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A B S T R A C T

The shape of the epithelial monolayer can be depicted as a curved tissue in three-dimensional (3D) space, where
individual cells are tightly adhered to one another. The 3D morphogenesis of these tissues is governed by cell
dynamics, and a variety of mathematical modeling and simulation studies have been conducted to investigate
this process. One promising approach is the cell-center model, which can account for the discreteness of
cells. The cell nucleus, which is considered to correspond to the cell center, can be observed experimentally.
However, there has been a shortage of cell-center models specifically tailored for simulating 3D monolayer
tissue deformation. In this study, we developed a mathematical model based on the cell-center model to
simulate 3D monolayer tissue deformation. Our model was confirmed by simulating the in-plane deformation,
out-of-plane deformation, and invagination due to apical constriction.

1. Introduction

Cell dynamics mediates the morphogenesis of tissues and organs
in living organisms. Cell division and apical constriction actively con-
tribute to morphogenesis. Timing and the anisotropy of cell division
can often influence tissue-folding patterns (Adachi et al., 2018). Api-
cal constriction refers to the interactions between actin and myosin
accumulated on the apical side of the cell. These interactions exert
contractile forces and cause the cell to become wedge shaped (Mar-
tin and Goldstein, 2014). Examples of apical constriction-driving or-
gan morphogenesis include gastrulation (Lee and Harland, 2007) and
neurulation (Lowery and Sive, 2004).

Various mathematical modeling and simulation studies have been
conducted to elucidate the morphogenetic mechanisms based on cel-
lular interactions. Here, we discuss two models that can handle the
discreteness of cells. One simulation method that can address the
discrete nature of cells is the vertex model, which represents cells as
polyhedral in three-dimensional (3D) simulations (Honda et al., 2004;
Okuda et al., 2013b) and as polygons in 2D simulations (Fletcher
et al., 2014; Alt et al., 2017). Because the vertex models can describe
all degrees of freedom involved in morphological changes, they are
useful for simulating biological processes at a microscopic scale (Inoue
et al., 2016; Inaki et al., 2018). However, modeling individual cells as
polyhedral requires many degrees of freedom and substantial compu-
tational resources. Moreover, the geometric locations of the polyhedral
vertices from the experimental data is extremely difficult to determine.
These drawbacks limit suitability of 3D vertex models for predicting
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or estimating biological parameters involved in specific morphogenetic
processes.

The cell-center model (Meineke et al., 2001; Szabó et al., 2006;
Pathmanathan et al., 2009; Osborne et al., 2010; Li and Sun, 2014;
Lomas, 2014; Soumya et al., 2015; Bi et al., 2016; Barton et al.,
2017; Bonilla et al., 2020) is another model that can handle cellular
discreteness. This model is suitable for treating phenomena involving
cell migration, such as wound healing (Antunes et al., 2013; Brugués
et al., 2014) and tumor invasion (Metzcar et al., 2019), in which
the cell center continuously changes over time. In this study, we
focus on the mechanics of epithelial monolayers. The shape of the
epithelial monolayer is represented as a curved tissue in 3D space,
where individual cells are tightly adhered to each other. Consequently,
the shape of the individual cells affects the morphology of the tissue.
Because cell centers alone cannot represent this structure, Delaunay
triangulation and Voronoi tessellation are commonly used to establish
cell shape. However, these methods require fulfillment of the empty
circle property. Therefore, with point set coordination changes, it is
necessary to assess whether the constraint condition is met, while
maintaining the consistent adjacency relationships of the cells. This is
because the circumcenter of an obtuse triangle can be outside of the
triangle itself. To avoid this complexity, we adopt the use of the center
of mass to represent cell shape, as explained in a later section. Unlike
using the circumcenter of a triangle, the center of mass is always inside
the triangle.
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Fig. 1. (A) Definition of a triangular element. Under the condition that three cells are
in contact with each other, it is possible to construct a triangular element by connecting
neighboring cell centers. The blue lines are cell boundaries and the dots represent cell
centers. And the black line connecting their adjacencies makes a triangle. (B) Definition
of the shape of cell 𝑖. 𝒙𝑖 is the position vector of cell 𝑖. The cells connected to cell 𝑖
are denoted 𝑗 to 𝑗 + 5 counterclockwise. The polygon connecting the centers of mass
𝒈𝑚 to 𝒈𝑚+5 of these triangles is defined as the shape of cell 𝑖.

Recent advances in live-cell staining and imaging techniques have
enabled real-time observation of cell nuclei in tissue samples. Addi-
tionally, researchers have been developing bioprinting (Murphy and
Atala, 2014), a technology that builds 3D biological constructs from
induced pluripotent stem cells (SCs) (Romanazzo et al., 2019). These
technologies can help to elucidate the mechanisms of morphogenesis.
The knowledge gained will open the door to tissue engineering ap-
plications. For this purpose, we need a 3D mathematical model that
assimilates nuclear position data to predict tissue morphogenesis.

The main objective of this study is to create a new 3D mathematical
model of tissue morphogenesis, which conceptually differs from the so-
called ‘‘vertex models’’, in which cells constituting a tissue sheet are
represented by polygons or polyhedral. Our simplified model represents
cells as points in 3D space, but does not include terms describing
structural changes. This model is an extension of the cell center model
to address 3D tissue deformation and is evaluated for its ability to sim-
ulate in-plane deformation, out-of-plane deformation, and invagination
resulting from apical constriction.

2. Cell-center-based model

In the proposed model, individual cells constituting an epithelial
sheet are represented as points in the same manner as in cell-center-
based models (Meineke et al., 2001; Szabó et al., 2006; Pathmanathan
et al., 2009; Osborne et al., 2010; Li and Sun, 2014; Lomas, 2014;
Soumya et al., 2015; Bi et al., 2016; Barton et al., 2017; Bonilla et al.,
2020). As defined in Fig. 1(A), under the condition that three cells
are in contact with each other, it is possible to construct a triangular
element by connecting neighboring cell centers. The epithelial sheet is

Fig. 2. Angle 𝜃𝑖𝑗 around the edge shared by two triangles. 𝑖, 𝑗, 𝑘, and 𝑘′ indicate cells.

represented as a network of triangular elements formed by connecting
adjacent points. Based on this framework, we mathematically express
the cell shape, motion, intercalation, division, and apical constriction
as described in the following section.

2.1. Cell shape representation

Cell shape is represented by the 2D contour of a cell projected on
the neutral plane of the epithelial sheet. To express the shape of cell 𝑖,
we define a polygon connecting the center of mass 𝒈𝑚 of each triangle
𝑚 that shares cell 𝑖 (Fig. 1(B)). In this model, cell shape is used for the
calculation of cell divisions and rearrangements.

2.2. Equation of the cell motion of each cell

By omitting the inertia term, we can express the equation of motion
of cell 𝑖 as follows:

𝜂
𝑑𝒙𝑖
𝑑𝑡

= −∇𝒙𝑖𝐸 (1)

where 𝜂 is the cell point friction coefficient, 𝒙𝑖 is the position vector of
cell 𝑖, and 𝐸 is the energy function of the system.

The energy function 𝐸 is the sum of the mechanical energy 𝐸Mech
of the network of triangular elements and the constraint energy 𝐸Center
required to satisfy the constraints of cell center:

𝐸 = 𝐸Mech + 𝐸Center (2)

The mechanical energy function 𝐸Mech consists of edge length elastic
energy 𝐸𝐿, triangular surface elastic energy 𝐸𝑆 , dihedral angle elastic
energy 𝐸𝐷, apical constriction energy 𝐸apical, cell repulsion energy 𝐸Rep,
and out-of-plane deformation restraint energy 𝐸𝑍 :

𝐸Mech = 𝐸𝐿 + 𝐸𝑆 + 𝐸𝐷 + 𝐸apical + 𝐸Rep + 𝐸𝑍 (3)

The edge length energy 𝐸𝐿 is the sum of a quadratic energy function
that brings the edge length 𝐿𝑖𝑗 between two adjacent cells 𝑖 and 𝑗
close to the equilibrium edge length 𝐿eq, using the edge length elastic
constant 𝐾𝐿:

𝐸𝐿 =
∑

⟨𝑖,𝑗⟩

1
2
𝐾𝐿(𝐿𝑖𝑗 − 𝐿eq)2 (4)

where ⟨𝑖, 𝑗⟩ below the summation symbol implies all edges connecting
two adjacent cells. The triangular area elastic energy 𝐸𝑆 is the sum of
the quadratic energies that keep the triangle area 𝐴𝑖𝑗𝑘 formed by cells 𝑖,
𝑗, and 𝑘 to the equilibrium triangle area 𝐴eq, using the triangular area
elastic constant 𝐾𝑆 :

𝐸𝑆 =
∑

⟨𝑖,𝑗,𝑘⟩

1
2
𝐾𝑆 (𝐴𝑖𝑗𝑘 − 𝐴eq)2 (5)

where ⟨𝑖, 𝑗, 𝑘⟩ below the summation symbol indicates all triangles
among the three adjacent cells. The dihedral angle elastic energy 𝐸𝐷
(a surrogate for bending stiffness) is the sum of the quadratic energies
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Fig. 3. (A) Cell intercalation. Cell 3 and cell 4 interrupt cell 1 and cell 2, and the adhesive relationship is updated to cell 3 and cell 4. (B) Representation of flipping. A flip is
performed only when the distance between the centers of mass of the two triangles (𝑙1) is less than the length threshold (𝑙th) and the length before the flip (𝑙1) is shorter than
that after the flip (𝑙2). 𝑙2 is the expected length assuming a flip has occurred. The position of the cell point does not move with the flip. After the flip, a cool time is set during
which the flip does not occur for the duration of 𝜏ct .

that keep the dihedral angle 𝜃𝑖𝑗 formed by two triangles sharing the
edge between cells 𝑖 and 𝑗 (Fig. 2) to the equilibrium dihedral angle
𝜃eq, using the dihedral angle elastic constant 𝐾𝐷:

𝐸𝐷 =
∑

⟨𝑖,𝑗⟩

1
2
𝐾𝐷(𝜃𝑖𝑗 − 𝜃eq)2 (6)

The apical constriction energy 𝐸apical brings the adjacent vertex
position vectors 𝒈𝑚 and 𝒈𝑚′ of the cell shape closer together when apical
constriction occur at the edge 𝑚−𝑚′. We will explain in detail in 2.5.

𝐸apical =
1
2
𝐾apical‖𝒈𝑚 − 𝒈𝑚′‖

2 (7)

where 𝐾apical is the apical constriction constant. The cell repulsion
energy 𝐸Rep is the sum of the energies that keep the distance 𝑟𝑖𝑗 between
cells 𝑖 and 𝑗 to cut-off distance 𝑟𝑐 when 𝑟𝑖𝑗 is smaller than 𝑟𝑐 .

𝐸Rep =

{

∑

𝑖
∑

𝑗<𝑖
1
2𝐾Rep(

𝑟𝑖𝑗
𝑟𝑐

− 1)2 (𝑟𝑖𝑗 < 𝑟𝑐 )
0 (𝑟𝑖𝑗 ≥ 𝑟𝑐 )

(8)

where 𝐾Rep is the cell repulsion constant. The out-of-plane deformation
restraint energy 𝐸𝑍 represents the sum of the energies restricts the
𝑧 displacement 𝑑𝑖𝑧 of cell 𝑖 from its initial position. In this case, it
is weighted by the area 𝑆𝑖 of cell 𝑖 and the out-of-plane deformation
constraint constant 𝐾𝑍 . 𝑆𝑖 is defined as 𝑆𝑖 = 1

3
∑

𝑚 𝑨𝑚 ⋅ 𝒏𝑖. Here, the
normal unit vector 𝒏𝑖 at cell 𝑖 is obtained by normalizing the sum of
the unit normal vectors of all triangles sharing cell 𝑖. 𝑨𝑚 is the vector
area of triangle 𝑚 which has cell 𝑖 as the vertex of the triangle.

𝐸𝑍 =
∑

𝑖

1
2
𝐾𝑍𝑆𝑖𝑑

2
𝑖𝑧 (9)

The constraint energy 𝐸Center denotes the energy required by the
model’s assumptions on cell center and can be expressed with the
constraint constant 𝐾Center as follows:

𝐸Center =
1
2
𝐾Center

∑

𝑖
‖(𝒙𝑖 − 𝒙Center𝑖 ) − [(𝒙𝑖 − 𝒙Center𝑖 ) ⋅ 𝒏𝑖]𝒏𝑖‖2 (10)

𝒙Center𝑖 = 1
𝑁𝑖

∑

𝑗(𝑖)
𝒙𝑗 (11)

Here, 𝒙Center𝑖 is the position vector of the center of mass of cell 𝑖 where
𝑗(𝑖) below the summation symbol implies all the cells connected to cell
𝑖, and the number of these cells 𝑁𝑖 =

∑

𝑗(𝑖) 1.
The model presented here includes dihedral energy (Eq. (6)) as a

surrogate for the bending stiffness of the epithelial sheet. Variable 𝜃eq
in Eq. (6) follows a normal distribution with a mean 𝜃aveeq and standard
deviation 𝜃SDeq . This distribution reflects fluctuations in elastic energy in
the cell height direction. Eq. (8) represents the repulsive interactions
in effect only when the distance between two cells is smaller than
𝑟𝑐 , reflecting the physical constraints due to the cell volume. Eq. (10)
embodies the model’s requirement that the position of a cell must
coincide with the center of mass of its 2D shape on the normal surface
plane (further details are provided in Appendix A).

To resolve Eq. (1), parameter values were normalized by unit length
𝑙, energy 𝐸0, and time 𝜏. Here 𝑙, 𝐸0, and 𝜏 were set as 𝑙 = 𝐿eq,
𝐸0 =

1
2𝐾𝐿𝑙2, and 𝜏 = 4𝜂𝑙2∕𝐸0, respectively.

2.3. Cell intercalation

During epithelial morphogenesis, cells can change their location
either actively or passively. Cell rearrangements can be modeled as
changes in the adhesion relationships between neighboring cells
(Fig. 3(A)). In our model, cell rearrangements were simulated using
flipping operations. The left panel of Fig. 3(B) shows a tetragon consist-
ing of two triangles: one connecting cell 1, cell 2, and cell 3 and another
connecting cell 1, cell 2, and cell 4. In this case, the term ‘‘flipping’’
refers to a procedure that erases the edge connecting cell 1 and cell
2, and draws a new one that connects cell 3 and cell 4 (Fig. 3(B),
right). Flipping is performed only when the following conditions are
met: (i) the distance between the center of mass of the two triangles
before the operation (𝑙1) is smaller than the distance threshold 𝑙th and
(ii) 𝑙1 is smaller than the new expected distance resulting from flipping
(𝑙2). The position of the cell point remains unchanged with the flip. To
avoid alternating between the same two diagonal lines continually, we
introduced the concept of a ‘‘cooling time’’, in which a diagonal line
drawn as a result of the flipping operation is fixed during the next 𝜏𝑐𝑡
time.
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Fig. 4. Methods for the representation of cell division. (A) (left) The shape of cell 𝑖 in 3D space is defined as a polygon consisting of the position vectors of the centers of mass
of the triangles sharing cell 𝑖. Here, 𝒈𝑚 represents the position vector of the center of mass of the triangle. (A)(right) Project 𝒈𝑚 onto the plane normal to the normal vector of
cell 𝑖, and let 𝒈′𝑚 be the position vector after the projection. (B) (left) Finding the two intersection points, 𝑃1 and 𝑃2, between the projected polygon and the division axis that
passes through 𝒙𝑖. (B) (right) Setting the coordinates of the two cells after cell division so that the line segment 𝑃1 − 𝑃2 is internally divided in a 1:1:1 ratio. The dotted red line
represents the axis of division. Cell 𝑖 divides into two daughter cells. Red dots indicate newly formed cells.

2.4. Cell division modeling

The mathematical model for simulating cell division is based on
Lomas model (Lomas, 2014); however, because Lomas model was
developed for the bio-inspired artwork, we have improved it to take
into account cell division orientation for use in biological studies as
follows.

2.4.1. Geometry
The division of cell 𝑖 was modeled geometrically. First, the cells

directly linked to cell 𝑖 are identified and projected onto a plane
perpendicular to the surface-normal vector 𝒏𝑖 at vertex 𝑖. Based on
these projected points, a polygon is defined (Fig. 4(A)). The intersection
points between the orientation axis of the division and polygon edges
(which represent the cell shape) were then determined (Fig. 4(B), left).
Finally, daughter cells were located at positions that divided the line
segment internally in a 1:1:1 ratio (Fig. 4(B), right). Neighboring cells
were re-linked to form a new network of triangles. Therefore, just after
division, the two daughter cells are not necessarily the same size, nor
are they necessarily half the size of the mother cell. However, the
daughter cell is expected to be stable at the same size as the mother
cell due to the triangular area elastic energy.

2.4.2. Interval
Based on previous studies (Okuda et al., 2013a; Inoue et al., 2017,

2020), we assumed that the timing of cell division fluctuates around
the mean cell cycle time. More specifically, we hypothesized that
cell 𝑖 undergoes division when its post-division time 𝜏𝑖 reaches 𝜏cycle𝑖 ,
where 𝜏cycle𝑖 represents a random value with mean 𝜏cycleave and standard
deviation 𝜏cyclesd and satisfies the following:

⟨𝜏cycle𝑖 ⟩ = 𝜏cycleave (12)

⟨(𝜏cycle𝑖 − 𝜏cycleave )(𝜏cycle𝑗 − 𝜏cycleave )⟩ = (𝜏cyclesd )2𝛿𝑖𝑗 (13)

where the symbol ⟨⋯⟩ denotes the statistical mean and 𝛿𝑖𝑗 is Kro-
necker’s delta. In the default parameter settings, the post-division cell
time randomly assumes a value ranging from zero to 𝜏cycleave .

2.5. Apical constriction

The model described above does not include parameters that repre-
sent the 3D cell morphology. Hence, special modifications are needed
to enable the model to describe apical constriction in a cell.

Apical constriction refers to the interactions between actin and
myosin accumulated on the apical side of the cell (Martin and Gold-
stein, 2014), which causes the cell to become apically narrower by
constriction (Fig. 5). Unlike 3D vertex models, our model does not allow
intuitive expression of apical side cell contraction. In our model, the
length of an edge projected onto the neutral surface of a cell represents
the mean apical and basal lengths. Therefore, for an edge undergoing
apical constriction, the energy of its projected edge between 𝒈𝑚 and 𝒈𝑚′

on the neutral surface can be described as Eq. (7) (see Fig. 5).
Additionally, apical constriction in one cell causes adjacent cells to

change their orientation and lean towards it (Fig. 5(B)). These changes
can be mathematically expressed using the dihedral angles. Specifically,
the equilibrium dihedral angle 𝜃eq can be expressed as:

𝜃eq = 𝜃eq0 − 𝜃apical (14)

where 𝜃eq0 and 𝜃apical represent the initial equilibrium angle and the
changes resulting from apical constriction, respectively. In this study,
we applied the addition of the energy (Eq. (7)) and the change in the
equilibrium dihedral angle (Eq. (14)) to the edges to express that the
entire apical surface shrinks.

3. Simulations

3.1. In-plane deformation

To confirm the effect of flipping, which represents cell rearrange-
ment, we performed simulations under two conditions: (A) infrequent
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Fig. 5. Schematic of 3D cell shape shown in neutral cross-section. (A) Cells 𝑖, 𝑗, 𝑘, and 𝑘′ are aligned in a plane before apical constriction. Cells 𝑖 and 𝑗 share the edge between
𝒈𝑚 and 𝒈𝑚′ . (B) The apical constriction of the edge between 𝒈𝑚 and 𝒈𝑚′ decreases the length of this edge and also changes the dihedral angle between the two triangles by 𝜃apical.

Fig. 6. Initial shape of the simulation. The calculation is based on a triangle mesh (left). Cell shape representation of left-hand figure (right).

flipping and (B) frequent flipping. First, simulations were conducted,
in which the cell sheet was compressed forcefully in one direction
and then relaxed. The differences in the time variation of the in-
plane two-directional strain and final shape of the cell sheet were
investigated. Further simulations were performed at multiple values of
𝑙th to determine the relationship between 𝑙th, the flip count, and the
strain.

3.1.1. Computational conditions
We prepared a 40 × 40 cell sheet as shown in Fig. 6. The left

panel of Fig. 6 shows the 𝑥–𝑦 plane projection of the initial state of
the simulation model, which consisted of a layer of 1600 equilateral
unit cells (𝐿eq = 1) comprising 40 cells along both the 𝑥 and 𝑦 axes.
The corresponding cell populations are shown in the right panel of
Fig. 6 for the convenience of the reader. Computational simulations are
performed on the points shown in the left panel of Fig. 6. Free boundary
conditions were applied to all the boundary edges of the cell sheet.

Let 𝑙0 = 𝐿eq∕
√

3 be the length of the side of a regular hexagon,
which is a 2D cell shape in its initial state (Fig. 6(right)). Two sim-
ulations were performed with different values of 𝑙th∕𝑙0: 0.606 and
0.745.

The 𝑦-coordinate of each cell point is forced to be displaced by a
factor of 𝛼 (𝛼 < 1) at every step until 𝑇1 = 60. In other words, 𝑦
becomes 𝛼𝑦 at each computational step. Then, a relaxation simulation
was performed until 𝑇2 = 160 to calculate the strain in the 𝑥- and 𝑦-
directions. The midpoint of the 𝑦-axis side of the cell sheet at the initial
time was used as the 𝑦 origin. To represent the cell sheet expanding in
𝑥 direction caused by forced displacement in the 𝑦 direction, for cells
at the boundary of the cell sheet, the edge with the adjacent cell is

Table 1
Parameters for in-plane deformation simulations.

Symbol Value Description

𝛼 0.99999 Forced-displacement magnification factor
𝜂 0.25 Cell point friction coefficient
𝐾𝐿 2 Edge length elasticity constant
𝐾𝑆 10 Triangular area elastic constant
𝐾𝐷 10 Dihedral angle elastic constant
𝐾𝑍 0 Out-of-plane deformation constraint constant
𝐾Rep 10 Cell repulsion constant
𝐾Center 10 Constraint constant
𝐿eq 1.0 Equilibrium edge length
𝐿sep 1.5 Separation length
𝐴eq 0.433 Equilibrium triangle area
𝜃aveeq 3.14159 Statistical average of dihedral-angle equilibrium
𝜃SDeq 0.02 Standard deviation of dihedral-angle equilibrium
𝑟𝑐 0.9 Cut-off distance
𝑙th 0.25 Flip threshold length

𝛥𝑡 0.0002 Integration time step
𝜏ct 0.001 Flip cool time

removed when the distance to the adjacent cell exceeds a threshold
𝐿sep. The other parameters are listed in Table 1. Euler’s first-order
method was used to integrate the equations of motion numerically. The
computation time of some simulations is summarized in Supplementary
S1.

3.1.2. Definition of strain
To calculate the strain, we obtained the length of the cell sheet by

taking the cell average at each end of the cell sheet. During the initial
placement, the cells at the edge of the sheet were marked and defined
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Fig. 7. Simulation results of out-of-plane deformation to confirm the effect of flips. (A) Simulation snapshot when no flips have occurred and (B) simulation snapshot after a
sufficient number of flips have occurred. In both (A) and (B), the upper side is a snapshot of the entire image and the lower side is a magnified view of the rectangular area. (C)
Evolution over time of the 𝑥- and 𝑦-directional strains. The purple dots indicate the values under condition (A) and the green dots indicate the values under condition (B). (D)
and (E) The 𝑥- and 𝑦-directional strains at 𝑡 = 60 and (F) the number of flips up to 𝑡 = 60 for several values of 𝑙th. (G) The 𝑥- and 𝑦-directional strains at 𝑡 = 160.

as the set to be used in these calculations. These sets did not change
over time. Let 𝑋+ and 𝑋− be the sets of cells initially at the right and
left ends, respectively. Similarly, let 𝑌+ and 𝑌− be the sets of cells at
the upper and lower ends, respectively.

The lengths in the 𝑥 and 𝑦 directions are calculated as follows:

𝐿𝑥 =
∑

𝑖∈𝑋+

𝑥𝑖∕𝑁𝑋+
−

∑

𝑖∈𝑋−

𝑥𝑖∕𝑁𝑋−
(15)

𝐿𝑦 =
∑

𝑖∈𝑌+

𝑦𝑖∕𝑁𝑌+ −
∑

𝑖∈𝑌−

𝑦𝑖∕𝑁𝑌− (16)

Then, the strain in the 𝑥 direction is 𝜖𝑥𝑥 = (𝐿𝑥 − 𝐿0
𝑥)∕𝐿

0
𝑥, and strains

in the 𝑦 direction 𝜖𝑦𝑦 = (𝐿𝑦 − 𝐿0
𝑦)∕𝐿

0
𝑦. 𝐿0

𝑥 and 𝐿0
𝑦 represent the initial

sheet lengths in the 𝑥 and 𝑦 directions, respectively.

3.1.3. Results
To visualize the time evolution of the cell sheet shape under the

two conditions (𝑙th∕𝑙0 = 0.606, 0.745), the sheet shapes at the four time
points are shown in Fig. 7(A) and (B). From left to right, 𝑡 = 0, 𝑡 = 60,
𝑡 = 100, and 𝑡 = 160. Moreover, 𝑇1 = 60 is the state at the end of
the forced displacement and 𝑇2 = 160 is the state at the end of the
relaxation. For those who are interested in detailed coordinate data,
please refer to Supplementary data S2.

The cell sheet shape differed depending on the value of 𝑙th. Under
the condition 𝑙th∕𝑙0 = 0.606 (Fig. 7(A)), an elastic deformation that

returns the cell sheet to a shape close to the initial shape is dominant,
whereas under condition 𝑙th∕𝑙0 = 0.745 (Fig. 7(B)), plastic deformation
that does not return the cell sheet to the original shape after relaxation
is dominant.

To visualize the difference in the quantitative sheet shape, the
variation in the 𝑥- and 𝑦-directional strains over time is shown in
Fig. 7(C). A difference in the ease of returning to the original shape
was observed. The sheet shape is restored when 𝑙th∕𝑙0 is 0.606 but not
when 𝑙th∕𝑙0 is 0.745.

Fig. 7(D)–(G) presents the results of similar simulations under more
conditions. In Fig. 7(D) and (E), we demonstrate how the 𝑥 and 𝑦 direc-
tional strains at 𝑡 = 𝑇1 vary with respect to the value of flip threshold
𝑙th. To confirm that the flip count varies with 𝑙th up to 𝑡 = 𝑇1, the
relationship between 𝑙th and flip count is shown in Fig. 7(F). Flipping
does not occur under condition (A) but occurs fully under condition (B).
𝑥-axis strain, 𝑦-axis strain, and flip count vary sigmoidally with respect
to 𝑙th. Fig. 7(G) shows the strain after mechanical relaxation(𝑡 = 𝑇2).
The cell sheet clearly did not return to its original shape when 𝑙th was
large.

3.2. Out-of-plane deformation

The model developed in this study did not include a sheet thickness
parameter. Instead, it employs a dihedral energy term to account for the
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Fig. 8. Simulation snapshots when the axes of cell division are set to (A) random directions, (B) along the 𝑥-axis, and (C) in a radial direction from the center of the sheet.

Fig. 9. Simulation snapshots of folding patterns at (A) 𝐾𝑍 = 10−4, (B) 𝐾𝑍 = 10−1, (C) 𝐾𝑍 = 1, and (D) 𝐾𝑍 = 8, respectively. (E) Wavenumber of wrinkles with respect to the
strength of the out-of-plane deformation constraint.

effects of the sheet stiffness. Therefore, we evaluated the quantitative
validity of the dihedral energy term. For this purpose, we present the
results of simulations performed under the same conditions as those
in the previous 3D vertex model (Inoue et al., 2020) and compared
the results. First, we discuss whether the same folding patterns formed
in the previous study were formed when the direction of the division
axis was specified. Next, the effects of changes in the out-of-plane
deformation constraint constant 𝐾𝑍 on the sheet-folding patterns are
discussed.

3.2.1. Computational conditions
A cell sheet of 1600 cells was prepared as shown in Fig. 6. Periodic

boundary conditions are used in this study.
To evaluate the folding structure quantitatively, we used 𝑢 as in In-

oue et al. (2020). 𝑢 represents the mean wavenumber, which is de-
termined using Fourier transform (See Supplementary materials S3 for
details). In this study, we used the wavenumber observed when the
difference between the point with the largest 𝑧 coordinate and the point
with the smallest 𝑧 coordinate was larger than

√

2𝐿eq.
The other simulation parameters are listed in Table 2. Euler’s first-

order method was used to integrate the equations of motion numeri-
cally.

3.2.2. Results
We first examined the differences in the folding patterns in the di-

rection of cell division. Fig. 8 shows the folding patterns when the axes
of cell division are set to (A) a random direction, (B) the 𝑥 direction,
and (C) a radial direction from the center of the sheet. Different folding
patterns were formed, depending on the axis of division. The wrinkles
were formed perpendicular to the division direction.

Next, to investigate the relationship between the out-of-plane de-
formation constraint constant 𝐾𝑍 and wavenumber 𝑢, simulations were
performed for 12 different values of 𝐾𝑍 (10−4, 10−3, 10−2, 10−1, 0.2, 0.4,
0.6, 0.8, 1, 2, 4, 8) to obtain the wavenumbers. The results are presented
in Fig. 9, where the cell division is allowed in the 𝑥 direction. Fig. 9(A)
to (D) show snapshots of folding patterns at 𝐾𝑍 = 10−4, 10−1, 1, and
8, respectively. As 𝐾𝑍 increased, the number of wrinkles increased.
When 𝐾𝑍 is eight, wrinkles that are not orthogonal to the direction
of division are also formed. Fig. 9(E) shows that the wavenumber
representing wrinkles varies with the strength of the out-of-plane de-
formation constraint. This graph represents a double log plot. The plot
points are the averages of the five simulations. In the figure, there are
𝐾𝑍 -dependent and 𝐾𝑍 -independent regions, and the power exponent
in the 𝐾𝑍 -dependent region is 0.23, which is close to the theoretical
value of 0.25 (Cerda and Mahadevan, 2003; Brau et al., 2013).
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Table 2
Parameters for out-of-plane deformation simulations.

Symbol Value Description

𝜂 0.25 Cell point friction coefficient
𝐾𝐿 2 Edge length elasticity constant
𝐾𝑆 10 Triangular area elastic constant
𝐾𝐷 10 Dihedral angle elastic constant
𝐾𝑍 0–1 Out-of-plane deformation constraint constant
𝐾Rep 10 Cell repulsion constant
𝐾Center 10 Constraint constant
𝐿eq 1.0 Equilibrium edge length
𝐴eq 0.433 Equilibrium triangle area
𝜃aveeq 3.14159 Statistical average of dihedral-angle equilibrium
𝜃SDeq 0.02 Standard deviation of dihedral-angle equilibrium
𝑟𝑐 0.9 Cut-off distance
𝑙th 0.25 Flip threshold length

𝛥𝑡 0.0002 Integration time step
𝜏cycleave 100 Statistical average of the cell cycle
𝜏cyclesd 1 Standard deviation of the cell cycle
𝜏ct 0.001 Flip cool time

Table 3
Parameters for apical constriction simulations.

Symbol Value Description

𝜂 0.25 Cell point friction coefficient
𝐾𝐿 2 Edge length elasticity constant
𝐾𝑆 10 Triangular area elastic constant
𝐾𝐷 10 Dihedral angle elastic constant
𝐾𝑍 0 Out-of-plane deformation constraint constant
𝐾Rep 10 Cell repulsion constant
𝐾Center 10 Constraint constant
𝐾apical 10 Apical constriction constant
𝐿eq 1.0 Equilibrium edge length
𝐴eq 0.433 Equilibrium triangle area
𝜃aveeq0 3.14159 Statistical average of the dihedral-angle equilibrium
𝜃apical 0.26 Variation of apical constriction
𝜃SDeq 0.02 Standard deviation of the dihedral-angle equilibrium
𝑟𝑐 0.9 Cut-off distance
𝑙th 0.25 Flip threshold length

𝛥𝑡 0.0002 Integration time step
𝜏cycleave 20 Statistical average of the cell cycle
𝜏cyclesd 0.2 Standard deviation of the cell cycle
𝜏ct 0.001 Flip cool time

3.3. Invagination caused by apical constriction

In this section, we perform simulations to examine the mathematical
expressions of the apical constriction in our model.

3.3.1. Computational conditions
To evaluate the validity of Eqs. (7) and (14), we examined the

following three mathematical expressions of apical constriction:
(C1) Eq. (7) is used alone, (C2) Eq. (14) is used alone, and (C3) Eqs. (7)
and (14) are employed.

Taking note of a previous study (Inoue et al., 2017), we employed
the following spatial patterns of apical constriction:
(A) Entire surface of the hexagon (Fig. 10(A)), and (B) Only the
circumferential region of the same hexagon (Fig. 10(B)).

The initial state of the model was a square monolayer sheet of 400
cells, with 20 cells aligned along the 𝑥 and 𝑦 axes. The model used
periodic boundary conditions and cell division occurred only within
the outer hexagon of interest. Cell division was allowed in random
directions. The simulation parameters are summarized in Table 3.
The equations of motion were numerically integrated using Euler’s
first-order method.

3.3.2. Results
Fig. 11 presents snapshots taken at 𝑡 = 𝜏cycleave for simulations under

conditions (C1), (C2), and (C3). Cross-sectional views are obtained

along the yellow line in Fig. 10. The results under condition (C1)
show that the sheet remains flat at 𝑡 = 𝜏cycleave . Under condition (C2),
both spatial patterns showed invagination in the same direction. Under
condition (C3), invagination occurred in both spatial patterns, but in
opposite directions.

4. Discussion

4.1. In-plane deformation

Elastic deformation occurs when the flip threshold is small and plas-
tic deformation occurs when the flip threshold is large. This depends
on the frequency of the cell rearrangement. We speculated that the
reason for the results shown in Fig. 7(D), (E), and (F) are sigmoidal
with respect to the flip threshold is that there is always mechanical
relaxation, and the lengths of the edges are almost equal. Hence,
the flips either do not occur at all, or they all occur under forced
displacement. Additionally, the middle part tends to stretch because it
cannot escape in the 𝑦-direction.

From Fig. 7(A), the cell sheet returned to a shape similar to the
initial one in the time from 𝑡 = 60 to 𝑡 = 160 when no flip is occurring.
The relaxation on the cellular scale may occur on a time scale of 𝜏,
while the relaxation on the tissue scale could be 100 times longer.

The phenomenon of forced displacement along the 𝑦-axis, which
results in elongation along the 𝑥-axis, may be related to the mechan-
ical essence of convergent extension. Convergent extension is a key
process by which tissues narrow along one axis and extend along
the other (Shindo et al., 2019; Tada and Heisenberg, 2012; Keller
et al., 1992; Nishimura et al., 2012). Convergent extension involves
two fundamentally different types of cell movement: collective cell
migration, which typically represents the coordinated movement of
highly aggregated cell sheets, and cell intercalation, which change
the shape of the tissue through the directed exchange of neighboring
cells (Tada and Heisenberg, 2012). Although our model considers the
intercalation in contrast, collective cell migration was not included
in the model. From a mechanical point of view, because collective
cell migration provides the driving force for displacement of the cell
sheet in the appropriate direction, the forced displacement condition
in our simulation was thought to be similar to the displacement caused
by collective cell migration. Because our model represents each cell
as a particle, the self-propelled particle model proposed in previous
studies (Akiyama et al., 2017; Vicsek et al., 1995) may be applied to the
modeling of collective cell migration in future extensions of our model.

4.2. Out-of-plane deformation

The folding pattern according to the division axis orientation is con-
sistent with previous studies using 3D vertex models. From mechanics
and buckling theory, it is reasonable to expect that the wavenumber
follows the power law. In the region where 𝐾𝑍 is large, the dependence
of the wavenumber on 𝐾𝑍 follows a power law with a power exponent
approaching to the theoretical value of 0.25 in the continuum. We
speculate that the reason why some regions depend on 𝐾𝑍 and others
do not is the magnitude of the relationship in the time scale between
cell division and mechanical relaxation. At lower values of 𝐾𝑍 , the
time scale of cell division is small compared with the time scale
of mechanical relaxation, and wrinkles are formed only in the local
mechanical field. This is confirmed by the fact that when the cell cycle
is long, the region where the wavenumber is independent of 𝐾𝑍 shifts
to the left (further details are provided in Appendix B).

Even in the 𝐾𝑍 -dependent region, the exponent was smaller than
the theoretical value of 0.25. The size of the triangular element used in
our model determines the minimum folding wavelength and causes the
wavenumber to exhibit smaller increments at higher folding frequen-
cies, folding is unlikely to occur at shorter wavelengths. Therefore, in
the log–log plot, the slope is smaller at higher wavenumbers.
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Fig. 10. Two spatial patterns (A) the entire surface of a red colored hexagon, and (B) only the circumferential region of the same hexagon used in the simulations of apical
constriction. The yellow line indicates the location of the cross section shown in Fig. 11. The red region indicates where apical constriction occurs.

Fig. 11. Apical constriction occurred in (A) hexagonal region and (B) its circumference region. The cross section image below each figure is obtained along with the yellow line
shown in Fig. 10. Snapshots taken at 𝑡 = 𝜏cycleave under conditions of apical constriction expressed by (C1) Eq. (7) alone, (C2) Eq. (14) alone, and (C3) both Eqs. (7) and (14).

As shown in Fig. 9(A–D), the folding structures were strongly in-
fluenced by the cell division direction when the 𝐾𝑍 values were small
(𝐾𝑍 < 1); however, the effects gradually diminishes with an increase
𝐾𝑍 . Large 𝐾𝑍 values represent large forces restraining the out-of-plane
deformation, which presumably caused the thin epithelial layer to fold
into a complex and random manner that superseded the effects of the
cell division direction.

4.3. Invagination caused by apical constriction

A major criterion used to evaluate the validity of apical constriction
simulation is whether invagination is formed at the center of a hexagon.
In a previous study using a 3D vertex model, the sectional view of the
model was concave in the downward direction (basal side) for case (A)
and concave in the upward direction (apical side) for case (B). This
occurred only under condition (C3). The energy representing the apical
constriction consists of two terms, and the results are consistent with
the 3D vertex model (Inoue et al., 2017) only when these two terms
are introduced.

No invagination occurred under condition (C1) because it only
shortened the length of the sheet on the plane. By contrast, Eq. (14)
bends the sheet, causing it to warp downward. In Fig. 11(B), the
difference between the results for conditions (C2) and (C3) is due to
the tension of the rings. Under condition (C2), the inner cell divides,

causing the ring to expand as it is pushed by the inner cell. Under
condition (C3), the inner part of the ring exerts tension to keep the
ring in place; hence, the inner part of the ring expands on the apical
side.

As shown in Fig. 11(A), the amount of deformation was greater
under condition (C2) than under condition (C3). Eq. (14) drives the
bending of the sheet, whereas Eq. (7) flattens it. Interactions between
these contradicting forces resulted in a smaller amount of deformation
under condition (C3) than under condition (C2).

Although this model does not represent the 3D shape of the cell, it
shows that the effect on tissue-scale deformation is equivalent to the
change in the wedge shape of the cell owing to apical constriction.

4.4. The advantages and limitations of this model

In this model, the degrees of freedom in the cell height direction
are eliminated, and each cell is represented by a cell center to reduce
the degrees of freedom. In the case of Delaunay triangulation, a flip is
necessary whenever it is required to guarantee the Delaunay property.
However, using the center of mass of a triangle, the frequency of flips
can be controlled by a threshold value, as shown in the in-plane de-
formation results. Addressing 3D deformations of monolayer epithelia,
such as out-of-plane deformations, allows the model to be directly
extended as a 2D curved surface embedded in 3D space. However, when
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performing Delaunay triangulation on a curved surface, it is challenging
to maintain the Delaunay–Voronoi duality while dealing with flips, as
it is not possible to perform the process in the same way as on a flat
plane.

However, using triangular centers of mass, the model cannot handle
cell populations where individual cells are not uniform in size. It is not
possible to represent conditions where the lengths of the sides of the
polygons in the cell shape are too short. The approachable distance
is limited as long as the triangle is not collapsed, as it is guaranteed
to be inside a triangle. Regardless, the current model is limited to
monolayer cell sheets and must be extended to handle multilayers
and filled systems by adding a new energy function. Since cell height
information is not included in the model, it cannot accommodate cell
elongation. As shown in Fig. 1(B), the cell shape is determined only
when the surrounding points are determined, and a scale smaller than
Fig. 1(B) cannot represent the cell shape at all.

Because there is no reliable bottom-up or top-down method to
determine cellular and tissue parameters in the model, the parameters
used in this study were determined empirically. This is a common
situation, as even the 3D vertex model, which discretely represents
cells, faces similar challenges. To address this in the future, we will
propose a new framework that uses data assimilation to determine
biologically feasible parameter values in the model. By developing this
framework, we can determine feasible parameter values, which would
not be possible otherwise. Therefore, we have developed the proposed
model that is computationally efficient.

Here, we compare our model with existing models. One such model
is the Voronoi model (Saye et al., 2011). The 3D Voronoi model has
been used to express multiphase of materials in computations, where
the level set method is used to evolve the boundaries of each phase.
Multiphase fluid flow simulations have been demonstrated using this
model. Therefore, if the information on 3D cell shape is required in
our model, the 3D Voronoi approach could be useful for recovering
the 3D cell shape. However, extra effort is required to incorporate
the 3D Voronoi model into our model. Because our model deals with
monolayers, it is necessary to define a process such as placing cells
virtually outside the plane when handling the 3D shape of cells as
in the 3D Voronoi model. If the level set method were to be used
in our model, the computation cost would become higher due to the
computations of level set functions. Thus, if we were to use the 3D
Voronoi model in conjunction with our model to express 3D cell shape,
the 3D vertex model could be another candidate from the viewpoint
of computational costs. The cell potts model (CPM) expresses multiple
cell dynamics in the lattice site (Belmonte et al., 2016). Complicated
interfaces among cells are spontaneously represented in terms of local
minimization of energy; however, because CPM does not address the
equation of cell center motion, it will be difficult to apply it directly to
the purpose of data assimilation, as we intend to in the future. The 2D
vertex model also expresses multiple cells dynamics (Farhadifar et al.,
2007; Staple et al., 2010; Smith et al., 2012). In the vertex model,
because the boundary edge between two adjacent cells is explicitly
expressed, the computational costs of the vertex model is higher than
that of our model. However, the model can be efficient to explain how
the boundary edge play an important role in morphogenetic dynamics
of tissue such as cell rearrangements by contractions (Shindo et al.,
2019). Further, the 2D vertex model has been extended to recapitulate
chemical signaling such as morphogen diffusions in terms of finite
element method (FEM) on 2D mesh (Smith et al., 2012). Although our
current model does not deal with chemical signals, we can use the FEM
approach from the 2D vertex model as a starting point to introduce
them into our model.

5. Conclusion

In our model, cells are represented as points, and interactions
between adjacent cell points are considered. The cell shape was defined

as a polygon using the center of mass of adjacent triangles. Simulations
using this model confirmed that our model can represent elastic to
plastic deformation depending on the frequency of cell rearrangement
and that cell proliferation causes sheet buckling, which is consistent
with the power law derived based on continuum mechanics. However,
because the present model cannot directly represent 3D cell shape
changes such as the wedge-shaped 3D cell shape due to apical con-
striction, the relevant energy function was modeled to consider the
effect of apical constriction in this study. The energy functions yielded
results that were in qualitative agreement with the 3D vertex model
results. This suggests that global tissue deformation can be handled by
local cell force generation using the model. Because the model does not
directly deal with the 3D shape of the cell, it succeeded in reducing the
number of computational degrees of freedom and has the advantage of
being computationally less expensive than the 3D vertex model when
one is interested in the spill over of mechanical effects to the tissue
scale rather than in the details of the 3D cell shape itself. This has the
advantage that simulations using our model can be performed with less
computational cost than those using a 3D vertex model. This is expected
to open the way for hybridization using computationally expensive
algorithms for sequential data processing, such as data assimilation.
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Appendix A. Constraint energy 𝑬𝐂𝐞𝐧𝐭𝐞𝐫

Let the position vector 𝒙𝑖 represent the coordinates of cell point
𝑖, which is surrounded by 𝑁 cell points, whose coordinates are rep-
resented by vectors 𝒙𝑗 , 𝒙𝑗+1, . . . , and 𝒙𝑗+𝑁−1 in a counterclockwise
manner. When we define 𝒈𝑚 as the location of the center of mass of
the triangle formed by vertices 𝒙𝑗 , 𝒙𝑗+1, and 𝒙𝑖, it can be represented
as follows: 𝒈𝑚 = 𝒙𝑗+𝒙𝑗+1+𝒙𝑖

3 . If we define 𝒈polygon as the center of mass
of the polygon whose vertices are the same as the triangle centers of
mass 𝒈𝑚, 𝒈𝑚+1, . . . , and 𝒈𝑚+𝑁−1, then:

𝒈polygon =
∑𝑁−1

𝑚′=0 𝒈𝑚+𝑚′

𝑁
.

=
𝒙𝑖
3

+ 2
3

∑

𝑗(𝑖) 𝒙𝒋
𝑁

When 𝒙𝑖 =
∑

𝑗(𝑖) 𝒙𝑗∕𝑁 , the polygon center of mass coincides with the
cell point 𝑖. Because our model is 3D, the above equation includes
force-restraining out-of-plane deformation. To eliminate these effects,
the components projected onto the plane perpendicular to the normal
line 𝒏𝑖 were used.

Appendix B. Cell cycle affects 𝑲𝒁 -dependence

To confirm that the cell division cycle affects 𝐾𝑍 dependence, we
examined the 𝐾𝑍 dependence in five different cell cycles (𝜏cycleave = 2, 10,
20, 100, 200, 𝜏cyclesd = 𝜏cycleave ∕100). The results are presented in Fig. B.1. A
faster cell division cycle increases 𝐾𝑍 -independent regions. We believe
that this is because the time constant of mechanical relaxation is long
relative to the time scale of cell division, and hence, deformation occurs
only according to the local field.
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Fig. B.1. Relationship between out-of-plane deformation constraint constant 𝐾𝑍 and mean wavenumber in each cell cycle (𝜏cycleave = 2, 10, 20, 100, 200, 𝜏cyclesd = 𝜏cycleave ∕100).

Appendix C. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.jtbi.2023.111560.
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