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ABSTRACT 

This study intends to investigate the application of model updating based on forced vibration data to a simply-supported truss 
bridge. A fast Bayesian FFT method was used to perform the modal identification obtained from field tests, and the Transitional 
Markov Chain Monte Carlo (TMCMC) algorithm is employed to generate samples. Although updating as many parameters as 
possible is the ideal model update process, it is not practical to identify all the parameters because of limitation of the 
experimental data. The bridge was thus divided into several clusters, and the values of the updated parameters of the members 
in the same cluster are assumed to be equal. Two model updating schemes were discussed as an example to investigate the 
effect of parameter selection, such as how to model the spring at each support, in model updating process. It was observed that 
although models with more parameters tend to fit better, the updated result often showed a different trend from the engineering 
prediction.  

Keywords: Bayesian model updating, Transitional Markov Chain Monte Carlo, Field vibration test, Damage detection, Simply-
supported truss bridge 

1. INTRODUCTION 

In structural engineering, finite element (FE) models are widely used for structural analysis. Comparing to field experiments, 
FE analysis can save time and costs. However, due to the limited available information and simplification in modeling, 
uncertainties, such as material properties, geometric properties, boundary conditions and load conditions, invariably exist in 
the system. Model updating methods would calibrate these uncertain parameters in the FE model based on the measurement 
data, so called a data-driven model calibration. 

One type of model updating method is based on Bayesian theory, which tries to find a probability distribution function (PDF) 
of the model parameters [1-11]. Au and Beck [3] and Beck and Au [4] applied the Bayesian-based method to reliability analysis. 
Beck and Yuen [5] and Muto and Beck [6] sought the most probable model from several model classes. Goller and Schueller 
[7] and Goller et al. [8] investigated uncertainties in the Bayesian model updating and weighting factors of each mode in the 
objective function. Yuen et al. [9] and Lam et al. [10,11] extended the applicability and efficiency of the Bayesian-based method. 

Although the Bayesian model updating method can provide a posterior distribution, the complexity of its PDF makes it difficult 
to generate samples directly from the posterior distribution. Therefore, an efficient sampler is necessary. A lot of sampling 
methods have been proposed, especially Metropolis–Hastings (MH) algorithm [12,13], a special case of Markov chain Monte 
Carlo (MCMC) [14,15]. Beck and Au [16] proposed Adaptive MH algorithm (AMH), using a sequence of intermediate 
distributions to converge on target distribution. Ching and Chen [17] used the importance sampling to replace the kernel density 
estimate (KDE) in AMH, called the transitional Markov chain Monte-Carlo (TMCMC) method. Goller et al. [18] proposed the 
parallelized MCMC.  

The degree of freedom of the engineering structure is much higher than the laboratory model, and a typical engineering structure 
may consist of hundreds to thousands of members. Therefore, it is not practical for a member-level or element-level model 
updating of the actual engineering structure. Grouping multiple members into a cluster and assuming the members in the same 
cluster will share the same values of uncertain parameters can reduce the number of uncertain parameters to be updated if a 
suitable parameter selection scheme is available. Especially for the FE model update for damage detection, a proper design of 
the model update scheme will directly link to the accuracy of the damage detection by mans of the FE model update. Moreover, 
with the growing interest in digital twins for civil infrastructures, the study of the applicability of FE model updating to various 
structural states is an extremely important topic. However, few studies investigate how to group structural members in to a 
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cluster considering engineering significance of the updated model even in terms of damage detection, which is a driving force 
of this study. 

This study intends to investigate the effect of updating structural parameters selection on the model updating of an actual 
simply-supported truss bridge even including the bridge with damage based on the Bayesian model updating method. The fast 
Bayesian FFT [19,20] was used to identify the structural dynamic properties, and the TMCMC algorithm was used to generate 
samples. Two different model updating parameter schemes focusing the spring at each support were examined and discussed 
about the engineering significance of the updated results. 

2. METHODOLOGY 

2.1. Bayesian model updating method 

The formulation of the posterior PDF of uncertain parameter vector 𝜃 ( 𝜃 ∈ 𝐑!! ), under the condition system response D is 
given as follows. 

𝑃(𝜃|𝐷,𝑀) = "($|&,()"(&|()
"($|()

 (1) 

where 𝑀 is the assumed probabilistic model class for the structure; 𝑃(𝐷|𝑀) is the evidence of model class 𝑀, and 𝑃(𝐷|𝑀) =
∫ 𝑃(𝐷|𝜃,𝑀)𝑃(𝜃|𝑀)𝑑𝜃 ; 𝑃(𝜃|𝑀)  is the prior PDF; 𝑃(𝐷|𝜃,𝑀)  is the likelihood function, which donates the conditional 
probability of 𝐷 given 𝜃; 𝑁& is the number of uncertain parameters. 

Even if the experimental data available is insufficient to constraint all updated parameters, the Bayesian model updating 
methods also can provide a posterior distribution of the uncertain parameters. 

Assuming the variances is same for each natural frequencies and mode shapes, the likelihood function becomes: 

𝑃(𝐷|𝜃,𝑀) = 𝑐𝑒*+(&)/-." (2) 

where 𝐽(𝜃) = ∑ 3(1 − ⟨𝜑/(𝜃), 𝜑8/⟩-) + ;1 − 𝑓/(𝜃)/𝑓>/?
-@!#

/01 ; 𝑓/(𝜃) and 𝜑/(𝜃) are the 𝑖 th natural frequency and normalized 

mode shape vector under the given uncertain parameter vector 𝜃 obtained from the FE model while 𝑓>/ and 𝜑8/ are the measured 
values from the experiments; 𝑁2 is the total number of modes; 𝑐3 is the normalized constant which lead ∫ 𝑃(𝐷|𝜃,𝑀)𝑑𝐷 = 1. 

2.2. Transitional Markov chain Monte Carlo 

In high-dimensional space, the MH algorithm also cannot keep a higher efficiency. Therefore, many researchers have proposed 
improved MCMC samplers. In this study, the TMCMC is used generate samples efficiently. The TMCMC is based on the 
AMH method. The advantage of TMCMC is that it does not need kernel density estimation (KDE) which is difficult to calculate 
in high-dimension space. The essence of TMCMC is to use a series of asymptotic intermediate distributions, (𝑃(𝜃|𝐷)(4)(𝑗 =
1,2,3. . . )), to approach the final distribution. The importance sampling method is used to transfer between the intermediate 
distributions, (𝑃4(𝜃|𝐷), 𝑗 = 0,1. . . 𝑚, 𝜃 ∈ 𝐑!!). With the value of j increasing, the 𝑃(𝜃|𝐷)(4) becomes more closed to the target 
distribution 𝑃(𝜃|𝐷). MCMC approach is to solve the problem that the number of distinct samples reduces due to the re-
sampling progress. 

For the asymptotic intermediate distribution 𝑃4(𝜃|𝐷,𝑀) , the values of their variances (𝜎4 , 𝑗 = 1. . . 𝑚) are different, and 
𝑃4(𝜃|𝐷,𝑀) is shown as: 

𝑃4(𝐷|𝜃,𝑀) = 𝑐4𝑒*+
(&)/-.$

"
  (𝜎1 >. . . > 𝜎2 = 𝜎, 𝑗 = 1,2. . . 𝑚)  (3) 

Especially, assuming 𝑃5(𝐷|𝜃,𝑀) = 𝑐5 follows uniform distribution. The adjacent intermediate distributions are connected by 
importance sampling, and the weighting 𝑤4(𝜃) is shown as: 

𝑤4(𝜃) =
"$%&(&|$,()

"$(&|$,()
 (4) 

Then, with the normalized value weighting 𝑤4,67 , the sample sequence of 𝜃481,6, which follows the distribution of 𝑃481(𝜃|𝐷,𝑀), 
is generated from 𝜃4,6. 

𝜃481,6 = 𝜃4,6, with the probability  𝑤4,67 = 9$:&$,(;

∑ 9$
)*
(+& :&$,(;

                                                     (5) 

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



 

3. TARGET BRIDGE AND VIBRATION TEST 

This section would briefly introduce the target bridge, field tests, and modal identification. More details can be found in 
reference [21-23]. 

 
Figure 1. Mode shapes of the building. 

(a)  

 

 

(b)  

Figure 2. (a) Sensor layout and (b) damage scenario 

 

3.1. Target bridge and FE model 

The target structure was a simply-supported steel truss bridge, as shown in Fig 1. The length and width of the main span are 
59.2m and 3.6m. It was built in 1959 and removed in 2012. The ambient and vehicle-induced vibration experiments were 
conducted before the bridge removal. The bridge was closed prior to the experiment. 

The FE model in ABAQUS is created based on shell elements for concrete slabs and beam and truss elements for steel members. 
The boundary conditions were treated as perfect roller and pin. However, the boundary conditions are a significant source of 
uncertainties in the model, and three types of springs were considered and added to the supports at P1 and P2. 

3.2. Field test and Damage scenario 

Eight uniaxial accelerometers were installed on the deck of the bridge to measure the vibration data as shown in Fig. 2 (a). Five 
damage scenarios (INT, DMG1, DMG2, RCV, and DMG3) were considered consecutively in this bridge as shown in Fig. 2(b). 
As a damage, two tension members were severed as shown in Fgi.2(b). A 21 kN vehicle was used to excite the bridge with an 
average speed of about 20 km/h under each damage scenario.  
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3.3. Modal identification 

Prior to the model updating process, modal identification based on experimental data is necessary. This section would take the 
INT state as an example to illustrate the modal identification process. 

The PSD and singular value spectrum of acceleration data measured by all eight sensors under the INT state are shown in Fig. 
3. Vibration modes of six peaks indicate well-excited modes, and are taken as the candidate modes to be updated. The natural 
frequencies of these six modes were close to 3 Hz, 5 Hz, 7 Hz, 9.5 Hz, 10.5 Hz, and 13Hz, respectively. To reduce random 
errors, the same experimental procedure was repeated about 10 times. The last mode, which is close to 13Hz, is not stable 
because it cannot be found in most runs, therefore, this mode is not considered. Their histograms with the normal distribution 
fit are shown in Fig. 4 with those from damage cases (DMG1, DMG2, RCV, and DMG3). The MPV value and coefficient of 
variation of the frequency are summarized in Table 1. The corresponding mode shapes of INT state are presented in Fig. 5(a). 
It includes first bending mode, first torsional mode, second bending mode, second torsional mode, and third bending mode 
from the top to the bottom. Those mode shapes for the DMG2 and DMG3 states are shown in Fig. 5 (b) and Fig.  (c) respectively. 
It is noted that modes shapes under DMG3 states differed from those under INT and DMG2 states.  

  

Figure 3. (a) PSD and (b) singular value spectrum estimate for all channels. 

 
Figure 4. Histograms with the normal distribution fit of the identified frequencies 

 

Table 1. Identified natural frequencies (MPV: most probable value; CV: coefficient of variance) 

Mode 1st bending frequency 1st torsional frequency 2nd bending frequency 3rd bending frequency 4th bending frequency 
MPV (Hz)  CV (%) MPV (Hz)  CV (%) MPV (Hz)  CV (%) MPV (Hz)  CV (%) MPV (Hz)  CV (%) 

INT 2.98 0.0932 5.21 0.3181 6.87 0.0088 9.61 0.1087 10.57 0.2472 
DMG1 2.98 0.0397 5.22 0.5803 6.89 0.0508 9.69 0.0571 10.61 0.2229 
DMG2 2.89 0.0259 4.99 0.2232 6.88 0.1308 9.67 0.0195 10.59 0.1623 
RCV 2.97 0.0378 5.19 0.2603 6.84 0.0571 9.57 0.0603 10.46 0.1015 
DMG3 2.92 0.0555 5.10 0.1870 6.46 0.1800 9.66 0. 3200 10.07 0.1686 
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(a) INT state (b) DMG2 state (c) DMG3 state 

Figure 5: Identified mode shape 

4. MODEL UPDATE 

4.1. Model updating scheme 

The FE model consists of more than one hundred members and contains approximately three thousand elements. As a result of 
the limited experimental information, no matter member-level or element-level the model updating is impossible. To reduce 
the number of the updating parameters, several substructure blocks, each of which consists of multiple members, were imported 
into the system. In the same block, the material properties of members are set to be the same value. Indeed, the types of defined 
uncertain parameters have a significant impact on the Bayesian FE model updating process.  

To discuss the effect of different model updating schemes, two types of schemes were investigated, as presented in Fig. 6 (a) 
and Fig. 6(b), in which Case 1 model indicates the FE model considering two horizontal springs, four vertical springs, and four 
rotation springs at supports while Case 2 model indicates the FE model considering springs in the longitudinal direction at P1. 
The main part of bridge model was divided into eight blocks, and three types of model parameters, such as spring constants, 
steel stiffnesses and concrete stiffnesses, are considered in both two cases. The parameters starting with ‘SS400’ and ‘spring’ 
indicate the stiffness of steel members and spring constants, respectively. ‘RC’ means the stiffness of the reinforced concrete. 
Three types of springs, two horizontal springs, four vertical springs, and four rotation springs, are taken as candidate parameters 
to present the uncertainties in the boundary conditions. The difference between Case 1 and Case 2 is the number of considered 
springs. In Case 1, all three types of springs were taken into account; in Case 2, only the two horizontal springs were considered, 
constants of vertical springs  = ∞ , and constants of rotation springs = 0. 

4.2. Case 1 model: FE model considering two horizontal springs, four vertical springs, and four rotation springs at 
supports 

Table 2 presents the MPV of the updated natural frequencies and MACs for Case 1. From INT state to DMG2 state, a full cut 
was applied to the tension member on the sensor A3. Therefore, the decreasing of SS400_LM was the expected phenomenon. 
However, as shown in Figure 7 the updated distributions SS400_LM is increased while the updated spring constants are 
decreased.  
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(a) Case 1 model: FE model considering two horizontal 
springs, four vertical springs, and four rotation springs 

at supports 

(b) Case 2 model: FE model considering springs in the 
longitudinal direction at P1 

Figure 6. Model updating scheme 

 

  

(a) SS400_LM (b) Spring_VLP1 
Figure 7. Updated parameters of Case 1 model: FE model considering two horizontal springs, four vertical springs, and four 

rotation springs at supports. 

 

Table 2. Updated natural frequencies of Case 1 model: FE model considering two horizontal springs, four vertical springs, 
and four rotation springs at supports. 

Mode 1st bending mode 1st torsional mode 2nd bending mode 3rd bending mode 4th bending mode 
MPV (Hz) MAC MPV (Hz) MAC MPV (Hz) MAC MPV (Hz) MAC MPV (Hz) MAC 

INT 3.04 0.9967 4.69 0.9968 6.70 0.9947 9.59 0.9982 10.54 0.9978 
DMG2 2.99 0.9986 4.84 0.9848 6.99 0.9912 9.78 0.9907 10.85 0.9909 

MPV: most probable value of the frequency; MAC: modal assurance criteria 
 

Table 3. Updated natural frequencies of Case 2 model: FE model considering springs in the longitudinal direction at P1. 

Mode 1st bending mode 1st torsional mode 2nd bending mode 3rd bending mode 4th bending mode 
MPV (Hz) MAC MPV (Hz) MAC MPV (Hz) MAC MPV (Hz) MAC MPV (Hz) MAC 

INT 3.0928 0.9997 5.0579 0.9939 6.6838 0.9808 10.117 0.9961 10.631 0.9668 
DMG2 3.0857 0.9992 4.7919 0.9852 6.5582 0.9921 9.8276 0.9907 10.281 0.9986 

MPV: most probable value of the frequency; MAC: modal assurance criteria 
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(a) SS400_LP1 (b) SS400_RP1 

  
(c) SS400_LM (d) SS400_RM 

Figure 8. Updated parameters of Case 2 model: FE model considering springs in the longitudinal direction at P1. 

 

4.3. Case 2 model: FE model considering springs in the longitudinal direction at P1 

MPV of the updated natural frequencies and MACs for Case 2 are summarized in Table 3. Fig. 8 shows the distributions of 
some updated parameters. A decrease of SS400_LM can be observed as expected. Due to the DMG2 damage, SS400_LP1 and 
SS400_LP2 were almost unchanged, but SS400_RM was decreased despite an increase of SS400_RP1 and SS400_RP2.  

4.4. Discussion 

It was not reasonable to consider many springs at supports like Case 1 model. For Case 2 model, after removing vertical and 
torsional springs, the updated result as expected was observed even though the updated stiffness for some members in the 
opposite sides of the damage was increased. Different amounts of sensor information of the members on two sides might affect 
the model updating results. It indicates the importance of the parameter selection based on the number of sensors, the location 
of sensors, the type of sensor, and the design of the bridge model for FE model update considering engineering goals. 

5. CONCLUSIONS 

This study indicates that the deployment of sensors, how many sensors are installed, or where is the location of the sensors, 
affects the selection of parameters. How to choose the updated parameters is a significant problem in model updating especially 
for damage detection. On the one hand, the limited data cannot constrain too many parameters, which leads to an unreasonable 
solution; on the other hand, decreasing the number of parameters means less identified information from the updated model. 

Model updating problem is essentially an optimization problem, and the criterion of the optimal model is the objective function. 
The model update process finds the mathematically optimal solution based on the objective function. However, the purpose of 
model updating is not to obtain a model that can fit the objective function well but to find parameter values that can correctly 
reflect the real situation of the bridge. In other words, the goal of the FE model update is to identify the parameter distributions 
with physical meanings. The real challenge in the application of the model updating to damage detection is narrowing the gap 
between the engineering meaning and mathematical optimal model. 

Existing studies on the FE model update have not fully investigated the feasibility of the FE model update for damaged 
structures and damage detection. Therefore, considering the FE model update for damage simulation and damage detection, 
further comprehensive investigations, such as proper parameter selection, proper deployment of sensors,  are needed. 
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