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a b s t r a c t

Introduction: Canine mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) have emerged as
a promising form of regenerative therapy. Therapeutic application of EVs remains difficult due to the
short half-life of EVs in vivo and their rapid clearance from the body. We have developed cationized
gelatin hydrogels that prolong the retention of EVs to overcome this problem.
Methods: Canine MSCs were isolated from bone marrow. MSC-derived EVs were isolated from the cul-
ture supernatant by ultracentrifugation. Gelatin was mixed with ethylene diamine anhydrate to cat-
ionized. Distinct cross-linked cationized gelatin hydrogels were created by thermal dehydration.
Hydrogels were implanted into the back subcutis of mice in order to evaluate the degradation profiles.
Hydrogels with collagenase were incubated at 37 �C in vitro to quantize the release of EVs from
hydrogels. Lipopolysaccharide (LPS)-stimulated BV-2 cells were used to evaluate the immunomodulatory
effect of EVs after release from the hydrogels.
Results: The cationized gelatin hydrogels suppressed EV release in PBS. More than 60% of immobilized
EVs are not released from the hydrogels. The cationized hydrogels released EVs in a sustainable manner
and prolonged the retention time of EVs depending on the intensity of cross-linking after degradation by
collagenase. The expression of IL-1b in LPS-stimulated BV-2 cells was lower in EVs released from the
hydrogels than in controls.
Conclusions: Our results indicate that the controlled release of EVs can be achieved by cationized gelatin
hydrogels. The released EVs experimentally confirmed to be effective in reducing proinflammatory
response. The cationized gelatin hydrogels appear to be useful biomaterials for releasing canine MSC-
derived EVs for regenerative therapy.
© 2022, The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).

1. Introduction

Mesenchymal stem/stromal cells (MSCs) are valuable sources of
stem cells for the regeneration of damaged tissues in clinical ap-
plications. Several studies of rodent spinal cord injury (SCI) models
have found that intravenous or intrathecal injection of MSCs pro-
motes functional recovery [1,2]. There have been several clinical
trials of MSCs for SCI in dogs [3e5] and humans [6,7]. Injection of
MSCs did not cause any complication, and led to improve motor
function after MSC injection.
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The therapeutic effects of MSCs are now known to be mediated
by various cytokines, growth factors, and extracellular vesicles
(EVs) [8e10]. EVs consist of lipid bilayers produced by various cell
types. These are classified into three main classes: exosomes,
microvesicles, and apoptotic bodies, according to the mode of
biogenesis. EVs encapsulate mRNA, miRNA and proteins, and act in
cellecell communication by shuttling complex messages. EVs are
involved in cell growth, pathways and altering cell or tissue
metabolism in the body. EVs can also influence tissue response to
injury and disease. MSC-derived EVs are promising forms of
regenerative therapy and immunomodulation. There have been
reports that EVs derived from MSCs reduce immune response and
promote tissue repair [11,12]. Human MSC-derived EVs exert an
effect against multiple diseases in animal models, including brain
injury [13], hind limb ischemia [14], myocardial infarction [15], and
SCI [16]. Compared to MSC transplantation, injection of MSC-
derived EVs have the advantages of being storable and low risk of
aneuploidy. Canine MSC-derived EVs also suppress the function of
various immune effector cells, and support tissue repair [17].

Different routes of administration are used to deliver EVs to the
target tissue. Intravenous injection is the most widely used route
for the delivery of EVs. Intravenous injection of EVs into native mice
has been shown, however, to cause rapid clearance from blood
circulation [13], while accumulation of EVs in the liver, spleen, lung,
and gastrointestinal tract has been found after injection [18,19]. The
short half-life of EVs in vivo and their rapid clearance from the body
after intervention means that the therapeutic application of EVs is
still difficult. Local injection of EVs may suffer the same fate due to
rapid turnover. Furthermore, the regeneration process may be slow
and the viability of EVs may degenerate [20]. The development of
biomaterials capable of maintaining EVs and the sustained release
of EVs is consequently essential for EV-based therapy.

Gelatin is abiodegradablematerial thathasbeenused in foodand
medicine because of its good biocompatibility. Gelatin hydrogels are
three-dimensional hydrophilic polymeric networks that are physi-
cally or chemically cross-linked, which are capable of adsorption
without undergoing dissolution. In regenerative medicine, gelatin
hydrogels can act as scaffolds, barriers, drug delivery systems, and
cell encapsulation matrices. The biosafety and biocompatibility of
gelatin hydrogels have been demonstrated through long clinical
applications and a number of tissue engineering studies [21,22]. In
general, EVs have a net negative charge. Previous studies suggest
that anion exchanger is useful for isolation ofMSC-derived EVs [13].
We speculate that controlled release of EVs enhance the regenera-
tion of tissue repair, since EVs can maintain their therapeutic effect
in the long term. In this study, we developed cationized gelatin
hydrogel so as to enhance the retention of EVs and maintain their
anti-inflammatory effect after sustained release in vitro.

2. Materials & methods

2.1. Experimental animals

Three healthy female beagles (aged 2e5 years) were purchased
from Oriental Yeast (Tokyo, Japan). Sixty ddy male mice (6 weeks
old) were purchased from Japan SLC (Shizuoka, Japan). All pro-
cedures were performed according to the guidelines of the exper-
imental animal committee of the university, and the protocols
(19e97, 19e183) were approved by the experimental animal com-
mittee of the university.

2.2. MSC isolation and culture

Canine MSCs were isolated from bone marrow, and were
cultured as described previously [17]. The bone marrow perfusate

was centrifuged, and the precipitates were suspended in 15 mL
Dulbecco phosphate-buffered saline (PBS; Nacalai Tesque, Kyoto,
Japan). Mononuclear cells were isolated by density centrifuging
with a lymphocyte separation solution (Nacalai Tesque) at 400 � g
for 30 min at room temperature. The buffy coat at the interface was
collected, mixed with 20 mL PBS, and centrifuged at 300 � g for
5 min. Precipitated cells were washed with PBS and the number of
cells was determined using a hemacytometer. Enriched mono-
nuclear cells were plated in 15 cm tissue culture dishes (Corning,
Rochester, NY) at a density of 1.5 � 105 cells/cm2 in complete cul-
ture medium, consisting of Dulbecco modified eagle medium
including 1 g/L of glucose (DMEM; Nacalai Tesque) with 10% heat-
inactivated fetal bovine serum (FBS; GE Healthcare, Chicago, IL) and
1% antibiotic-antimycotic solution (Nacalai Tesque). Incubating
took place at 37 �C in 5% CO2. Nonadherent cells were removed by
replacing the medium at 48 h after plating. The culture medium
was changed 2e3 times per week. When 70e80% confluence was
reached, 0.25% trypsineEDTA solution (Thermo Fisher Scientific,
Waltham, MA) was used to harvest the adherent cells. The collected
cells were centrifuged at 300 � g for 5 min, washed with PBS, and
then cryopreserved in liquid nitrogen.

Frozen MSCs were thawed at 37 �C and plated directly in tissue
culture dishes of diameter of 15 cm. After 24 h, MSCs were seeded
at 8.0 � 103 cells per cm2. After these cells reached 70e80% con-
fluency, the culture plates were washed with PBS, and each dish
was replaced with 15 mL of serum-free medium (STEMPRO MSC
SFM; Thermo Scientific). The culture supernatant was collected
after 48 h.

2.3. Isolation and characterization of EVs

The culture supernatant was centrifuged at 2,320 � g for 15 min
to remove cells and debris, and was then ultracentrifuged (Himac
CP100WX Ultracentrifuge and P28S Rotor; HITACHI, Tokyo, Japan)
at 100,000 � g for 90 min at 4 �C. The resulting pellet was resus-
pended in PBS. The protein content was quantified by the Bradford
method (Nacalai Tesque).

The samples were heat blocked in SDS-PAGE sample buffer and
denatured at 100 �C for 5 min. The samples were electrophoresed
on 10% SDS polyacrylamide gels, and transferred on to 0.45 mm
nitrocellulose membrane (Bio-Rad, Hercules, CA). The membrane
was then incubated for 2 h in 3% blocking buffer (ECL Prime™
blocking agent; GE Healthcare) and probed with mouse mono-
clonal anti-human TSG101 antibody (clone: 51/TSG101, BD biosci-
ence, Franklin Lakes, NJ) that cross-reacts against canine TSG101
[17,23] at 1:500 at 4 �C overnight. The membrane was washed and
incubated with HRP-conjugated goat anti-mouse antibody
(Peroxidase AffiniPure Goat Anti-Mouse IgG; Jackson ImmunoR-
esearch, West Grove, PA) at 1:2000 for 1 h at room temperature.
Protein was detected using chemiluminescent substrate (LAS4000;
FUJIFILM, Tokyo, Japan).

The particle size of MSC-derived EVs was measured via dynamic
light scattering (Zetasizer Nano ZS; Malvern, Worcestershire, UK).
The analysis was performed at 25 �C using samples diluted with
PBS.

2.4. Fabrication of cationized gelatin hydrogel

An aqueous solution of 4 wt% gelatin (isoelectric point 9.0,
weight-averaged molecular weight 100,000; Nitta Gelatin, Osaka,
Japan) was preheated at 37 �C for 2 h 100 mL of 4 wt% gelatin so-
lution was mixed with 1.85 mL of ethylene diamine anhydrate
(Nacalai Tesque) to cationized the gelatin. Then, HCl was added to
adjust the pH value to 5.0. The solution was dialyzed using a
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cellulose dialysis tube (Sekisui Medical, Tokyo, Japan) for 48 h and
was then freeze-dried (Takara, Saitama, Japan).

Cationized gelatin hydrogels were prepared by the dehy-
drothermal crosslinking of cationized gelatin. An aqueous solution
of 50 mg/mL cationized gelatin was preheated at 37 �C for 2 h, and
was freeze-dried to make the cationized gelatin hydrogel sheets.
The sheets were crosslinked by thermal dehydration for 24, 48 and
96 h using a vacuum drying device (DN-30S; Sato Vacuum, Tokyo,
Japan). The different sheets were obtained as low, medium and
high cross-linked sheets, respectively.

2.5. In vivo study of the cationized gelatin hydrogel degradation

To study the degradation profiles of gelatin hydrogels, we
employed in vivo implantation of 2 mg of cationized gelatin
hydrogels. The cationized hydrogels swelled by PBS were implan-
ted into the back subcutis of mice. The implanted hydrogels were
then extracted at 3, 7, 10, 14, and 21 days after implantation, and the
weight of the hydrogels was measured (n ¼ 4 at each time point).

2.6. In vitro release test of EVs from gelatin hydrogels

To study the release of EVs from cationized gelatin hydrogels, we
employed in vitro degradation of 2.0 mg of the hydrogels. EVs were
labelled using a PKH26 red fluorescent cell linker kit (Sigma-
eAldrich, St Louis, MO) according to the manufacturer’s in-
structions. In summary, 100 mg/mL of EVs was impregnated into a
gelatin hydrogel sheet (low, middle, and high cross-linked) at a
volume of 20 ml per sheet overnight at 4 �C. Hydrogel containing
EVs was placed in a 1.5 mL tube, and 600 ml of PBS was added and
incubated at 37 �C for 26 h. After addition of collagenase D (Roche
Diagnostics, Basel, Switzerland), the gels were incubated at 37 �C.
At indicated time points (0, 1, 3, 5, 8, 12 and 24 h), the degradation
of hydrogel was determined by BCA protein assay kits (Takara Bio,
Shiga, Japan), and the amount of released PKH26-labelled EVs was
calculated by Spectra Max i3x (Molecular Devices, San Jose, CA).

2.7. In vitro assay of immunomodulatory effect of MSC-derived EVs

To study the immunomodulatory effect of EVs after release from
cationized gelatin hydrogels, we employed in vitro degradation of
2.0 mg of cationized low-linked gelatin hydrogels. In summary,
100 mg/mL of EVs was impregnated into the gelatin hydrogel sheet
at a volume of 20 ml per sheet overnight at 4 �C. The low cross-
linked hydrogel containing EVs was placed in a 1.5 mL tube, and
60 ml containing 10 mg/mL of collagenase D was added gently and
incubated at 37 �C for 72 h. After complete degradation of hydro-
gels, the supernatant containing EVs was used. For the controls, the
low cross-linked hydrogel without EVs were used.

BV-2 cells were cultured in DMEMwith 5% heat-inactivated FBS
and 1% antibiotic-antimycotic solution at 37 �C in 5% CO2. After the
BV-2 cells reached about 70e80% confluency, they were detached
using 0.25% trypsineEDTA solution and seeded at 5.0 � 105 cells
per well in a 6-well plate. After 24 h of incubation, the BV-2 cells
were stimulated by replacing 1 mL of cultured medium alone, or
cultured medium containing 1 ng/mL of lipopolysaccharide (LPS)
(SigmaeAldrich) and the supernatant.

Total RNA of the cells was extracted 6 h after stimulation of LPS,
using a NucleoSpin RNA Plus (MachereyeNagel, Düren, Deutsch-
land) according to the manufacturer's instructions. The RNAs were
converted to cDNA with reverse transcriptase using oligo (dT)
primers to prime ReverTraAce (Toyobo, Osaka, Japan). The cDNA
was then amplified by the SYBR Green Realtime PCR Master-Mix-
Plus (Toyobo) using a StepOnePlus Real-Time PCR system
(Thermo Fisher). The following mouse primers were used in this

study: 50-TCCAGGATGAGGACATGAGCAC-3’ (forward) and 50-
GAACGTCACACA CCAGCAGGTTA-3’ (reverse) for IL-1b; 50-ACA-
CATGTTCTTCTGGGAAATCG-3’ (forward) and 50-TGAAGGACTCTG
GCTTTGTC-3’ (reverse) for IL-6; 50-ATGAGCACAGAAAGCATGATC-3’
(forward) and 50- TACAGGCTTGTCACTCGAATT-3’ (reverse) for
TNF-a; and 50-CACTCACGGCAAATTCAACGGCAC-3’ (forward) and
50-GACTCCACGACATACTCAGCAC-3’ (reverse) for GAPDH. The opti-
mum conditions for PCR amplification of the cDNA were estab-
lished according to the manufacturer's instructions. Reactions were
carried out as follows: initial denaturation at 95 �C for 30 s, fol-
lowed by 40 cycles of 5 s at 95 �C and 30 s at 60 �C. The data were
analyzed using StepOne software (Thermo Fisher), and the cycle
number at the linear amplification threshold (Ct) values for the
endogenous control gene (GAPDH) and the target gene were
recorded. The relative gene expression was calculated using the
comparative Ct method (2�DDCt). Levels of gene expression in non-
LPS treated BV-2 cells were expressed as 1 U.

2.8. Statistical analysis

Data are presented as mean ± SD. Real-time quantitative PCR
analysis were performed by the KruskaleWallis test followed by
Dunn's multiple test using GraphPad prism 9 software (GraphPad
Software, San Diego, CA). Values of p < 0.05 were taken as
significant.

Fig. 1. Characteristics of canine MSC-derived EVs. (A) Expression of TSG-101 (arrow-
head) in MSC-derived EVs. (B) Diameter of MSC-derived EVs with peak at 299.5 nm.
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3. Results

3.1. Isolation and characterization of EVs

EVs were isolated from the supernatant of canine MSCs by ul-
tracentrifugation. The EVs were characterized by western blotting
and a zetasizer. Expression of TSG101 was observed inMSC-derived
EVs (Fig. 1). The diameter of EVs derived from canine MSCs has its
peak at 299.5 nm.

3.2. In vivo study of the cationized gelatin hydrogel degradation

Chemical derivatization modifies the electric charge of gelation.
Fig. 2 shows the low, medium, and high cross-linked gelatin cat-
ionized gelatin hydrogel sheets. The prepared hydrogel sheets were
square (20 mm � 20 mm) and 0.5 mm thick. Fig. 3 shows the time
profile of the in vivoweight of remaining sheets after implantation of
the low,medium, and high cross-linked cationized gelatin hydrogels.
The weight of the low cross-linked hydrogels decreased 7e10 days
after implantation. The weight of the middle cross-linked hydrogels
decreased14daysafter implantation.Thehighcross-linkedhydrogels
were detected more than 21 days after implantation.

3.3. In vitro release of EVs from cationized gelatin hydrogel

Fig. 4 shows the time profile of degradation and EV release of
different cationized cross-linked gelatin hydrogels. In vitro degra-
dation of hydrogels showed that 31.0 ± 1.78% were dissolved in the
low cross-linked hydrogels at 26 h. In the middle cross-linked
hydrogels, 23.7 ± 0.48% were dissolved at 26 h. The high cross-
linked gels showed the slowest degradation rate, and 18.5 ± 0.57
(%) were dissolved at 26 h. The release rates of EVs from low,
middle, and high cross-linked hydrogels in PBS were respectively
18.3 ± 16.2%, 37.1 ± 2.59%, and 32.0 ± 1.70%. After collagenase was
added, all cross-linked hydrogels were dissolved.

In vitro release results showed that 100% of EVs were released
from the low cross-linked hydrogels at 5 h. In the middle cross-
linked hydrogels, 74.4 ± 9.64% were dissolved at 5 h. High cross-
linked gel showed slowest release rate, in which 57.3 ± 3.82% of
EVs were released for 5 h.

3.4. In vitro immunomodulatory effect of released EVs from
cationized hydrogels

Based on the results of the in vivo study of the cationized gelatin
hydrogel degradation and the in vitro release of EVs from cationized

gelatin hydrogel, we used EVs release from the low cross-linked
hydrogels for this study. The expression of IL-1b in LPS-
stimulated BV-2 cells was lower in the group treated with EVs
released from the low cross-linked hydrogels than the control
group (Fig. 5, p < 0.01). There was a tendency for the expression of
IL-6 in group treated with EVs released from the low cross-linked
hydrogels to be lower than in the control group (p ¼ 0.06). There
was no significant difference between groups in levels of TNF-a
(p ¼ 0.937).

4. Discussion

This study has demonstrated that the controlled release of EVs
can be achieved by cationized gelatin hydrogels. The EVs released
were confirmed experimentally to be effective in reducing the
proinflammatory response. We speculate that cationized gelatin
hydrogels can retain EV that have a net negative charge on their
surface. In vitro, since PBS does not contain any enzymes to degrade
the hydrogels, only EVs in free form can be released from the
hydrogel. Without the enzymatic degradation of hydrogels to
generate water-soluble gelatin fragments, more than 50% of EVs
immobilized are not released from the hydrogels. It is possible that
EVs interact electrostatically with gelatin hydrogel with positive
charge, suppressing EV release by the suspension. The release rates
of EVs in the low cross-linked cationized gelatin hydrogels were
lower than in the middle and high cross-linked hydrogels. The

Fig. 2. Photograph of cationized gelatin hydrogel sheets. The prepared hydrogel sheets were rectangular (20 mm � 20 mm) and 0.5 mm thick. Left: low, middle: medium, Right:
high cross-linked gelatin hydrogel sheets. Bar ¼ 10 mm.

Fig. 3. Time profiles of weight remaining after subcutaneous implantation of the low,
middle, and high cross-linked gelatin hydrogels.
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different crosslinking might affect the retention ability of EVs. To
retain EVs, better crosslinking is needed. The good correlation, in
the in vitro time profile, between hydrogel degradation and EV
release indicates that EV release is not governed by a simple
diffusion mechanism, but rather by the degradation of cationized
gelatin hydrogels. Taken together, these observations confirm that
EVs are released by weakening electrostatic interaction following
release carrier degradation.

A previous report indicated that canineMSC-EVs cultured under
serum-free conditions can reduce the IL-1b in LPS-stimulated BV-
2 cells [17]. Our previous report found that human MSC-derived
EVs reduce the brain IL-1b in a brain injury mouse model [13].
Consistent with our previous observations, EVs released from the
low cross-linked cationized hydrogel reduced the LPS-induced
expression of inflammation genes by BV-2. Our results suggest
that released canine MSC-derived EVs can retain the immuno-
modulatory effects of mouse microglial cells, and that the cat-
ionized gelatin hydrogels may be useful in clinical application.
Further studies are needed to assess whether canine MSC-derived
EVs can reduce the immunomodulatory effects of canine cells.

Therapy involving EVs faces a major challenge because of their
short half life, which act as a significant limitation on therapeutic
effects [18e20]. Biomaterials have been utilized to load EVs. They
can prevent loaded EVs from being cleared prematurely, and allow
the delivery of a more localized and concentrated dosage. Different
polymers have been used to create a sustained delivery system of
EVs [24]. The polymers are from natural sources including collagen,

gelatin, and chitosan, and synthetic sources, including polyethylene
glycol and poly latic-co-glycolic acid [25]. Hydrogels have tunable
physical properties that can be exploited to customize the degra-
dation rate. Several studies indicate that biomaterials enhance the
retention of EVs and improve the efficacy of EV therapy [26e28].
Several novel hydrogels capable of capturing and delivering EVs
have been developed. The hydrogel composed of pluronic F127,
oxidative hyaluronic acid and poly-ε-L-lysine can release EVs, and
their release rate is more rapid than in acidic pH than in neutral pH

Fig. 4. In vitro degradation (A) and release profiles (B) of EVs from the low, middle, and
high cross-linked gelatin hydrogels. The sheets were placed in PBS without collagenase
for 26 h, followed by PBS containing collagenase for another 24 h.

Fig. 5. Anti-inflammatory effect of canine MSC-derived EVs released from the low
cross-linked gelatin hydrogels on BV-2 cells. qPCR-assays for the expression of IL-1b
(A), IL-6 (B), and TNF-a (C) in BV-2 cells cultured with lipopolysaccharide and EVs
released from the hydrogels. Levels of gene expression in non-lipopolysaccharide
stimulated BV-2 cells are expressed as 1 U.
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[29]. We have developed a cationized hydrogel for sustaining the
release of EVs. Cationized gelatin microspheres that degrade were
used to lengthen the period during which plasmid DNA was
released [30]. The cationized gelatin hydrogels degraded with time
in vivo, so EVs were released continuously around the hydrogels
until degradation of sheets take place. This system allows
controlled biodegradation of the local delivery agent, and protects
EVs from rapid degradation.

There are several methods for collecting EVs, including ultra-
centrifugation, filtration, polymer precipitation, and size-exclusion
chromatography [31]. We collected EVs by ultracentrifugal
methods, but this method is unsuitable for large scale production of
EVs. We have reported that ion exchange chromatography can be
used to isolate and enrich EVs in a scalable manner [13]. Isolation
methods may influence the yield and the functional characteristics
of EVs, however. There is also a lack of goodmanufacturing practice
guidelines for MSC-derived EVs.

This study has several limitations. We did not compare the
retention capability of gelatin hydrogels that have negative electric
charge and that have no electric charge. Some rodent models are
needed to assess the efficacy of sustained release of EVs from cat-
ionized gelatin hydrogels. Further studies are needed to determine
the efficacy and safety of cationized gelatin hydrogels for retention
and release of EVs.
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