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Abstract
Zoonotic diseases considerably impact public health and socioeconomics. RNA
viruses reportedly caused approximately 94% of zoonotic diseases documented
from 1990 to 2010, emphasizing the importance of investigating RNA viruses in
animals. Furthermore, it has been estimated that hundreds of thousands of animal
viruses capable of infecting humans are yet to be discovered, warning against the
inadequacy of our understanding of viral diversity. High‐throughput sequencing
(HTS) has enabled the identification of viral infections with relatively little bias.
Viral searches using both symptomatic and asymptomatic animal samples by HTS
have revealed hidden viral infections. This review introduces the history of viral
searches using HTS, current analytical limitations, and future potentials. We
primarily summarize recent research on large‐scale investigations on viral
infections reusing HTS data from public databases. Furthermore, considering
the accumulation of uncultivated viruses, we discuss current studies and
challenges for connecting viral sequences to their phenotypes using various
approaches: performing data analysis, developing predictive modeling, or
implementing high‐throughput platforms of virological experiments. We believe
that this article provides a future direction in large‐scale investigations of potential
zoonotic viruses using the HTS technology.
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INTRODUCTION

Zoonotic viruses have repeatedly threatened the human
population. Previous studies have reported that RNA
viruses caused approximately 94% of zoonotic diseases
documented between 1990 and 2010.1 Therefore, RNA viral

investigations in animals have been emphasized in prepar-
ing for future viral zoonoses, particularly in searching for
viruses capable of infecting humans.

High‐throughput sequencing (HTS) is a comprehensive
method for determining genetic sequences in a sample, enabling
us to search for viral sequences with little bias. The HTS
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technology has been involved with three main accomplishments
in the field of virology. First, it has been shown that our interests
are greatly biased toward pathogenic viruses, and an enormous
number of viruses in ecology may have been overlooked.2 In
fact, the number of virus species classified by the International
Committee on Taxonomy of Viruses (ICTV) has increased
exponentially according to studies using HTS (https://talk.
ictvonline.org/taxonomy/p/taxonomy_releases). Second, HTS
has helped reduce the time required to identify causative agents
of emerging infectious diseases and has led to the rediscovery of
viruses responsible for unexplained diseases. Third, the
accumulation of viral sequences identified using HTS has
promoted data‐driven research, providing insights into viral
epidemiology and evolution.

This review summarizes recent research on viral sequence
identification using HTS and the ongoing efforts to understand
viral phenotypes using different approaches: performing
sequencing data analysis, developing predictive modeling,
and implementing high‐throughput platforms for virological
experiments. Here, we primarily focused on RNA viral
research for the following reasons: (i) the majority of zoonotic
diseases are caused by RNA virus infections,1 and (ii) recent
studies using HTS have rapidly revealed RNA viral diversity.2

First, we introduced a series of studies on viral identifica-
tion using HTS, focusing on the sample types. HTS has been
primarily used to determine the causative viruses of infectious
disease using samples collected from animals showing evident
symptoms. Conversely, HTS analyses using various samples
from individuals, including apparently healthy ones, have
identified hidden viral infections and broadened our under-
standing of viral diversity.3–5 Furthermore, recent studies
reported that large‐scale investigations of viral infections
reusing HTS data from public databases can be a powerful
approach for identifying both pathogenic and nonpathogenic
viral infections.6–9

Next, we argue the current status and challenges to
connect the “sequence data” to the “phenotypic data” of
viruses. It is impractical to investigate the infectivity and
pathogenicity of all viruses experimentally; therefore, several
approaches are needed to understand viral phenotypes:
sequencing data analysis or prediction modeling develop-
ment. In particular, prediction for viral host range or
infectivity would help evaluate the zoonotic potential of
viruses or prioritize certain viruses for experimental
validation. Furthermore, developing a novel platform for
high‐throughput experiments is important, such as screen-
ing virus infectivity and sorting virus‐infected cells. These
different approaches to obtaining viral phenotypic data will
help to prepare us for future viral zoonoses.

Why do we need to investigate viruses in
animals?

Many infectious diseases are caused by viral transmission
from animals to humans, including influenza viruses,
coronaviruses, ebolaviruses, and poxviruses. Specifically,

the animal‐to‐human transmission of influenza viruses has
repeatedly occurred.10,11 One of the most remarkable cases
was the 2009 H1N1 pandemic. It was estimated that this
virus led to approximately 201,200 deaths from respiratory
illness and 83,300 from cardiovascular disease during the
first year of the pandemic.12 Sequence analysis showed that
this pandemic was caused by a virus generated by the
reassortment of human H3N2, swine H1N1, and avian
influenza viral genes. The H1N1pdm09 virus was initially
transmitted from pigs to humans and spread via human‐to‐
human transmissions.13–15

As another case, severe acute respiratory syndrome
coronavirus 2 (SARS‐CoV‐2) infected over 608 million
people and caused more than 6.5 million deaths by
September 2022 (https://covid19.who.int/). SARS‐CoV‐2
or related viruses have been identified in various animals,
such as bats, pangolins, white‐tailed deer in the wild, farmed
minks, cats and dogs as companion animals, nonhuman
primates, and large cats in zoos, and it has been reported
that SARS‐CoV‐2 was transmitted between humans and
animals.16,17 Based on these cases, it is necessary to identify
viruses capable of causing future zoonoses by investigating
the human–animal interface.

Initiative for zoonotic viral research: PREDICT
and Global Virome Project

Zoonotic diseases substantially impact public health and
socioeconomics. Several international projects have been
established to prepare for subsequent viral zoonoses. The
PREDICT project (https://p2.predict.global/) has investigated
viruses at the human–animal interface since 2009 and has
worked to construct platforms for virus infection surveillance,
creating a transdisciplinary collaborative team and developing
analysis pipelines or databases.18–20 From 2009 to 2020, by
investigating more than 164,000 animal and human samples,
this project succeeded in detecting over 1100 viruses, including
filoviruses and coronaviruses that have repeatedly caused
infectious diseases in humans (https://ohi.vetmed.ucdavis.edu/
programs-projects/predict-project).

The Global Virome Project (GVP; https://www.
globalviromeproject.org/) was launched in 2018 to further
elucidate animal viral diversity because the GVP team estimated
that 631,000–827,000 unknown viruses capable of infecting
humans are present in mammals and birds.1 This project
planned to conduct virus searches using more samples than
those in the PREDICT project to identify unknown viruses.
However, the feasibility and cost‐effectiveness of these projects
have been discussed21–23; thus, we now face the need to
reconsider the significance and prospect of virus searches.

HTS for virus identification

Classical virological experiments have been conducted to
identify viral infections; for example, viral cultivation by
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specimen inoculation into a cell culture system, morpho-
logical analysis of virus particles and infected cells, or
serological tests.24 Although these experiments can provide
detailed information on viral phenotypes, they are time‐
consuming and labor‐intensive. Furthermore, as virus‐
specific detection tools, such as antibodies or PCR primers,
are used in most classical experiments, it is often difficult to
comprehensively detect viruses other than the target. Thus,
these classical viral detection methods have limitations in
terms of labor and comprehensiveness.

By contrast, the HTS technology has enabled the rapid
identification of viral sequences with relatively low bias. There
are two major types of sequencing methods using the HTS
technology for identifying viral sequences: untargeted and
targeted sequencing. These methods differ in their preparation
of sequence libraries. It should be noted that the sensitivity and
range of the viral detection depend on the sequencing library
preparation. In the first method, the untargeted sequencing,
sequence libraries are constructed by nucleic acids extracted
from every component, including viruses and host organisms
in a given sample. Thus, this method effectively detects various
viral sequences in a sample. However, viral sequences are
present in very small amounts compared with host sequences,
leading to low viral detection sensitivity. To improve virus
detection sensitivity without narrowing the detection range,
processes to remove nonviral sequences are needed; for
example, size filtration for collecting viral particles from a
sample or nuclease treatment to degrade nucleic acids that are
not protected by viral particles. In the second method, the
target enrichment sequencing, sequence libraries are prepared
to consist mainly of specific viral sequences. For example, PCR
amplification or sequence capturing using tagged probes are
conducted to enrich target viral sequences after nucleic acid
extraction. The targeted sequencing method shows high viral
detection sensitivity and can reconstruct high‐quality viral
genomes by sequence assembly (see Box 1 for details of
sequence assembly analysis). However, this method cannot
detect sequences other than the target viral sequences, which is
unsuitable for searching a wide range of viruses.

After read sequences are determined by HTS, two
methods are primarily used for identifying viral sequences
in HTS data: the read‐based method and the assembly‐
based method (details in Box 1).

Virus identification using the HTS technology

Here, we summarize three major accomplishments involv-
ing identifying viral sequences using the HTS technology
and investigating accumulated sequences. First, the viruses
that we have recognized to date are only a small fraction of
the entire virosphere diversity.2,24 The number of virus
species in the ICTV has increased exponentially, and such
rapid elucidation of viral diversity has been associated with
studies using HTS, especially virus metagenomic or
metatranscriptomic analysis.2 Notably, a recent study
discovered a new DNA virus family, Redondoviridae, even

in humans, the most intensively investigated species for
viral infections.25 These findings emphasize that our
understanding of viral diversity remains incomplete.

Second, the HTS technology has enabled rapid and
comprehensive investigations into the causes of viral infectious
diseases. Classical virological experiments, such as virus
isolation and culture, often required months or years to
identify candidate causative viruses; however, the HTS
technology can identify them with nearly complete genome
sequences in a matter of days or weeks. For example, the
outbreak of Nipah virus infection was recognized in September
1998, and the genetic sequence of the causative virus was not
reported until 2000.26 By contrast, in the SARS‐CoV‐2
pandemic, the epidemic of pneumonia cases was reported in
December 2019, and the viral genomic sequences determined
using HTS were globally shared in January 2020 (https://
www.who.int/news/item/27-04-2020-who-timeline—covid-
19). These cases indicate that HTS has greatly reduced the time
needed to identify the causative agents of infectious diseases,
even considering advances that have occurred in the global
scientific community over the past 20 years. Furthermore,
HTS has enabled the identification of pathogenic viruses
associated with previously unexplained diseases.27–30 For
example, investigation of samples from patients who died of
encephalitis revealed infection with Borna disease virus 1,
which causes encephalitis in horses and sheep.31–33 These cases
are examples of re‐examining a disease of unknown cause
using HTS, which led to identifying a pathogenic virus and
providing valuable clues for future investigation and counter-
measures to viral infectious diseases. Therefore, a viral search
in clinical samples using HTS is a powerful approach to
elucidate the associations between diseases and viral infections.

Third, the accumulation of viral sequences has accelerated
data‐driven research.34,35 In particular, sequences of SARS‐
CoV‐2 or influenza viruses have been intensively collected and
registered in databases, such as GISAID (https://www.gisaid.
org/) or International Nucleotide Sequence Database (https://
www.insdc.org/). These virus sequences are used for molecular
epidemiological analysis to define variants of concern in the
coronavirus disease 2019 (COVID‐19) pandemic (https://
www.gisaid.org/hcov19-variants/), or to develop vaccines for
influenza viruses (https://www.gisaid.org/references/human-
influenza-vaccine-composition/). As another example, GLUE
has been reported as a surveillance platform for viral sequences
accumulated in public databases, enabling the tracking of viral
transmission routes or identifying drug resistance–associated
mutations.36,37 Such analysis platforms using accumulated
viral sequence data contribute to predicting the spatiotemporal
viral spread or evaluating which intervention strategies
effectively control viral infections.

Expanding our understanding of viral diversity
by correcting sampling bias

As mentioned in the “Virus identification using the HTS
technology” section, almost all studies have focused
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BOX 1 Methods for detecting viral infections in HTS data

There are two major methods to search for viral sequences in HTS data: read‐based and assembly‐based methods
(Figure 1). Herein, we outline the methods and summarize their advantages and limitations. Furthermore, we will
list recent advances against these methods’ limitations in the “Challenges of virus searches using public HTS‐related
data” section.

In the read‐based method, viral infections are investigated by mapping HTS reads to the reference viral genomes.
In the assembly‐based method, contig sequences are reconstructed using HTS reads. Thereafter, viral sequences are
searched by comparison between the contigs and reference viral genomes. Sequence assembly is often performed
using HTS reads that are unmapped to host genomic sequences for the following reasons: (i) saving computational
costs and operation time, or (ii) avoiding mis‐assembly (e.g., generating chimeric sequences with endogenous viral
elements in the host genome38,39). The quality of viral genomic sequences reconstructed by sequence assembly can
be validated by mapping HTS reads to the assembled sequence and checking the uniformity of the read coverage
throughout the sequence. The read‐ and assembly‐based methods are not exclusive, and most studies use both
methods depending on their advantages and limitations.27,40–42

F IGURE 1 Methods for viral sequence search in HTS data. The genetic information in a sample can be determined by HTS and used to
identify viral sequences. There are two major methods for searching viral sequences in HTS data: the read‐based method and the assembly‐based
method (details in Box 1).

(1) Read‐based method

Advantages

• The computational costs, including operation time, are lower than those of the assembly‐based method.
• The infection can be detected with high sensitivity when investigating known viruses.

Limitations

• It is often challenging to detect viruses distantly related to reference viral genomes by sequence similarity search,
especially using short‐read HTS data,43 as many mapping tools are designed to not allow extensive mismatches. To
solve this issue, sequence comparison methods between HTS reads and reference viral genomes have been
developed, such as using the translated sequences (details in the “Current research studies reusing public HTS data
for viral searches: read‐based method” section).6,44 This is because the protein sequences or their structures are
more conserved than nucleotide sequences.43,45,46

• The read‐based method cannot be used to obtain viral genome sequences, essential for downstream experiments
to characterize viral phenotypes.

4 | KAWASAKI ET AL.
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primarily on “pathogenic viruses.” However, virus identifi-
cation in various samples, including those from apparently
healthy animals, is valuable for surveying potential zoonotic
pathogens. It has been shown that many zoonotic viruses
are not pathogenic in their natural hosts but cause severe
diseases in humans.24,50,51 Such cases indicate that viral
pathogenesis in animals cannot necessarily be used as an
indicator of whether viruses possess zoonotic potential, and
surveys focusing on animal samples with evident symptoms
may miss identifying viruses capable of causing zoonoses.
Thus, enriching the virome catalog will enable the prompt
identification and characterization of the causative agents of
emerging infectious diseases in humans or animals in the
future.

In addition, the expansion of sequence databases by
identifying a wide variety of viruses is expected to improve
viral detection sensitivity. As virus searches in HTS data
depend on sequence similarity to known viruses (Box 1), the
expansion of search space by the sequence accumulation of
phylogenetically diverse viruses can lead to discovering
unknown virus sequences.43,52 Recent studies have succes-
sively identified phylogenetically distinct viruses from

mammalian or avian viruses in animals that have rarely
been used for virus searches, such as fish, amphibians,
reptiles, and invertebrates.3–5 Taken together, virus searches
in various samples can contribute to discovering potentially
zoonotic viruses hidden in natural hosts and improving
viral detection rate in bioinformatics analyses.

Reusing publicly available HTS data for large‐
scale investigation of viral infections

Virus searches using various animals, including asympto-
matic ones, can identify hidden viral infections. However, it
is expected that the viral detection rate in such investiga-
tions, without focusing on diseases, is relatively low. Thus,
although large‐scale investigations are needed to compen-
sate for a low viral detection rate, the cost and labor
involved can be problematic.

Recent studies have attempted to reuse publicly available
HTS data, which accumulate in databases, to solve this
issue. For example, 62 Peta bases of HTS data were publicly
available in the NCBI sequence read archive (SRA) database

• The risk of false‐positive detection of viral infection due to contamination from experimental resources or
environments should be noted if a small number of virus‐derived reads is detected.47

(2) Assembly‐based method

Advantages

• Sequence assembly can reconstruct partial or whole viral sequences, although short‐read HTS length ranges
between tens and hundreds of nucleotides. A similarity search using assembled sequences as queries can be used to
detect viruses highly divergent from reference sequences. Sequence similarity search tools, such as BLAST,
measure the alignment quality by similarity and matched length between two sequences; the sensitivity of
similarity detection can be increased using a longer query sequence.43

• Reconstructed viral genomic sequences can be used for downstream experimental analysis, such as a reverse
genetics system for generating infectious viruses and characterizing their phenotypes (see also the limitation
relevant to this point in the next paragraph).

Limitations

• This method consists of several analysis steps (extract HTS reads unmapped to the host genomic sequence, de
novo sequence assembly, and/or sequence comparison with known viral sequences) and requires relatively higher
computational costs.

• Depending on the amount of virus‐derived reads and their diversity, it is difficult to determine the full‐length
genomic sequences.48

• Sequence assembly constructs a consensus sequence that can originate from several quasispecies variants. We
should note that authentic viral phenotypes may not be observed in experiments using only consensus sequences.
Such variant information can be checked by analyses that map HTS reads to the assembled sequence.
Furthermore, single‐virus genomics has also been developed to address this issue.49

• The mapping analysis using viral contig sequence and HTS data, in which the virus was detected, is needed to
quantitatively evaluate the viral infection level.

LARGE‐SCALE INVESTIGATION OF ZOONOTIC VIRUSES | 5
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on March 2022 (https://trace.ncbi.nlm.nih.gov/Traces/sra/
sra.cgi). HTS data originated from various animal species,
containing asymptomatic virus–infected samples. There-
fore, reusing public HTS data allows us to conduct large‐
scale investigations of viral infections while saving the costs
for random sampling and moderating the effects of
sampling bias.

Current research studies reusing public HTS
data for viral searches: read‐based method

Here, we present three studies that investigated viral
infections using public HTS data by the read‐based method.
First, one study6 screened for viral infections in 5.7 million
HTS data using the read‐based method. Notably, to improve
virus detection sensitivity of the read‐based method, the
authors used a sequence comparison method that calculates
the similarities between translated HTS read sequences and
known viral proteins (see also Box 1). Furthermore, new
coronavirus lineages were discovered in nonmammalian
aquatic vertebrate samples by performing de novo sequence
assembly. The authors disclosed viral infection profiles in
publicly available HTS data on an open‐access database
(https://serratus.io/), which is a helpful platform for
monitoring the spread of viral infections or discovering
new viruses. Indeed, new bornaviruses were reported by a
study using this database.53

In the second study,8 the authors investigated HTS data
from healthy human tissue samples available on the Genotype‐
Tissue Expression (GTEx) Project (https://gtexportal.org/
home/). The authors revealed different patterns in the immune
response depending on the infected viruses by association
analysis between viral abundance and host transcriptome.
Furthermore, in this study, the specimens provided by GTEx
biobank were used for pathological examination to confirm
disease symptoms associated with viral infections. One of the
advantages of using data sets from integrated biobanks,
consisting of HTS data and their original samples, is that
further experimental validations for viral infectivity or
pathogenesis can be performed. By contrast, original samples
of public HTS data are not usually available, and it is often
challenging to further analyze detected viruses.

The third study, the k‐mer–based Sequence Taxonomic
Analysis Tool (STAT), which taxonomically classifies HTS
reads into the viral family or genus, can be used to screen
viral sequences from HTS data.54 The taxonomic composi-
tion of read sequences in public HTS data is available on the
NCBI SRA database, which helps to determine the number
of virus‐derived reads in HTS data before the investigation.
Furthermore, checking the taxonomic composition of HTS
reads using this tool is useful for validating the accuracy of
virus–host relationships or the quality of assembled
sequences. For example, (i) if a virus is detected in HTS
data containing sequence reads from multiple animals, it
would be difficult to define the true host of the virus; (ii) we
should suspect contamination from experimental or

environmental resources when viral sequences are detected
in animals unreported as the host thus far; or (iii) sequence
assembly may construct chimeric viral sequences if
genetically related viruses are in the same HTS data. Indeed,
this study reported that SARS‐CoV‐2 sequences were
detected in bacterial HTS data, suggesting contamination
during the pandemic. Therefore, this tool would enable the
rapid screening of virus‐infected samples and serve as a new
indicator for quality control of HTS data.

Current research reusing public HTS data for
viral searches: assembly‐based method

Next, we present two types of research using the assembly‐
based method. Our previous study performed de novo
sequence assembly using over 46,000 public RNA‐seq data
from mammals and birds, which detected approximately
900 RNA viral infections.7 Interestingly, this study indicated
that viral infections were detected approximately three
times more frequently in birds than in mammals. This
analytic approach and the subsequent results may be useful
in determining which animals should be prioritized for
further investigation of viral infection (see also the
“Challenges of virus searches using public HTS‐related
data” section). Furthermore, this study identified novel
RNA viruses genetically similar to human pathogenic
viruses. Using HTS metadata, we also investigated char-
acteristics of the newly identified viruses, such as geographic
distribution, tissue tropism, and pathogenesis. These results
support that reusing HTS data can identify unknown
viruses and that HTS metadata analysis can help obtain viral
phenotype data.

Chang et al.9 investigated RNA virus infections using
the assembled sequences registered on the NCBI transcrip-
tome shotgun assembly (TSA) database (https://www.ncbi.
nlm.nih.gov/genbank/tsa/). This study identified 1833 RNA
virus genomes in TSA data of 711 arthropod species.
Remarkably, 882 RNA virus groups represented less than
75% amino acid identity to known viruses and were
expected to correspond to novel virus species or genera.
Combined with the previous section, these five studies
demonstrate the effectiveness of reusing public HTS‐related
data to identify known and unknown viral infections.

Challenges of virus searches using public
HTS‐related data

Virus searches using publicly available HTS or TSA data
enable large‐scale virus surveillance, but several challenges
remain.55 Here, we discuss five issues regarding investiga-
tions of viral infections using public HTS‐related data: (i)
detecting viral infections, (ii) connecting virus–host rela-
tionships, (iii) developing effective analytical platforms, (iv)
availability of HTS metadata, and (v) evaluating the cost‐
effectiveness of the virus search in a data‐driven manner.

6 | KAWASAKI ET AL.
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First, as most public HTS data were not obtained by
virus‐targeted sequencing methods, there may be several
issues: (i) detection bias depending on viral genomic types,
and (ii) low abundance of viral sequence reads. Regarding
the first issue, it has been pointed out that positive‐sense
single‐stranded RNA viruses tended to be frequently
detected in public RNA‐seq data because the poly‐
A–enriched sequencing method is primarily used, and
many positive‐sense single‐stranded RNA viruses possess a
poly‐A tract at the 3′ end of their genome.56 Regarding the
second issue, it is often challenging to obtain full‐length
viral genomes due to the low abundance of viral sequence
reads in public HTS data (Box 1). Several approaches would
be useful to obtain longer viral sequences: (i) developing
more efficient sequencing assembly methods,48,57 (ii)
performing coassembly analysis using combined HTS data
from samples considered to be infected with the same
viruses,58,59 or (iii) using long‐read HTS data.60

Second, it is difficult to accurately link virus–host
relationships, even if viral sequences are identified in HTS
data.55 This issue is common for viral identification;
however, more careful validations are needed in research
reusing public HTS data, because it is challenging to control
contamination effects in sampling or sequencing steps.
Importantly, previous studies reported that many viral
sequences detected in HTS data may originate from
environmental or experimental resources.47,54,61–65 As
described in the previous sections, data analysis can help
connect the virus–host relationships. For example, the
spread of viral infections in the host population can be
confirmed if the same viral infections are detected in other
individuals.7 In addition, it would be useful to determine the
quality of the HTS data based on the taxonomic composi-
tion of sequence reads. If there are sequence reads from
multiple animals in HTS data, it is difficult to determine
which animal is the true host.54 Developing predictive
modeling based on viral sequence features may also help
impute their host information (details in Box 2). Further-
more, a recent study reported a high‐throughput experi-
mental approach, XRM‐seq, which can accurately connect
virus–host relationships by detecting cross‐linked sequences
consisting of viral messenger RNA and host ribosomal
RNA.66

The third is developing and maintaining an analytical
platform to continue reusing HTS data for viral infection
screening. This issue is related to the trade‐off between
computational costs and virus detection sensitivity. The
read‐based method is superior to the assembly‐based
method of computational costs, including operation time.
However, the sensitivity of virus detection is higher with the
assembly‐based method (see also Box 1). One solution is to
develop a read‐based method for increasing viral detection
rate, such as calculating similarities between translated HTS
read sequences and known viral proteins.6,44 Another
solution, using assembled sequence data published in the
TSA database, can save computational resources for
sequence assembly.9 However, the assembled sequence data

that originated from a limited number of HTS data are
currently available in the TSA database. We believe that
further sharing of assembled sequences can promote viral
searches in public data. In addition, organizing viral
sequences accumulated in public databases thus far will
contribute to constructing effective analytical platforms.
Although numerous viral genomic sequences are registered
in public databases, careful validation of the quality of viral
sequences is needed when reusing such public data. This is
because sequence quality can significantly impact subse-
quent analyses, such as phylogenetic tree construction.
Therefore, careful curation of public viral sequences is
useful for accurately understanding viral diversity. As a
representative, the NCBI RefSeq database provides curated
viral genomic sequences. However, such curated sequences
are limited in number; for example, 58,754 viral genomic
sequences are available in the NCBI RefSeq database, in
contrast to 10,166,748 virus sequences registered in the
NCBI GenBank database in September 2022. In the future,
automating verification for sequence quality by checking
genome completeness or gene annotations and constructing
their databases would increase the number of available
curated viral sequences (also see the “Data analysis: gene
annotation and taxonomic classification” section in Box 2).

Fourth, it is necessary to improve the availability of HTS
metadata to investigate viral phenotypes. HTS metadata
contains information on the sample and experiment, for
example, original animals and tissues, health status, sampled
locations, library preparation method, and/or sequencing
strategy. As mentioned in the “Current research reusing
public HTS data for viral searches: assembly‐based method”
section, the spread of viral infections can be investigated by
detecting virus‐derived sequence reads in public HTS data if
their metadata contains information on sampling areas.7

Thus, sharing HTS metadata can accelerate data analysis to
investigate characteristics of viral infections.67 However, it
has been pointed out that there may be little benefit in
sharing data details for the HTS data generators, resulting in
the low availability of metadata. Indeed, some metadata
contain limited information, such as the animal species
from which the HTS data were derived. In response, some
researchers have proposed constructing a system that
evaluates the contribution of sample collectors or data
generators by assigning DOIs (digital object identifiers) to
the data.23

Finally, we believe that evaluating the virus detection
rate in large‐scale investigations using public HTS data can
provide useful information for reconsidering the cost‐
effectiveness of virus searches. For example, our previous
study examined the virus detection rate for each host
animal.7 Such association analysis can be conducted by
focusing on different aspects, for example, the ecological
characteristics or habitats of host animals. It should be
noted that there may be several issues pointed out above,
such as a virus detection bias due to the sequencing
methods or difficulty in connecting virus–host relationships.
Nevertheless, these evaluations using public HTS data can

LARGE‐SCALE INVESTIGATION OF ZOONOTIC VIRUSES | 7
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BOX 2 Connecting sequence data with phenotypic data of viruses

Many virus sequences identified using HTS often lack phenotypic information, such as taxonomic classification or
the host. Multiple approaches can be used to obtain such viral phenotypes: data analysis, development of prediction
modeling, and implementation of high‐throughput platforms for virological experiments. This section discusses the
current status and challenges of each approach (Figure 2).

F IGURE 2 Virus identification using HTS and the method used to obtain viral phenotypic data. Virus infections have been investigated using
various samples: humans or nonhumans, and clinical or asymptomatic. Virus searches using HTS have enabled the rapid identification of
causative agents of viral infectious diseases and the elucidation of hidden viral diversity. Recent studies have performed large‐scale investigations
of viral infections reusing public data, such as HTS or TSA. As most viral sequences identified in HTS data often lack biological characteristics,
several approaches are needed to obtain viral phenotypic information: performing data analysis, developing predictive modeling, or implementing
high‐throughput platforms of virological experiments (details in Box 2).

Data analysis: gene annotation and taxonomic classification

Gene annotation and taxonomic classification are essential for understanding viral diversity and evolution. However,
manually performing gene annotation and virus classification is unrealistic, considering the rapid increase in viral
sequences. Thus, an automated system of gene annotation and viral classification based only on viral sequences
should be established.68,69 Such a system will reduce the burden on researchers and ensure the reproducibility of the
analysis by eliminating human errors, which can accelerate our understanding of virosphere diversity.

Gene annotation and taxonomic classification are closely related, and automated protocols are expected. The
standard procedure for virus classification is (i) to identify protein‐coding regions in the viral genome, (ii) to collect
conserved protein sequences at the order or family levels, and (iii) to perform phylogenetic analysis using the
collected sequences. Several tools have already been developed for each step of this protocol, and their combination
will enable the automation of viral gene annotation and taxonomic classification. However, there are still challenges,
such as errors in gene prediction due to low conservation among viral proteins (details were described in Simmonds
and colleagues68,69). In addition, it is necessary to consider protein isoforms generated by RNA splicing or RNA
editing in gene annotation60,70 or recombination between viruses in phylogenetic analysis.71,72

Currently, several tools can be used for animal viral gene annotation73–76 or taxonomic classification.77–79 VADR
is also available for the validation of viral gene annotation, such as norovirus, dengue virus, or SARS‐CoV‐2.73

8 | KAWASAKI ET AL.
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GRAVity is an analytic pipeline for family‐level viral classification using only sequence information, which has been
reported to provide viral classification consistently with the ICTV taxonomy rules.78 Regarding both gene annotation
and taxonomic classification, such tools will further develop to increase the number of applicable viruses.

Prediction: host range and infectivity

Viral host range and infectivity are critical phenotypes used to determine whether further experiments are needed to
investigate the zoonotic potentials. As pointed out in the “Challenges of virus searches using public HTS‐related data”
section, identifying viral sequences cannot surely support their infections. Furthermore, another review article reported
that the host information of approximately 40% among the viral nucleotide sequences infecting nonhuman hosts is not
registered in the GenBank database,55 reflecting the difficulty in connecting virus–host relationships.

We believe that predictive modeling can compensate for information on viral host range or infectivity.18,19,23,80–85

These predictions would help design downstream experiments and prioritize viruses for further characterization. In
addition, interpretable models for prediction may enable us to understand the mechanisms underlying viral
infectivity. However, these prediction results should be carefully considered because there may be potential bias in
virological data, such as focusing on pathogenic viruses in humans and livestock. Furthermore, the necessity of
validating prediction results by virological experiments has also been also pointed out.22,23,86

Current prediction models for host range and infectivity have been developed by incorporating various types of
information.18,19,23,80–85 For example, some studies used phylogenetic relationships or sequence features of viruses,80–82

whereas others used environmental, host, and virus factors with risk assessment by experts.18,19 Notably, a recent study
ranked viruses according to the risk of infecting humans using a machine learning model with only viral sequence
signatures.81 Interestingly, the authors suggested that this sequence‐based approach could predict human‐infecting
viruses, even if they belong to different virus families. Thus, this prediction approach is expected to extract features that
control viral host range and infectivity, providing clues to clarify mechanisms of viral adaptation to humans.

Prediction: viral protein structure and antigenicity

Here, we introduce recent studies regarding prediction protein structure and antigenicity. These phenotypes are
important, especially in medical research, such as vaccine and antiviral development. Furthermore, as a different
aspect from medical applications, predicting viral protein structures can elucidate viral diversity and evolution. For
example, protein structure information may help identify unknown viruses previously classified as “dark matter”
because protein structure is highly conserved among diverse viruses.43,46,52 In addition, comparisons of viral protein
structures may enable the deep tracking of viral evolutionary history.87,88 Thus, the prediction of viral protein
structures will improve antiviral strategy and deepen our understanding of viral diversity.

Alphafold2 is expected to innovate for predicting viral protein structures.89 Recent studies reported the prediction of
viral protein structures by AlphaFold2, which showed high concordance to experimentally validated ones.90,91 However, it
has been pointed out that several challenges remain, such as the prediction of conformational changes or post‐
translational modifications.92 As another example, changes in viral antigenicity and the mutation effects on viral
antigenicity have been predicted.93,94 A recent study that applied a model for natural language processing to viral
sequence information reported the prediction of escape patterns of influenza virus and SARS‐CoV‐2 from the host
immune system.95 Interestingly, this study also indicated complex rules for balancing between viral fitness (e.g.,
replication efficacy or binding affinity to viral entry receptor) and escape patterns, which are analogous to “grammar” and
“meaning” in natural language. These insights may lead to an understanding of the evolutionary principles of viruses.

Virological experiments: infectivity screening at the cellular level

The first step in virological experiments is the selection of the cells for viral infection. An automated system with
processes, such as inoculating specimens onto cell plates, transfecting artificially synthesized viral genomes, or
obtaining morphological and sequence data of infected cells, will reduce the time and labor required for virus
isolation.96 Furthermore, plates seeded with cells derived from different animals or tissues would help perform high‐
throughput screening for viral zoonotic potential or candidates of reservoir animals.

Virological experiments: sorting virus‐infected cells

Developing methods to separate virus‐infected cells from noninfected cells would enable efficient virus isolation and
culture. Cell‐sorting techniques have been developed in several research fields. The advantages of these methods are
that the phenotypic information can be obtained without destroying the cells, and sorted cells can be used for

LARGE‐SCALE INVESTIGATION OF ZOONOTIC VIRUSES | 9
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provide (i) an indicator of how much and what type of
samples should be surveyed and (ii) an overview of the cost‐
effectiveness of virus searches. Such information can help
adjust future viral surveillance plans in a data‐driven
manner.

CONCLUSION

The HTS technology has enabled the rapid and compre-
hensive identification of viral sequences. However, our
understanding of viral diversity is still incomplete, and it is
essential to continue further viral infection surveys. In this
article, we first summarized recent studies using public
HTS‐related data for surveillance of viral infections,
showing that public HTS‐related data can be a powerful
resource to elucidate RNA viral diversity. Furthermore, we
addressed several challenges, such as detecting or charac-
terizing viruses in public HTS‐related data, to investigating
viral infections more efficiently. Thus, this article offers a
perspective on the reusability of public HTS data for the
large‐scale investigations of RNA viral infections. Consid-
ering that HTS data from various animal samples have been
accumulated in databases, continuing viral surveys reusing
publicly available HTS data can deepen our understanding
of the global virome.

Second, as most viruses identified by HTS analysis
lack biological characteristics, this article summarized
several approaches for obtaining viral phenotypic data:
performing data analysis and compensating by predictive
modeling. Viral host range and infectivity are critical
phenotypes for zoonotic potential; however, it is often
difficult to define true host species even if viral sequences
were identified in HTS data. We believe that analyzing
HTS metadata or developing predictive models can
provide supportive information for viral hosts, which

can help plan downstream experiments and prioritize
which viruses should be experimentally validated. The
development of high‐throughput experimental platforms
is also needed to obtain large‐scale data sets of viral
phenotypes and to validate genotype–phenotype connec-
tions. We believe that this article provides a direction for
constructing a feedback system between viral sequence
and phenotypic data, which will help us to prepare for
future zoonotic viruses.
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downstream experiments. For example, “Ghost cytometry” reportedly sorts targeted cells in microseconds by
machine learning using fluorescence signals or fluorescence label–free waveforms obtained from cells as input.97,98

As another example, previous studies using prokaryotes reported that it is possible to discriminate gene expression
patterns or species using Raman spectra signature.99–102 Interestingly, a study using virus particles as samples has
reported Raman spectra signatures specific for virus species or strains.103 The application of such techniques,
detecting morphological or biomolecular signatures, may enable the efficient sorting of virus‐infected cells.

Virological experiments: investigation of viral infection at the antibody level

The recognition of viral antigens by the host immune system induces antibody production, and the antibody
responses can be maintained over years or decades. In other words, antibodies can be considered as “footprints of
viral infections” and provide information regarding past or present viral infections. Thus, antibody detection can be
useful for investigating their host range or geographic distribution. A previous study has reported a high‐throughput
serological testing platform based on a bacteriophage display method, VirScan, which can investigate antibodies
targeting more than 1000 viral strains.104 One of the advantages of this method is that it is less invasive because the
viral infection history can be determined using 1 µL of blood. Using animal samples for the serological investigations
may identify viral reservoir hosts or trace viral infection spreads.
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