35).

For the second statement, the inner product between w(i) and w∗ is

⟨w(i),w∗⟩
(a)

≥ ⟨w(1),w∗⟩ =
1√
K

K∑
k=1

w∗
k

(b)

≥ 1√
K

K∑
k=1

(w∗
k)2 =

1√
K

, (B.14)

where (a) uses the fact that ⟨w(i),w∗⟩ is monotonic increasing based on the first state-

ment in Lemma 1 and (b) is because wk is less than or equal to 1, k = 1, . . . , K. Fur-

ther, by applying Cauchy–Schwarz inequality, we obtain that ⟨w(i),w∗⟩ = |⟨w(i),w∗⟩|

≤ ∥w(i)∥2∥w∗∥2 = 1.
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Appendix C

Proofs of Chapter 5

Appendix: The Proof of Lemma 2

Proof. We prove the statement by contradiction. Suppose the statement is false, which

means there exist grouping decisions, z′, maximising the objective in (5.8) other than

z∗. Then, we construct edge weights as W ′
i,j, ∀i ̸= j, where W ′

i,j = 1{z′i ̸=z′j}. Then, z′

is the optimal solution that maximises the LLP of (5.12) for the given edge weights

as W ′
i,j, ∀i ̸= j, which means that z′ is the grouping decisions if the edge weights are

W ′
i,j, ∀i ̸= j. Note that the network objectives in (5.8) and (5.12) are the same and

only depend on the grouping decisions. Thus, the values of the objective achieved by

z′ in (5.8) and W ′
i,j, ∀i ̸= j, in (5.12) are the same because their grouping decisions

are the same. It also implies that the value of the objective achieved by z∗ in (5.8) is

equal to the one achieved by W ∗
i,j, ∀i ̸= j, in (5.12) since z∗ is the grouping decisions

by cutting W ∗
i,j, ∀i ̸= j. We note that W ∗

i,j, ∀i ̸= j, maximises (5.12), which means

the objective in (5.12) achieved by W ∗
i,j, ∀i ̸= j, is greater than or equal to the one

in (5.12) achieved by W ′
i,j, ∀i ̸= j. This implies that the objective achieved by z∗ in

(5.8) is greater than or equal to the one achieved by z′ in (5.8), which is contradictory

to the assumption on the optimality of z′ and the non-optimality of z∗ in (5.8) at the

start of the proof. Therefore, the statement in Lemma 2 is true.
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