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1  |  INTRODUC TION

Fine root dynamics forms an important component of the forest 
carbon cycle, and data can enable the meaningful improvement 
of the ecosystem and terrestrial biosphere models (McCormack 
et al., 2017). The production of fine roots accounts for 15%–70% of 
the net primary production due to its high turnover rate (Matamala 
et al., 2003). Fine roots have morphological, architectural, physio-
logical and biotic traits (McCormack et al., 2017), and these func-
tional traits have plasticity to adapt to the environmental conditions. 
Thus, rhizotron (Bates, 1937), minirhizotron (Böhm, 1974) and root 
scanner (Dannoura et al., 2008, 2012) have been developed as tools 

to take time-series scanned images to extract root dynamics con-
tinuously. The series of images taken by a camera or scanner are 
manually processed to trace the roots and measure their length 
and projected area using various software, such as WinRHIZO Tron 
MF (Regent Instruments Inc., Canada). However, the results differ 
depending on the user and time constraints, which suggests that 
these methods have low reproducibility (Kume et al., 2018). In ad-
dition, the manual analysis of images is time- and labour-intensive, 
depending on the complexity of the root system. As image acqui-
sition becomes more automated and the number of images to be 
processed increases, software have been further advanced to au-
tomate processes.
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Abstract
1.	 Buried scanners are often used to study fine root dynamics by continuously ob-

serving them from the images taken at a fixed point. Accordingly, software have 
been developed to support operators to quantitatively analyse fine roots from 
scanned images. However, image processing is still time-consuming work.

2.	 Deep learning has achieved impressive results as a method for recognising ob-
jects in pixel units. In this study, we attempted to automate the image analysis of 
fine roots using convolutional neural network.

3.	 Using a root auto tracing and analysis (ARATA), we succeeded in extracting fine 
roots from scanned images and calculated projected area of fine roots for long-
term dynamics.

4.	 Our software enables the automatic processing of scanned images acquired at 
various study sites and accelerates the study of fine root dynamics over ex-
tended time periods.

K E Y W O R D S
convolutional neural network, deep learning, fine root dynamics, image processing, image 
scanner
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Currently, convolutional neural networks (CNNs) based on deep 
learning algorithms are applied in various fields (Li et al.,  2020), 
including root image processing (Smith et al.,  2020; Teramoto & 
Uga, 2020; Wang et al., 2019). In this study, we extracted roots from 
scanned images with a high accuracy using the deep learning model 
DeepLabv3+ (Chen et al., 2018). To accurately identify roots on a 
pixel-by-pixel basis for quantification of the projected root, a precise 
feature map is required. With the development of fully convolutional 
networks (FCNs) (Long et al., 2015), a detailed output characteris-
tic map can be obtained, and pixel-by-pixel prediction is possible. In 
FCN, all the fully connected layers are removed from the conven-
tional CNN, and the feature map that is smaller in the convolution 
process due to the deconvolution layer is expanded. This ensures 
that a feature map of the same size as the input is provided as out-
put. Various techniques, such as atrous convolution and atrous pyr-
amid pooling, which expand the receptive field while suppressing 
the calculation cost, have been incorporated in DeepLabv3+ (Chen 
et al., 2017, 2018; Zhao et al., 2016). In this study, we developed a 
software to extract root area from scanned images of the soil with 
DeepLabv3+ for the fine root semantic segmentation.

2  |  MATERIAL S AND METHODS

2.1  |  Model structure

Our network model, ARATA, uses DeepLabv3+ with Xception (Chen 
et al., 2018; Chollet, 2017) (Figure 1). In the network, the semantic 
information is encoded to recognise a collection of pixels that form 
a characteristic category, such as the root. It is pooled in the atrous 
spatial pyramid pooling module by processing the input image from 
the input layer to the output layer (Figure 1 left side). Subsequently, 
this information is decoded, and the probability that each pixel 
is included in the root image is generated (Figure  1 right side). In 
our model, we added up-sampling layers using Pixel Shuffler (Shi 

et al.,  2016) and a 3 × 3 convolution layer before the output layer 
(the boxes filled with grey in Figure 1).

The accelerated gradient optimisation developed by 
Nesterov (1983) was applied during training with a momentum value 
of 0.9 and the weight decay was set to 4E-5. The learning rate lr was 
calculated using the following equation:

Here, the initial value of the learning rate lrinit was set to 0.007 based on 
the ‘poly’ policy (Liu et al., 2015). iter represents the current number of 
learning iterations, maxiter represents the maximum number of learning 
iterations, and the power constant p was set to 0.94. We ran our soft-
ware with an NVIDIA GeForce GTX1060 (NVIDIA). PyTorch version 
1.9.1 was used for the deep learning framework.

2.2  |  Image data

Scanned images were captured for training and validation using 
flatbed image scanners (GT-S650 and GT-S600; EPSON) from vari-
ous sites: 152 images from 10 scanners at Chamaecyparis obtusa, 
59 images from 7 scanners at Quercus serrata, 9 images from 1 
scanner at Ilex pedunculosa stands in the Ryukoku forest (Shiga, 
Japan, 34

◦

57′N, 135
◦

56′E; research permit not required), 20 images 
from 2 scanners at the deciduous mixture forest in Himeji nature 
observation forest (Hyogo, Japan, 34

◦

51′N, 134
◦

37′E; research 
permit not required), 5 images from 1 scanner at the Ilex pedun-
culosa area in Yamashiro forest (Kyoto, Japan, 34

◦

47′N, 135
◦

51′E

; research permit not required) and 1 image from 1 scanner 
from a mixed forest of Dipterocarpaceae in Lambir Hills National 
Park (Sarawak, Malaysia, 4◦

12′N, 114
◦

02′E; research permit No. 
NCCD.907.4.4 (Jld.9)-137). The scanners were buried vertically or 
diagonally downward from the soil surface. The scanning area was 

(1)lr = lrinit ×

(

1−
iter

maxiter

)p

.

F I G U R E  1  Deep learning network 
used in ARATA. The grey boxes represent 
the additional processes to the original 
DeepLabv3+ model. Pixel shuffler 
and convolution layers were added for 
generating high resolution feature maps in 
the output layers.
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216 × 296 mm2 (5100 × 7019 pixel2), resolution was 600 dpi, and 
the size of one pixel was 0.0423 mm. The images were saved after 
JPG compression.

Fine roots were manually extracted and painted using Paint 3D 
(Microsoft) on 246 original scanned images. The painted images 
were stored as binary images (255: root, 0: background). The im-
ages were split into 2800 small image patches of 16.9 × 16.9 mm2 
(400 × 400 pixel2). Finally, a dataset consisting of 2800 pairs of orig-
inal and painted binary images were obtained, of which 2520 were 
used for training and 280 were used for validation (Figure S1).

To adapt ARATA to images of different qualities, the number 
of images was increased to approx. 20,000 (7–8 images for each 
of the 2800 images) by applying image augmentation techniques 
such as flipping and rotation, random scaling and swinging and 
adding noise and blur (Figure  S1). The contrast-limited adaptive 
histogram equalisation (Pizer et al.,  1987) in OpenCV (version 
3.3.1, OpenCV.org) was applied to the patches for local contrast 
correction. The parameters clip limit and grid size were set to 2 
and 11, respectively.

2.3  |  Post-processing

Our software provides a function to correct the extraction result, 
considering the temporal relationship of the scanned image. We as-
sumed that mature roots are immobile unless there is interference 
due to environmental factors, such as scanner displacement, soil ani-
mal contact and soil particle movement. Firstly, the root probabilities 
obtained by the CNN were weighted by a normal distribution centred 
on the target day, for five images before and after the day. Based on 
the results averaged by these weighted images, thresholding was ap-
plied to the image to determine whether it was a root or not.

2.4  |  Calculation of morphometric parameters

The total projected area (TPA) of the fine roots was calculated from 
the results of the segmented root area on the scanned images. 
Temporal changes in scanned images other than root dynamics ap-
pear as noise in the morphometric parameters. In this program, we 
used the ℓ1 trend filter (Kim et al., 2010) to extract the overall trend 
of TPA. The filter uses a least-square trend-extraction method with 
the penalty of the ℓ1 norm to remove the outlier data. T̃PA(t) was 
obtained by minimising the cost function values FTPA(t) defined by 
the following equations:

 Here, t and n are the image number and total number of images, re-
spectively, and � is a normalisation parameter. We set � = 0.03 in our 
analysis.

2.5  |  Evaluation

Ten additional images of 1180 × 1180 pixel2 obtained from the 
Ryukoku forest, which were also manually hand painted using Paint 
3D (Microsoft), were used to evaluate the performance of ARATA 
(Figure S1). The performance of our model was measured using the 
following indices after 100 epochs of training.

Here, true positive (TP), true negative (TN), false positive (FP) and false 
negative (FN) were obtained by considering the area of the part de-
termined to be roots by our software (As) and the area of the roots 
manually extracted (Am), as shown below.

For long-term evaluation of the model performance, an additional se-
ries of 77 images captured over two and a half years in the Ryukoku 
forest were used (Figure  S1). Automatic extraction results were 
compared with manually extracted results by two operators using 
WinRHIZO Tron MF (Regent Instruments).

Furthermore, the relative error (RE) of the TPAs of roots ex-
tracted by ARATA was calculated and compared for two different 
sites, the Himeji nature observation forest and the Ryukoku forest, 
to assess the effectiveness of training images, with much less im-
ages from the Himeji nature observation forest in the training data 
(Teramoto & Uga, 2020) than from the Ryukoku forest (220):

(2)

FTPA(t)=min
{

n∑

t=1

(
T̃PA(t)−TPA(t)

)2

+�

n−1∑

t=2

|||
T̃PA(t−1)−2T̃PA(t)+ T̃PA(t+1)

|||

}

(3)Accuracy =
(TP + TN)

(TP + TN + FP + FN)
,

(4)True positive rate (TPR) =
TP

TP + FN
,

(5)Predictive positive rate (PPR) =
TP

TP + FP
,

(6)
Matthew

�
s correlation coefficient (MCC)

=
(TP×TN−FP×FN)

√
(TP+FP)×(TP+FN)×(TN+FP)×(TN+FN)

(7)Area ratio =
TP + FP

TP + FN
,

(8)Dice score =
TP

TP +
1

2
(FP + FN)

.

TP: number of pixels in As ∩ Am,

TN: number of pixels in As ∩ Am,

FP: number of pixels in As ∩ Am,

FN: number of pixels in As ∩ Am.

(9)
RE =

TPAA − TPAm

TPAm

.
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Here, TPAA and TPAm are total projected areas of roots which were ex-
tracted by ARATA and manual operation. RE values were calculated for 
the results obtained between 15 and 18 months after the scanner box 
was buried at Ryukoku and Himeji sites (Figure S1).

3  |  RESULTS

We obtained binary images of extracted root segments from the 
scanned images (Figure 2). Root segments with high contrast to 
the background soil images were accurately detected (Figure 2a) 
They were also detected from low-contrast images (Figure  2b). 
However, root-like objects with similar shape and colour to 
roots (mostly mycelia) were also detected (Figure 2c). The evalu-
ation results of the automatic detection of roots with ARATA 
compared to the manual segmentation for 10 scanned images 
confirmed that the accuracy is similar with the two extraction 
methods (Table 1).

A comparison of the manual extraction and ARATA results of the 
area projected on the scanner surface for the corresponding fine 
roots showed that the results differed a little from person to person 
(Figure 3). In all cases, the trends observed in temporal changes be-
tween the manual and automatic segmentations were in good agree-
ment. Overall, the results from ARATA were slightly higher than 
those of the manual extraction, but we detected changes in tempo-
ral trends such as peaks of increase or decrease in root area (marked 
with inverted triangles). In a few cases, the trends obtained with 
ARATA were different from the manual extraction results (marked 
with an asterisk), but this was transient with a subsequent return to 
values close to those obtained by manual extraction.

The fine roots were well extracted from images collected at the 
Himeji nature observation forest in most cases when the image qual-
ity was good enough (Figure 4a-HMJ-1), even though the number 
of images from this site in the training dataset was less compared 
with the Ryukoku forest (20 and 220, respectively). However, in a 
few cases when the image quality was poor, fine roots could not 
be extracted at all (Figure 4a-HMJ-2). Extraction results by ARATA 

from Himeji images had larger average value of the REs with a higher 
standard deviation than those of Ryukoku images (Figure 4b).

4  |  DISCUSSION

Approximately 70% of the roots on one image could be detected 
based on the TPR value, and nearly 72% of the pixels judged to 
be roots were correctly assigned according to the PPR value. 
Furthermore, the MCC value was as high as 0.699. The dice score 
of ARATA was 0.712 and higher than the score of Segroot, another 
root segmentation method using CNN (0.65; Wang et al.,  2019). 
These results suggest that our program had a reliable performance 
for root detection. An unexpected very high accuracy value (0.981) 
was achieved probably because it is not suitable for classification 
of objects with significantly disproportionate occurrence rates 
(Brown, 2018). The root area was indeed often less than 5% of the 
area of the scanned images.

Roots were detected well in some images (Figures  2 and 4a-
HMJ-1) but not in others (Figures 2c and 4a-HMJ-2). Our program 
falsely detected objects with common characteristics with roots, 
which did not exist in the training data or appeared as roots due to 
their colour or shape. In actual field conditions, image quality may 
vary; therefore, images of leaf litter veins, hyphae and earthworms 
should be included to generalise the images used for learning. A 
good evaluation of the model was obtained with images from the 
same site as those used for training. Because the soil which consti-
tutes the background of the images differs from one site to another, 

F I G U R E  2  Scanned images of soil with 
fine roots and their extraction results. (a) 
Bright coloured soil with high-contrast 
image, (b) low-contrast image, (c) dark 
coloured soil with hyphae.

TA B L E  1  Evaluation results of the automatic detection of roots 
compared with the manual segmentation

Accuracy TPR PPR MCC
Area 
ratio

Dice 
score

0.981 0.703 0.722 0.699 1.04 0.712

Abbreviations: MCC, Matthew's correlation coefficient; PPR, predictive 
positive rate; TPR, true positive rate.
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we recognise the need, in order to take full advantage of the per-
formance of ARATA on a given site, to use images from this site to 
train the model (Figure 4b). In the future, we can solve this problem 
by adding a package that allows users to train ARATA using images 
from their own sites. In addition, for long-term series of images, the 

results got worse with time because of the accumulation of dirt on 
the scanner surface during aging (Figure 3). The human eyes can de-
tect the root even if the scanner surface is dirty, but ARATA cannot. 
This may be one of the limitations of using automated image analysis 
software.

F I G U R E  3  Comparison of ARATA and manual extraction results of fine root areas obtained from a time series of 77 scanned images in a 
Quercus serrata stand in Ryukoku forest. The characteristic temporal changes, such as increase or decrease in fine root area, were correctly 
captured (inverse triangle). The case where the trend obtained with ARATA is different from that obtained by manual measurement is shown 
with an asterisk.

F I G U R E  4  Extraction results of fine roots by ARATA with test site data (Himeji) with little training data. a. the green lines are the manual 
extraction result, red lines are the extraction result by ARATA, and the yellow segments indicate the parts where the results of the two 
extractions match. The image HMJ-1 is an example of a good extraction by ARATA. The image HMJ-2, of poor quality, is an example showing 
the inability of ARATA to extract the existing roots. b. Comparison of the average value of the relative errors (RE) between the Ryukoku 
site, based on 5 images, and Himeji site, based on 15 images. The training data are based on 220 original images from Ryukoku but only 20 
original images from Himeji.
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Among deep learning-based software for root extraction such 
as SegRoot (Wang et al.,  2019), RootPainter (Smith et al.,  2020) 
and TrenchRoot-SEG (Teramoto & Uga,  2020), ARATA provides a 
new option for root researchers. ARATA is equipped with a posi-
tion and extraction result correction function that is conscious of 
continuously measured scanned images and of the spatiotemporal 
properties of root dynamics. All root extraction software are used 
by learning from target images, and comparing and examining the 
performance with respect to the data in various test sites could be 
one of the challenges for the future. We call for a collaborative effort 
between developers to tackle this task.
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