TITLE：

HNRNPU Facilitates Antibody Class Switch Recombination through C－NHEJ Promotion and R－loop Suppression（ Dissertation＿全文）

AUTHOR（S）：

REFAAT MOHAMED MOSTAFA，AHMED MOHAMED

CITATION：
REFAAT MOHAMED MOSTAFA，AHMED MOHAMED．HNRNPU Facilitates Antibody Class Switch Recombination through C－NHEJ Promotion and R－loop Suppression．京都大学，2023，博士（医科学）

ISSUE DATE：
2023－05－23
URL：
https：／／doi．org／10．14989／doctor．k24805
RIGHT：
Copyright © 2023 Cell Reports，All rights reserved．This is not the published version

HNRNPU Facilitates Antibody Class Switch Recombination through C－NHEJ Promotion and R－loop Suppression

（HNRNPU 蛋白は，DNA 修復と R－I oop 調節を介してCSRを促進する）

HNRNPU Facilitates Antibody Class Switch Recombination through C－NHEJ Promotion and R－loop Suppression

Ahmed M．Refaat ${ }^{1,2}$ ，Nasim A．Begum ${ }^{1}$ ，Afzal Husain ${ }^{3}$ ，Mikiyo Nakata ${ }^{1}$ ，Hidetaka Kosako，${ }^{4}$ and Tasuku Honjo ${ }^{1 *}$

${ }^{1}$ Department of Immunology and Genomic Medicine，Center for Cancer Immunotherapy and Immunobiology，Kyoto University Graduate School of Medicine，Kyoto 606－8501，Japan ${ }^{2}$ Zoology Department，Faculty of Science，Minia University，El－Minia，61519，Egypt ${ }^{3}$ Department of Biochemistry，Faculty of Life Sciences，Aligarh Muslim University，Aligarh， Uttar Pradesh 202002，India
${ }^{4}$ Division of Cell Signaling，Institute of Advanced Medical Sciences，The University of Tokushima，Tokushima 770－8503，Japan
＊Correspondence：
E－mail：honjo＠mfour．med．kyoto－u．ac．jp；Tel＋81－75－753－4371；Fax＋81－75－753－4388

SUMMARY

B cells generate functionally different classes of antibodies through class switch recombination (CSR), which requires classical nonhomologous end-joining (C-NHEJ) to join the DNA-breaks at the donor and acceptor switch (S) regions. We show that the RNA-binding protein HNRNPU promotes C-NHEJ-mediated S-S joining through the 53BP1-shieldin DNA repair complex. Notably, HNRNPU binds to the S region RNA/DNA G-quadruplexes, contributing to regulating R-loop and ssDNA accumulation. HNRNPU is an intrinsically disordered protein that interacts with both C-NHEJ and R-loop complexes in an RNA-dependent manner. Strikingly, recruitment of HNRNPU and the C-NHEJ factors is highly sensitive to liquid-liquid phase separation inhibitors, suggestive of DNA repair condensate formation. We propose that HNRNPU facilitates CSR by forming and stabilizing the C-NHEJ ribonucleoprotein complex and preventing excessive R-loop accumulation, which otherwise would cause persistent DNA breaks and aberrant DNA repair, leading to genomic instability.

INTRODUCTION

Expression of activation-induced cytidine deaminase (AID) in antigen-stimulated Blymphocytes diversifies the Ig heavy chain (IgH) gene locus through somatic hypermutation (SHM) and class switch recombination (CSR) ${ }^{1,2}$. While error-prone repair of AID-induced DNA breaks in the variable (V) region results in SHM, nonhomologous end-joining (NHEJ)mediated DNA repair of AID-induced DNA double-strand breaks (DSBs) in the donor and acceptor switch (S) regions results in CSR ${ }^{3,4}$. During S-S recombination, the paired S region DSBs come into proximity, presumably through a process known as synapsis, followed by DSB end-processing and ligation of the DNA break ends, which takes place mainly through classical NHEJ (C-NHEJ) that requires minimal or no sequence homology between two ligating DNA ends ${ }^{5,6}$.

B cells deficient in one of the C-NHEJ components, such as KU80, XRCC4, Ligase IV, 53BP1, or shieldin complex proteins, show compromised CSR and loss of the C-NHEJ signature at CSR junctions ${ }^{7-11}$. During CSR, 53BP1-bound chromatin promotes ATM-dependent recruitment of RIF1, which blocks DNA end-resection by recruiting the shieldin complex (SHLD1, SHLD2, SHLD3, and REV7) at the DSB site ${ }^{12-14}$. As C-NHEJ plays a pivotal role in the resolution of AID-induced S region DSBs, any impairment or alteration of the pathway influences CSR and associated genomic instability ${ }^{5,15}$. Although the defect of C-NHEJ is compensated by an alternative end joining (A-EJ) DNA repair pathway, it is less efficient and leads to decreased CSR ${ }^{16,17}$. Therefore, cis- and trans-acting factors that influence the choice of DNA repair pathway during CSR are of great importance.

Recent advances in the field suggest that DNA damage itself can generate transient Rloop/DNA:RNA hybrids at DSB sites through the activation of local transcription, promoting DNA repair by providing a recruitment platform for DNA repair factors ${ }^{18-20}$. The RNAs at the

DNA break can influence DNA repair by inviting RNA binding proteins (RBPs) that are responsive to DNA damage or acting as a template for DNA repair ${ }^{21,22}$. It is well documented that $I g H$ S region sequences are highly repetitive and G-rich on the non-template strand and thus frequently form R-loops during S germline transcription ${ }^{23,24}$. The R -loop structure consists of DNA:RNA hybrids on the transcribed strand and single-stranded DNA (ssDNA) on the non-template strand. The displaced ssDNA can form non-B structures, including Gquadruplexes (G4) and stem-loops that are substrates of S -region DNA breaks ${ }^{3,4,25}$. Persistent R-loops can be potentially deleterious due to increased incidents of AID- or other pathwayinduced DNA breaks, leading to genomic instability ${ }^{26,27}$. Unscheduled and/or unresolved Rloops can also impair DNA repair efficiency by obstructing the binding of DNA repair factors to DSB sites and interfering with the DSB end processing necessary for C-NHEJ. R-loops are particularly beneficial in homologous recombination (HR) because cleavage of the R-loops can generate long 3'ssDNA, which are perfect substrates for template DNA invasion during HR ${ }^{28,29}$. It has been reported that RNA processing and modification defects associated with the switch region could lead to DNA:RNA hybrid accumulation and suppression, respectively ${ }^{30,31}$. In both cases, AID-targeting was affected, and CSR junctions showed elevated microhomology (MH).

In the context of the IgH locus, bidirectional transcription-induced S region R -loops are mainly implicated in AID-induced S region DNA breaks, although a role of R-loops in S-S synapsis has also been suggested ${ }^{32,33}$. Recently, it has been shown that G4 structure resolution in Sgermline transcripts (GLTs) by the RNA helicase DDX1 promotes R-loops, which correlates with AID recruitment and CSR efficiency ${ }^{34}$. Another study showed that an m6A modification to $\mathrm{S} \mu$-GLT promotes G4 resolution and R-loop formation, again correlating with AID recruitment and CSR efficiency ${ }^{31}$. All studies point to a positive relationship between the S-
region R-loop and DSB formation. Here, we show that HNRNPU (Q00839), a G4 and DNA/RNA structure binding protein ${ }^{35,36}$, plays a critical role during CSR at the crossroads of R-loop and C-NHEJ regulation. The analysis of S-S recombination in HNRNPU-depleted cells showed the hallmark of C-NHEJ defects, accompanied by elevated R-loops and ssDNA in the recombining S-regions.

RESULTS

CSR requires HNRNPU to promote C-NHEJ

We initially identified HNRNPU as a CSR cofactor during a screen of HNRNP family genes involved in CSR ${ }^{37,38}$. However, the underlying mechanism remains unknown. To investigate the function of HNHRNPU in CSR, we knocked down (KD) Hпrпри by introducing a small interfering RNA (siRNA) into the murine B-cell line, CH12F3-2A, which undergoes IgM to IgA class switching in response to CIT (α CD40/IL4/TGF- β) stimulation ${ }^{39}$. As evident in the FACS profiles, HNRNPU-depleted cells showed a marked reduction in IgA switching after 24 h of CIT stimulation, and CSR was impaired even at 72 h (Figures 1A, S1A, and S1B). Hnrnpu ${ }^{\text {KD }}$ had no apparent effect on AID expression or switch germline transcription ($\mu \mathrm{GLT}$ and $\alpha \mathrm{GLT}$), the essential prerequisites for CSR initiation at the IgH locus (Figures 1B and 1C). Similarly, HNRNPU depletion in primary B cells also hindered IgG1 switching without affecting AID and GLT expression (Figures S1D-S1F). A marked elevation of HNRNPU at the S regions was also observed in both CH12F3-2A and wild-type primary B cells in response to CSR activation or AID (Figures 1D and 1E). However, Hnrnpu ${ }^{\text {KD }}$ did not perturb AIDinduced S-region DNA breaks (Figure S3H), suggesting its role is in the DNA repair phase of CSR ${ }^{38}$.

The recombination phase of CSR requires either the C-NHEJ pathway or the A-EJ pathway to join the cleaved acceptor and donor switch regions ${ }^{40,41}$. To investigate the impact of Hnrnpu ${ }^{\text {KD }}$ on the choice of repair pathway, we PCR amplified and sequenced the $\mathrm{S} \mu$-S α recombination junctions in WT and HNRNPU-depleted cells stimulated with CIT for 48 h . Sequence analysis of the CSR junctions revealed a striking reduction in direct/blunt end-joining and an increase in longer microhomology (MH) at the CSR junctions in HNRNPU-depleted cells (Figure 1F). In WT, most sequenced junctions (84%) showed no MH (0 nt) and short MH ($\leq 3 \mathrm{nt}$), typical of C-NHEJ and denoted as "direct joining" (Figures 1F and 1G). However, in HNRNPU-
depleted cells, 37% and 28% of the sequenced recombination junctions showed $0-3 \mathrm{nt}$ and ≥ 4 nt MHs, respectively (Figures 1 F and 1 G). HNRNPU-depleted cells also displayed a significantly higher frequency of junctions with insertions (Ins; WT 8\% vs. Hnrnpu ${ }^{\text {KD }} 35 \%$) (Figure 1G), with a marked elevation of $>1 \mathrm{nt}$ insertions (Figure 1F). Collectively, these findings suggest that HNRNPU functions primarily to promote C-NHEJ during CSR.

CSR junctions are similar between HNRNPU and shieldin deficiencies

To investigate the nature of the C-NHEJ defect in Hnrnpu ${ }^{\text {KD }}$ cells, we compared HNRNPU deficiency with 53BP1 and shieldin-component deficiencies within a unified system (CH12F32A cells) under identical CSR activation conditions (CIT-induced IgM to IgA switching). We used a previously reported three gene knockout (KO) CH12F3-2A lines, 53bp1 ${ }^{\text {Ко }}$, Shld1 ${ }^{\text {ко }}$, and Shld3 ${ }^{\text {KO }}{ }^{42}$. In agreement with previous reports, $53 \mathrm{bp} 1{ }^{\text {KO }}$ cells showed significant IgA CSR impairment (Figures 2A and S1G) ${ }^{42,43}$. There was also a modest decrease in direct joining ($0-3 \mathrm{nt} ; 84 \%$ vs. 62%) in the $\mathrm{S} \mu$-S α junctions with an increase in MH usage ($\geq 4 \mathrm{nt} ; 8 \%$ vs. 13%) compared to WT/siControl-treated cells (Figures 2C and 2F). Interestingly, depletion of Нnrnpu in 53bp1 ${ }^{\text {KO }}$ cells further reduced direct joining (0-3 nt; 62% to 38%) at the CSR junctions (Figure 2F). When we compared the number of junctions with longer MHs, we observed a significant shift toward MH-mediated repair in $53 b p 1^{\text {Kо }}$ cells upon Hnrпри depletion ($\geq 4 \mathrm{nt} ; 13 \%$ to 30\%) and slight elevation of total insertions (Ins; 25\% to 32\%) (Figure 2F).

Consistent with previous studies, cells deficient in shieldin subunits showed strongly impaired IgA CSR compared to WT/siControl-treated cells (Figures 2B and S1I). The co-depletion of HNRNPU and shieldin subunits did not reduce CSR further (Figures 2B and S1I-S1K). In Shld1 ${ }^{\text {KO }}$ and Shld $2{ }^{\text {KD }}$ cells, 48% and 47% of the sequenced recombination junctions showed direct joining ($0-3 \mathrm{nt}$), respectively, which is closer to what we observed in Hnrnpu ${ }^{\mathrm{KD}}$ cells (37\%). Notably, there was a significant increase in longer MH ($\geq 4 \mathrm{nt}$) usage in Shld1 ${ }^{\mathrm{KO}}$ and

Shld2 ${ }^{\mathrm{KD}}$ cells (23\%) compared to WT (8\%) and similar to Hnrnpu ${ }^{\mathrm{KD}}$ (28\%) (Figures 2D and 2F). Moreover, the CSR junctions of both Shld1 ${ }^{\text {Kо }}$ and Shld2 ${ }^{\text {KD }}$ cells showed elevated insertions (29% and 30%), as observed in the Hnrnpu ${ }^{\text {KD }}$ cells (35%) (Figures 2D and 2F). Consistent with the observation, when Hnrnpu ${ }^{\text {KD }}$ was combined with Shld1 ${ }^{\text {KO }}$ or Shld $2{ }^{\text {KD }}$, CSR junctions did not show any additive influence in direct joining ($0-3 \mathrm{nt} ; 40 \%$ and 42%, respectively), longer MH usage ($\geq 4 \mathrm{nt}$; 28\%), or insertion frequency (Figures 2E and 2F). Interestingly, 65% of the sequenced CSR junctions in Shld $3{ }^{\text {KO }}$ cells showed direct joining ($0-$ 3 nt), similar to what was observed in $53 \mathrm{bp} 1^{\text {Ko }}$ cells (62%) (Figures 2D and 2F). However, longer MH ($\geq 4 \mathrm{nt}$) usage in Shld3 ${ }^{\text {KO }}$ cells (28%) was comparable to Shld $1{ }^{\text {KO }}$, Shld $2^{\text {KD, }}$, and Hnrnpu ${ }^{\text {KD }}$ cells (23-28\%) (Figure 2F). Strikingly, Shld3 ${ }^{\text {KO }}$ cells had CSR junctions with only a few insertions at nearly the same level as those in the WT/siControl-treated cells (Figures 2D and 2F). As expected, when Hnrnpu ${ }^{\text {KD }}$ was combined with Shld $3{ }^{\text {Ko }}$, direct joining was reduced ($0-3 \mathrm{nt} ; 65 \%$ to 45%), and the insertion frequency in the double-deficient cells became similar to the Hnrnpu ${ }^{\mathrm{KD}}$ cells (Figures 2E and 2F). Overall, shieldin-deficient cells, particularly SHLD1 and SHLD2 cells, showed CSR junctional features comparable to those of Hnrnpu ${ }^{\text {KD }}$ cells, suggesting an overlapping functional pathway in CSR.

HNRNPU is dispensable for SHM but not $I g H / c-M y c$ translocation

To better understand HNRNPU's role in AID-induced Ig gene diversification, we investigated S region hypermutations and $\operatorname{IgH} / \mathrm{c}-\mathrm{Myc}$ translocations. Although HNRNPU-depleted cells showed a slight increase in S-SHM frequency, the overall SHM frequencies did not differ significantly among the samples compared to the WT/siControl-treated cells (Figures S3AS3C and Table S3). No specific base bias was detected in the mutation pattern (Figure S3B). The unaltered mutation frequency in $53 \mathrm{bp} 1^{\text {KO }}$ cells agrees with a previous report that 53 BP 1 is dispensable for S-SHM as well as V-SHM ${ }^{8,44}$. We, therefore, conclude that HNRNPU is dispensable for S-SHM during CSR but essential for S-S recombination.

Next, we examined the CSR-associated $\operatorname{IgH} / c-M y c$ translocations by analyzing the translocated genomic junctions (Figure S3D). Consistent with CSR impairment in HNRNPU-depleted cells, the $I g H / c-M y c$ translocation frequency was significantly reduced (Figures S3E and S3F). Strikingly, the of shieldin but not $53 b p 1$ deficiency impaired $\operatorname{IgH} / c-M y c$ translocation, suggesting that HNRNPU and shieldin are functionally interlinked and impact both the cis and trans recombinational repair required for CSR and $I g H / c-M y c$ translocation, respectively. Concerning 53BP1, our data are consistent with the finding that 53bpl deficiency does not affect or increase AID-induced $I g H / c-M y c$ translocation ${ }^{45,46}$. We confirmed that AID-induced DSB frequency did not differ among HNRNPU, 53BP1, or shieldin complex deficiency by linker ligation-mediated PCR (LM-PCR) assay (Figures S3G-S3I), further emphasizing that HNRNPU's role in DNA repair is similar to the 53BP1/shieldin.

HNRNPU is associated with the DDR

Since HNRNPU is critical in the DNA repair phase of CSR, we examined HNRNPU protein expression in response to DNA breaks other than AID-induced damage. We treated 293T cells with increasing doses of etoposide, a potent pharmacological inhibitor of topoisomerase II, which causes genome-wide DSBs and/or DNA damage ${ }^{47}$. As evident in Figure S4A, HNRNPU steadily increased in expression in response to etoposide treatment. Consistent with the notion that etoposide-induced DNA lesions are repaired by C-NHEJ ${ }^{47,48}$, there was a gradual increase in KU80 and 53BP1 (Figure S4A). To test whether HNRNPU interacts with the DDR and C-NHEJ factors in response to DNA damage, we performed HNRNPU immunoprecipitation (IP) in 293 T cells exposed to etoposide. A pronounced interaction was observed with $\gamma \mathrm{H} 2 \mathrm{AX}$, KU80, 53BP1, DNA-PKcs, and FEN1 (Figures S4B and S4C), some of which were enhanced in response to etoposide. Consistently, a notable fraction of etoposideinduced DNA induced DNA damage foci showed the nuclear co-localization of HNRNPU with $\gamma \mathrm{H} 2 \mathrm{AX}, \mathrm{KU} 80$, and 53BP1 (Figures S4F-S4K). Interestingly, HNRNPU interacted specifically
with structure-specific ssDNA endonuclease FEN1 but not ASTE1, which was recently implicated in the processing of DSB ends with 3^{\prime} overhangs ${ }^{49,50}$.

As expected, SHLD1-MF IP by anti-FLAG pulled down the same protein complex, including HNRNPU (Figure S4D). IgG/FLAG IP using non-transfected 293T cells did not pull down any of these proteins (Figures S4B-S4D and S6A). Next, we examined HNRNPU and AID expression during S-region DSBs in CH12F3-2A cells in response to CIT. The AID expression corresponded with the DSB marker $\gamma \mathrm{H} 2 \mathrm{AX}$ and rapidly peaked within 24 h (Figure S4E). HNRNPU showed mild but sustained increased expression that reached saturation at 48 h . Moreover, increased occupancy of HNRNPU at the recombining S regions was observed in response to CSR activation and AID expression (Figures 1D and 1E), further emphasizing a DNA damage response-specific function of HNRNPU in CSR. Overall, our result is also consistent with a previous study that shows rapid recruitment of HNRNPU to radiation-induced DNA damage sites ${ }^{51}$.

HNRNPU facilitates the recruitment of C-NHEJ factors

Since HNRNPU depletion significantly diminished C-NHEJ-mediated S-S recombination, we examined whether the recruitment of critical CSR repair factors was also affected. The depletion of HNRNPU caused a significant reduction in HNRNPU, 53BP1, and KU80 occupancy at $\mathrm{S} \mu$ and $\mathrm{S} \alpha$ (Figures 3A-3D). There was no decrease in DSB-induced $\gamma \mathrm{H} 2 \mathrm{AX}$ signal in HNRNPU-depleted cells, confirming an uninterrupted S-region DSB (Figure 3E). This result is consistent with the LM-PCR result demonstrating the dispensability of HNRNPU in AID-induced S-region DSBs (Figure S3H). Moreover, there was a striking elevation of RPA in HNRNPU-depleted cells (Figure 3F), similar to 53BP1/shieldin deficiency due to excessive DNA end-resection and ssDNA accumulation ${ }^{13,46}$. These data suggest that HNRNPU facilitates the stabilization/recruitment of critical DNA repair factors that regulate DNA endresection at the DSB. This conclusion is further supported by the finding that both HNRNPU
and SHLD1 interact with the DNA 5'flap-end processing enzyme FEN1, and the loss of FEN1 impairs C-NHEJ (Figure S5) ${ }^{52}$.

HNRNPU loss increases R-loop and DSB end-resection

As R-loop/DNA:RNA hybrid formation facilitates DNA end-resection, which in turn can promote homology-directed repair ${ }^{28}$, we speculated a possible alteration in the S-region upon HNRNPU depletion. We conducted DNA:RNA immunoprecipitation (DRIP) using an S9.6 antibody that exclusively detects the DNA:RNA hybrid structure in a sequence-independent manner (Figure 4A) ${ }^{53}$. HNRNPU depletion resulted in a substantial increase in DNA:RNA hybrid formation at the recombining S-regions and at the c-Myc locus (Figure 4B). As elevated R-loop facilitates AID-induced DSB ${ }^{31,54}$, this result is consistent with the persistent $\gamma \mathrm{H} 2 \mathrm{AX}$ signal at the S region.

To test whether HNRNPU associates with the R-loop/DNA:RNA hybrid complex, we generated a CH12F3-2A line expressing catalytically dead RNaseH1 (dRNaseH1) with a V5 epitope tag (Figure 4C) ${ }^{55,56}$. The CH12F3-2A line expressing dRNaseH1-V5 showed IgA switching and its inhibition upon HNRNPU depletion (Figure 4C). As depicted in Figure 4D, we pulled down the DNA:RNA hybrid-specific protein complex by anti-V5 IP of dRNaseH1V5 from the indicated siRNA-transfected cells stimulated with CIT. The detection of HNRNPU in the R-loop complex was specific, as it corresponded well with HNRNPU protein levels in siControl- or siHnrnpu-treated cells. The presence of three R-loop-associated helicases, DHX9, DDX1, and DDX5, further validated the dRNaseH1-V5 specific pull-down (Figure 4E) ${ }^{55,57}$. Additionally, we pulled down the R-loop complex by S9.6 IP and reconfirmed the presence of HNRNPU along with DDX1 and DHX9 (Figure 4F). DNA damage by laser irradiation induces transient R-loops, where co-localization of HNRNPU with other DNA repair proteins was also observed ${ }^{51}$. Taken together, we conclude that the loss of HNRNPU
upregulates S-region R-loop and DSB end-resection, as evidenced by the enrichment of ssDNA sensor RPA ${ }^{58,59}$.

HNRNPU binds to switch RNA/ DNA G-quadruplexes

As S regions are enriched with tandem G clusters, the GLTs and the non-template strand are prone to forming G-quadruplex (G4) structures ${ }^{25,60}$. Since HNRNPU binds telomeric G4 structures ${ }^{35}$, we investigated whether HNRNPU binds to S region G4-RNA/DNA. We used biotinylated synthetic RNA/ssDNA oligonucleotides (b-Oligos) containing four tandem G repeats representing $\mathrm{S} \mu \mathrm{GLT} /$ non-template strand for a pull-down assay (Figures 5A, S6D, and S6E). More HNRNPU was pulled down with $\mathrm{S} \mu \mathrm{G} 4-\mathrm{RNA}$ folded in the presence of KCl than the LiCl-treated oligo. No binding of HNRNPU was observed with $\mathrm{S} \mu \mathrm{G} 4^{\text {mut }}$, a mutated RNA oligo lacking G-quadruplex forming potential due to C-substitutions in its tandem G stretches (Figures 5B and S6E). As previously observed, $\mathrm{S} \mu \mathrm{G} 4-\mathrm{RNA}$ but not the $\mathrm{S} \mu \mathrm{G} 4^{\text {mut }}$ RNA pulled down DDX1 (Figure 5B) ${ }^{34}$.

We next tested ssDNA and dsDNA b-Oligos with identical $\mathrm{S} \mu$ sequences (Figure S6E). HNRNPU showed a significant binding with $\mathrm{S} \mu \mathrm{G} 4$-ssDNA pre-folded in the presence of KCl but not LiCl . No HNRNPU binding was detected with the $\mathrm{S} \mu \mathrm{G} 4$ sequence that formed the dsDNA. DHX36 showed a strong interaction with $\mathrm{S} \mu \mathrm{G} 4-\mathrm{RNA} / \mathrm{ssDNA}$ but not $\mathrm{S} \mu \mathrm{G} 4-\mathrm{dsDNA}$, which is consistent with its affinity for G-rich RNA/ssDNA. RPA32 binding to S $\mu \mathrm{G} 4$-ssDNA but not $\mathrm{S} \mu \mathrm{G} 4-\mathrm{dsDNA}$ is consistent with its specificity for binding to ssDNA and the S region (Figure 5C) ${ }^{61}$. We also pulled down AID with the KCl -folded $\mathrm{S} \mu \mathrm{G} 4-\mathrm{RNA} / \mathrm{ssDNA}$, to confirm the validity of the assay (Figure 5D) ${ }^{60}$. The slot blot assay panels (Figures 5B-5D) confirmed that the RNA/DNA amounts recovered from streptavidin beads under different conditions were comparable.

The binding of HNRNPU to telomeric G4 DNA has been shown to be dependent on its Cterminus RGG-domain ${ }^{35}$. In order to examine the requirement of the RGG-domain for binding

S $\mu \mathrm{G} 4-\mathrm{RNA} / \mathrm{ssDNA}$, we conducted another binding assay using HNRNPU protein We expressed WT and RGG domain-deleted HNRNPU in 293T cells and used FLAG-IP (Figures 5E-5G). Consistent with the result of CSR-activated B cells (Figures 5B and 5C), ectopically expressed WT HNRNPU showed a similar binding affinity with $\mathrm{S} \mu \mathrm{G} 4-\mathrm{RNA} / \mathrm{ssDNA}$ prefolded in KCl buffer (Figures 5F-5H) Surprisingly, RGG domain-deleted HNRNPU (\triangle RGG) could not bind effectively to $\mathrm{S} \mu \mathrm{G} 4-\mathrm{RNA} / \mathrm{ss}$ DNA (Figure 5 H). Conversely, the RGG domain itself showed binding with S $\mu \mathrm{G} 4-\mathrm{RNA} /$ ssDNA was comparable to WT (Figure 5 H), suggesting the C-terminus of HNRNPU is crucial for recognizing both RNA and ssDNA G-quadruplexes present in the S region. In other words, HNRNPU can bind the G4 structure of GLTs and the non-template ssDNA in the S region and/or R-loop ${ }^{62}$.

HNRNPU interacts with C-NHEJ and R-loop complex

As HNRNPU is involved in both C-NHEJ and R-loop regulation, we performed HNRNPU IP using nuclear extracts from CIT-stimulated CH12F3-2A cells in the absence $(-)$ or presence (+) of RNase A (Figure 6A). In this assay, HNRNPU interacted with well-known and newly identified C-NHEJ factors, including KU80, DNA-PKcs, and SFPQ. As expected, the HNRNPU complex also contained R-loop/DNA:RNA hybrid-associated proteins DHX9, DDX1, TOP1, NONO, and SFPQ (Figure 6A). This result is consistent with the identification of HNRNPU in the R-loop complex by S9.6 and dRNaseH1-V5 IP (Figure 4).

As CSR junctions in the context of HNRNPU deficiency are highly similarity to shieldin deficiency, especially with SHLD1, we speculated that HNRNPU and SHLD1 might interact and/or share the same protein complex. Therefore, we performed SHLD1 IP, as a representative of the shieldin and C-NHEJ complex, from nuclear extract of transfected CH12F3-2A cells (Figure 6B). Normal IgG and a FLAG IP of untransfected CH12F3-2A cells served as negative controls (Figures 6B and S6C). Indeed, SHLD1 IP pulled down HNRNPU along with KU80, DNA-PKcs, and 53BP1, which are expected to associate with the shieldin/C-NHEJ complex.

Strikingly, SHLD1 IP also pulled down several R-loop-associated proteins (DDX1, DHX9, SFPQ, NONO, and FEN1) that coimmunoprecipitated with HNRNPU (Figure 6B). We reproduced the interaction between SHLD1 and HNRNPU, KU80, and FEN1 in 293T cells (Figure S7B), further supporting HNRNPU's association with the C-NHEJ complex in non-B cells.

Notably, many of these interactions with HNRNPU were highly sensitive to RNase A treatment (Figure 6A), suggesting that HNRNPU likely forms a ribonucleoprotein complex with C-NHEJ and R-loop-associated cofactors. HNRNPU without the RGG domain failed to interact with KU80, SFPQ, NONO, or TOP1 but retained a substantial interaction with FEN1 (Figure S7A), suggesting that the HNRNPU complex contains both protein-protein and RNA-protein interacting partners. A complementary IP using selected HNRNPU interacting proteins successfully pulled down HNRNPU with all its interacting partners (Figures S7C-S7H). Benzonase treatment, which degrades RNA and DNA, showed a similar result as observed with RNase A treatment (Figure 6A), suggesting that most interactions were RNA-mediated. Notably, the HNRNPU and FEN1 interaction turned out to be a protein-protein interaction. Next, we examined whether the complex contains the C-NHEJ-associated long noncoding RNA LINP1, which tethers DNA-PKcs and KU70/80 to promote C-NHEJ ${ }^{63,64}$. We isolated HNRNPU- or SHLD1-bound RNA using 293T cells transfected with FLAG-tagged HNRNPU or SHLD1. The successful capture of the FLAG-tagged bait proteins and their interaction with KU80 were confirmed in their respective IP complexes (Figure 6C). Quantitative RT-PCR showed significant enrichment of LINP1 RNA in the complex pulled down by HNRNPU or SHLD1 but not IgG (Figure 6C). The lack of enrichment of unrelated GAPDH RNA confirms the specificity of the IP. The presence of a comparable amount of LINP1 with HNRNPU and SHLD1 further emphasizes their physical and functional link with the C-NHEJ complex (Figure 6D).

HNRNPU harbors IDRs and is functionally perturbed by LLPS inhibitors

An increasing number of studies suggest that proteins with intrinsically disordered regions (IDRs) are involved in DDR and repair ${ }^{65-67}$. The IDR domains in the proteins drive liquidliquid phase separation (LLPS) or condensation to form specialized compartments or condense to facilitate DSB/DNA damage repair ${ }^{68,69}$. Specific noncoding RNAs are often the principal driving force for sequestering the phase separation and are thus sensitive to chemical agents and environmental alterations that disrupt the LLPS.

Sequence analysis of HNRNPU predicted that it contains IDRs at the N- and C-terminus (Figure 7A). Intriguingly, the C-terminus IDR extended over the RGG domain, which appears crucial for RNA-dependent DNA repair complex formation (Figures 6A and S7A). We performed a protein precipitation assay (Figure S8A) using biotinylated isoxazole (b-isox), a chemical known to selectively precipitate IDR-containing proteins from cell-free lysates ${ }^{70}$. In this assay, b-isox precipitated HNRNPU in a dose-dependent manner from both unstimulated and CIT-stimulated CH12F3-2A cell extracts (Figure 7B). AID was precipitated from CITactivated cell lysates but to a lesser extent than HNRNPU, consistent with a recent report that AID has a weak IDR region ${ }^{71}$. To confirm further, we used 293 T cells to ectopically express WT and mutant HNRNPUs (Figures S8A and S8B). Endogenous HNRNPU and EGFP and FLAG epitope-tagged WT HNRNPU were readily detected in the b-isox precipitate compared to RGG domain-deleted HNRNPU (Figure S8C). On the other hand, the RGG domain alone (with or without NLS) was present in the b-isox precipitate similar to WT (Figure S8D), suggesting the RGG domain embedded within the C-terminus IDR contributes significantly. Next, we treated CH12F3-2A cells with 1,6-hexanediol (1,6-HD) or NH4OAc, which disrupt LLPS or condensate formation in vivo by perturbing multivalent hydrophobic protein-protein and/or RNA-protein interactions ${ }^{72-74}$. We used the lowest dose that effectively inhibited CSR while also not affecting cell proliferation or GLT and AID transcription. The treatment of

CH12F3-2A cells with 1,6-HD or NH4Ac drastically reduced HNRNPU occupancy at the Sregions, accompanied by the loss of 53BP1 and KU80 (Figures 7C and 7D, upper panel). We confirmed that the expression levels of HNRNPU, 53BP1, and KU80 proteins were not affected by the LLPS inhibitors (Figure S8E). Intriguingly, the accumulation of DSB-induced H2AX and RPA phosphorylation and R-loop-associated H3S10 phosphorylation remained unchanged (Figure 7D, lower panel), suggesting that NHEJ-complex formation was particularly affected. In contrast, treatment with RNAP II inhibitor α-amanitin/DRB abolished all signals, indicating that transcription and/or RNAs are upstream of both DNA break and repair sites. These results suggest that the DNA repair complex assembly at the S-region requires LLPS and condensate formation involving HNRNPU and the C-NHEJ factors necessary for CSR.

DISCUSSION

HNRNPU promotes CSR by facilitating C-NHEJ-mediated DNA repair:

AID-induced S-region DSBs are repaired primarily by the C-NHEJ pathway, which involves no or short MH (1-3 nt)-dependent DSB joining. In the absence of C-NHEJ, CSR junctions are repaired via A-EJ using longer MHs ($\geq 4 \mathrm{nt}$) and insertional DNA repair, which reduces CSR efficiency ${ }^{16,41,75}$. In HNRNPU deficiency, the $\mathrm{S} \mu-\mathrm{S} \alpha$ recombination junctions showed a sharp drop in direct or blunt-end joining (3.9-fold) and an elevation in longer MHs ($\geq 4 \mathrm{nt} ; 3.5$-fold) and insertions (4.3-fold) at the recombination junctions. This finding is consistent with the CNHEJ defect upon HNRNPU depletion, which is usually compensated for by the backup A-EJ pathway, as observed in well-known C-NHEJ factor deficiencies, such as KU70/80, XRCC4, LIG4, and DNA-PKcs ${ }^{76}$. SHLD1 or SHLD2 deficiency reduced the C-NHEJ signature and increased the frequencies of longer MHs and insertions at the CSR junctions (Figures 2D and F; Table S1 and S2). In contrast, SHLD3 and 53BP1 depletion induced a modest decrease in
the C-NHEJ signature and an increase in longer MHs. Consistent with a previous report ${ }^{44}$, 53BP1 deficiency led to increased insertion, while SHLD3 deficiency was completely devoid of any insertions at the CSR junctions, which may reflect unrecognized functional differences among the shieldin subunits. Overall, this comparison study suggests that the CSR DNA repair regulation by HNRNPU has a high similarity with SHLD1/2-dependent C-NHEJ. HNRNPU depletion in combination with SHLD1/2 did not have an additive impact on C-NHEJ-mediated repair of CSR junctions (Figures 2E and 2F), implicating impaired SHLD1/2 function was likely responsible for the C-NHEJ defect observed in HNRNPU deficiency. As the shieldin complex binds directly to ssDNA through SHLD2 at the DSB site, in its absence, RPA occupies the exposed ssDNA ${ }^{13}$. Notably, HNRNPU deficiency exhibited the same feature, a striking increase in RPA occupancy at the S regions (Figure 3F), suggesting that HNRNPU loss causes excessive ssDNA formation and fails to recruit shieldin and other essential C-NHEJ factors. Recently, it has been shown that ASTE1, an XPG family 3'DNA endonuclease, directly interacts with SHLD2 and facilitates the processing of DSB ends with 3^{\prime} overhangs. Our study shows that another XPG family nuclease, FEN1, with 5'-flap endonuclease and 5'-3' exonuclease activities, not only interacts with HNRNPU but also with SHLD1, and its depletion impairs IgA switching in CH12F3-2A cells (Figure S5). CSR junction analysis of FEN1-deficient CH12F3-2A cells also showed a typical defect of C-NHEJ with a decrease in direct joining and elevation of longer MHs and insertions, which corresponded to HNRNPU and shieldin deficiency (Figure S5). Therefore, ASTE1 and FEN1, associated with SHLD2 and SHLD1, respectively, can facilitate ssDNA overhang processing at S-region DSBs to promote DNA repair through C-NHEJ. In agreement with the requirement of NHEJ for chromosomal translocations ${ }^{77,78}$, SHLD1/2, and HNRNPU deficiencies significantly decreased AID-induced IgH/c-Myc translocations.

HNRNPU forms an RNA-dependent C-NHEJ complex:

In B cells stimulated for CSR, the recruitment of HNRNPU at the recombining S regions was strikingly elevated, suggesting its intimate connection with AID-induced DNA damage and repair. In line with this, the loss of HNRNPU reduced the recruitment of 53BP1 and KU80 at the S regions, resulting in inefficient C-NHEJ-mediated repair of the CSR junctions. Consistent with HNRNPU's involvement with the DNA repair phase of CSR, HNRNPU interacted with KU80, DNA-PKcs, 53BP1, and the shieldin complex, which are essential CNHEJ factors in CSR. Additionally, the HNRNPU complex also contains the SFPQ-NONO heterodimer (Figure 6A), which binds with KU proteins and functions at the ligation step of CNHEJ ${ }^{79,80}$. Britton et al. (2014) also showed that HNRNPU interacts with SFPQ through its RNA-binding RGG domain. Intriguingly, our study also indicates that the interaction between HNRNPU and the NHEJ factors is RGG domain-dependent and thus sensitive to RNase A treatment (Figures 6A and S7A).

As such, it is highly conceivable that RNA-mediated C-NHEJ complex formation occurs during CSR DNA repair. It is known that 53BP1 binds to RNA and DNA damage-induced noncoding RNAs, which is functionally relevant as 53BP1 foci formation at the DNA damage site is impaired by RNase A treatment ${ }^{22,81}$. Similarly, the RNA-binding property of KU and DNA-PKcs is critical for their function in C-NHEJ ${ }^{82,83}$. An especially relevant long noncoding RNA is LINP1, which stabilizes KU80 and DNA-PKcs at the C-NHEJ synaptic complex ${ }^{64}$. Thus, that HNRNPU forms an RNA-dependent C-NHEJ complex or HNRNPU and SHLD1 associate with LINP1 is highly relevant and in line with the increasing number of studies supporting the involvement of RNA and RNA binding proteins in DNA repair ${ }^{84,85}$. In the absence of HNRNPU, increased export of noncoding RNAs from the nucleus was observed due to the lack of their stabilization through HNRNPU ${ }^{86}$. HNRNPU contributes to chromatin organization through its interaction with chromatin-associated noncoding RNAs ${ }^{87,88}$. In the
present study, HNRNPU can recruit scaffolding noncoding RNAs and other proteins to the IgH locus to promote DNA repair factor assembly (Figure 6D).

LLPS underlies HNRNPU and C-NHEJ factor recruitment to the S region:

Our proposal of RNA-dependent, DNA repair RNP complex formation is further supported by the accumulation of HNRNPU and NHEJ factors like 53BP1, upstream of the shieldin complex, at AID-induced DSB sites sensitive to transcriptional inhibition and LLPS perturbing agents (Figure 7D). HNRNPU also exhibited characteristics typical of intrinsically disordered proteins along with the RGG domain (Figure 7A) and undergoes oligomerization in ATP and RNAdependent manner ${ }^{87,89}$. An earlier study also showed that the C-terminal low-complexity RNAbinding region has the feature of a prion-like domain (PLD) that forms a polymer-like "mesh" structure linking RNA and DNA ${ }^{90,91}$.

Several RNA binding proteins, including FET proteins (FUS, TAF15, and EWSR1) and RBM14, possess IDR regions and PLDs, which are recruited to the DNA damage site where PAR formation and LLPS occur ${ }^{65,92,93}$. HNRNPU has also been shown to binds PAR and recruited to the laser-induced damage site in a PAR-dependent manner through its C-terminus ${ }^{51}$. High local concentrations of specific RNA and PAR formation at the DNA damage site act as a seed for condensation by promoting multivalent RNA-protein and/or protein-protein noncovalent interactions. Our study shows that a 40 -nucleotide sequence from the S-region RNA/DNA, when folded into G4-structure, binds more HNRNPU as reported for telomeric G4-repeat structure. As repetitive and G4 RNAs can promote LLPS ${ }^{94}$, S-GLTs and/or G4structured RNAs could be involved in HNRNPU-associated condensate formation during CSR. HNRNPU's interaction with repetitive, repeated domain RNA significantly impacts genomic architecture, and thus its' loss or failure to oligomerize can trigger chromosomal instability ${ }^{87}$ 89. The DDR factor 53BP1 also contains IDR and RGG-like domains at the C-terminus and undergoes RNA-dependent oligomerization ${ }^{67}$. Intriguingly, 53BP1 recruitment to the S-region,
in response to AID-induced DSB, can be entirely disrupted by LLPS-perturbing chemicals 1,6HD and NH4OAc, and condition like sorbitol-induced osmotic dysregulation ${ }^{66,67}$, suggesting that CSR recombination/repair foci involve nuclear condensate formation.

HNRNPU prevents R-loop and DNA end-resection:

Bidirectional transcription through GC-rich, repetitive S regions promotes R-loop formation and induces ssDNA on both strands, resulting in non-B structures and AID-induced DNA breaks ${ }^{32}$. GLT processing and post-translational modification affect R-loop and AID targeting, leading to altered DNA break and MH-mediated repair ${ }^{30,31,34}$. In the case of HNRNPU loss, AID-induced DSBs were not affected, as evidenced by the LM-PCR assay and $\gamma \mathrm{H} 2 \mathrm{AX}$ occupancy at the S region (Figures 3E and S 3 H), implying that AID-targeting remained intact. Loss of HNRNPU caused a marked decrease in C-NHEJ with a concomitant elevation in MH, as observed due to the DSB-end protection defect in KU80, 53BP1, or shieldin deficiency. HNRNPU also prevented the accumulation of R-loop and ssDNA at the S region (Figures 3 F and 4), facilitating C-NHEJ. Persistent R-loops are roadblocks for efficient repair by C-NHEJ, and nick in the displaced strand of the R-loop generates free ssDNA-end, promoting HR ${ }^{26,29}$. Since HNRNPU facilitates DNA-G4 formation, the free ssDNA at the CSR-DSBs may adopt a G4 structure similar to the telomere. HNRNPU resides at the telomere with DNA-PKcs and shelterin complex and contributes to long G-rich ssDNA protection, including telomeric-G4 regulation ${ }^{35,95}$. Intriguingly, HNRNPU binds to the S region G 4 through its RGG domain, as in the case of the telomere. Notably, G4-interacting proteins such as FEN1, EXO1, BLM, and 53BP1 interacting protein RIF1 can be found in the CSR repair complex. RIF1 may favor NHEJ; however, its oligomerization with multiple G4 structures can especially promote CSR, as the S region harbors long stretches of G4 ${ }^{96,97}$. Interestingly, DNA-G4 structures have also been reported to promote specific DNA repair pathways and to facilitate recombination by DNA strand pairing ${ }^{98-100}$. The HNRNPU binding to GLT/ G4 (Figures S9 and 5) may regulate
the R-loop formation as binding of RBPs to the nascent transcript prevents snap-backing to the template strand, reducing the R-loop ${ }^{101}$. The RNA secondary structure also impacts the R-loop as the G4-structure unwinding by helicase elevates R-loop ${ }^{34}$.

We propose a dual function of HNRNPU in the DNA repair phase of CSR (Figure S10). First, in response to AID-induced DSBs, elevated HNRNPU at the S regions promotes stabilization of the C-NHEJ complex through a noncoding RNA scaffold. Second, it limits the DNA endresection/ssDNA accumulation through R-loop and/or DNA-G4 regulation. Identifying noncoding/G4 RNAs involved may reveal how LLPS occurs and how the HNRNPU/C-NHEJ complex promotes S-S recombination. Dynamic compartmentalization by liquid demixing likely occurs to form DNA repair/recombination-specific condensate formation during CSR.

Limitations of the study

We could not generate Hпгпри KO CH12F3-2A cells by CRISPR/Cas9 targeting due to poor viability. We also faced difficulty overexpressing HNRNPU in B cells, potentially limiting further functional investigation in B cells. The shieldin antibodies reported are suitable for immunoprecipitation of human but not mouse endogenous SHLD proteins, which could help generate additional information on CSR and the role of HNRNPU.

ACKNOWLEDGMENTS

We are thankful to Dr. Andre Stanlie and Dr. Andre Nussenzweig for providing us with the $53 \mathrm{bp} 1^{K O}$, Shld $1^{K O}$, and Shld $33^{K O}$ cell lines. This work was supported by funding from the Japan Society for the Promotion of Science; Grant-in-Aid for Scientific Research (S) 19H01027 and 22H00449 to T.H. and Grant-in-Aid for Scientific Research (C) 21K06015 to N.A.B. A.M.R is funded by Egyptian Japanese Education Partnership PhD scholarship from the Ministry of Higher Education of The Arab Republic of Egypt.

AUTHOR CONTRIBUTIONS

A.M.R. performed most experiments and wrote the manuscript. N.A.B. and M.N. performed a few selected experiments. A.H. optimized the DRIP assay, conducted an extensive analysis of the $I g H$ and c-Myc loci, and meticulously reviewed the manuscript. M.N. provided technical assistance in all experiments and prepared reagents. H.K. assisted in the MS analysis of HNRNPU and the S9.6 immunoprecipitated complex. N.A.B. analyzed the data and wrote and reviewed the manuscript. T.H. and N.A.B. conceptualized and supervised the project.

DECLARATION OF INTERESTS

The authors declare no conflicts of interest.

INCLUSION AND DIVERSITY

We support inclusive, diverse, and equitable conduct of the research.

FIGURE LEGENDS

Figure 1. HNRNPU promotes CSR through C-NHEJ
(A) Top: Scheme of the IgA-switching assay in CH12F3-2A cells. Bottom: Representative FACS profiles of IgA switching in siControl- and siHnrnpu-transfected CH12F3-2A cells stimulated with CIT for 24 h . (B) Western blot of whole-cell extracts from stimulated CH12F32A cells transfected with siControl or siHnrnpu. (C) Quantitative RT-PCR of μ GLT and α GLT from the indicated samples. The values are the mean $\pm \mathrm{SD}(\mathrm{n}=3)$. (D-E) HNRNPU occupancy at the recombing S regions during IgA and IgG1 switching in CH12F3-2A (D) and primary B cells (E), respectively. Western blots show the expression of HNRNPU and AID in the wholecell extracts. The black bars below the plots show the position selected for the ChIP assay. The values are means $\pm \mathrm{SD}(\mathrm{n}=3)$. (F) Top: Schematic representation of the $\mathrm{S} \mu-\mathrm{S} \alpha$ junction
analysis. Bottom: Bar graphs quantifying the distribution of junction features of $\mathrm{S} \mu-\mathrm{S} \alpha$ recombination in genomic DNA isolated from CIT-stimulated CH12F3-2A cells after transfection with siControl or siHnrnpu. Statistical significance, according to Fisher's exact test, is shown. (G) Pie charts showing the distribution of $\mathrm{S} \mu-\mathrm{S} \alpha$ junction features derived from control and HNRNPU knockdown cells.

Figure 2. Pronounced C-NHEJ defect in HNRNPU and 53BP1 double deficiency
(A-B) IgM to IgA switching profile of WT, 53BP1, and shieldin $\mathrm{KO} / \mathrm{KD} \mathrm{CH} 12 \mathrm{~F} 3-2 \mathrm{~A}$ cells transfected with indicated siRNAs (siControl or siHnrnpu). These data are the mean \pm SD ($\mathrm{n}=$ 3). The percentage of IgA-switched cells was normalized to the value of the WT/siControl samples ($=100 \%$). (C-E) Analyses of junction features of $\mathrm{S} \mu-\mathrm{S} \alpha$ recombination in genomic DNA isolated from CH12F3-2A cells stimulated with CIT for 48 h . Comparison of WT vs. $53 B P 1^{\text {Kо }}$ and siHnrnpu-transfected $53 B P 1^{\text {Kо }} \mathrm{CH} 12 \mathrm{~F} 3-2 \mathrm{~A}$ cells (C). Comparison of WT vs. Shld1 ${ }^{\text {KO }}$, Shld $2{ }^{\text {KD }}$, and Shld $3{ }^{\text {KO }} \mathrm{CH} 12 \mathrm{~F} 3-2 \mathrm{~A}$ cells (D). Comparison of WT vs. siHnrnputransfected Shld $1{ }^{\text {KO }}$, -Shld $2{ }^{\text {KD }}$, and - Shld3 ${ }^{\text {KO }} \mathrm{CH} 12 \mathrm{~F} 3-2 \mathrm{~A}$ cells (E). Statistical significance according to Fisher's exact test is shown. (F) Pie charts showing the distribution of $\mathrm{S} \mu-\mathrm{S} \alpha$ junction features derived from the indicated genomic DNA samples.

Figure 3. HNRNPU depletion affects DNA repair factor recruitment

(A) Schematic diagram of the $\mathrm{S} \mu$ and $\mathrm{S} \alpha$ regions of the mouse IgH locus. The tiny black bars below the scheme indicate the positions (a-d) of the ChIP assay PCR products. (B-F) ChIP assays using siControl- and siHnrnpu-transfected CH12F3-2A cells stimulated with CIT for 24 h. The antibody used for each ChIP assay is listed on the right-hand side of the respective panel. ChIP data were normalized to the input DNA, and the values are presented as means $\pm \mathrm{SD}$ (n $=3$).

Figure 4. HNRNPU depletion increases R-loop at $I g H$ and $c-M y c$ loci
(A) Schematic depiction of the R-loop/DNA:RNA hybrid after immunoprecipitation with an S9.6 antibody (DRIP assay) with and without RNaseH treatment. (B) Top: Schematic representation of IgH locus $\mathrm{S} \mu$ and $\mathrm{S} \alpha$ regions and the $c-M y c$ locus. Small black bars are the positions of the DRIP-qPCR products. Bottom: R-loops were quantified by DRIP-qPCR at the indicated positions in the $I g H$ and c-Myc loci. The DRIP-qPCR results show the levels of DNA enriched at the indicated sites relative to the input. The values are presented as means $\pm \mathrm{SD}$ (n = 3). (C) Top: Schematic diagram of the dRNaseH1-V5 construct introduced into CH12F3-2A cells. NLS, nuclear localization signal; HBD, DNA:RNA hybrid binding domain; LR, linker region; HC, DNA:RNA hybrid catalytic domain; D210N, catalytic inactivation mutation; V5, V5 epitope tag. Bottom: A representative FACS profile of IgM to IgA switching in siControlor siHnrnpu-treated CH12F3-2A cell lines expressing dRNaseH1-V5. (D) An illustration depicting the indirect capture of the R-loop/DNA:RNA hybrid complex. (E) Anti-V5 antibody immunoprecipitation of the dRNaseH1-V5-bound complex and detection of the indicated coimmunoprecipitated proteins by immunoblot analysis. (F) Top: Workflow of the direct capture of the R-loop/DNA:RNA hybrid complex by S9.6 antibody immunoprecipitation. Bottom: Detection of HNRNPU, DDX1, and DHX9 in the DNA:RNA hybrid complex pulled down by S9.6 antibody immunoprecipitation.

Figure 5. HNRNPU binds to $\mathbf{S} \boldsymbol{\mu}$ G-quadruplex

(A) Biotinylated oligonucleotide (b-Oligo) pull-down assay using CH12F3-2A cells. SA-Bead, Streptavidin magnetic bead. (B) Western blot analysis of proteins (HNRNPU and DDX1) pulled down by b-RNA-Oligo, $\mathrm{S} \mu \mathrm{G} 4$, and $\mathrm{S} \mu \mathrm{G} 4{ }^{\text {mut }}$ (for sequences, see Figure S6E). The G4 and the linear structure produced in different buffers are indicated on the top. Slot blot (SB) analysis shows the SA magnetic bead-bound input b-RNA-Oligos. (C) Western blot and SB
analyses of the pull-down assay using b-RNA/b-ssDNA/b-dsDNA Oligo of identical $\mathrm{S} \mu \mathrm{G} 4$ sequence. RPA32 was used as a control for ssDNA binding protein. None of the conditions showed SFPQ binding to $\mathrm{S} \mu \mathrm{G} 4$ sequences, thus serving as an excellent negative control. (D) AID was examined as a positive control for $\mathrm{S} \mu$-derived G4 RNA/ssDNA. (E) Assay of biotinylated oligonucleotide (b-Oligo) binding to HNRNPU using 293T cells. FLAG-Ag, anti-FLAG-conjugated agarose bead. (F-G) Representative Western blots showing the expression levels and successful FLAG-IP of the indicated constructs. MF, Myc-FLAG; HF, and HAFLAG. (H) Slot blot analysis of b-RNA/b-ssDNA Oligo recovered from FLAG-agarose-bound WT or mutant HNRNPU. Data shown in B-D and F-H are representative of more than three experiments.

Figure 6. HNRNPU associates with C-NHEJ and R-loop complex

(A) Endogenous HNRNPU was immunoprecipitated from the nuclear extracts of stimulated CH12F3-2A cells with and without RNase A treatment. The HNRNPU IP complex was subjected to a series of immunoblot analyses as indicated. (B) Ectopically expressed SHLD1MF (Myc. FLAG) IP with an anti-FLAG antibody. The immunoprecipitated SHLD1 complex was subjected to a series of immunoblot analyses as indicated. (C) Left: Confirmation of HNRNPU and SHLD1 pull-down by anti-FLAG IP. Right: RT-qPCR results showing the relative abundance of LINP1 and GAPDH (control) RNA in the HNRNPU or SHLD1 IP. The enrichment was normalized to the input RNA. The values are presented as means $\pm \operatorname{SD}(\mathrm{n}=3)$. (D) A model showing the interaction between HNRNPU and the CSR-associated C-NHEJ complex along with the long noncoding RNA LINP1.

Figure 7. LLPS inhibitors disrupt HNRNPU and repair factor recruitment
(A) PONDR prediction of the intrinsically disordered region (IDR) in HNRNPU. (B) Representative Western blots of biotinylated isoxazole (b-isox) precipitation assay using

CH12F3-2A cell extracts. (C) Representative FACS profiles showing the substantial CSR impairment by liquid-liquid phase separation (LLPS)-perturbing compounds. (D) ChIP analyses showing the occupancy of HNRNPU and other DDR factors at S regions in response to indicated LLPS inhibitors. Data were compiled from two independent experiments.

STAR*METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
Anti-IgA-PE	Southern Biotech	Cat\# 1040-09; RRID: AB_2794375
Anti-IgM-FITC	eBioscience	Cat\# 1-5890-85; RRID: AB_465291
Rabbit IgG	Millipore	Cat\# PP64B; RRID: AB_1977567
Anti- IgG1	BD Pharmingen	Cat\# 553441, RRID:AB_394861
Anti-KU80	Santa Cruz	Cat\# sc-1485; RRID: AB_2288756
Anti-KU80	Santa Cruz	Cat\# sc-5280; RRID:AB_672929
Anti-AID	Cell Signaling	Cat\# 4949s; RRID: AB_2258037
Anti-HNRNPU	Santa Cruz	Cat\# sc-32315; RRID: AB_627741
Anti-SHLD2	NovusBIO	Cat\# NBP1-88980; RRID: AB_11006815
Anti-ASTE1	NovusBIO	Cat\# NBP1-81661; RRID: AB_11031613
Anti-FLAG M2	Sigma	Cat\# F-3165; RRID: AB_259529
Anti-FLAG Agarose	Sigma	Cat\# A2220; RRID: AB_10063035
Halo-Trap Agarose	ChromoTek	Cat\# ota-10; RRID:AB_2827595
Anti-GFP Agarose	MBL	Cat\# D153-8; RRID:AB_591815
Anti-RPA32	Abcam	Cat\# ab10359, RRID:AB_297095
Anti-Phospho RPA32	Bethyl	Cat\# A300-245A, RRID:AB_210547
Anti-DHX36	Proteintech	Cat\# 13159-1-AP, RRID:AB_2092157
Anti-H3S10P	Active Motif	Cat\# 39253
Anti-mouse-HRP	Rockland	Cat\# 18-8817-33; RRID: AB_2610851
Anti-rabbit-HRP	Rockland	Cat\# 18-8816-33; RRID: AB_2610848
Anti-TUBULIN	Calbiochem	Cat\# CP06; RRID: AB_2617116
Anti-SFPQ	Abcam	Cat\# ab38148; RRID: AB_945424
Anti-NONO	Abcam	Cat\# ab70335; RRID: AB_1269576
Anti-53BP1	NovusBIO	Cat\# NB100-304; RRID: AB_10003037
Anti-53BP1	Santa Cruz	Cat\# sc-22760; RRID:AB_2256326
Anti-DNA-PKcs	Santa Cruz	Cat\# sc-5282; RRID: AB_2172848
Anti-GAPDH	Millipore	Cat\# MAB374; RRID: AB_2107445
Anti-CTCF	Millipore	Cat\# 07-729; RRID: AB_441965
Anti-FEN1	Bethyl	Cat\# A300-255A; RRID: AB_185550
Anti-TOP1	BD Bioscience	Cat\# 556597; RRID: AB_396474
Anti-BRCA1	Proteintech	Cat\# 22362-1-AP; RRID:AB_2879090
Anti- yH 2 AX	Millipore	Cat\# 05-636; RRID: AB_309864
Anti-DHX9	Proteintech	Cat\# 17721-1-AP; RRID: AB_2092506
Anti-DDX1	Proteintech	Cat\# 11357-1-AP; RRID: AB_2092222
Anti-DDX5	Bethyl	Cat\# A300-523A; RRID: AB_451048
Anti-V5 Agarose	Abcam	Cat\# ab1229; RRID: AB_308681
Anti-rabbit Alexa 488	Abcam	Cat\# ab150077; RRID:AB_2630356
Anti-mouse Alexa 647	Abcam	Cat\# ab150115; AB_2687948

Anti-V5	Abcam	Cat\# ab9116; RRID: AB_307024
Chemicals, Peptides, and Recombinant Proteins		
mCD40L supernatant	Dr. Tasuko Honjo's Lab	Nakamura et al., 1996
TGF- β	R\&D Systems	Cat\# 240-B-010
IL-4	WAKO	Cat\# 090-06621
QuickChange Site-Directed Mutagenesis Kit	New England Biolabs	Cat\# E0552S
Expand Long Template PCR System	Roche	Cat\# 11681842001
PrimeSTAR HS DNA Polymerase	Takara	Cat\# R010A
LaTaq DNA Polymerase	Takara	Cat\# R001
Pyrobest DNA Polymerase	Takara	Cat\# R005B
SuperScript ${ }^{\text {TM }}$ IV Reverse Transcriptase	Thermo Fisher Scientific	Cat\# 18090050
KOD FX Neo DNA Polymerase	TOYOBO	Cat\# KFX-201
PowerUp SYBR Green Master Mix	Applied Biosystems	Cat\# A25742
Expand Long Template PCR System	Roche	Cat\# 11681842001
T4 DNA polymerase	Takara	Cat\# 2040A
BD IMag Anti-PE Magnetic Particles DM	BD Biosciences	Cat\# 557899
Dynabeads ${ }^{\text {TM }}$ Protein G	Thermo Fisher Scientific	Cat\# 10003D
Dynabeads ${ }^{\text {TM }}$ M-280 Streptavidin	Thermo Fisher Scientific	Cat\# 11205D
Streptavidin (HRP)	Abcam	Cat\# ab7403
Lipofectamine 2000	Thermo Fisher Scientific	Cat\# 11668027
SF Cell line 96-well Nucleofector Kit	Lonza	Cat\# V4SC-2096
Subcellular Protein Fractionation Kit	Thermo Fisher Scientific	Cat\# 78840
Mouse B lymphocyte enrichment kit	BD Biosciences	Cat\# 557792
NE-PER ${ }^{\text {TM }}$ Nuclear and Cytoplasmic Extraction	Thermo Fisher Scientific	Cat\# 78833
ChIP DNA Clean \& Concentrator	Zymo Research	Cat\# D5201
RNase H	Takara	Cat\# 2150A
RNase A	Nippon Gene	Cat\# 312-01931
EDTA free protease inhibitors	Roche	Cat\# 5056489001
RNase Inhibitor	Invitrogen	Cat\# 10777019
Ammonium Acetate (NH4OAc)	Thermo Fisher Scientific	Cat\# AM9070G
1,6-Hexanediol (1,6-HD)	Sigma	Cat\# 88571
Sorbitol	Sigma	Cat\# S3889
Biotinylated isoxazole	Sigma	Cat\# 900572
ChIP-IT® Express Kit	Active Motif	Cat\# 53008
Stealth siRNA		
Mouse HNRNPU	Thermo Fisher	MSS225085
Mouse SHLD2 CCUGUGUAUGUCUGUGUACCAUGUA	Thermo Fisher	Custom made
Mouse FEN1	Thermo Fisher	MSS204267
Experimental Models: Cell Lines		
CH12F3-2A cells	Nakamura et al., 1996	
53BP1 Knockout CH12F3-2A cells	Gupta et al., 2018	
SHLD1 Knockout CH12F3-2A cells	Gupta et al., 2018	

SHLD3 Knockout CH12F3-2A cells	Gupta et al., 2018	
dRNaseH1-V5 expressing CH12F3-2A cells	This manuscript	
HEK293T cells	ATCC	
Oligonucleotides		
Primers for qPCR	See Table S4	
Primers for $\mathrm{S} \mu$-S α junctions	See Table S4	
Primers for SHM	See Table S4	
Primers for DRIP	See Table S4	
Recombinant DNA		
Plasmid: HNRNPU-MF	This paper	
Plasmid: SHLD1-MF	This paper	
Plasmid: dRNase H1-V5	Addgene	cat\# 111904
Plasmid: FLAG-tagged Ku80	Addgene	cat \#46958
Plasmid: eGFP-tagged 53BP1	Addgene	cat \#\#60813
Plasmid: FLAG-tagged SFPQ	Addgene	cat \#\# A1360
pGEM-T Easy vector	Promega	cat\# A1360
Software and algorithms		
GraphPad Prism 8	GraphPad	RRID:SCR_002798
BD FACSCalibur Flow Cytometry System	BD Biosciences	RRID:SCR_000401
Image J	https://imagej.net	RRID:SCR_003070

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Tasuku Honjo (honjo@mfour.med.kyoto-u.ac.jp).

Material availability

This study did not generate new unique reagents.

Data and code availability

- Data not included in the main or supplementary figures is available from the lead contact upon request.
- This paper does not report original code.
- Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Primary B-cell culture

Wild type or AID KO C57BL/6 mice aged 6 to 8 weeks were used to prepare B lymphocytes using a mouse B lymphocyte enrichment kit (BD Biosciences). Cells were cultured in RPMI media supplemented with $10 \% \mathrm{FBS}$, 1 x non-essential amino acids, 1 mM sodium pyruvate, and 0.05% 2-mercaptoethanol. In siRNA transfection experiments, WT primary B cells were preactivated with LPS for two days, followed by electroporation with 40 pmoles of siRNA (control or Hnrnpu). Approximately 6-7 $\times 10^{5}$ cells were used per electroporation with the SF Cell Line 96-well Nucleofector Kit for activated mouse B cells using program \# 96-DI- 100. The cells were cultured in the presence of LPS and IL4 for three days ${ }^{1}$ and then surface stained with an anti-IgG1 biotinylated antibody in combination with allophycocyanin-labeled streptavidin ${ }^{102,103}$. Dead cells were excluded from analysis by gaiting propidium iodide-positive cells. A ChIP assay using the primary B cells was performed, as previously described ${ }^{104}$.

Cell Culture and Transfections

The Bcl2-expressing mouse B-cell lymphoma line CH12F3-2A was cultured as described in the literature ${ }^{105}$. Briefly, the cells were maintained in complete RPMI supplemented with 5% NCTC, 10% FBS, and 0.05% 2-mercaptoethanol. Stealth RNAi ${ }^{\text {TM }}$ siRNA (ThermoFisher) or locked nucleotide acid (LNA) GapmeR ASO (antisense oligonucleotide) (QIAGEN) was used to knockdown specific genes in CH12F3-2A cells. The gene-specific siRNA or ASO was electroporated into the cells (1×10^{6}) using the SF Cell Line 96-well Nucleofector Kit, according to the manufacturer's guidelines (program CM-150).

Human embryonic kidney (HEK)-293T cells were cultured in complete DMEM supplemented with 10% FBS and penicillin-streptomycin. Approximately 2.5×10^{5} HEK293T cells were
plated the day before transfection using FuGENE 6, and the plasmid DNA was dissolved in Opti-MEM (Gibco). The cells were harvested at 48 h post-transfection and subjected to further analysis.

Stable cell line generation

To generate stable CH12F3-2A transfectants of catalytically dead RNaseH1 (dRNase H1), the V5-tagged D210N mutant of RNase H1 was transfected into CH12F3-2A cells and subjected to hygromycin B (GIBCO) selection. Hygromycin-resistant clones with good dRNase H1-V5 expression were selected for the downstream experiment. We used three previously reported gene knockout (KO) CH12F3-2A lines, 53bp1 ${ }^{\text {KO }}$, Shld1 ${ }^{\text {KO }}$, and Shld3 ${ }^{\text {KO (Gupta et al., 2018). }}$ The CRISPR/CRISPR-associated protein 9 (Cas9)-mediated disruption of the target locus was confirmed by sequencing a single cell clone from each KO line (Figure S2A-C). We also confirmed that no WT transcript could be detected in the Shld1 ${ }^{\text {KO }}$ and Shld $3{ }^{\text {KO }}$ lines (Figure S2D). Similarly, no expression of 53BP1 was observed in the $53 \mathrm{bp} 1^{\text {KO }}$ line (Figure S1H).

METHOD DETAILS

Constructs and Mutagenesis

The $H N R N P U$ coding DNA sequence (NM_016805.3) was PCR amplified from an Addgene plasmid (\#38068) and cloned into the Mlu I/AsiS I sites of the pCMV6-Entry mammalian expression vector (OriGene) to generate a MYC-FLAG®-tag (MF) fusion at the C-terminus of HNRNPU. The monomeric Kusabira-GFP gene fragment (mKG_C) was added in frame with MF by cloning into the Kpn I/EcoR I sites of the phmKGC-MN mammalian expression vector (AM-1100; MBL). The final construct was designated HNRNPU-MF and was used as a template to generate the $H N R N P U$ mutant \triangle RGG-MF.

For construction of MYC-FLAG epitope-tagged and EGFP fused HNRNPU, the MYC-FLAG epitopes DNA sequence of HNRNPU was cloned into the SalI/ HindIII sites of the pEGFP-C1 vector (Clontech). The Q5® Site-Directed Mutagenesis Kit was used to delete the RNAbinding RGG domain. To construct C-terminally epitope-tagged SHLD1, the coding DNA sequence (NM_001358260.2) of the Shldl gene was obtained by RT-PCR of the total RNA extracted from CH12F3-2A cells. The PCR product was cloned into the Mlu I/AsiS I sites of the pCMV6-Entry vector (OriGene) in frame with MYC-FLAG®. All constructs were verified by Sanger sequencing.

CSR assay and flow cytometry

To induce IgM to IgA antibody class switching, CH12F3-2A cells were treated with CD 40 L , IL4, and TGF β (CIT) ${ }^{39}$ for 24 h or 48 h . The CIT-stimulated cells were surface stained with FITC-conjugated anti-mouse IgM (Invitrogen) and PE-conjugated anti-mouse IgA (Southern Biotech) antibodies. Cells were also stained with propidium iodide to exclude dead cells. Flow cytometry data acquisition was performed on a BD FACS Calibur, and post analysis was performed using either BD FlowJo or BD CellQuest software.

Immunoprecipitation and immunoblotting

For immunoprecipitation (IP) of endogenous HNRNPU, nuclear extracts were prepared from CH12F3-2A cells stimulated for 24 h with CIT following the manufacturer's instructions for NE-PER ${ }^{\text {TM }}$ Nuclear and Cytoplasmic Extraction Reagents. Nuclear extracts were divided and incubated with Protein G Dynabeads precoated with an anti-HNRNPU antibody or negative control IgG antibody overnight at $4^{\circ} \mathrm{C}$. For the SHLD1 immunoprecipitation, CH12F3-2A cells were transiently transfected with SHLD1-MF and stimulated 24 h later with CIT and incubated for another 24 h . Nuclear extracts were prepared as described, and anti-FLAG IP was
performed using Protein G Dynabeads precoated with the anti-FLAG M2 antibody. For IP using 293T cells, anti-FLAG IP was performed using nuclear extract from cells transfected with the indicated FLAG-tagged construct. All immunoprecipitated samples were washed three times with modified RIPA buffer (30 mM Tris• HCl ; $\mathrm{pH} 7.4 ; 150 \mathrm{mM} \mathrm{NaCl} ; 10 \%$ glycerol; 0.05\% sodium deoxycholate; 5 mM EDTA and 1% Triton X-100) supplemented with EDTAfree protease inhibitors. Immunoprecipitated samples were untreated or treated with RNase A for 30 min at $37^{\circ} \mathrm{C}$. The immunoprecipitants (bead-bound) were heated at $85^{\circ} \mathrm{C}$ for 10 min in the presence of 1X SDS sample buffer.

For whole-cell protein extraction, cells were washed and lysed on ice with modified RIPA buffer supplemented with EDTA-free protease inhibitors. The extract was centrifuged at $15,000 \mathrm{rpm}$ for 10 min at $4^{\circ} \mathrm{C}$. The final samples were prepared with 1 X SDS sample buffer and heated at $85^{\circ} \mathrm{C}$ for 10 min .

For immunoblotting, heated samples suspended in 1x SDS buffer were size separated on a $4-$ 20\% Mini Protein TGX ${ }^{\text {TM }}$ Precast Gel (BioRad \#4561096) and transferred to a PVDF membrane (Amersham \#10600003). The membranes were blocked with 5% nonfat milk and immunoblotted using the primary and secondary antibodies (HRP-conjugated) as needed. The signal was developed using chemiluminescence reagents, and protein bands were visualized using an LAS 4000 imaging system.

Isolation of HNRNPU- or SHLD1-bound RNA and RT-qPCR

For extraction of RNA from the immunoprecipitated complex, nuclear extract was prepared using NE-PER ${ }^{\text {TM }}$ Kit from CH12F3-2A cells stimulated for 24 h with CIT (Figure S9) or from 293T cells transfected with either HNRNPU-MF or SHLD1-MF construct (Figure 6C). This extract was subjected to HNRNPU-IP or FLAG-IP in CH12F3-2A and 293T cells, respectively,
using precoated Protein G Dynabeads with HNRNPU, FLAG or IgG antibody. The beads were washed with ice-cold Magna Immunoprecipitation (RIP) buffer (Merck Millipore \#17-700) supplemented with EDTA free protease inhibitors and RNase Inhibitor. The RNA-protein complex-bound beads were subjected to protein and RNA extraction in duplicate. For immunoblotting, HNRNPU/SHLD1-IP beads were heated with 1X-SDS sample buffer for Western blotting. For total RNA extraction, beads were suspended in TRIzol reagent, and subsequently, RT-qPCR was performed using the primer set listed in Table S4.

Class-Switch Recombination Junction Analysis

For $\mathrm{S} \mu-\mathrm{S} \alpha$ recombination junction analysis, CH12F3-2A cells were stimulated with CIT for 48 h, and IgA (+) cells were isolated using anti-PE Magnetic Particle-DM, followed by genomic DNA extraction. The junctions from switched cells were amplified by nested PCR with the $\mathrm{S} \mu$ and $S \alpha$-specific primers listed in Table S4. PCRs were performed using PrimeSTAR HS DNA Polymerase. The PCR conditions for the first PCR were $95^{\circ} \mathrm{C}$ for $2 \mathrm{~min}, 98^{\circ} \mathrm{C}$ for 10 s , and $68^{\circ} \mathrm{C}$ for 7 min for a total of 22 cycles with the first-round primers. After purifying the PCR products, the resulting DNA was subjected to 23 cycles of a second $\mathrm{PCR}\left(95^{\circ} \mathrm{C}\right.$ for $2 \mathrm{~min}, 98^{\circ} \mathrm{C}$ for 10 s , and $68^{\circ} \mathrm{C}$ for 1 min and 20 s) using the second-round primers. PCR products between 0.3 and 1.5 kilobases were gel-extracted, A-tailed by Taq DNA Polymerase, and TA-cloned into the pGEM-T Easy vector. The plasmids obtained from individual colonies were sequenced using T7 forward and Sp6 reverse universal primers with an ABI PRISM 3130xl Genetic Analyzer (Applied Biosystems). To identify junctions, the sequence was aligned against mouse μ (AH005309.2) and α (D11468.1) switch region sequences of immunoglobulin genes using pairwise nBLAST in the NCBI database. The detailed number and sequences of the analyzed CSR junctions per genotype are shown in Tables S1 and S2.

Analysis of S-region SHM

For S-SHM analysis, genomic DNA was isolated from CH12F3-2A cells after 48 h of CIT stimulation followed by PCR amplification using PrimeSTAR DNA polymerase with the following amplification conditions: $95^{\circ} \mathrm{C}$ for $5 \mathrm{~min}, 30$ cycles at $98^{\circ} \mathrm{C}$ for $10 \mathrm{~s}, 55^{\circ} \mathrm{C}$ for 5 s , and $72^{\circ} \mathrm{C}$ for 1 min . Purified PCR fragments were A-tailed by Taq DNA Polymerase, cloned into pGEM-T Easy vector, and sequenced using T 7 forward and Sp 6 reverse universal primers, as described above. Mutations were analyzed over 565 bp from the $\mathrm{S} \mu$ region using the Sequencher DNA software (Gene Codes). The mutation frequency was calculated from the number of mutations per total bases analyzed. The primers used for SHM analysis are listed in Table S4.

$I g H / c-M y c$ chromosomal translocation analysis

CH12F3-2A cells were stimulated with CIT for 48 hours, and genomic DNA was purified by phenol:chloroform extraction. $I g H / c-M y c$ translocation junctions (der15) were PCR-amplified using nested PCR, as described ${ }^{106,107}$. Several aliquots of DNA (750 ng/reaction) were analyzed (24 reactions/sample) using the Expand Long Template PCR System. The first PCR conditions were $94^{\circ} \mathrm{C}$ for $3 \mathrm{~min}, 94^{\circ} \mathrm{C}$ for $15 \mathrm{~s}, 62^{\circ} \mathrm{C}$ for $15 \mathrm{~s}, 68^{\circ} \mathrm{C}$ for 7 min and 20 s per cycle for 25 cycles, and 5 min at $68^{\circ} \mathrm{C}$ for a final extension. The second round of PCR was similar to the first round, except the extension was only 7 min . After the PCR products were electrophoresed on EtBr-treated gels, southern blotting was performed using c-Myc locusspecific probes. The sequences of the primers and $c-M y c$ probe are shown in Table S4.

RNA extraction, cDNA synthesis, and quantitative RT-PCR

Total RNA was isolated from CH12F3-2A cells using TRIzol (Gibco BRL), and cDNA was synthesized from $1 \mu \mathrm{~g}$ of total RNA using SuperScript IV reverse transcriptase. PowerUp SYBR Green Master Mix was used for the quantitative real-time PCR (RT-PCR) with an RT-

PCR system (Applied Biosystems). Gene expression was normalized to Gapdh and calculated using the $2-\Delta \Delta \mathrm{CT}$ method. The primers used for qPCR are listed in Table S4.

Double-strand DNA break detection by LM-PCR

Gene knockout or knockdown CH12F3-2A cells were stimulated for CSR, and $\mathrm{S} \mu$ DNA breaks were analyzed using established methods ${ }^{108-110}$. Briefly, the ligation of the dsDNA oligo-linker into the genomic DNA was performed in the processed cells embedded in the low-melting temperature agarose plugs. The ligation reaction proceeded overnight at $16^{\circ} \mathrm{C}$, followed by inactivating of the T4 DNA ligase by heating the samples at $70^{\circ} \mathrm{C}$ to the linker-ligated DNA was subjected to PCR using KOD FX Neo DNA polymerase and an $\mathrm{S} \mu$-specific and linkerspecific nested primer set. Nonisotopic Southern blotting of the PCR products was performed using a DIG-labeled $\mathrm{S} \mu$ probe and following the standard protocol. The amount of genomic DNA input was monitored by Gapdh gene locus-specific PCR. The sequences of the primers and probes are described.

Chromatin immunoprecipitation (ChIP) assay

We used the ChIP-IT® Express Kit with minor modifications. Briefly, $5 \times 10^{6} \mathrm{CH} 12 \mathrm{~F} 3-2 \mathrm{~A}$ cells were fixed with 1% formaldehyde for 8 min at room temperature. The reaction was quenched by adding 0.125 M glycine, and the crosslinked cells were lysed for 10 min at $4^{\circ} \mathrm{C}$ with rotation. The nuclei were resuspended in shearing buffer and sonicated on a Bioruptor ${ }^{\circledR}$ (Diagenode) to generate fragments ranging in size from 200-1000 bp. The soluble crosslinked chromatin fraction was immunoprecipitated overnight with $3-5 \mu \mathrm{~g}$ of antibodies and Protein A / G magnetic beads at $4^{\circ} \mathrm{C}$ with rotation. The bead-bound chromatin was extensively washed, and the bound chromatin was eluted according to the manufacturer's instructions. Immunoprecipitated DNA was analyzed by quantitative RT-PCR using the Power SYBR Green Master Mix and normalized to the amount of input DNA ${ }^{105}$.

DNA-RNA immunoprecipitation (DRIP)

The DRIP assay for the IgH locus was adopted from previously developed methods ${ }^{111,112}$. Briefly, genomic DNA was extracted from activated CH12F3-2A cells transfected with nonspecific control or gene-specific siRNA. Genomic DNA ($50 \mu \mathrm{~g}$) was digested with a restriction enzyme cocktail (Hind III, EcoR I, Xba I, $S s p$ I, $B s r$ G I) in digestion buffer (10 mM Tris- $\mathrm{HCl} \mathrm{pH} 8 ; 10 \mathrm{mM} \mathrm{MgCl2} ; 50 \mathrm{mM} \mathrm{NaCl} ; 1 \mathrm{mM}$ dithiothreitol (DTT) overnight at $37^{\circ} \mathrm{C}$ followed by RNase A treatment and the purification of the genomic DNA by phenolchloroform. Digested DNA ($6 \mu \mathrm{~g}$) was either untreated or treated with RNase H overnight at $37^{\circ} \mathrm{C}$. The RNase H -treated and untreated genomic DNA samples were incubated overnight with the S9.6 antibody ($1 \mu \mathrm{~g} / \mu \mathrm{l}$) in DRIP buffer (10 mM NaPO4 $\mathrm{pH} 7.0 ; 140 \mathrm{mM} \mathrm{NaCl} ; 0.1 \%$ Triton X-100) at $4^{\circ} \mathrm{C}$, followed by further incubation for 3 h with $30 \mu \mathrm{~L}$ of Protein G Dynabeads at $4^{\circ} \mathrm{C}$. The antibody DNA complexes bound to Protein G Beads were washed three times with DRIP buffer and once with TE buffer (20 mM Tris- $\mathrm{HCl} \mathrm{pH} 8 ; 1 \mathrm{mM}$ EDTA) and eluted twice with $60 \mu \mathrm{l}$ of elution buffer ($100 \mathrm{mM} \mathrm{NaHCO} ; 1 \%$ SDS). Proteinase K was added to eluted DNA, and finally, the DNA-RNA hybrids were purified using a DNA purification kit. Quantitative RT-PCR was performed using the primers listed in Table S4, and the DRIP$\mathrm{qPCR} /$ input ratio was used to calculate the enrichment.

Immunofluorescence (IF) staining

For the IF experiment, 293 T cells were seeded in 8 -well chamber slides (ThermoFisher, \#155411) for 24 h prior to EGFP-fused HNRNPU transfection. Transfected cells were treated with $100 \mu \mathrm{M}$ etoposide for 30 min to induce DNA damage. Immunofluorescence staining was conducted as previously described ${ }^{113}$. Briefly, after etoposide treatment, the cells were washed with PBS and pre-extracted for 4 min with CSK extraction buffer (10 mM Pipes, pH 7.0, 100 $\mathrm{mM} \mathrm{NaCl}, 300 \mathrm{mM}$ sucrose, $3 \mathrm{mM} \mathrm{MgCl2}$, and 0.7% Triton X-100) at room temperature,
followed by fixation with 4\% paraformaldehyde (PFA) for 10 min and permeabilization with 0.5% Triton-X-100 in PBS for 10 min at room temperature. Cells were washed with PBS, blocked with 1% BSA-PBS for 30 min , and incubated at room temperature for 2 h with primary antibodies diluted in blocking solution: anti- γ-H2AX, anti-KU80, and anti-53BP1. After washing, secondary antibodies (Alexa Fluor 674) were added and incubated at room temperature for 1 h . After washing three times with PBS, the slides were mounted in media containing DAPI. Cells were visualized using a Nikon ECLIPSE Ti2 microscope, followed by a co-localization study performed by Nikon's NIS-Elements software, as described ${ }^{114}$.

Biotinylated S $\boldsymbol{\mu} \mathbf{G} 4$ RNA/DNA oligonucleotide pull-down assay

The stepwise workflow of the assay is depicted in detail in Figure S6D, and F. The synthetic 5'-biotinylated RNA ($\mathrm{S} \mu 4 \mathrm{G}-\mathrm{RNA}$ and $\mathrm{S} \mu 4 \mathrm{G}^{\mathrm{mut}}-\mathrm{RNA}$) and DNA ($\mathrm{S} \mu 4 \mathrm{G}-$ ssDNA) oligonucleotides shown in Figure S5E were purchased from Integrated DNA Technologies (IDT). The folding of the oligonucleotides in KCl or LiCl buffer, confirmation, and pull-down for detection were performed as previously described ${ }^{60}$; minor differences are as follows. We harvested CH12F3-2A cells stimulated with CIT for 24 h , used 5-6 times fewer cells to prepare the cell extract, and the pull-down was carried out by Dynabeads ${ }^{\mathrm{TM}}$ M-280 streptavidin (25 $\mu 1$ /assay). We noticed that HNRNPU was readily detected in our b-Oligo pull-down assay at various concentrations of the whole cell extract ranging from $0.5-1 \times 10^{7}$ cells $/ \mathrm{ml}$. However, AID detection strictly requires a higher concentration of CIT-stimulated CH12F3-2A cell extract (5×10^{7} cells $/ \mathrm{ml}$), possibly due to its relatively low abundance.

293 T cells expressing EGFP fused and Myc-FLAG epitope-tagged HNRNPU (WT or mutant) were lysed in the same lysis buffer as for CH12F3-2A cell lysis. Anti-FLAG-IP was performed using FLAG-agarose beads ($20 \mu \mathrm{l}$ /assay) to immunoprecipitate EGFP-HNRNPU-MF proteins
or the EGFP-HF protein as a negative control. After five successive washes, the immunoprecipitated beads were suspended in the oligonucleotide pull-down assay buffer and incubated with pre-folded oligos. All downstream steps, including the extraction and detection of bound protein and RNA/DNA oligonucleotides, were performed as described ${ }^{60}$.

Biotinylated isoxazole-mediated HNRNPU precipitation assay

The b-isox precipitation assay was conducted according to previously described protocols ${ }^{70,115}$. Whole-cell extracts were prepared from unstimulated and CIT-stimulated CH12F3-2A cells. Approximately $1-1.5 \times 10^{7}$ cells were suspended in 1 ml of lysis buffer (20 mM Tris- HCl pH 7.4, $300 \mathrm{mM} \mathrm{NaCl}, 5 \mathrm{mM} \mathrm{MgCl} 2,1 \% \mathrm{NP} 40,10 \%$ glycerol, $20 \mathrm{mM} \beta$-mercaptoethanol) supplemented with protease inhibitor (EDTA free) and a protein phosphatase inhibitor mix containing vanadate and NaF . Cells were first kept on ice for 30 min , followed by a brief sonication (Bioruptor) centrifugation at $4^{\circ} \mathrm{C}, 15,000 \mathrm{xg}$ for 20 min . The clear supernatant was aliquoted equally into a low protein binding Eppendorf tube. The aliquots were mixed with bsox and rotated at $4^{\circ} \mathrm{C}$ for $30-60 \mathrm{~min}$. Various concentrations of b-isox were tested, ranging from $10 \mu \mathrm{M}$ to $200 \mu \mathrm{M}$. B-isox precipitates were collected by centrifugation for 15 min at $4^{\circ} \mathrm{C}$. Pellets were washed (4x) with the lysis buffer supplemented with EDTA-free protease inhibitor and RNaseOUT. The final pellet, suspended in 1x SDS sample buffer containing β mercaptoethanol, was heated at $95^{\circ} \mathrm{C}$ for 8 min and subjected to Western blot analysis. All fractions, including input, pellet, and post-pellet supernatant, were monitored during the initial optimization. Since b-isox was dissolved in DMSO, we also treated the cell extract with an identical concentration of DMSO as a control, which did not precipitate HNRNPU. The same protocol was adapted for 293 T cells transfected with various HNRNPU constructs, as illustrated in Figure S8A and B.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical significance was determined using an unpaired Student's t-test using Prism 8 (GraphPad Software). In all cases, ns: not significant ($\mathrm{p}>0.05$), $*: \mathrm{p}<0.05, * *$: $\mathrm{p}<0.01, * * *$: $\mathrm{p}<0.001$, and $* * * *: \mathrm{p}<0.0001$. Figure legends indicate the number of replicates for each experiment and if data are represented as means or medians \pm SD.

REFERENCES

1. Muramatsu, M., Kinoshita, K., Fagarasan, S., Yamada, S., Shinkai, Y., and Honjo, T. (2000). Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553-563. 10.1016/s0092-8674(00)00078-7.
2. Revy, P., Muto, T., Levy, Y., Geissmann, F., Plebani, A., Sanal, O., Catalan, N., Forveille, M., Dufourcq-Labelouse, R., Gennery, A., et al. (2000). Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the HyperIgM syndrome (HIGM2). Cell 102, 565-575. 10.1016/s0092-8674(00)00079-9.
3. Chaudhuri, J., and Alt, F.W. (2004). Class-switch recombination: interplay of transcription, DNA deamination and DNA repair. Nat Rev Immunol 4, 541-552. 10.1038/nri1395.
4. Honjo, T., Kinoshita, K., and Muramatsu, M. (2002). Molecular mechanism of class switch recombination: linkage with somatic hypermutation. Annu Rev Immunol 20, 165-196. 10.1146/annurev.immunol.20.090501.112049.
5. Lieber, M.R. (2010). The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79, 181-211. 10.1146/annurev.biochem.052308.093131.
6. Rooney, S., Chaudhuri, J., and Alt, F.W. (2004). The role of the non-homologous endjoining pathway in lymphocyte development. Immunol Rev 200, 115-131. 10.1111/j.0105-2896.2004.00165.x.
7. Casellas, R., Nussenzweig, A., Wuerffel, R., Pelanda, R., Reichlin, A., Suh, H., Qin, X.F., Besmer, E., Kenter, A., Rajewsky, K., and Nussenzweig, M.C. (1998). Ku80 is required for immunoglobulin isotype switching. EMBO J 17, 2404-2411. 10.1093/emboj/17.8.2404.
8. Manis, J.P., Morales, J.C., Xia, Z., Kutok, J.L., Alt, F.W., and Carpenter, P.B. (2004). 53BP1 links DNA damage-response pathways to immunoglobulin heavy chain classswitch recombination. Nat Immunol 5, 481-487. 10.1038/ni1067.
9. Pan-Hammarstrom, Q., Jones, A.M., Lahdesmaki, A., Zhou, W., Gatti, R.A., Hammarstrom, L., Gennery, A.R., and Ehrenstein, M.R. (2005). Impact of DNA ligase IV on nonhomologous end joining pathways during class switch recombination in human cells. J Exp Med 201, 189-194. 10.1084/jem. 20040772.
10. Soulas-Sprauel, P., Le Guyader, G., Rivera-Munoz, P., Abramowski, V., OlivierMartin, C., Goujet-Zalc, C., Charneau, P., and de Villartay, J.P. (2007). Role for DNA repair factor XRCC4 in immunoglobulin class switch recombination. J Exp Med 204, 1717-1727. 10.1084/jem. 20070255.
11. Setiaputra, D., and Durocher, D. (2019). Shieldin - the protector of DNA ends. EMBO Rep 20. 10.15252/embr. 201847560.
12. Di Virgilio, M., Callen, E., Yamane, A., Zhang, W., Jankovic, M., Gitlin, A.D., Feldhahn, N., Resch, W., Oliveira, T.Y., Chait, B.T., et al. (2013). Rif1 prevents resection of DNA breaks and promotes immunoglobulin class switching. Science 339, 711-715. 10.1126/science.1230624.
13. Ghezraoui, H., Oliveira, C., Becker, J.R., Bilham, K., Moralli, D., Anzilotti, C., Fischer, R., Deobagkar-Lele, M., Sanchiz-Calvo, M., Fueyo-Marcos, E., et al. (2018). 53BP1 cooperation with the REV7-shieldin complex underpins DNA structure-specific NHEJ. Nature 560, 122-127. 10.1038/s41586-018-0362-1.
14. Noordermeer, S.M., Adam, S., Setiaputra, D., Barazas, M., Pettitt, S.J., Ling, A.K., Olivieri, M., Alvarez-Quilon, A., Moatti, N., Zimmermann, M., et al. (2018). The shieldin complex mediates 53BP1-dependent DNA repair. Nature 560, 117-121. 10.1038/s41586-018-0340-7.
15. Alt, F.W., Zhang, Y., Meng, F.L., Guo, C., and Schwer, B. (2013). Mechanisms of programmed DNA lesions and genomic instability in the immune system. Cell 152, 417-429. 10.1016/j.cell.2013.01.007.
16. Stavnezer, J., and Schrader, C.E. (2014). IgH chain class switch recombination: mechanism and regulation. J Immunol 193, 5370-5378. 10.4049/jimmunol.1401849.
17. Yan, C.T., Boboila, C., Souza, E.K., Franco, S., Hickernell, T.R., Murphy, M., Gumaste, S., Geyer, M., Zarrin, A.A., Manis, J.P., et al. (2007). IgH class switching and translocations use a robust non-classical end-joining pathway. Nature 449, 478-482. 10.1038/nature06020.
18. Lu, W.T., Hawley, B.R., Skalka, G.L., Baldock, R.A., Smith, E.M., Bader, A.S., Malewicz, M., Watts, F.Z., Wilczynska, A., and Bushell, M. (2018). Drosha drives the formation of DNA:RNA hybrids around DNA break sites to facilitate DNA repair. Nat Commun 9, 532. 10.1038/s41467-018-02893-x.
19. Ohle, C., Tesorero, R., Schermann, G., Dobrev, N., Sinning, I., and Fischer, T. (2016). Transient RNA-DNA Hybrids Are Required for Efficient Double-Strand Break Repair. Cell 167, 1001-1013 e1007. 10.1016/j.cell.2016.10.001.
20. Liu, S., Hua, Y., Wang, J., Li, L., Yuan, J., Zhang, B., Wang, Z., Ji, J., and Kong, D. (2021). RNA polymerase III is required for the repair of DNA double-strand breaks by homologous recombination. Cell 184, 1314-1329 e1310. 10.1016/j.cell.2021.01.048.
21. Keskin, H., Shen, Y., Huang, F., Patel, M., Yang, T., Ashley, K., Mazin, A.V., and Storici, F. (2014). Transcript-RNA-templated DNA recombination and repair. Nature 515, 436-439. 10.1038/nature13682.
22. Michelini, F., Pitchiaya, S., Vitelli, V., Sharma, S., Gioia, U., Pessina, F., Cabrini, M., Wang, Y., Capozzo, I., Iannelli, F., et al. (2017). Damage-induced lncRNAs control the DNA damage response through interaction with DDRNAs at individual double-strand breaks. Nat Cell Biol 19, 1400-1411. 10.1038/ncb3643.
23. Zhang, Z.Z., Pannunzio, N.R., Hsieh, C.L., Yu, K., and Lieber, M.R. (2014). The role of G-density in switch region repeats for immunoglobulin class switch recombination. Nucleic Acids Res 42, 13186-13193. 10.1093/nar/gku1100.
24. Yu, K., Chedin, F., Hsieh, C.L., Wilson, T.E., and Lieber, M.R. (2003). R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nat Immunol 4, 442-451. 10.1038/ni919.
25. Qiao, Q., Wang, L., Meng, F.L., Hwang, J.K., Alt, F.W., and Wu, H. (2017). AID Recognizes Structured DNA for Class Switch Recombination. Mol Cell 67, 361-373 e364. 10.1016/j.molcel.2017.06.034.
26. Crossley, M.P., Bocek, M., and Cimprich, K.A. (2019). R-Loops as Cellular Regulators and Genomic Threats. Mol Cell 73, 398-411. 10.1016/j.molcel.2019.01.024.
27. Hamperl, S., and Cimprich, K.A. (2014). The contribution of co-transcriptional RNA:DNA hybrid structures to DNA damage and genome instability. DNA Repair (Amst) 19, 84-94. 10.1016/j.dnarep.2014.03.023.
28. Aguilera, A., and Gomez-Gonzalez, B. (2017). DNA-RNA hybrids: the risks of DNA breakage during transcription. Nat Struct Mol Biol 24, 439-443. 10.1038/nsmb. 3395.
29. Yasuhara, T., Kato, R., Hagiwara, Y., Shiotani, B., Yamauchi, M., Nakada, S., Shibata, A., and Miyagawa, K. (2018). Human Rad52 Promotes XPG-Mediated R-loop Processing to Initiate Transcription-Associated Homologous Recombination Repair. Cell 175, 558-570 e511. 10.1016/j.cell.2018.08.056.
30. Laffleur, B., Lim, J., Zhang, W., Chen, Y., Pefanis, E., Bizarro, J., Batista, C.R., Wu, L., Economides, A.N., Wang, J., and Basu, U. (2021). Noncoding RNA processing by DIS3 regulates chromosomal architecture and somatic hypermutation in B cells. Nat Genet 53, 230-242. 10.1038/s41588-020-00772-0.
31. Nair, L., Zhang, W., Laffleur, B., Jha, M.K., Lim, J., Lee, H., Wu, L., Alvarez, N.S., Liu, Z.P., Munteanu, E.L., et al. (2021). Mechanism of noncoding RNA-associated $\mathrm{N}(6)$-methyladenosine recognition by an RNA processing complex during IgH DNA recombination. Mol Cell 81, 3949-3964 e3947. 10.1016/j.molcel.2021.07.037.
32. Perlot, T., Li, G., and Alt, F.W. (2008). Antisense transcripts from immunoglobulin heavy-chain locus V(D)J and switch regions. Proc Natl Acad Sci U S A 105, 38433848. 10.1073/pnas. 0712291105.
33. Wiedemann, E.M., Peycheva, M., and Pavri, R. (2016). DNA Replication Origins in Immunoglobulin Switch Regions Regulate Class Switch Recombination in an R-LoopDependent Manner. Cell Rep 17, 2927-2942. 10.1016/j.celrep.2016.11.041.
34. Ribeiro de Almeida, C., Dhir, S., Dhir, A., Moghaddam, A.E., Sattentau, Q., Meinhart, A., and Proudfoot, N.J. (2018). RNA Helicase DDX1 Converts RNA G-Quadruplex Structures into R-Loops to Promote IgH Class Switch Recombination. Mol Cell 70, 650-662 e658. 10.1016/j.molcel.2018.04.001.
35. Izumi, H., and Funa, K. (2019). Telomere Function and the G-Quadruplex Formation are Regulated by hnRNP U. Cells 8. 10.3390/cells8050390.
36. Kiledjian, M., and Dreyfuss, G. (1992). Primary structure and binding activity of the hnRNP U protein: binding RNA through RGG box. EMBO J 11, 2655-2664.
37. Hu, W., Begum, N.A., Mondal, S., Stanlie, A., and Honjo, T. (2015). Identification of DNA cleavage- and recombination-specific hnRNP cofactors for activation-induced cytidine deaminase. Proc Natl Acad Sci U S A 112, 5791-5796. 10.1073/pnas. 1506167112.
38. Mondal, S., Begum, N.A., Hu, W., and Honjo, T. (2016). Functional requirements of AID's higher order structures and their interaction with RNA-binding proteins. Proc Natl Acad Sci U S A 113, E1545-1554. 10.1073/pnas. 1601678113.
39. Nakamura, M., Kondo, S., Sugai, M., Nazarea, M., Imamura, S., and Honjo, T. (1996). High frequency class switching of an IgM+ B lymphoma clone CH12F3 to IgA+ cells. Int Immunol 8, 193-201. 10.1093/intimm/8.2.193.
40. Boboila, C., Alt, F.W., and Schwer, B. (2012). Classical and alternative end-joining pathways for repair of lymphocyte-specific and general DNA double-strand breaks. Adv Immunol 116, 1-49. 10.1016/B978-0-12-394300-2.00001-6.
41. Chang, H.H.Y., Pannunzio, N.R., Adachi, N., and Lieber, M.R. (2017). Nonhomologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol 18, 495-506. 10.1038/nrm.2017.48.
42. Gupta, R., Somyajit, K., Narita, T., Maskey, E., Stanlie, A., Kremer, M., Typas, D., Lammers, M., Mailand, N., Nussenzweig, A., et al. (2018). DNA Repair Network Analysis Reveals Shieldin as a Key Regulator of NHEJ and PARP Inhibitor Sensitivity. Cell 173, 972-988 e923. 10.1016/j.cell.2018.03.050.
43. Li, C., Irrazabal, T., So, C.C., Berru, M., Du, L., Lam, E., Ling, A.K., Gommerman, J.L., Pan-Hammarstrom, Q., and Martin, A. (2018). The H2B deubiquitinase Usp22 promotes antibody class switch recombination by facilitating non-homologous end joining. Nat Commun 9, 1006. 10.1038/s41467-018-03455-x.
44. Reina-San-Martin, B., Chen, J., Nussenzweig, A., and Nussenzweig, M.C. (2007). Enhanced intra-switch region recombination during immunoglobulin class switch recombination in 53BP1-/- B cells. Eur J Immunol 37, 235-239. 10.1002/eji.200636789.
45. Ramiro, A.R., Jankovic, M., Callen, E., Difilippantonio, S., Chen, H.T., McBride, K.M., Eisenreich, T.R., Chen, J., Dickins, R.A., Lowe, S.W., et al. (2006). Role of genomic
instability and p53 in AID-induced c-myc-Igh translocations. Nature 440, 105-109. 10.1038/nature04495.
46. Bunting, S.F., Callen, E., Wong, N., Chen, H.T., Polato, F., Gunn, A., Bothmer, A., Feldhahn, N., Fernandez-Capetillo, O., Cao, L., et al. (2010). 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 141, 243-254. 10.1016/j.cell.2010.03.012.
47. Montecucco, A., Zanetta, F., and Biamonti, G. (2015). Molecular mechanisms of etoposide. EXCLI J 14, 95-108. 10.17179/excli2015-561.
48. Quennet, V., Beucher, A., Barton, O., Takeda, S., and Lobrich, M. (2011). CtIP and MRN promote non-homologous end-joining of etoposide-induced DNA double-strand breaks in G1. Nucleic Acids Res 39, 2144-2152. 10.1093/nar/gkq1175.
49. Kuntz, K., and O'Connell, M.J. (2013). Initiation of DNA damage responses through XPG-related nucleases. EMBO J 32, 290-302. 10.1038/emboj.2012.322.
50. Zhao, F., Kim, W., Gao, H., Liu, C., Zhang, Y., Chen, Y., Deng, M., Zhou, Q., Huang, J., Hu, Q., et al. (2021). ASTE1 promotes shieldin-complex-mediated DNA repair by attenuating end resection. Nat Cell Biol 23, 894-904. 10.1038/s41556-021-00723-9.
51. Britton, S., Dernoncourt, E., Delteil, C., Froment, C., Schiltz, O., Salles, B., Frit, P., and Calsou, P. (2014). DNA damage triggers SAF-A and RNA biogenesis factors exclusion from chromatin coupled to R-loops removal. Nucleic Acids Res 42, 90479062. 10.1093/nar/gku601.
52. Wu, X., Wilson, T.E., and Lieber, M.R. (1999). A role for FEN-1 in nonhomologous DNA end joining: the order of strand annealing and nucleolytic processing events. Proc Natl Acad Sci U S A 96, 1303-1308. 10.1073/pnas.96.4.1303.
53. Gibbons, H.R., and Aune, T.M. (2020). Immunoprecipitation of DNA:RNA Hybrids Using the S9.6 Antibody. Methods Mol Biol 2161, 195-207. 10.1007/978-1-0716-0680-3_14.
54. Robbiani, D.F., and Nussenzweig, M.C. (2013). Chromosome translocation, B cell lymphoma, and activation-induced cytidine deaminase. Annu Rev Pathol 8, 79-103. 10.1146/annurev-pathol-020712-164004.
55. Chen, L., Chen, J.Y., Zhang, X., Gu, Y., Xiao, R., Shao, C., Tang, P., Qian, H., Luo, D., Li, H., et al. (2017). R-ChIP Using Inactive RNase H Reveals Dynamic Coupling of R-loops with Transcriptional Pausing at Gene Promoters. Mol Cell 68, 745-757 e745. 10.1016/j.molcel.2017.10.008.
56. Nowotny, M., Cerritelli, S.M., Ghirlando, R., Gaidamakov, S.A., Crouch, R.J., and Yang, W. (2008). Specific recognition of RNA/DNA hybrid and enhancement of human RNase H1 activity by HBD. EMBO J 27, 1172-1181. 10.1038/emboj.2008.44.
57. Cristini, A., Groh, M., Kristiansen, M.S., and Gromak, N. (2018). RNA/DNA Hybrid Interactome Identifies DXH9 as a Molecular Player in Transcriptional Termination and R-Loop-Associated DNA Damage. Cell Rep 23, 1891-1905. 10.1016/j.celrep.2018.04.025.
58. Marechal, A., and Zou, L. (2015). RPA-coated single-stranded DNA as a platform for post-translational modifications in the DNA damage response. Cell Res 25, 9-23. 10.1038/cr.2014.147.
59. Nguyen, H.D., Yadav, T., Giri, S., Saez, B., Graubert, T.A., and Zou, L. (2017). Functions of Replication Protein A as a Sensor of R Loops and a Regulator of RNaseH1. Mol Cell 65, 832-847 e834. 10.1016/j.molcel.2017.01.029.
60. Zheng, S., Vuong, B.Q., Vaidyanathan, B., Lin, J.Y., Huang, F.T., and Chaudhuri, J. (2015). Non-coding RNA Generated following Lariat Debranching Mediates Targeting of AID to DNA. Cell 161, 762-773. 10.1016/j.cell.2015.03.020.
61. Vuong, B.Q., Herrick-Reynolds, K., Vaidyanathan, B., Pucella, J.N., Ucher, A.J., Donghia, N.M., Gu, X., Nicolas, L., Nowak, U., Rahman, N., et al. (2013). A DNA break- and phosphorylation-dependent positive feedback loop promotes immunoglobulin class-switch recombination. Nat Immunol 14, 1183-1189. 10.1038/ni. 2732.
62. Pucella, J.N., and Chaudhuri, J. (2017). AID Invited to the G4 Summit. Mol Cell 67, 355-357. 10.1016/j.molcel.2017.07.020.
63. Zhang, Y., He, Q., Hu, Z., Feng, Y., Fan, L., Tang, Z., Yuan, J., Shan, W., Li, C., Hu, X., et al. (2016). Long noncoding RNA LINP1 regulates repair of DNA double-strand breaks in triple-negative breast cancer. Nat Struct Mol Biol 23, 522-530. 10.1038/nsmb. 3211 .
64. Wang, X., Liu, H., Shi, L., Yu, X., Gu, Y., and Sun, X. (2018). LINP1 facilitates DNA damage repair through non-homologous end joining (NHEJ) pathway and subsequently decreases the sensitivity of cervical cancer cells to ionizing radiation. Cell Cycle 17, 439-447. 10.1080/15384101.2018.1442625.
65. Altmeyer, M., Neelsen, K.J., Teloni, F., Pozdnyakova, I., Pellegrino, S., Grofte, M., Rask, M.D., Streicher, W., Jungmichel, S., Nielsen, M.L., and Lukas, J. (2015). Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP-ribose). Nat Commun 6, 8088. 10.1038/ncomms9088.
66. Pessina, F., Giavazzi, F., Yin, Y., Gioia, U., Vitelli, V., Galbiati, A., Barozzi, S., Garre, M., Oldani, A., Flaus, A., et al. (2019). Functional transcription promoters at DNA double-strand breaks mediate RNA-driven phase separation of damage-response factors. Nat Cell Biol 21, 1286-1299. 10.1038/s41556-019-0392-4.
67. Kilic, S., Lezaja, A., Gatti, M., Bianco, E., Michelena, J., Imhof, R., and Altmeyer, M. (2019). Phase separation of 53BP1 determines liquid-like behavior of DNA repair compartments. EMBO J 38, e101379. 10.15252/embj. 2018101379.
68. Fijen, C., and Rothenberg, E. (2021). The evolving complexity of DNA damage foci: RNA, condensates and chromatin in DNA double-strand break repair. DNA Repair (Amst) 105, 103170. 10.1016/j.dnarep.2021.103170.
69. Wang, Y.L., Zhao, W.W., Bai, S.M., Feng, L.L., Bie, S.Y., Gong, L., Wang, F., Wei, M.B., Feng, W.X., Pang, X.L., et al. (2022). MRNIP condensates promote DNA
double-strand break sensing and end resection. Nat Commun 13, 2638. 10.1038/s41467-022-30303-w.
70. Kato, M., Han, T.W., Xie, S., Shi, K., Du, X., Wu, L.C., Mirzaei, H., Goldsmith, E.J., Longgood, J., Pei, J., et al. (2012). Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149, 753767. 10.1016/j.cell.2012.04.017.
71. Xie, X., Gan, T., Rao, B., Zhang, W., Panchakshari, R.A., Yang, D., Ji, X., Cao, Y., Alt, F.W., Meng, F.L., and Hu, J. (2022). C-terminal deletion-induced condensation sequesters AID from IgH targets in immunodeficiency. EMBO J 41, e109324. 10.15252/embj. 2021109324.
72. Kroschwald, S., Maharana, S., and Simon, A. (2017). Hexanediol: a chemical probe to investigate the material properties of membrane-less compartments. Matters 3, e201702000010.
73. Strom, A.R., Emelyanov, A.V., Mir, M., Fyodorov, D.V., Darzacq, X., and Karpen, G.H. (2017). Phase separation drives heterochromatin domain formation. Nature 547, 241-245. 10.1038/nature22989.
74. Jain, A., and Vale, R.D. (2017). RNA phase transitions in repeat expansion disorders. Nature 546, 243-247. 10.1038/nature22386.
75. Lee-Theilen, M., Matthews, A.J., Kelly, D., Zheng, S., and Chaudhuri, J. (2011). CtIP promotes microhomology-mediated alternative end joining during class-switch recombination. Nat Struct Mol Biol 18, 75-79. 10.1038/nsmb. 1942.
76. Panchakshari, R.A., Zhang, X., Kumar, V., Du, Z., Wei, P.C., Kao, J., Dong, J., and Alt, F.W. (2018). DNA double-strand break response factors influence end-joining features of IgH class switch and general translocation junctions. Proc Natl Acad Sci U S A $115,762-767.10 .1073 /$ pnas. 1719988115.
77. Ghezraoui, H., Piganeau, M., Renouf, B., Renaud, J.B., Sallmyr, A., Ruis, B., Oh, S., Tomkinson, A.E., Hendrickson, E.A., Giovannangeli, C., et al. (2014). Chromosomal translocations in human cells are generated by canonical nonhomologous end-joining. Mol Cell 55, 829-842. 10.1016/j.molcel.2014.08.002.
78. Husain, A., Xu, J., Fujii, H., Nakata, M., Kobayashi, M., Wang, J.Y., Rehwinkel, J., Honjo, T., and Begum, N.A. (2020). SAMHD1-mediated dNTP degradation is required for efficient DNA repair during antibody class switch recombination. EMBO J 39, e102931. 10.15252/embj. 2019102931.
79. Jaafar, L., Li, Z., Li, S., and Dynan, W.S. (2017). SFPQ*NONO and XLF function separately and together to promote DNA double-strand break repair via canonical nonhomologous end joining. Nucleic Acids Res 45, 1848-1859. 10.1093/nar/gkw1209.
80. Petti, E., Buemi, V., Zappone, A., Schillaci, O., Broccia, P.V., Dinami, R., Matteoni, S., Benetti, R., and Schoeftner, S. (2019). SFPQ and NONO suppress RNA:DNA-hybrid-related telomere instability. Nat Commun 10, 1001. 10.1038/s41467-019-08863-1.
81. Pryde, F., Khalili, S., Robertson, K., Selfridge, J., Ritchie, A.M., Melton, D.W., Jullien, D., and Adachi, Y. (2005). 53BP1 exchanges slowly at the sites of DNA damage and appears to require RNA for its association with chromatin. J Cell Sci 118, 2043-2055. 10.1242/jcs. 02336.
82. Dynan, W.S., and Yoo, S. (1998). Interaction of Ku protein and DNA-dependent protein kinase catalytic subunit with nucleic acids. Nucleic Acids Res 26, 1551-1559. 10.1093/nar/26.7.1551.
83. Thapar, R., Wang, J.L., Hammel, M., Ye, R., Liang, K., Sun, C., Hnizda, A., Liang, S., Maw, S.S., Lee, L., et al. (2020). Mechanism of efficient double-strand break repair by a long non-coding RNA. Nucleic Acids Res 48, 10953-10972. 10.1093/nar/gkaa784.
84. Chakraborty, A., Tapryal, N., Venkova, T., Horikoshi, N., Pandita, R.K., Sarker, A.H., Sarkar, P.S., Pandita, T.K., and Hazra, T.K. (2016). Classical non-homologous endjoining pathway utilizes nascent RNA for error-free double-strand break repair of transcribed genes. Nat Commun 7, 13049. 10.1038/ncomms 13049.
85. Jimeno, S., Prados-Carvajal, R., and Huertas, P. (2019). The role of RNA and RNArelated proteins in the regulation of DNA double strand break repair pathway choice. DNA Repair (Amst) 81, 102662. 10.1016/j.dnarep.2019.102662.
86. Fan, H., Lv, P., Huo, X., Wu, J., Wang, Q., Cheng, L., Liu, Y., Tang, Q.Q., Zhang, L., Zhang, F., et al. (2018). The nuclear matrix protein HNRNPU maintains 3D genome architecture globally in mouse hepatocytes. Genome Res 28, 192-202. 10.1101/gr.224576.117.
87. Nozawa, R.S., Boteva, L., Soares, D.C., Naughton, C., Dun, A.R., Buckle, A., Ramsahoye, B., Bruton, P.C., Saleeb, R.S., Arnedo, M., et al. (2017). SAF-A Regulates Interphase Chromosome Structure through Oligomerization with ChromatinAssociated RNAs. Cell 169, 1214-1227 e1218. 10.1016/j.cell.2017.05.029.
88. Hacisuleyman, E., Goff, L.A., Trapnell, C., Williams, A., Henao-Mejia, J., Sun, L., McClanahan, P., Hendrickson, D.G., Sauvageau, M., Kelley, D.R., et al. (2014). Topological organization of multichromosomal regions by the long intergenic noncoding RNA Firre. Nat Struct Mol Biol 21, 198-206. 10.1038/nsmb.2764.
89. Creamer, K.M., Kolpa, H.J., and Lawrence, J.B. (2021). Nascent RNA scaffolds contribute to chromosome territory architecture and counter chromatin compaction. Mol Cell 81, 3509-3525 e3505. 10.1016/j.molcel.2021.07.004.
90. Sakaguchi, T., Hasegawa, Y., Brockdorff, N., Tsutsui, K., Tsutsui, K.M., Sado, T., and Nakagawa, S. (2016). Control of Chromosomal Localization of Xist by hnRNP U Family Molecules. Dev Cell 39, 11-12. 10.1016/j.devcel.2016.09.022.
91. Nozawa, R.S., and Gilbert, N. (2019). RNA: Nuclear Glue for Folding the Genome. Trends Cell Biol 29, 201-211. 10.1016/j.tcb.2018.12.003.
92. Patel, A., Lee, H.O., Jawerth, L., Maharana, S., Jahnel, M., Hein, M.Y., Stoynov, S., Mahamid, J., Saha, S., Franzmann, T.M., et al. (2015). A Liquid-to-Solid Phase Transition of the ALS Protein FUS Accelerated by Disease Mutation. Cell 162, 10661077. 10.1016/j.cell.2015.07.047.
93. Jang, Y., Elsayed, Z., Eki, R., He, S., Du, K.P., Abbas, T., and Kai, M. (2020). Intrinsically disordered protein RBM14 plays a role in generation of RNA:DNA hybrids at double-strand break sites. Proc Natl Acad Sci U S A 117, 5329-5338. 10.1073/pnas. 1913280117.
94. Zhang, Y., Yang, M., Duncan, S., Yang, X., Abdelhamid, M.A.S., Huang, L., Zhang, H., Benfey, P.N., Waller, Z.A.E., and Ding, Y. (2019). G-quadruplex structures trigger RNA phase separation. Nucleic Acids Res 47, 11746-11754. 10.1093/nar/gkz978.
95. de Lange, T. (2018). Shelterin-Mediated Telomere Protection. Annu Rev Genet 52, 223-247. 10.1146/annurev-genet-032918-021921.
96. Masai, H., Fukatsu, R., Kakusho, N., Kanoh, Y., Moriyama, K., Ma, Y., Iida, K., and Nagasawa, K. (2019). Rif1 promotes association of G-quadruplex (G4) by its specific G4 binding and oligomerization activities. Sci Rep 9, 8618. 10.1038/s41598-019-44736-9.
97. Moriyama, K., Yoshizawa-Sugata, N., and Masai, H. (2018). Oligomer formation and G-quadruplex binding by purified murine Rifl protein, a key organizer of higher-order chromatin architecture. J Biol Chem 293, 3607-3624. 10.1074/jbc.RA117.000446.
98. De Magis, A., Gotz, S., Hajikazemi, M., Fekete-Szucs, E., Caterino, M., Juranek, S., and Paeschke, K. (2020). Zuol supports G4 structure formation and directs repair toward nucleotide excision repair. Nat Commun 11, 3907. 10.1038/s41467-020-177018.
99. Boan, F., and Gomez-Marquez, J. (2010). In vitro recombination mediated by Gquadruplexes. Chembiochem 11, 331-334. 10.1002/cbic. 200900612.
100. Muniyappa, K., Anuradha, S., and Byers, B. (2000). Yeast meiosis-specific protein Hop1 binds to G4 DNA and promotes its formation. Mol Cell Biol 20, 1361-1369. 10.1128/MCB.20.4.1361-1369.2000.
101. Nishida, K., Kuwano, Y., Nishikawa, T., Masuda, K., and Rokutan, K. (2017). RNA Binding Proteins and Genome Integrity. Int J Mol Sci 18. 10.3390/ijms18071341.
102. Nagaoka, H., Muramatsu, M., Yamamura, N., Kinoshita, K., and Honjo, T. (2002). Activation-induced deaminase (AID)-directed hypermutation in the immunoglobulin Smu region: implication of AID involvement in a common step of class switch recombination and somatic hypermutation. J Exp Med 195, 529-534. 10.1084/jem. 20012144.
103. Shinkura, R., Ito, S., Begum, N.A., Nagaoka, H., Muramatsu, M., Kinoshita, K., Sakakibara, Y., Hijikata, H., and Honjo, T. (2004). Separate domains of AID are required for somatic hypermutation and class-switch recombination. Nat Immunol 5, 707-712. 10.1038/ni1086.
104. Methot, S.P., Litzler, L.C., Subramani, P.G., Eranki, A.K., Fifield, H., Patenaude, A.M., Gilmore, J.C., Santiago, G.E., Bagci, H., Cote, J.F., et al. (2018). A licensing step links AID to transcription elongation for mutagenesis in B cells. Nat Commun 9, 1248. 10.1038/s41467-018-03387-6.
105. Stanlie, A., Aida, M., Muramatsu, M., Honjo, T., and Begum, N.A. (2010). Histone3 lysine4 trimethylation regulated by the facilitates chromatin transcription complex is critical for DNA cleavage in class switch recombination. Proc Natl Acad Sci U S A 107, 22190-22195. 10.1073/pnas. 1016923108.
106. Ramiro, A.R., Jankovic, M., Eisenreich, T., Difilippantonio, S., Chen-Kiang, S., Muramatsu, M., Honjo, T., Nussenzweig, A., and Nussenzweig, M.C. (2004). AID is required for c-myc/IgH chromosome translocations in vivo. Cell 118, 431-438. 10.1016/j.cell.2004.08.006.
107. Boboila, C., Oksenych, V., Gostissa, M., Wang, J.H., Zha, S., Zhang, Y., Chai, H., Lee, C.S., Jankovic, M., Saez, L.M., et al. (2012). Robust chromosomal DNA repair via alternative end-joining in the absence of X-ray repair cross-complementing protein 1 (XRCC1). Proc Natl Acad Sci U S A 109, 2473-2478. 10.1073/pnas. 1121470109.
108. Rush, J.S., Fugmann, S.D., and Schatz, D.G. (2004). Staggered AID-dependent DNA double strand breaks are the predominant DNA lesions targeted to S mu in Ig class switch recombination. Int Immunol 16, 549-557. 10.1093/intimm/dxh057.
109. Schrader, C.E., Linehan, E.K., Mochegova, S.N., Woodland, R.T., and Stavnezer, J. (2005). Inducible DNA breaks in Ig S regions are dependent on AID and UNG. J Exp Med 202, 561-568. 10.1084/jem. 20050872.
110. Guikema, J.E., Linehan, E.K., Tsuchimoto, D., Nakabeppu, Y., Strauss, P.R., Stavnezer, J., and Schrader, C.E. (2007). APE1- and APE2-dependent DNA breaks in immunoglobulin class switch recombination. J Exp Med 204, 3017-3026. 10.1084/jem. 20071289.
111. Zhang, Z.Z., Pannunzio, N.R., Han, L., Hsieh, C.L., Yu, K., and Lieber, M.R. (2014). The strength of an Ig switch region is determined by its ability to drive R loop formation and its number of WGCW sites. Cell Rep 8, 557-569. 10.1016/j.celrep.2014.06.021.
112. Zhang, Z.Z., Pannunzio, N.R., Hsieh, C.L., Yu, K., and Lieber, M.R. (2015). Complexities due to single-stranded RNA during antibody detection of genomic rna:dna hybrids. BMC Res Notes 8, 127. 10.1186/s13104-015-1092-1.
113. Britton, S., Coates, J., and Jackson, S.P. (2013). A new method for high-resolution imaging of Ku foci to decipher mechanisms of DNA double-strand break repair. J Cell Biol 202, 579-595. 10.1083/jcb. 201303073.
114. Lim, K.K., and Chen, E.S. (2018). Systematic Quantification of GFP-tagged Protein Foci in Schizosaccharomyces pombe Nuclei. Bio Protoc 8, e3117. 10.21769/BioProtoc. 3117.
115. Nair, S.J., Yang, L., Meluzzi, D., Oh, S., Yang, F., Friedman, M.J., Wang, S., Suter, T., Alshareedah, I., Gamliel, A., et al. (2019). Phase separation of ligand-activated enhancers licenses cooperative chromosomal enhancer assembly. Nat Struct Mol Biol 26, 193-203. 10.1038/s41594-019-0190-5.

Figure 1

Figure 2

Figure 3

A

B

C

D

ChIP: 53BP1

ChIP: KU80

ChIP: yH2AX

ChIP: RPA

Figure 4

CIT(+) 24 h

D
CH12F3-2A (dRNaseH1) cells. CIT(+) 24 h

Figure 5
Analysis
Prot./Oligo
A

CH12F3-2A
B

C

D

E

Figure 6
A

B

C

Figure 7

Supplementary Figure 1.

A

Supplementary Figure 1. CSR impairment in the absence of HNRNPU, 53BP1, and Shieldin in CH12F3-2A cells.

(A-F) Knockdown of HNRNPU impairs immunoglobulin isotype switching. (A) Representative FACS profiles of IgM to IgA switching in siControl- and siHnrnpu-transfected CH12F3-2A cells stimulated with CIT. (B) Bar graphs quantifying the FACS data of IgM to IgA switching are from three independent experiments. (C) Western blot analysis of whole-cell extracts of CH12F3-2A cells stimulated with CIT at the indicated time points. The knockdown of HNRNPU was monitored for 72 h , which remained at a reduced level. AID expression dropped at 72 h of CIT stimulation. (D) Left: Schematic representation of the IgG1 switching assay in primary B cells and representative FACS profiles of IgG1 switching in siControl- and siHnrnpu-transfected cells. Right: Bar graphs quantifying the FACS data of IgG1 switching are from three independent experiments. (E) Western blot analysis showing HNRNPU and AID expression levels. TUBULIN was used as a loading control. (F) Quantitative RT-PCR of γ 1GLT transcript from siControl- and siHnrnpu-transfected primary B cells. The values are presented as mean $\pm \mathrm{SD}(\mathrm{n}=3)$.
(G-K) HNRNPU knockdown decrease CSR in $53 b p 1 \mathrm{KO}$ but not in shieldin subunit-deficient CH12F32A cells. (G) Representative FACS profiles of IgM to IgA switching in WT and 53bp1 KO cells transfected with siControl or siHnrnpu. (H) Western blot analysis showing HNRNPU and 53BP1 expressions in wholecell extracts of the indicated samples. (I) Representative FACS profiles of IgM to IgA switching of WT and indicated shieldin subunit-deficient CH12F3-2A cells in the presence or absence of siHnrnpu (right and left panel, respectively). (J) Quantitative RT-PCR analyses of Shld1, Shld2, and Shld3 in RNAs isolated from WT/siControl or the indicated shieldin subunit-deficient CH12F3-2A cells. (K) Quantitative RT-PCR and Western blot analyses of WT or the indicated shieldin subunit-deficient CH12F3-2A cells transfected with siHnrnpu. Confirmation of Shld1, Shld2, or Shld3 depletion (RT-PCR) and HNRNPU depletion (Western blot) in double-deficient cells. RT-PCR data are presented as means \pm SD $(\mathrm{n}=3)$.

Supplementary Figure 2

Supplementary Figure 2. CRISPR/Cas9-targeted disruption of the 53bp1, Shld1, and Shld3 gene loci in CH 12 cells.

(A) Genomic sequence analysis of the 53 bpl 1 KO clonal line indicates alterations in two alleles in the vicinity of the expected CRISPR/Cas9-targeted DSB (marked by a long arrowhead). Both alterations ($\Delta 17$ and $\Delta 19+$ In806 bp) caused frameshifts and early termination (*). (B) Genomic sequence analysis of the Shld1 KO clonal line indicates a single alteration in both alleles in the vicinity of the expected CRISPR/Cas9-targeted DSB (marked by a long arrowhead). A single base insertion caused a frameshift and premature termination (*). (C) Genomic sequence analysis of the Shld 3 KO clonal line indicates a single alteration ($\Delta 2+\mathrm{In} 90 \mathrm{bp}$) in both alleles in the vicinity of the expected CRISPR/Cas9-targeted DSB (marked by a long arrowhead). The 2-bp deletion and 90-bp insertion caused a frameshift and translational termination (*). The guide RNA sequences used for $53 b p 1$, Shld 1 , and Shld 3 targeting are underlined in the WT nucleotide sequences (A-C). (D) Quantitative RT-PCR analysis of 53BP1, Shld1, and Shld3 transcripts from the indicated CH12F3-2A lines. The values are presented as means $\pm \mathrm{SD}(\mathrm{n}=3)$.

A KD/KO CIT

Supplementary Figure 3
\qquad

Hnrnpu KD

	A	C	G	T
A			1	
C	2		1	8
G	6	1		
T	1			

$53 b p 1$ ко

5				
	A	C	G	T
A			1	
C	1		1	5
G	3	2		1
T	1			

53bp1 KO/Hnrnpu $^{\mathrm{KD}}$

	A	C	G	T
A			1	
C				7
G	3	2		2
T	1			

Shld 1 KO/Hnrnpu				
	KD			
A		1	2	1
C			1	1
G	3			3
T		2		

Shid2 2 KD				
	A	C	G	T
A				
C	1		2	7
G	6	1		
T				

Shld2 $\mathrm{KD} / \mathrm{Hnrnpu}$ KD Shld3 Ko
Shld3 KO/Hnrnpu KD

	A	C	G	T
A			1	
C			1	3
G	3	1		4
T	2	1		

Supplementary Figure 3. IgH locus SHM and DSB, but not $\operatorname{IgH} / \mathbf{c}$-Myc translocation, are impaired by HNRNPU or shieldin depletion.

(A-C) A detailed summary of the S-SHM analysis. (A) Top: Experimental design of the S-SHM analysis. Bottom: Schematic shows the position of the $565-\mathrm{bp}$ region in the $5^{\prime}-\mathrm{S} \mu$ analyzed. (B) The $5^{\prime} \mathrm{S} \mu$ region was PCR-amplified, cloned, and sequenced. The SHM data were calculated from two independent experiments; mutational base substitution patterns are shown. (C) Comparison of the mutation frequency in the genomic DNA derived from the indicated CH12F3-2A cells stimulated with CIT.
(D-F) Analysis of the $I g H / c-M y c$ translocation frequency. (D: left), Schematic diagram showing the experimental design for the translocation assay. (D: right), Illustration of the PCR amplification scheme for $I g H / c-M y c$ translocation detection. The black arrows represent the primer locations for amplifying the recombined chromosome. The black bar indicates the c-Myc-specific probe used for southern hybridization. (E) Southern blot analysis of the indicated samples. (F) $\operatorname{IgH} / \mathrm{c}-\mathrm{Myc}$ translocation frequency was calculated from the number of translocations observed among the total number of PCRs per sample. Data were compiled from two independent experiments. Statistical significance was determined using Fisher's exact test (*, $\mathrm{P}<0.05$; **, $\mathrm{P}<0.01 ;{ }^{* * *}, \mathrm{P}<0.001$).
(G) Experimental design of LM-PCR analysis. (H) LM-PCR analysis of $\mathrm{S} \mu$ DNA double-strand breaks induced by AID in the indicated CH12F3-2A cells. The triangles reflect a 3-fold increase in the DNA amount. GAPDH PCR was used as an internal loading control. (I) Examination of CSR in the indicated samples used for DSB detection with the LM-PCR assay.

Supplementary Figure 4

F

Supplementary Figure 4. HNRNPU is associated with the drug- and AID-induced DNA damage responses.

(A) Western blot analysis of endogenous HNRNPU expression in etoposide-treated 293 T cells along with the C- NHEJ (53BP1 and KU80) and DDR ($\gamma \mathrm{H} 2 \mathrm{AX}$) factors. (B) Total lysates from 293 T cells transfected with the HNRNPU-FLAG plasmid and untreated/treated with etoposide were subjected to IP with a control IgG or anti-FLAG antibody. Immunoblot analysis was used to check the interaction with relevant associated proteins, shown next to each blot. (C) Etoposide-treated 293 T cells ($50 \mu \mathrm{M}$) were transfected with a plasmid expressing FLAG-HNRNPU and subjected to IP with control IgG or anti-FLAG antibody. Immunoblot analysis was used to check the interaction with relevant associated proteins, shown next to each blot. (D) Etoposide-treated 293T cells ($50 \mu \mathrm{M}$) were transfected with a plasmid expressing FLAG-SHLD1 and subjected to IP with a control IgG or anti-FLAG antibody. Immunoblot analysis confirmed the interaction with the relevant associated proteins, shown next to each blot. (E) CH12F3-2A cells were subjected to CIT stimulation and harvested at the indicated time points to check the expression of HNRNPU and other relevant proteins, shown next to each blot.
(F-K) Representative images (F, H, and J) and quantification data (G, I, and K) of co-localization events between HNRNPU and $\gamma \mathrm{H} 2 \mathrm{AX}$ (F and G), KU80 (H and I), and 53BP1 (J and K) in etoposide-induced, DNA-damaged foci. Cells transiently transfected with an EGFP-HNRNPU expression plasmid were left untreated or treated with etoposide $(100 \mu \mathrm{M})$ for 30 min and processed for immunofluorescence. The data are presented as means $\pm \mathrm{SD}(\mathrm{n}=2)$. Inset represents an enlarged portion of the protein co-localization in the nucleus. Scale bar, $5 \mu \mathrm{M}$.

Supplementary Figure 5

A

B

D

Supplementary Figure 5. FEN1 depletion impairs IgA switching and results in a C-NHEJ defect at

 $\mathbf{S} \mu-\mathbf{S} \alpha$ junctions.(A) Top: Scheme of the IgA-switching assay in CH12F3-2A cells. Middle: Representative FACS profiles of IgA switching in CH12F3-2A cells stimulated with CIT for 24 h and subjected to FACS analysis. The percentage of IgA^{+}cells in siControl- or siFen1-treated cells is indicated by the number in each FACS profile. Bottom: Western blot confirming the siRNA-mediated knockdown of Fenl. (B) Bar graph representing the compilation of IgM to IgA switching efficiency from independent experiments. The values are presented as means $\pm \mathrm{SD}(\mathrm{n}=3)$. (C) Top: Schematic representation showing the position of the primers used to PCR amplify the $\mathrm{S} \mu-\mathrm{S} \alpha$ recombination junctions. Bottom: Bar graphs quantifying the distribution of $\mathrm{S} \mu-\mathrm{S} \alpha$ recombination junction features. Genomic DNA was isolated from CIT-stimulated CH12F3-2A cells transfected with siControl or siFen1. The values are presented as mean \pm SD $(\mathrm{n}=3)$. Statistical significance according to Fisher's exact test is shown (*, $\mathrm{P}<0.05 ;{ }^{* *}, \mathrm{P}<0.01 ;{ }^{* * *}, \mathrm{P}<0.001$). (D) Pie charts showing the distribution of $\mathrm{S} \mu$-S α junctional microhomologies of $0-3 \mathrm{nt}, \geq 4 \mathrm{nt}$ or insertions.

A

B

C

Supplementary Figure 6

Input IP: FLAG

E
5' Biotin $\begin{aligned} & \text { S } \mu 4 \text { 4G-RNA } \\ & \text { GAGCUGGGUGAGCUGGGGUGAGCUGGGGUGAGCUGGGGU }\end{aligned}$
5'Biotin $\begin{aligned} & \text { S } \mu 4 \text { G }{ }^{\text {mut-RNA }} \text {-RNA } \\ & \text { GAGCGCUGAGCUGCGCUGAGCUGCGCUGAGCUGCGCU }\end{aligned}$

S $\mu 4$ G-ssDNA
GAGCTGGGGTGAGCTGGGGTGAGCTGGGGTGAGCTGGGGT

Su4G-dsDNA
GAGCTGGGGTGAGCTGGGGTGAGCTGGGGTGAGCTGGGGT
 СТСGACCCCACTCGACCCCAGTCGACCCCACTCGACCCCA

F

Cell extract

Capture by anti-FLAG agarose beads \square Incubation with b-Oligo (RNA/DNA)

Wash the anti-FLAG agarose beads \square

Analyze the bead bound protein and nucleic acid

WB
SB (for HNRNPU) (for b-Oligo)

Supplementary Figure 6. Control IP (anti-FLAG and anti-V5) and methods related to G-quadruplex assay.

(A-C) Anti-FLAG and anti-V5 control IP. (A) Anti-FLAG IP using nuclear extract of 293T cells (related to Figure S4B-S4D). (B) Anti-V5 IP using nuclear extract of CH12F32A cells transfected with indicated siRNAs and stimulated with CSR (related to Figure 4E). (C) Anti-FLAG IP using nuclear extract of CH12F32A cells (related to Figure 6B). Western blots were probed with the indicated antibodies.
(D-G) Biotinylated-oligonucleotide (b-Oligo) pull-down and binding assays (related to Figure 5). (D) Stepwise workflow of b-Oligo (RNA/DNA) pull-down assay using CH12F3-2A cell extract and streptavidin (SA) magnetic beads. (E) The nucleotide sequences of $\mathrm{S} \mu \mathrm{G} 4$ and $\mathrm{S} \mu \mathrm{G} 4{ }^{\mathrm{mut}}$ are the same as previously described ${ }^{1}$. The sequences are represented as RNA, ssDNA, and dsDNA. The stretches of 4G repeats are colored red, and the mutated C bases are turquoise blue. The black circle at the 5 ' end of the sequence indicates biotinylation. (F) Stepwise workflow of capturing HNRNPU with the FLAG-agarose bead, followed by incubation with b-Oligos and downstream analysis of the associated proteins and nucleic acids. (G) Because DHX9 binds to the RNA/DNA G4 structure, it served as a positive control for $\mathrm{S} \mu$ derived G4 RNA/ssDNA.

Supplementary Figure 7

A

RNase A

Supplementary Figure 7. RNA-dependent interaction of HNRNPU with NHEJ factors.

 (A-B) The RGG domain of HNRNPU is critical for its association with DNA repair factors. (A) Top: Schematic diagram of HNRNPU-MF and \triangle RGG-MF constructs used in 293 T cell transfection and immunoprecipitation, as shown below. The " Δ " indicates the deletion of the RGG domain. The various functional domains (SAP, SPRY, AAA+, and RGG), nuclear localization motif (NLS), and tandem epitope tags (MYC, FLAG, and mKG) are shown. See the Methods section for construction details. Bottom: Immunoblot analysis comparing the interaction between WT HNRNPU and the \triangle RGG mutant with the proteins indicated next to each panel. (B) Top: Schematic representation of the SHLD1-MF construct used in 293 T cell transfection and the immunoprecipitation assay shown below. Bottom: Immunoprecipitation of ectopically-expressed SHLD1-MF by anti-FLAG antibody, with or without RNase A treatment. Associated cofactors were examined by immunoblotting as indicated.(C-H) Co-immunoprecipitation analysis showing the interaction of HNRNPU with NHEJ-associated DNA repair proteins. Nuclear extracts were prepared from 293T cells transfected with the constructs (= BAIT) illustrated above each Western blot set. Bait proteins were pulled down by anti-FLAG, anti-GFP, or anti-Halo-conjugated beads in the presence or absence (-/+) of benzonase. The immunoprecipitated complex was subjected to Western blot analyses as indicated.

Supplementary Figure 8

A

B

C
Input b-isox ppt.

D

E

Supplementary Figure 8. HNRNPU is an intrinsically disordered protein (related to Figure 7).

 (A) Schematic representation of biotinylated isoxazole (b-isox) precipitation assay using 293 T cells. (B) Schematics of various EGFP-fused HNRNPU constructs used for transfection to conduct b-isox precipitation assay. (C) Top: Western blot analyses of the b-isox precipitates using 293T cells expressing WT or RGG domain-deleted HNRNPU. Bottom: Detection of endogenous HNRNPU from 293T cells in the same b-isox precipitates. (D) Western blot analysis of the b-isox precipitates using 293T cells expressing the HNRNPU RGG domain with and without its nuclear localization signal (NLS). (E) Representative Western blots showing the expression of HNRNPU and other DDR-associated factors in CIT-stimulated CH12F3-2A cells treated with indicated LLPS inhibitors (related to Figures 7C and 7D).
Supplementary Figure 9

B
C $\quad \square \mu G L T \square a G L T \quad$ CSR $^{\mathrm{IgA}} \square$ LncRNA-CSR \square GAPDH

Supplementary Figure 9. HNRNPU binds to IgH locus-associated long noncoding RNAs (IncRNAs). (A) Experimental design of the RNA pull-down assay from cell lysates of CIT-stimulated (24 h) CH12F32A cells with the anti-HNRNPU antibody. (B) Immunoblots confirm the co-immunoprecipitation of KU80 in the RNA-protein complexes pulled down by HNRNPU. (C) Results from quantitative RT-PCR assays showing the enrichment of IgH locus-derived various long noncoding RNAs, such as switch μ - and α-GLTs, $\operatorname{lncRNA}-C S R$, and $\operatorname{lncCSR} \operatorname{IgA}^{2,3}$. The enrichment of the immunoprecipitated RNAs was normalized to the input signal, and Gapdh RT-qPCR was used as a negative control. The values are presented as means \pm SD ($\mathrm{n}=3$).
(A)

(iii)

S-S synapse \& breakpoint proximity

C-NHEJ-RNP Condensate
[Sensitive to LLPS inhibitors]
(B)
$\mu \mathrm{GLT}$

In the presence of HNRNPU

In the absence of HNRNPU

Supplementary Figure 10. A proposed model of C-NHEJ promotion by HNRNPU in CSR

(A) HNRNPU promotes C-NHEJ repair complex formation during CSR.
(i) Transcriptionally active S regions with respective GLTs. The sense and antisense transcription are shown by RNAPII with an arrow. Non-B structures on ssDNA are shown as the G4 and stem-loop. (ii) AIDinduced DSB through ssDNA nicks on each strand. AID-targeting to the S region involves recruiter proteins and/or G4 structures on RNA/DNA. (iii) Proximity of the S-region DSB-ends. The exact timing of S-S synapsis is unknown; following DSB, transcriptional termination and DNA:RNA hybrid resolution are expected. Residual DNA:RNA hybrid and/or damage-induced DDRNA might exist as they are known to promote repair complex formation. (iv) DNA repair factor assembly and C-NHEJ. For efficient repair by C-NHEJ, it is essential to keep the DSB end protected from extensive resection by end protective proteins such as KU80 and the 53BP1-shieldin complex. HNRNPU forms an RNA (noncoding/G4-RNA)-dependent C-NHEJ complex sensitive to liquid-liquid phase separation inhibitors. The free ssDNA at the DSB may adopt a G4-structure, as known for telomere end protection, where HNRNPU associates with the shelterin complex, analogous to the 53BP1-shieldin complex. FEN1 and RIF1 in the complex may recognize the G4 structure and help DSB-end resolution.
B) HNRNPU suppresses/prevents S-region R-loop.

The unwinding of the G4 or secondary structures in the nascent GLT is required for the invasion of duplex DNA and hybridization with the complementary DNA. Specific RBPs reduce R-loop formation by binding to the nascent RNA, inhibiting its pairing with the complementary DNA strand. The presence of HNRNPU and/or associated RBP/helicases may regulate the process to limit the S-region R-loop, allowing for an optimal DSB and its rapid resolution during C-NHEJ.

For simplicity, only $\mathrm{S} \mu$ is depicted, which is transcriptionally active as indicated by μ GLT and RNAPII. Putative non-B structures are shown in the form of G4 or stem-loops. DNA:RNA hybrid is shown on the
bottom strand, which can arise on the other strand upon antisense transcription, allowing AID-induced nicks on both strands or at the DSB.

Table S1. Characterization of CSR junctions

Study subjects					No. of junctions
	Direct joining	C-NHEJ signature	Longer MH	Insertions	
	0 bp (\%)	0-3 bp (\%)	≥ 4 bp (\%)	(\%)	
Wild type	20 (39.2)	43 (84.3)	4 (7.8)	4 (7.8)	51
Hnrnpu ${ }^{\text {KD }}$	5 (10.2)	18 (36.7)	14 (28.6)	17 (34.7)	49
53bp1 ${ }^{\text {ко }}$	8 (15)	33 (62.3)	7 (13.2)	13 (24.5)	53
$53 b p 1^{\text {KO }}+\mathrm{Hnrnpu}^{\text {KD }}$	4 (7.5)	20 (37.7)	16 (30.2)	17 (32)	53
Shld1 ${ }^{\text {ко }}$	6 (12.5)	23 (47.9)	11 (22.9)	14 (29.1)	48
Shld2 ${ }^{\text {KD }}$	5 (8.9)	26 (46.4)	13 (23.2)	17 (30.3)	56
Shld3 ${ }^{\text {ко }}$	12 (22.2)	35 (64.8)	15 (27.8)	4 (7.4)	45
Shld1 ${ }^{\text {KO }}+\mathrm{Hnrnpu}^{\text {KD }}$	4 (10)	16 (40)	11 (27.5)	13 (32.5)	40
Shld2 ${ }^{\text {KD }}+\mathrm{Hnrnpu}^{\text {KD }}$	4 (8.5)	20 (42.5)	13 (27.6)	14 (29.8)	47
Shld3 ${ }^{\text {KO }}+\mathrm{Hnrnpu}^{\text {KD }}$	5 (13.1)	17 (44.7)	11 (28.9)	10 (26.3)	38
Fen1 ${ }^{\text {KD }}$	4 (8.3)	23 (47.9)	11 (22.9)	14 (29.1)	48

Table S2. S μ-Sa junctions from WT, Hnrnpu ${ }^{\mathrm{KD}}, 53 \mathrm{bp} 1^{\text {KO }}, \mathrm{Hnrnpu}^{\mathrm{KD}}+53 \mathrm{bp} 1^{\mathrm{KO}}$, Shld1 ${ }^{\mathrm{KO}}$, Shld2 ${ }^{\text {KD }}$, Shld3 ${ }^{\text {KO }}$ and Fen1 ${ }^{\text {KD }} \mathrm{CH} 12$ cells.

	S $\boldsymbol{\mu}$-S α junction
$\begin{aligned} & \text { WT } \\ & \mathrm{n}=51 \end{aligned}$	

$\begin{aligned} & \text { Hnrnpu }{ }^{\text {KD }} \\ & \mathrm{n}=49 \end{aligned}$	AGCCACAGTAATGACCCAGACAGAGAAGGCCAATGAGCTAACATAAATTCAGCTGGCTGAAC TGGGATTCTGGAAGAAAAGATGTTTTTAGTTGCCCCGCCAGTGTAACTTCCAAGCCAGCTC TTATAGAAAACACTACTACATTCTTGATCTCTTGTCCCGCCAGTGTAACTTCCAAGCCAGCTCTT GATCTACAACTCAATGTGGTTTAATGAATTTGAACTGACTGGGCTGGACTCAGTTGACCTTGCT GGACAGGGGCTGGGGTATGGATACGCAGAAGGAAGAAATGTGAACCAACTCTTGTTTTATGGTCC AACTGAGGTGATTACTCTGAGGTAAGCAAATGAGCTGGGCCGCTAAACTAAACTCAGTCTCAGGTTGGCCACCCCTGCCCAGA TAAACTAAACTAGGCTGGCTTAACCGAGATGTCCACTGCTTGCTAAGTGGATGGGCAGTTG TTTTTAGTTTTTATAGAAAACACTACTACACACTGCCCAGACCCACCAGTTCTGGTCCTCCT CACAGTAATGACCCAGACAGAGAAAGCCAG: CATGGCATGGACAGAGACACCACTCAGATT AGGGTGATCTGAATGAGCTGAGCTGAACTG: GTGGTGGGTCTGAAGCCAGAACAAGGCCAG GCTGGGGTGAGCTGAGCTGAGCTGAGCTGGGGTGATGGGCAGTTGCTGGAGTGGTGGGTCTGA TTAAGGGAACAAGGTTGAGAGCCCTAGTAAACATGGACAGAGACACCACTCAGATTGAGTCCTC CTGAGCTGAGCTGAGCTGGGGTGAGCTGAG:TCTTCCCCAACCACTCCTACCCCGTGCTGG АТTСТTGATCTACAACTCAATGTGGTTTAAAGGCCAGTGTAAGGTCAAAATGGCCTTCTCTACCCCACACACAAC GATGGGGTGAGCTGAGCTGGGCTGAGCTGGACTGCTTGCTAAGTGGATGGGCAGTTGCTGGAGT CCCAGGCTAAGAAGGCAATCCTGGGATTCT: ACCACTCCTACCCCGTGCTGGCTGATCTTC AGAAAAGATGTTTTTAGTTTTTATAGAAAACAGCTCTTCCCCAACCACTCCTACCCCGTGCT GGGTGAGTTGAGCTGAACTGGGGTAAGCTGGGATGACCTGGGCCCAAACAGGAGTGGGGCTTAGAAATCTGGAG CCGAGGTGAGTGTGAGAGGACAGGGGCTGGAGAGCTTTGCTGGATTGTTAAACTCACTGCT СTACACTGGACTGTTCTGAGCTGAGATGAGTTGTTGCTAAGTGGATGGGCAGTTGCTGGAGT TTСАТTAATCTAGGTTGAATAGAGCTAAATATGGCATGGACAGAGACACCACTCAGATTG TTTTTAGTTTTTATAGAAAACACTACTACATTCTCCACCCCACACACAACCCCCTGCCCCGCCA ACCCAGACAGAGAAAGCCAGACTCATAAAGTTACCCCGTGCTGGCTGATCTTCAGTCTCAG ATGAATTTGAAGTTGCCAGTAAATGTACTTCCTGCCCCGCCAGTGTAACTTCCAAGCCAGCTCT GAGCAAAATTAAGGGAACAAGGTTGAGAGCCCCCGTGCTGGCTGATCTTCAGTCTCAGGTTG TTGAGAGCCCTAGTAAGCGAGGCTCTAAAAATCACAGTGGATGGGCAGTTGCTGGAGTGGTGGGT TGTACAGAATTGAGAAAGAATAGAGACCTGCAGTTCTGGTCCTCCTAACCCTGGGACTGAGAACA AAGGTGAGTGTGAGAGGACAGGGGCTGGGGTTTGGATGAAATGTGAACCAACTCTTGTTTTATGGTC CAGGGGCTGGGGTATGGATACGCAGAAGGAAGGCTGGGGTGAATTAGCATGACTGGACTTATTC ACTTCCTGGTTGTTAAAGAATGGTATCAAAGGACTCAGTTGACCTTGCTCGTCTGAGCTGGTCT GTGAGCTGAGCTGGGTGAGCTGAGCTGAGCTGGGACTGAGAACATAGCTCTATCCACTGCCCAA AAAATTAAGGGAACAAGGTTGAGAGCCCTAAAAAGCACATCTGCTTGCTAAGTGGATGGGCAGTTGCTGG ATGGGTGGGCTTСТСTGAGCGCTTCTAAAATGCTAAATCCACTGCCCAAACAGGAGTGGGGCTTA TGAGAGGACAGGGGCTGGGGTATGGATACGCAGCTGGCTGAACCAAACTTGACAGTGAGCTAG TGAGGCCAGCAGGTCGGCTGGACTAACTCT:TTTGCTGGATTGTTAAACTCAGTGCTGAGG GAAGACTGGAAGGGCTGGCTGAGCTAGACTAGGACAGAGACACCGCTCAGATTGAGTCCTCTC СТАСТАСАТТСТТGАТСТАСААСТСААТGTGGTTGGCCACCCCTGCCCAGACCCACCAGTTCTG TСTAAAATGCGCTAAACTGAGGTGATTACTCCCCGTGCTGGCTGATCTTCAGTCTCAGGTT TGAGAGCCCTAGTAAGCGAGGCTCTAAAAATCACAGTGGATGGGCAGTTGCTGGAGTGGTGGGT CTGAGCTGAGATGGGTGGGCTTCTCTGAGCIns57AACCACTCCTACCCCGTGCTGGCTGATCTT GAAAGAATAGAGACCTGCAGTTGAGGCCAGCCTAACCCTGAGACTGAGAACATAGCTCTAT GCGAGGCTCTAAAAAGCATGGCTGAGCTGGGATGGGATGGGATGGGATGGGATGAGATGGGATGAACTGAC AGAGACCTGCAGTTGAGGCCAGCAGGTCGGCTGAGGTAACTGAAAAGACTTTGGATGAAATGT TGAATTTGAAGTTGCCAGTAAATGTACTTCCTGGTTACAATGAGCTAACATAAATTCAGCTGGCT GTTTTTATAGAAAACACTACTACATTCTTGATCTCTTGCCCCGCCAGTGTAACTTCCAAGCCAGCT CTGGGATTCTGGAAGAAAAGATGTTTTTAGTTCTCCACCCCACACACAACCCCCTGCCCCGC CCTGGTTGTTAAAGAATGGTATCAAAGGACAGAACTAGGCTGGAATTAGGCGAAACTTGGCT CTAGACTAGGCTGGGCTGAGCTGGAATGAGCCCCGCCAGTGTAACTTCCAAGCCAGCTCTT AGAAGGAAGGCCACAGCTGTACAGAATTGTGAAATGGGCTGAGCAGAGCTGGACAAAGCTAGGCT
$\begin{aligned} & 53 b p 1^{\mathrm{KO}} \\ & \mathrm{n}=53 \end{aligned}$	TTAATCTAGGTTGAATAGAGCTAAACTCTACTGAACCAAACTTGACAGTGAGCTAGCCTGGGG GGGTGAGCTGAGCTGAACTGGGGTGAGCTGGGATTCCCCAACCACTCCTACCCCGTGCTGGCT CGCTAAACTGAGGTGATTACTCTGAGGTAA: CGTGGTGGCTGATCTTCAGTCTCAGGTTGG GCTTAGATCCGAGGTGAGTGTGAGAGGACAATGGAGCCATGCAACCTAGTATCCTATTCT CGCTTСТAAAATGCGCTAAACTGAGGTGATGGACCTAAACACCGCTCAGATTGAGTCCTCTCGTCTTT AGGACAGGGGCTGGGGTATGGATACGCAGAACTGAGAACATAGCTCTATCCACTGCCCAAA TGTACAGAATTGAGAAAGAATAGAGACCTGCACCCССТССТССТTСССТGATTATCTGGTGG GGATTCTGGAAGAAAAGATGTTTTTAGTTT: САGCTCTTCСССААССАСТССТАССССGTG СTAAAAAGCATGGCTGAGCTGAGATGGGTGGGATGGGATGGGATGGGATGGGATGGGATGGG AGCTGATCTGAAATGAGATACTCTGGAGTAGGGACTGAGAACATAGCTCTATCCACTGCCC ACCCAGACAGAGAAGGCCAGACTCATAAAGGTCAAAATGGCCTTCTCCACCCCACACACAAC GTTTTTAGTTTTTATAGAAAACACTACTACATGAACTGACTGGGCTGGACTCAGTTGACCTT GCTGGACTAACTCTCCAGCCACAGTAATGACCTCCTTCCCTGATTATCTGGTGGAAATTCAC AGCAAAGCTGGGCTTGAGCCAAAATGAAGT: CCTGGGACTGAGAACATAGCTCTATCCACTGC

	GAGGCTCTAAAAAGCATGGCTGAGCTGAGACAAGGCCAGTGTAAGGTCAAAATGGCCTTCTCTACCCCACACACAAC CTGAGATGGGTGGGCTTСTCTGAGCGCTTСTССАAGССАGСТСТТССССААССАСТССТАС AGATGGGTGGGCTTCTCTGAGCGCTTCTAAAATTAGCATGACTGGACTTATTCACAGTTCTAG AAAGCCAGACTCATAAAGCTTGCTGAGCAATGGGATGGGATGGGATGGGATTCACAGTTCTAGCCTGAGCTTTGCTGGA CTAGTAAAAGAAAAATGTTGCCTGTTAACCACTGGGCTGGACTCAGTTGACCTTGCTCGTC CAGACAGAGAAGGCCAGACTCATAAAGCTTGCTGGAATTAGGCGAAACTTGGCTTGGCTGGTTA АСТААСТСТССАGССАСАGTAATGACCCAG: ТАТТСТСАСАСССССТССТССТТСССТGАТ GGCCGCTAAGCTAAACTAGGCTGGCTTAACCTCTTCCCCAACCACTCCTACCCCGTGCTGG CTGGAATGAGCTGGGCCGCTAAGCTAAACTAGGACAGAGACACCGCTCAGATTGAGTCCTCTC GGGTGAGCTGAGCTGAACTGGGGTAAGCTGIns94GCAGTTGCTGGAGTGGTGGGTCTGAAGCCA GGTTGAGAGCCCTAGTAAGCGAGGCTCTAATAAACTCAGTGCTGAGGTAACTGAAAAGACTTTGGATGAA CATGGCTGAGCTGAGATGGGTGGGCTTCTCTGCCTTCATGGCAGGACAGAGACACCGCTCAG GGGTGAGCTGAGCTGAACTGGGGTAAGCTGIns84GTTTGCTTTGTGTGAATGGAGCCATGCAAC AGATGGGTGGGCTTCTCTGAGCGCTTCTAAAATGCGCTAAACTAAATTCAGCTGGCTGAACCAAACTTGACAG GCCAGACTCATAAAGCTTGCTGAGCAAAAIns48GGATGGGATGGGATGGGATGGGATGAGATG AGCGAGGCTCTAAAAAGCATGGCTGAGCTGGCTGAGCTGGGGTGAGTCTCAGGTTGGCCACCCCTGCCCAGACC ACTGGAATGAACTCATTAATCTAGGTTGAATATTCACAGTTCTAGCCTGAGCTTTGCTGGA GTGAGCTGAGCTGAGCTGGGGTGAGCTGACTAGGGTGCCCCGCCAGTGTAACTTCCAAGCCAGCT GCTGAGCTGAGCTGGGGTGAGCTGAGCTGA: TCTTCСССАAССАСТССТАССССGTGCTGG GCCAGTAAATGTACTTCCTGGTTGTTAAAGAATGGTGCCTTCATGGCAGGACAGAGACACCGCTCA ACAGGGGCTGGGGTATGGATACGCAGAAGGAAGTGGATGGGCAGTTGCTGGAGTGGTGGGTCT TAGTAAGCGAGGCTCTAAAAAGCATGGCTGAGCTCTTCCCCAACCACTCCTACCCCGTGCTGGC AACAAGGTTGAGAGCССTAGTAAGCGAGGCTTСTСАСАСССССТССТССТТСССТGАТТАТ GCGTGTTGGGGTGAGCTGATCTGAAATGAGACCTGCCCAGACCCACCAGTTCTGGTCCTCC ААСТСТАСТGССТАСАСТGGACTGTTCTGAGCTGATCTTCAGTCTCAGGTTGGCCACCCCTGCCC TGAGAGCCCTAGTAAGCGAGGCTCTAAAAAACACAAGCCAGCTCTTCСССААССАСТССТАСС CCACAGTAATGACCCAGACAGAGAAAGCCAGACAGAGACACCGCTCAGATTGAGTCCTCTCGT AGGGGCTGGGGTATGGATACGCAGAAGGAAGGAGTGGTGGGTCTGAAGCCAGAACAAGGCCA TCCAAGGTGAGTGTGAGAGGACAGGGGCTGGGGCAGTTGCTGGAGTGGTGGGTCTGAAGCCAG TTCCTGGTTGTTAAAGAATGGTATCAAAGGACAGTTCTAGCCTGAGCTTTGCTGGATTGTTAAAC TGAGAGCCCTAGTAAGCGAGGCTCTAAAAA: CTGCCCCGCCAGTGTAACTTCCAAGCCAGC АААСАСТАСТАСАТТСТТGATCTACAACTCAAGACTTTGGATGAAATGTGAACCAACTCTTG GAGACCTGCAGTTGAGGCCAGCAGGTCGGCTGTAATTTCCAAGCCAGCTCTTCCCCAACCAC CAGAGAAAGCCAGACTCATAAAGCTTACTGAACCCCCTGCCCCGCCAGTGTAACTTCCAAG GTGCTTAGATCCGAGGTGAGTGTGAGAGGACACACCСССТССТССТTСССТGATTATCTGGT AGAGACCTGCAGTTGAGGCCAGCAGGTCGG: GTGTAACTTCCAAGCCAGCTCTTCCCCAAC AGCTGTACAGAATTGAGAAAGAATAGAGACTTCTTCCCCAACСАСTССТACCCCGTGCTGG AGATGTTTTTAGTTTTTATAGAAAACACTACTGCCCAGACCCACCAGTTCTGGTCCTCCTAA TAGAGACCTGCAGTTGAGGCCAGCAGGTCG:TGGCTGATCTTCAGTCTCAGGTTGGCCACC
$\begin{aligned} & H n r n p u \text { KD } \\ & +53 b p 1^{\mathrm{KO}} \\ & \mathrm{n}=53 \end{aligned}$	TACGCAGAAGGAAGGCCACAGTTGTACAGA: СTTCCCTGATTATCTGGTGGAAATTCACAT AGATCCGAGGTGAGTGTGAGAGGACAGGGGCTGCCCCGCCAGTGTAACTTCCAAGCCAGCTCT ATAGAAAACACTACTACATTCTTGATCTACIn128TCAGTCTCAGGTTGGCCACCCCTGCCCAGA AACTCAATGTGGTTTAATGAATTTGAAGTTGCGCTTTGCTGGATTGTTAAACTCACTGCTGA CGAGGCTCTAAAAAGCATGGCTGAGCTGAGATGGGATGGGATGGGATGAACTGACTGGGCTGGAC TGAGCCAAAATGAAGTAGACTGTAATGAACTGGATTGTTAAACTCACTGCTGAGGTAACTGAAA AAGAAGGCAATCCTGGGATTCTGGAAGAAAAGATGGTCTAGTTGGGCTGGCCAGGATAGTCAG TTGAGCCAAAATGAAGTAGACTGTAATGAACTGGAGTGGTGGGTCTGAAGCCAGAACAAGGCCAG GAATTGAGAAAGAATAGAGACCTGCAGTTGAGTGTAACTTCCAAGCCAGCTCTTCCCCAACC GAGCTGAGCTGGGGTGAGCTGAGCTGAGCTIn104GCCAGCTCTTССССААССАСТССТАССССG GGTTGTTAAAGAATGGTATCAAAGGACAGT:TTGTTTTATGGTCCAGATTGTGGCCTCTGG TCCAGCCACAGTAATGACCCAGACAGAGAAGGCCAGTGTAAGGTGAAAACACAACAAAATGGCCT AGCTGAGATGAGCTGGGGTGAGCTCAGCTATGCTGGATTGTTAAACTCACTGCTGAGGTAACTG AAAATGAAGTAGACTGTAATGAACTGGAATGAGCTGGCCCTGAATGAGCTCTTGTCCCTGACATGCC АТСТАСААСТСААТGTGGTTTAATGAATTTGATTGTTAAACTCACTGCTGAGGTAACTGAAA AAATGCGCTAAACTGAGGTGATTACTCTGAIn17CAAAATGGCCTTCTCCACCCCACACACAAC ACTGTTCTGAGCTGAGATGAGCTGGGGTGAACAGATTGAGTCCTCTCGTCTTTGGGTCCAC AGATGGGTGGGCTTCTCTGAGCGCTTCTAAAATTAGCATGACTGGACTTATTCACAGTTCTAG GAGGCTCTAAAAAGCATGGCTGAGCTGAGATGGATGGGCAGTTGCTGGAGTGGTGGGTCTGAAGCCAGA CTGAGATGGGTGGGCTTCTCTGAGCGCTTCTAAAATGAGCTAACATAAATTCAGCTGGCTGAACCAAACTTGA GAGCTGGGGTGAGCTGAGCTGAGCTGGGGTAAACTCCTTCССTGATTATCTGGTGGAAATTCA СTGAGCTGAGATGAGCTGGGGTGAGCTCAGCTGCCCAGACCCACCAGTTCTGGTCCTCCTAA GAGCTGAGCTGGGCTGAGCTGGACTGAGCTAGGGTGCCCCGCCAGTGTAACTTCCAAGCCAGCT CCGAGATGAGCCAAACTGGAATGAACTTCA: AGTTGCTGGAGTGGTGGGTCTGAAGCCAGA

	TCTAAAATGCGCTAAACTGAGGTGATTACTCTGAGAACATAGCTCTATCCACTGCCCAAACAGGA TGATTACTCTGAGGTAAGCAAAGCTGGGCTTGGATTGTTAAACTCACTGCTGAGGTAACTGA GTAAGCCAGAGGCAGCCACAGCTGTGGCTGIn31GGATGGGATGGGATGGGATGGGATGGGATG GTTGAATAGAGCTAAACTCTACTGCCTACACTGGACTGTTAAACTCACTGCTGAGGTAACTGAAAAGACT GCTGATCTGAAATGAGCTACTCTGGAGTATCTGGGACTGAGAACATAGCTCTATCCACTGCCC ATGAAGTAGACTGTAATGAACTGGAATGAGCTGGTTTGCTTTGTGTGAATGGAGCCATGCAACC GGGTGAGCTGAGCTGAGCTGGGGTAAGCTGIn90CCTGGGACTGAGAACATAGCTCTATCCACTGCCCAAA AAACTAGGCTGGCTTAACCGAGATGAGCCAATTGTTAAACTCAGTGCTGAGGTAACTGAAA CTGAGCTGAGCTGAGCTGGGGTGAGCTGAGCTGATCCCCTCCTCCTTCССTGATTATCTGGTGGA GСТАААСТСТАСТGССТАСАСТGGAСТTTTСАСТССТАССССGTGСTGGСТGATCTTCAGT GAGATGAACTGGGGTGAGCTCAGCTATGCTIn38ACTGAGAACATAGCTCTATCCACTGCCCAAA GACTCATAAAGCTTGCTGAGCAAAATTAAGAGATGGGATGGGATGGGATGGGATGGGATGGGATGGGATGAGATG ATGAACTTCATTAATCTAGGTTGAATAGAGCTAACCCTGGGACTGAGAACATAGCTCTATCCAC GGTGAGTGTGAGAGGACAGGGGCTGGGGTATGGGTCTGAAGCCAGAACAAGGCCAGTGTAAGG GAGCCAAAATGAAGTAGACTGTAATGAACT:TACCCCGTGCTGGCTGATCTTCAGTCTCAG TCCAAGGTGAGTGTGAGAGGACAGGGGCTGGGGCAGTTGCTGGAGTGGTGGGTCTGAAGCCAG ATGAATTTGAAGTTGCCAGTAAATGTACTTCCTGCCCAGACCCACCAGTTCTGGTCCTCCTAAC CAGAGAAGGCCAGACTCATAAAGCTTGCTGTCCCCGTGCTGGCTGATCTTCAGTCTCAGGT ATAGAGACCTGCAGTTGAGGCCAGCAGGTCGGATGGGCAGTTGCTGGAGTGGTGGGTCTGAAGCCA СTGCCTACACTGGACTGTTCTGAGCTGAGATGGCTGATCTTCAGTCTCAGGTTGGCCACCCC AAGCGAGGCTCTAAAAAGCATGGCTGAGCTAAAATGAACCAAACTTGACAGTGAGCTAGCCTGG GCTAAACTCTACTGССTACACTGGACTGTGCTGGCTGATCTTCAGTCTCAGGTTGGCCACCCCTGCCC AACTGGAATGAGCTGGGCCGCTAAGCTAAAAGCTGATCTTCAGTCTCAGGTTGGCCACCCC AGCTCAGCTATGCTACGCGTGTTGGGGTGATCTACCCCGTGCTGGCTGATCTTCAGTCTCA ATCTGAAATGAGATACTCTGGAGTACCTGATGGTTGGCCACCCCTGCCCAGACCCACCAGT TGGCTGAGCTGAGATGGGTGGGCTTCTCTGAATGGCCTTCTCCACCCCACACACAACCCCC GCGAGGCTCTAAAAAGCATGGCTGAGCTGATATTTGGGACTGAGAACATAGCTCTATCCACTGCCCAAA CCAGTAAATGTACTTCCTGGTTGTTAAAGAATGGCAGGACAGAGACACCGCTCAGATTGAGTCC AGCTGGGGTGAGCTCAGCTATGCTACGCGTGTTGGCCACCCCTGCCCAGACCCACCAGTTCTGGT
Shld1 ${ }^{\text {KO }}$ $n=48$	GGTGAGTGTGAGAGGACAGGGGCTGGGGTATGCTAAGTGGATGGGCAGTTGCTGGAGTGGTG CAGTAAATGTACTTCCTGGTTGTTAAAGAATAAACTCACTGCTGAGGTAACTGAAAAGACT CCAGTAAATGTACTTCCTGGTTGTTAAAGAATGGCAGGACAGAGACACCGCTCAGATTGAGTCC AAGGCAATCCTGGGATTCTGGAAGAAAAGATGCTAAGTGGATGGGCAGTTGCTGGAGTGGTG СTAAAATGCGCTAAACTGAGGTGATTACTCTGAG TCCTCTCGTCTTTGGGTCCACTGCTTGCTA CTGTTCTGAGCTGAGATGAGCTGGGGTGAGAGGCCAGTGTAAGGTCAAAATGGCCTTCTCCACCCCACACACAAC AGCTGAGCTAGACTAGGGTGGAATGGGCTGAMH23CGGGCAGACCTAGATAGAGTTGCACTGAGG АТТСТTGATCTACAACTCAATGTGGTTTAATCTTCCCCAACCACTCCTACCCCGTGCTGGC TGAGAGCCCTAGTAAGCGAGGCTCTAAAAAAAAACCCTGGGACTGAGAACATAGCTCTATCC ATCCAAGGTGAGTGTGAGAGGACAGGGGCTGTCAGAACTAGGCTGGAATTAGGCGAAACTT AGTAAATGTACTTCCTGGTTGTTAAAGAATGCCAGCTCTTCCCCAACCACTCCTACCCCGT GGCCAGACTCATAAAGCTTGCTGAGCAAAATTGAGGTAACTGAAAAGACTTTGGATGAAATG AGGCTGGCTTAACCGAGATGAGCCAAACTG:TCACATGTACCTGTAAATGGTGCCTTCATG AAAAGCATGGCTGAGCTGAGATGGGTGGGCGATGGGATGGGATGGGATGGGATGGGATGGGATG ACTGTTCTGAGCTGAGATGAGCTGGGGTGAGCTCAGCTAGAGTCCTCTCGTCTTTGGGTCCACTGC GGGGTGAGCTGATCTGAAATGAGCTACTCT: СССТССТССТTСССТGATTATCTGGTGGAA AGGTAAGCAAAGCTGGGCTTGAGCCAAAATGAAGTAGGGCGAAACTTGGCTTGGCTGGTTACAATGA AAAAGCATGGCTGAGCTGAGATGGGTGGGCGATGGGATGGGATGGGATGGGATGGGATGGGATGGGATG СТТСТСТGAGCGCTTСТАAAATGCGCTAAA:TCAGTCTCAGGTTGGCCACCCCTGCCCAGA ААСТСТАСТGССТАСАСTGGACTGTTCTGATCGGAGCCATGCAACCTAGTATCCTATTCTCA GCTGGCTTAACCGAGATGAGCCAAACTGGA: CCAGACCCACCAGTTCTGGTCCTCCTAACC TTGCCAGTAAATGTACTTCCTGGTTGTTAAACCCCTGCCCAGACCCACCAGTTCTGGTCCT AAAGCATGGCTGAGCTGAGATGGGTGGGCTIn38CCAGTTCTGGTCCTCCTAACCCTGGGACTG AGCATGGCTGAGCTGAGATGGGTGGGCTTCTCTGAGCCAGTTCTGGTCCTCCTAACCCTGGGACTGA TGAGCTGGGGTGAGCTCAGCTATGCTACGC:TCCAAGCCAGCTCTTCCCCAACCACTCCTA CTGAGCTGAGCTGAGCTGAGCTGGGGTGAGCCCGCCAGTGTAACTTCCAAGCCAGCTCTTC TGGGGTATGGATACGCAGAAGGAAGGCCACAGGACAGAGACACCGCTCAGATTGAGTCCTCT TGAGCAAAATTAAGGGAACAAGGTTGAGAGCCCTGCCCCGCCAGTGTAACTTCCAAGCCAGCTC СТТСАТTAATCTAGGTTGAATAGAGCTAAAIn41CCTTCTCCACCCCACACACAACCCCCTGCC ATAAAGCTTGCTGAGCAAAATTAAGGGAACAAAGACTTTGGATGAAATGTGAACCAACTCTT TGTTGGGGTGAGCTGATCTGAAATGAGCTACTCCTAACCCTGGGACTGAGAACATAGCTCTAT ССTGCAGTTGAGGCCAGCAGGTCGGCTGGACTAACATAAATTCAGCTGGCTGAACCAAACTTGAC GCCGCTAAGCTAAACTAGGCTGGCTTAACCGGATGGGATGGGATGGGATGGGATGGGATGGGATG TСТАСААСТСААТGTGGTTTAATGAATTTGGGATGGGATGGGATGGGATGGGATGGGATGGGATGGGATGGGATG

	AAGGCCACAGCTGTACAGAATTGAGAAAGAATGAACTGACTGGGCTGGACTCAGTTGACCTT ACAAGGTTGAGAGCCCTAGTAAGCGAGGCTIn32GGATGGGATGGGATGGGATGGGATGGGATG GCTAGGGTGAGCTGAGCTGGGTGAGCTGAGCTCCTAACCCTGGGACTGAGAACATAGCTCTA GCAAAGCTGGGCTTGAGCCAAAATGAAGTATAGGCTGGACTCAGTTGACCTTGCTCGTCTGA AGGCCAGACTCATAAAGCTTGCTGAGCAAA: GATGGGATGGGATGGGATGAACTGACTGGG TTGGGGTGAGCTGATCTGAAATGAGCTACTCTCCTAACCCTGGGACTGAGAACATAGCTCTA CTGGAATGAACTTCATTAATCTAGGTTGAATAGAGCTTTGCTGGATTGTTAAACTCACTGCTGAGGT CAAGGTGAGTGTGAGAGGACAGGGGCTGGGIn83GGATGGGATGGGATGGGATGGGATGGGATG TGGAGTAGCTGAGATGGGGTGAGATGGGGTGAGCTGAGCTGACCTAGGCAAGCTGTGCTGTCTGAGCTGG ATAAAGCTTGCTGAGCAAAATTAAGGGAACAAAGACTTTGGATGAAATGTGAACCAACTCTT TAGATCCAAGGTGAGTGTGAGAGGACAGGGIn21GGATGGGATGGGATGGGATGGGATGGGATG TGTGGTTTAATGAATTTGAAGTTGCCAGTAIn53GGATGGGATGGGATGGGATGGGATGGGATG AGCTGAGATGGGTGGGCTTСTСTGAGCGСTTCСTСTCGTCTTTGGGTCCACTGCTTGCTAAG GGGGTATGGATACGCAGAAGGAAGGCCACATCACTCCTACCCCGTGCTGGCTGATCTTCAGTCT
$\begin{aligned} & \text { Shid2 }{ }^{\text {KD }} \\ & \mathrm{n}=56 \end{aligned}$	ACTTCCTGGTTGTTAAAGAATGGTATCAAAAAGCTGGCTGAACCAAACTTGACAGTGAGCT AСTTCATTAATCTAGGTTGAATAGAGCTAA:CAGTTGCTGGAGTGGTGGGTCTGAAGCCAG CTGGTTGTTAAAGAATGGTATCAAAGGACAGGAGCCATGCAACCTAGTATCCTATTCTCAC GCCAGACTCATAAAGCTTGCTGAGCAAAATIn44GCCCAGACCCACCAGTTCTGGTCCTCCTAA GCCAGTAAATGTACTTCCTGGTTGTTAAAGATGGGATGGGATGGGATGGGATGGGATGAACTGA CCTGGGATTCTGGAAGAAAAGATGTTTTTA: CCTGCCCCGCCAGTGTAACTTCCAAGCCAG TGCTTAGATCCAAGGTGAGTGTGAGAGGACACTTGACAGTGAGCTAGCCTGGGGTGAATTA GACTCATAAAGCTTGCTGAGCAAAATTAAGTGTGCTGAGGTAACTGAAAAGACTTTGGATGA ATGAAGTAGACTGTAATGAACTGGAATGAGCTGGTGCCTTCATGGCAGGACAGAGACACCGCTCAGAT GACCTGCAGTTGAGGCCAGCAGGTCGGCTGIn23CAAAATGGCCTTCTCCACCCCACACACAAC GGGGTATGGATACGCAGAAGGAAGGCCACATCCCCTGCCCCGCCAGTGTAACTTCCAAGCC CTAAACTGAGGTGATTACTCTGAGGTAAGCIn28CTCAGATTGAGTCCTCTCGTCTTTGGGTCC AATGAACTTCATTAATCTAGGTTGAATAGA: СTGGTCCTCCTAACCCTGGGACTGAGAACA GСТАААСТСТАСТGССТАСАСТGGACTGTTCACACAACCCCCTGCCCCGCCAGTGTAACTT AGCCAAAATGAAGTAGACTGTAATGAACTGGATTGTGGCCTCTGGTTTGCTTTGTGTGAATG TAATGACCCAGACAGAGAAGGCCAGACTCAACTGGTCTAGATGGTCTAGTTGGGCTGGCCA ATGTACTTCCTGGTTGTTAAAGAATGGTATCAGTGTAACTTCCAAGCCAGCTCTTCCCCAAC GCTGAGCAAAATTAAGGGAACAAGGTTGAGAAACTCACTGCTGAGGTAACTGAAAAGACTT GGGCCGCTAAGCTAAACTAGGCTGGCTTAACCTACCCCGTGCTGGCTGATCTTCAGTCTCAG GGATTCTGGAAGAAAAGATGTTTTTAGTTTTTAAGTCCTCTCGTCTTTGGGTCCACTGCTTGC GAAGTTGCCAGTAAATGTACTTCCTGGTT:TCGTCTTTGGGTCCACTGCTTGCTAAGTGG GGCTGGACTAACTCTCCAGCCACAGTAATGACTTCCAAGCCAGCTCTTCCCCAACCACTCCT GTGAGAGGACAGGGGCTGGGGTATGGATACGCATGACTGGACTTATTCACAGTTCTAGCCTGA ATGTTTTTAGTTTTTATAGAAAACACTACTACACCCTCCTCCTTCССTGATTATCTGGTGGAA TTGAGCCAAAATGAAGTAGACTGTAATGAACTGGAATGGTTAAACTCACTGCTGAGGTAACTGAAAAG GGAGGGACCCAGGCTAAGAAGGCAATCCTGAGGTCTAGTTGGGCTGGCCAGGATAGTCAGA СTTAACCGAGATGAGCCAAACTGGAATGAAGGCCAGTGTAAGGTCAAAATGGCCTTCTCCACCCCACACACAAC TGCCAGTAAATGTACTTCCTGGTTGTTAAAGAGATGGACTTAGTTGAGGTGAAGTGAGAACTAGGCT GGTTGTTAAAGAATGGTATCAAAGGACAGTMH23TGACCTAGGCAAGCTGTGCTGTCTGAGCTG GCGCTAAACTGAGGTGATTACTCTGAGGTAGACTTCATGGCAGGACAGAGACACCGCTCAGA GAAGGCCACAGCTGTACAGAATTGAGAAAGAATGAGCTAACATAAATTCAGCTGGCTGAACCAAAC AAGGCAATCCTGGGATTCTGGAAGAAAAGATGCTAAGTGGATGGGCAGTTGCTGGAGTGGTGGGTC GAGGTAAGCAAAGCTGGGCTTGAGCCAAAATGAATTAGCATGACTGGACTTATTCACAGTTCTAGCCT AAGGCCAGACTCATAAAGCTTGCTGAGCAAAAACTTGACAGTGAGCTAGCCTGGGGTGAATT AAGGTTGAGAGCCCTAGTAAGCGAGGCTCTIn40AGGCGAAACTTGGCTTGGCTGGTTACAATG GCTGAGCTGAGATGGGTGGGCTTCTCTGAGTGTTCCCAACCACTCCTACCCCGTGCTGGCTGAT TAATGAACTGGAATGAGCTGGGCCGCTAACTGCCTTCATGGCAGGACAGAGACACCGCTC CCAAGGTGAGTGTGAGAGGACAGGGGCTGGGGAATTAGGCGAAACTTGGCTTGGCTGGTTAC GGACAGGGGCTGGGGTATGGATACGCAGAAGGAATTCACATGTACCTGTAAATGGTGCCTTCAT ACAGGCT-GACTGCAGGAGGAAGACTGGAAGGGCTCTCCACCCCACACACAACCCCCTGCCCCGC GAATAGAGACCTGCAGTTGAGGCCAGCAGGGATGGGATGGGGATGGGATGGGATGGGATGGGATGGGATG СTCTGAGGTAAGCAAAGCTGGGCTTGAGCCAAGCCAGAACAAGGCCAGTGTAAGGTGAAAAC TGGGGTGAGCTGATCTGAAATGAGCTACTCTGGAGTGGTGGGTCTGAAGCCAGAACAAGGCCAGTG TGAGAGCCCTAGTAAGCGAGGCTCTAAAAAGCACAGTATGCTGAAAGCCCTGCTAGAGTCATT GCTTСТСTGAGCGCTTCTAAAATGCGCTAAACTAGGCTGGAATTAGGCGAAACTTGGCTTGGC TGAGCTCAGCTATGCTACGCGTGTTGGGGTGAGCCATGCAACCTAGTATCCTATTCTCACACCC GACCCAGACAGAGAAGGCCAGACTCATAAAACTGATCTTCAGTCTCAGGTTGGCCACCCCT СТСТАAAAAGCATGGCTGAGCTGAGATGGGTGGCAGGACAGAGACACCGCTCAGATTGAGTCC ACTTCATTAATCTAGGTTGAATAGAGCTAAGGTCAAAATGGCCTTCTCCACCCCACACACAAC

	CCAGACTCATAAAGCTTGCTGAGCAAAATTAAGCCAGCTCTTCCCCAACCACTCCTACCCCGT TTGTTAAAGAATGGTATCAAAGGACAGAAGTTTGGATGAAATGTGAACCAACTCTTGTTT СТTСТСТGAGCGCTTCTAAAATGCGCTAAACTATTCTCACACССССТССТССТТСССТGATTA СТТСТАAAATGCGCTAAACTGAGGTGATTACTCTGAGGTAACTGAAAAGACTTTGGATGAAATGTGAACCA AATGAACTTCATTAATCTAGGTTGAATAGA: CTGGTCCTCCTAACCCTGGGACTGAGAACA GCGTGTTGGGGTGAGCTGATCTGAAATGAGATCCCTGCCCAGACCCACCAGTTCTGGTCCTC ATTGAGAAAGAATAGAGACCTGCAGTTGAGGCCAGCTCTTCCCCAACCACTCCTACCCCGTGCTGG
$\begin{aligned} & \text { Shld3 }{ }^{\mathrm{KO}} \\ & \mathrm{n}=54 \end{aligned}$	CAGGGGCTGGGGTATGGATACGCAGAAGG:TGGCAGGACAGAGACACCGCTCAGATTGAG CTTGCTGAGCAAAATTAAGGGAACAAGGTTCTGGTCCTCCTAACCCTGGGACTGAGA CAGACAGAGAAGGCCAGACTCATAAAGCTTG: GCCTGGGGTGAATTAGCATGACTGGACTTA GAAGAAAAGATGTTTTTAGTTTTTATAGAAIn22GGATGGGATGGGATGGGATGGGATGGGATG CAAAATTAAGGGAACAAGGTTGAGAGCCCT:TGAGCTTTGCTGGATTGTTAAACTCACTGC ATAGAAAACACTACTACATTCTTGATCTAC:TGTGTGAATGGAGCCATGCAACCTAGTATC АТТСТТGATСТАСААСТСААТGTGGTTTAATCTTССССААССАСТССТАССССGTGCTGGC AACTGAGGTGATTACTCTGAGGTAAGCAAAATGGATTGTTAAACTCACTGCTGAGGTAACT AACTGAGGTGATTACTCTGAGGTAAGCAAA:TTCAGTCTCAGGTTGGCCACCCCTGCCCAG AAGCAAAGCTGGGCTTGAGCCAAAATGAAGTAGATGGTCTAGTTGGGCTGGCCAGGATAGTCAG TGAGAGCCCTAGTAAGCGAGGCTCTAAAAAACTCTTCCCCAACCACTCCTACCCCGTGCTG AAAGCATGGCTGAGCTGAGATGGGTGGGCTTCAGAACTAGGCTGGAATTAGGCGAAACTTGG TGGTTTAATGAATTTGAAGTTGCCAGTAAATGTTTTATGGTCCAGATTGTGGCCTCTGGTTTG CTGAGGTGATTACTCTGAGGTAAGCAAAGCTGGGCTAGCCTGGGGTGAATTAGCATGACTGGACTT TGAGAGGACAGGGGCTGGGGTATGGATACGCAGAAGGAGAATCCGTGAAATGTTCCGTGCAAATGACT СTСАTAAAGCTTGCTGAGCAAAATTAAGGGAACATAGCTCTATCCACTGCCCAAACAGGAGTGG AGGAAGGCCACAGCTGTACAGAATTGAGAA: GGGACTGAGAACATAGCTCTATCCACTGCC AGCTGAGATGGGTGGGCTTCTCTGAGCGCT: ССTGGGACTGAGAACATAGCTCTATCCACT TTGAGAGCCCTAGTAAGCGAGGCTCTAAAA: GTAACTTCCAAGCCAGCTCTTCCCCAACCA ATTCTTGATCTACAACTCAATGTGGTTTAATGAATTAGCATGACTGGACTTATTCACAGTTCTAGC TCTACAACTCAATGTGGTTTAATGAATTTGAAAATGGCCTTCTCCACCCCACACACAACCCC TGGATACGCAGAAGGAAGGCCACAGCTGTACAGAATTGAGTCCTCTCGTCTTTGGGTCCACTGCTTGCTA TGCTTAGATCCAAGGTGAGTGTGAGAGGACAGGCGAAACTTGGCTTGGCTGGTTACAATGAGCTAA AGTTGAGGCCAGCAGGTCGGCTGGACTAACTCTCCACCCCACACACAACCCCCTGCCCCGCCAGTG AAAATGAAGTAGACTGTAATGAACTGGAATGACCCACCAGTTCTGGTCCTCCTAACCCTGGGAC AATGAATTTGAAGTTGCCAGTAAATGTACTTGGCTTGGCTGGTTACAATGAGCTAACATAA CAAGGTGAGTGTGAGAGGACAGGGGCTGGGGTGGATGGGCAGTTGCTGGAGTGGTGGGTCTG CTGGACTGAGCTGAGCTAGGGTGAGCTGAGCCACTCCTACCCCGTGCTGGCTGATCTTCAG AAGAATGGTATCAAAGGACAGTGCTTAGATCCTCCTCCTTCCCTGATTATCTGGTGGAAATTCACATG ATGCGCTAAACTGAGGTGATTACTCTGAGGTGAAGCCAGAACAAGGCCAGTGTAAGGTGAAAACAC TTTTTAGTTTTTATAGAAAACACTACTACA:GGTGAATTAGCATGACTGGACTTATTCA CTGGGGTATGGATACGCAGAAGGAAGGCCA: ATGGTCCAGATTGTGGCCTCTGGTTTGCTT ACAGTAATGACCCAGACAGAGAAGGCCAGACACATGTACCTGTAAATGGTGCCTTCATGGCAGGA GCTGAGATGGGGTGAGATGGGGTGAGCTGAACTGAGAACATAGCTCTATCCACTGCCCAAACAGG СТТСТСТGAGCGCTTСТАAAATGCGCTAAACAGGTTGGCCACCССTGCCCAGACCCACCAG СTTCCTGGTTGTTAAAGAATGGTATCAAAGGACAGTGAGCTAGCCTGGGGTGAATTAGCATGACTG TAAACTGAGGTGATTACTCTGAGGTAAGCAAACCCCCTGCCCCGCCAGTGTAACTTCCAAGC CTGAGCGCTTCTAAAATGCGCTAAACTGAGIn24CAAAATGGCCTTCTCCACCCCACACACAAC AAAACACTACTACATTCTTGATCTACAACTCAGTTCTGGTCСTССTAACCCTGGGACTGAGA TAAGGAGGGACCCAGGCTAAGAAGGCAATCCTGGTTTGCTTTGTGTGAATGGAGCCATGCAACCTAG ACAGTGCTTAGATCCAAGGTGAGTGTGAGA:TAGATGGTCTAGTTGGGCTGGCCAGGATAGTC AGAGGACAGGGGCTGGGGTATGGATACGCAGAAGGTCTAGTTGGGCTGGCCAGGATAGTCAGAAC TGTTGGGGTGAGCTGATCTGAAATGAGCTACTAACCCTGGGACTGAGAACATAGCTCTATCCACTGCCC СТСАТАAAGCTTGCTGAGCAAAATTAAGGGAGCTCTTCСССААССАСТССТАССССGTG AGAAAAGATGTTTTTAGTTTTTATAGAAAACATGCAACCTAGTATCCTATTCTCACACCCCC GTAGACTGTAATGAACTGGAATGAGCTGGGCCGCTCAGATTGAGTCCTCTCGTCTTTGGGTCCA ATGGATACGCAGAAGGAAGGCCACAGCTGT: ССССTССTССTTCCCTGATTATCTGGTGGAA GTTTAATGAATTTGAAGTTGCCAGTAAATGTCATGGCAGGACAGAGACACCGCTCAGATTGC СTСАGСTATGCTACGCGTGTTGGGGTGAGCTGATTTCAGTCTCAGGTTGGCCACCCCTGCCCA CTGTAATGAACTGGAATGAGCTGGGCCGCTAACCACTCCTACCCCGTGCTGGCTGATCTTCA TAATGAATTTGAAGTTGCCAGTAAATGTACTGGCAGGACAGAGACACCGCTCAGATTGAGT TTAСТСТGAGGTAAGCAAAGCTGGGCTTGAGCCTTCTCСAССССАСАСАСААСССССТGСССС СTACACTGGACTGTTCTGAGCTGAGATGAGCTCCTACCCCGTGCTGGCTGATCTTCAGTCT ACAGAATTGAGAAAGAATAGAGACCTGCAGTTGCTAAGTGGATGGGCAGTTGCTGGAGTGGT

Shld1 ${ }^{\mathrm{KO}}+$ Hnrnpu ${ }^{\text {KD }}$ $\mathrm{n}=40$	GATCTGAAATGAGCTACTCTGGAGTAGCTGACACACAACCCCCTGCCCCGCCAGTGTAACT AGCTGGGCTTGAGCCAAAATGAAGTAGACTATGGGACTGAGAACATAGCTCTATCCACTGC GCTGAGATGGGGTGAGATGGGGTGAGCTGA: CCCGTGCTGGCTGATCTTCAGTCTCAGGTT CTCCAGCCACAGTAATGACCCAGACAGAGATCTGTAAATGGTGCCTTCATGGCAGGACAGA ATAGAGCTAAACTCTACTGCCTACACTGGAGGCCAGTGTAAGGTCAAAATGGCCTTCTCCACCCCACACACAAC CTGGGATTCTGGAAGAAAAGATGTTTTTAGTAGCATGACTGGACTTATTCACAGTTCTAGC GTGAGCTCAGCTATGCTACGCGTGTTGGGGTGAGCTGATCTAGATGGTCTAGTTGGGCTGGCCAGGATAGT GTTCTGAGCTGAGATGAGCTGGGGTGAGCTCAGCTCTTCCCCAACCACTCCTACCCCGTGCTGGC GCTGAGCTGGACTGAGCTGAGCTAGGGTGAGCTGAGCTGACCTAGGCAAGCTGTGCTGTCTGAGCTGGC GAGAAGGCCAGACTCATAAAGCTTGCTGAGCATGGCAGGACAGAGACACCGCTCAGATTGAG GACAGAGAAGGCCAGACTCATAAAGCTTGCTGAGCTAGCCTGGGGTGAATTAGCATGACTGGACT GCCAAAATGAAGTAGACTGTAATGAACTGGAGCCAAAATGAAGTAGACTGTAATGAACTGG GCAAAATTAAGGGAACAAGGTTGAGAGCCCTTAAACTCACTGCTGAGGTAACTGAAAAGAC GAGAGCCCTAGTAAGCGAGGCTCTAAAAAGCATGGCAGGACAGAGACACCGCTCAGATTGAGTC СTGCCTACACTGGACTGTTCTGAGCTGAGAGTTGGCTTGGCTGGTTACAATGAGCTAACAT GAATGGTATCAAAGGACAGTGCTTAGATCCGAAAGACTTTGGATGAAATGTGAACCAACTC GTGATTACTCTGAGGTAAGCAAAGCTGGGC: AGTGGATGGGCAGTTGCTGGAGTGGTGGGT AATGAGCTGGGCCGCTAAGCTAAACTAGGCTGGCAGGACAGAGACACCGCTCAGATTGAGTCCT АСТААСТСТССАGССАСАGTAATGACCCAGACAGAGACACCGCTCAGATTGAGTCСTCTCGTCTTTG CTGGAGTAGCTGAGATGGGGTGAGATGGGGTGAGCTAACATAAATTCAGCTGGCTGAACCAAACTT GTGAGCTGAGCTGAGCTGGGGTGAGCTGAGATGCAGAACAAGGCCAGTGTAAGGTCAAAATGGCCTTCTCCACCCCACACACAAC CTTCCTGGTTGTTAAAGAATGGTATCAAAGGATCTTCAGTCTCAGGTTGGCCACCCCTGCCC AGCTGGGCTTGAGCCAAAATGAAGTAGACTIn53CTTCTCCACCCCACACACAACCCCCTGCCC GCCAAACTGGAATGAACTTCATTAATCTAG: CTGAGAACATAGCTCTATCCACTGCCCAAA GAATGGTATCAAAGGACAGTGCTGAAAAGACTTTGGATGAAATGTGAACC GGTTGTTAAAGAATGGTATCAAAGGACAGTACTCTGGGGTGAATTAGCATGACTGGACTTATT GAGGGACCCAGGCTAAGAAGGCAATCCTGGAAATGGTGGAAATTCACATGTACCTGTAAATGGT GCCAGTAAATGTACTTCCTGGTTGTTAAAGAATGGTGCCTTCATGGCAGGACAGAGACACCGCTCA AAGGTTGAGAGCCCTAGTAAGCGAGGCTCTGAATGTGTGAATGGAGCCATGCAACCTAGTATC GTACTTCCTGGTTGTTAAAGAATGGTATCAAACCAACTCTTGTTTTATGGTCCAGATTGTGG АСАСТАСТАСАТТСТTGATCTACAACTCAATGTGAATGGAGCCATGCAACCTAGTATCCTATTC TGAGAGCCCTAGTAAGCGAGGCTCTAAAAAIn27AGCTCTTССССААССАСТССТАССССGTGC GCTGGGCCGCTAAGCTAAACTAGGCTGGCTGGCCAGTGTAAGGTCTACCCCGTGCTGGCTGATCTTCAGTCTCA TACAGAATTGAGAAAGAATAGAGACCTGCAGTTGACCTTGCTCGTCTGAGCTGGTCTAGATGGTC TCCAAGGTGAGTGTGAGAGGACAGGGGCTGGGATGGGCAGTTGCTGGAGTGGTGGGTCTGAA GAATTTGAAGTTGCCAGTAAATGTACTTCCTGGCTGAACCAAACTTGACAGTGAGCTAGCCTG GTTTAATGAATTTGAAGTTGCCAGTAAATGTTCAGCTGGCTGAACCAAACTTGACAGTGAG CAGCTGTACAGAATTGAGAAAGAATAGAGACCTCCTTCCCTGATTATCTGGTGGAAATTCACA GGACTAACTCTCCAGCCACAGTAATGACCC:TGCCTTCATGGCAGGACAGAGACACCGCTC
$\begin{aligned} & \text { Shld2 }{ }^{\text {KD }}+ \\ & \text { Hnrnpu }^{\text {KD }} \\ & \mathrm{n}=47 \end{aligned}$	GACAGAGAAGGCCAGACTCATAAAGCTTGCCAGTGTAAGGTCAAAATGGCCTTCTCCACCCCACACACAAC TGTACAGAATTGAGAAAGAATAGAGACCTGAGAACATAGCTCTATCCACTGCCCAAACAG CAGCCACAGTAATGACCCAGACAGAGAAGGCCCCACACACAACCCCCTGCCCCGCCAGTGTA AСTTCCTGGTTGTTAAAGAATGGTATCAAA: ССССТССТССТTСССТGATTATCTGGTGGA ATAGAGACCTGCAGTTGAGGCCAGCAGGTCGGCTTGGCTGGTTACAATGAGCTAACATAAAT ATGTACTTCCTGGTTGTTAAAGAATGGTATCAACCTAGTATCCTATTCTCACACCСССТССТС GCATGGCTGAGCTGAGATGGGTGGGCTTCTCTGAGAACATAGCTCTATCCACTGCCCAAACAGGA TCAAAGGACAGTGCTTAGATCCAAGGTGAGGGGGATGGGCAGTTGCTGGAGTGGTGGGTCTG GAAAAGATGTTTTTAGTTTTTATAGAAAAC: GTGAATGGAGCCATGCAACCTAGTATCCTA GAGATGGGTGGGCTTCTCTGAGCGCTTCTAIn464GGACTGAGAACATAGCTCTATCCACTGCCC GGTGGGCTTСТСTGAGCGCTTCTAAAATGCGCTAAACTGAGCTGAACTAGGATGGGATGGGATGGGATGGG GTGGGCTTCTCTGAGCGCTTCTAAAATGCGCTAACCCTGGGACTGAGAACATAGCTCTATCCAC AGTAATGACCCAGACAGAGAAGGCCAGACTCATAAATTCAGCTGGCTGAACCAAACTTGACAGTGA TAGAGACCTGCAGTTGAGGCCAGCAGGTCGGGCTTGGCTGGTTACAATGAGCTAACATAAA AGTAATGACCCAGACAGAGAAGGCCAGACTTACAGTTCTAGCCTGAGCTTTGCTGGATTGT GCCAGACTCATAAAGCTTGCTGAGCAAAATTCCTCTCGTCTTTGGGTCCACTGCTTGCTAA ACAGTAATGACCCAGACAGAGAAGGCCAGACTTGCTAAGTGGATGGGCAGTTGCTGGAGTGG AGCTATGCTACGCGTGTTGGGGTGAGCTGATCTGAAGCCAGAACAAGGCCAGTGTAAGGTGAAA ССТAGTAAGCGAGGCTCTAAAAAGCATGGCTGAGCTGGGTTGAGCTGAACTAGTATAAACTTGGCTA TTCCTGGTTGTTAAAGAATGGTATCAAAGGTGGGATGGGATGGGATGGGATGGGATGGGATGGGATG TACAGAATTGAGAAAGAATAGAGACCTGCAGTTACAATGAGCTAACATAAATTCAGCTGGCTG AGACTCATAAAGCTTGCTGAGCAAAATTAATAAGGCCAGTGTAAGGTCAAAATGGCCTTCTCCACCCCACACACAAC GTGTGAGAGGACAGGGGCTGGGGTATGGATACATGTACCTGTAAATGGTGCCTTCATGGCAG

	TACAACTCAATGTGGTTTAATGAATTTGAA: TAACATAAATTCAGCTGGCTGAACCAAACT GCTCTAAAAAGCATGGCTGAGCTGAGATGGCAGGACAGAGACACCGCTCAGATTGAGTCC TCAAAGGACAGTGCTTAGATCCAAGGTGAGIn88GTGTAACTTCCAAGCCAGCTCTTCCCCAAC CAAGGTGAGTGTGAGAGGACAGGGGCTGGGATTTGGCTTGGCTGGTTACAATGAGCTAACAT CAAAATGAAGTAGACTGTAATGAACTGGAATGAGAACATAGCTCTATCCACTGCCCAAACAGGA ACCCAGACAGAGAAGGCCAGACTCATAAAGCTTGCTAAGTGGATGGGCAGTTGCTGGAGTGGTGG AGAAGGAAGGCCACAGCTGTACAGAATTGACCAAACTTGACAGTGAGCTAGCCTGGGGTG CTGAGCTGAGATGGGTGGGCTTCTCTGAGCIn90GGATGGGATGGGATGGGATGGGATGGGATG GGTGAGCTCAGCTATGCTACGCGTGTTGGGGTCTCAGGTTGGCCACCCCTGCCCAGACCCAC TTTGAAGTTGCCAGTAAATGTACTTCCTGGTTATTCACAGTTCTAGCCTGAGCTTTGCTGGA GGCCAGCAGGTCGGCTGGACTAACTCTCCAGATGGGATGGGATGGGATGGGATGAACTGAC ACCCAGACAGAGAAGGCCAGACTCATAAAGIn37ACCTGTAAATGGTGCCTTCATGGCAGGACA GCTGAGCAAAATTAAGGGAACAAGGTTGAGAGCCAGCTCTTCСССАAССАСТССТАССССGTGC GTTTTTAGTTTTTATAGAAAACACTACTACATGAACTGACTGGGCTGGACTCAGTTGACCTT TAAAAAGCATGGCTGAGCTGAGATGGGTGGGCTGGCTGATCTTCAGTCTCAGGTTGGCCACCC CTGAGCTGAGATGGGTGGGCTTCTCTGAGCIn36GATGGGCAGTTGCTGGAGTGGTGGGTCTGA TGAGCAAAATTAAGGGAACAAGGTTGAGAGCTGGGGTGAGCTGAGCTGGAGTTGCTGGAGTGGTGGGTCTGAAGCCAGA GAGACCTGCAGTTGAGGCCAGCAGGTCGGCTGGATGGGCAGTTGCTGGAGTGGTGGGTCTGAAG CTGAGATGGGGTGAGATGGGGTGAGCTGAGCTGGGCTGAGCTGGAATGAGCTGGGTTGAGCTGAACTAGT AGTAAGCGAGGCTCTAAAAAGCATGGCTGACCAGTCAGATTGAGTCCTCTCGTCTTTGGGTCCA ACTTCCTGGTTGTTAAAGAATGGTATCAAAGGACTTATTCACAGTTCTAGCCTGAGCT TCAATGTGGTTTAATGAATTTGAAGTTGCCAGTCAGAACTAGGCTGGAATTAGGCG GGACAGGGGCTGGGGTATGGATACGCAGAA: ACCAGTTCTGGTCCTCCTAACCCTGGGACT CTGAGCTGAGATGGGTGGGCTTCTCTGAGCGTGGGCAGTTGCTGGAGTGGTGGGTCTGAAG
$\begin{aligned} & \text { Shld3 }^{\mathrm{KO}+} \\ & \text { Hnrnpu } \mathrm{KD} \\ & \mathrm{n}=38 \end{aligned}$	ATGAGCCAAACTGGAATGAACTTCATTAATIn24TGCCCCGCCAGTGTAACTTCCAAGCCAGCT TGAGAGGACAGGGGCTGGGGTATGGATACGCACTCCTACCCCGTGCTGGCTGATCTTCAGTC AAGGCCACAGCTGTACAGAATTGAGAAAGAACACACAACCCCCTGCCCCGCCAGTGTAACT TАСТАСАТТСТTGATСТАСААСТСААТGTG: ССТGСССАGACCСАССАGTTCTGGTССТСС CTAAAAAGCATGGCTGAGCTGAGATGGGTGTAAGCCAGAACAAGGCCAGTGTAAGGTGAAA ATGTGGTTTAATGAATTTGAAGTTGCCAGTAAATGGCCTTCTCCACCCCACACACAACCCCCTGC CCGAGATGAGCCAAACTGGAATGAACTTCATTTGCTGGATTGTTAAACTCACTGCTGAGGTA AAAAGCATGGCTGAGCTGAGATGGGTGGGCTTCTCCACCCCACACACAACCCCCTGCCCCGCCA TGAGTGTGAGAGGACAGGGGCTGGGGTATGIn75GGATGGGATGGGATGGGATGGGATGGGATG TGTTAAAGAATGGTATCAAAGGACAGTGCTIn46AGGCTGGAATTAGGCGAAACTTGGCTTGGC AGTAGCTGAGATGGGGTGAGATGGGGTGAGIn13GTTGCTGGAGTGGTGGGTCTGAAGCCAGAA GTTGTTAAAGAATGGTATCAAAGGACAGTGCTTCCCCAACCACTCCTACCCCGTGCTGGCTGA GAGCTGAGCTGGGGTGAGCTGAGCTGAGCTGGAGTGAGCTCTCCTACCCCGTGCTGGCTGATCTTCAGTC TCCTGGTTGTTAAAGAATGGTATCAAAGGACAGTGCTGAGGTAACTGAAAAGACTTTGGATGAAATG AGCTGAGCTGAGCTGAGCTGGGGTGAGCTGGTCCACCCCACACACAACCCCCTGCCCCGCC GGCTGAGCTGGACTGAGCTGAGCTAGGGTGAGTTCTGGTCCTCCTAACCCTGGGACTGAGAA GAGGCTCTAAAAAGCATGGCTGAGCTGAGATGGGTCCACTGCTTGCTAAGTGGATGGGCAGTTGC GCTGGACTAACTCTCCAGCCACAGTAATGACCCAGACCCACCAGTTCTGGTCCTCCTAACCCTGG TCTGAGGTAAGCAAAGCTGGGCTTGAGCCAAAATCTGGAGCGCTAGACTGCTCAGGGGTGTAGT AAСТСТАСТGССТАСАСТGGACTGTTCTGA:TTCAGTCTCAGGTTGGCCACCCCTGCCCAG GGGTATGGATACGCAGAAGGAAGGCCACAGCTGAGCTGGTCTAGATGGTCTAGTTGGGCTGGC GAGCAAAATTAAGGGAACAAGGTTGAGAGCCCTAGATAGAGTTGCACTGAGGTAGGTTAGACAGG ATCAAAGGACAGTGCTTAGATCCAAGGTGA:TGGGACTGAGAACATAGCTCTATCCACTGC CAATGTGGTTTAATGAATTTGAAGTTGCCACCTGGTGGAAATTCACATGTACCTGTAAATG ACTGAGGTGATTACTCTGAGGTAAGCAAAGCTGTAAATGGTGCCTTCATGGCAGGACAGAGAC TTAGATCCAAGGTGAGTGTGAGAGGACAGGGGCTTGGCTGGTTACAATGAGCTAACATAAATTC TGAGAGCCCTAGTAAGCGAGGCTCTAAAAAGGTCCTCСTAACCCTGGGACTGAGAACATAG AGTAAGCGAGGCTCTAAAAAGCATGGCTGA: CTCAGGTTGGCCACCCCTGCCCAGACCCAC TAAGGAGGGACCCAGGCTAAGAAGGCAATCCTGGACTTATTCACAGTTCTAGCCTGAGCTTT GCAAAATTAAGGGAACAAGGTTGAGAGCCCATCACACCСССТССТССТTСССТGATTATCT GACTCATAAAGCTTGCTGAGCAAAATTAAGGGTTACAATGAGCTAACATAAATTCAGCTGGC GCTTGAGCCAAAATGAAGTAGACTGTAATGAACTGGCCTTCTCCACCCCACACACAACCCCCTGCC GACAGGGGCTGGGGTATGGATACGCAGAAG:TTCCCTGATTATCTGGTGGAAATTCACATG GGTTTAATGAATTTGAAGTTGCCAGTAAATAACTCCTACCCCGTGCTGGCTGATCTTCAGT AGAAAGAATAGAGACCTGCAGTTGAGGCCAGCAGGACAGAGACACCGCTCAGATTGAGTCCTCTC ATGCGCTAAACTGAGGTGATTACTCTGAGGTAAATGGTGCCTTCATGGCAGGACAGAGACACC CAGCTGTACAGAATTGAGAAAGAATAGAGACCCACACACAACCCCCTGCCCCGCCAGTGTAA СTTAACCGAGATGAGCCAAACTGGAATGAACTTCCCCAACCACTCCTACCCCGTGCTGGCTGAT

Blunt junctions are indicated with ":", Microhomology (MH) in bold, and nucleotide additions are underlined.

Table S3. Summary for the SHM analysis

CH12F3-2A cells	\# Sequences	Bases sequenced	Total Mutations	Mutation Frequency
WT/siControl	84	47460	15	3.16×10^{-4}
Hnrnpu ${ }^{\text {KD }}$	85	48025	20	4.16×10^{-4}
53bp1 ко	85	48025	15	3.12×10^{-4}
$53 \mathrm{bp} 1^{\text {Ko/Hnrnpu }}{ }^{\text {KD }}$	79	44635	16	3.58×10^{-4}
Shld1 ко	81	45765	13	3.24×10^{-4}
Shld $1^{\text {KO} / H n r n p u ~}{ }^{\text {KD }}$	83	46895	14	3.49×10^{-4}
Shld 2 KD	84	47460	17	3.58×10^{-4}
Shld 2 KD/Hnrnpu ${ }^{\text {KD }}$	85	48025	19	3.75×10^{-4}
Shld3 ${ }^{\text {ко }}$	89	50285	22	4.38×10^{-4}
Shld3 ${ }^{\text {KO/Hnrnpu }}$ KD	81	45765	15	3.28×10^{-4}

