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Abstract

The variational autoencoder (VAE) is a powerful generative model that can learn

data distributions by using latent variables and deep neural networks. The VAE

can capture the high-dimensional and complicated data, can explicitly estimate the

probability of a data point, and can be used for representation learning. Hence, the

VAE can be applied to various fields such as image generation, text generation, speech

synthesis, multi-modal analysis, graph mining, semi-supervised learning, continual

learning, and out-of-distribution detection. However, the VAE has serious drawbacks

and its real-world applications are work in progress. Our goal is to solve its drawbacks

and make it practically applicable.

The VAE is composed of an encoder, decoder, and prior of the latent variable.

The encoder models the conditional distribution of the latent variable given the data

point. The decoder models the conditional distribution of the data point given the

latent variable. The prior regularizes the encoder using the Kullback-Leibler (KL)

divergence, which is modeled by a standard Gaussian distribution. The encoder and

decoder are optimized by maximizing the evidence lower bound (ELBO), which is

the tractable lower bound of the log-likelihood.

This dissertation addresses three serious drawbacks in real-world applications of

the VAE: (1) instability of training, (2) over-regularization, and (3) poor performance

with insufficient data points.

First, we focus on (1) the instability of training, which is caused by the the

sensitivity of the decoder. For continuous data points, the decoder is modeled by

the Gaussian distribution, where its mean and variance is estimated from an input

data point by using deep neural networks. This Gaussian decoder is sensitive to the

error between the data point and its estimated mean when its estimated variance

is almost zero. With biased datasets, which are common in real-world applications,
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this decoded variance often becomes almost zero, making the training unstable. We

solve this instability problem by a Bayesian approach to the variance estimation:

we set a prior for the variance of the Gaussian decoder, and marginalize it out

analytically, which leads to proposing the Student-t VAE. We experimentally show

that our Student-t VAE is robust and achieves high performance.

Next, we focus on (2) the over-regularization, which is caused by the too simple

standard Gaussian prior. This leads to poor performance and prevents us from

meeting the performance requirements of real-world applications. As a sophisticated

prior, we introduce the aggregated posterior, the expectation of the decoder over

the data distribution. Although this is known as the optimal prior for the VAE in

terms of maximizing the ELBO, the KL divergence with this optimal prior cannot

be calculated in a closed form. We can use the density ratio trick to estimate the KL

divergence without modeling the aggregated posterior explicitly. However, since this

KL divergence is high-dimensional density ratio, the density ratio trick does not work

well. To solve this, we rewrite this KL divergence into the sum of the analytically

calculable term and the low-dimensional density ratio, to which the density ratio

is applied. We experimentally show that the VAE with our implicit optimal prior

achieves high performance.

Finally, we focus on (3) the poor performance with insufficient data points, which

are common in real-world applications. To overcome the lack of training data on the

target task, the conditional VAE (CVAE) is widely used, which aims to share task-

invariant knowledge with multiple tasks through the task-invariant latent variable.

In the CVAE, the encoder models the conditional distribution of the latent variable

given the data point and task, and is regularized by the task-invariant prior, which

is modeled by the standard Gaussian distribution. Although this regularization

encourages independence between the latent variable and task, the latent variable

remains dependent on the task. We investigate why the CVAE cannot sufficiently

reduce the task-dependency and show that the simple standard Gaussian prior is

one of the causes. Based on this, we propose a theoretical optimal prior for reducing

the task-dependency. We theoretically and experimentally show that our learned

representation works well on the target tasks.
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Chapter 1

Introduction

Deep generative models, which try to estimate data distributions by using deep neural

networks, play an important role in artificial intelligence. For the past decade, a lot

of powerful approaches have been presented such as autoregressive models (Uria

et al., 2016), variational autoencoders (VAE) (Kingma and Welling, 2014; Rezende

et al., 2014), generative adversarial nets (GAN) (Goodfellow et al., 2014), flow-based

models (Rezende and Mohamed, 2015; Papamakarios et al., 2021), and diffusion

models (Sohl-Dickstein et al., 2015; Song and Ermon, 2019; Ho et al., 2020). Since

they can capture the high-dimensional and complicated data, they can be used in

various fields such as image generation (Gregor et al., 2015; van den Oord et al., 2017),

text generation (Bowman et al., 2016; Yang et al., 2017), speech synthesis (Hsu et al.,

2017; Akuzawa et al., 2018), multi-modal analysis (Khattar et al., 2019; Ivanovic

et al., 2020), graph mining (Kipf and Welling, 2016; Li et al., 2020), semi-supervised

learning (Ehsan Abbasnejad et al., 2017; Xu et al., 2017), continual learning (Achille

et al., 2018; Egorov et al., 2021), and out-of-distribution detection (Xiao et al., 2020;

Havtorn et al., 2021). However, they still have serious drawbacks and their real-world

applications are work in progress. Our goal is to solve their drawbacks and make

them practically applicable.

In this dissertation, we focus on the VAE for the following two reasons. First, the

VAE can handle the probability of a data point explicitly, which enables us to apply

it to various tasks easily. For example, in anomaly detection tasks, we can naturally

model the normality of a data point by using the probability (An and Cho, 2015).

Second, the VAE is also a powerful approach for representation learning: the latent
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Figure 1.1: Diagram of VAE.

variables in the VAE improve the performance of downstream applications (Higgins

et al., 2016).

The VAE is composed of the encoder, decoder, and prior of the latent variable

(Kingma and Welling, 2014; Rezende et al., 2014). The encoder models the posterior

of the latent variable given the data point. The decoder models the posterior of

the data point given the latent variable. The prior regularizes the encoder using

the Kullback-Leibler (KL) divergence, which is modeled by a standard Gaussian

distribution. The encoder and decoder are optimized by maximizing the evidence

lower bound (ELBO), which is the tractable lower bound of the log-likelihood. Figure

1.1 shows the diagram of the VAE. In chapter 2, we provide a more detailed review

of the VAE.

In this dissertation, we try to solve following three serious drawbacks in real-world

applications of the VAE:

1. instability of training for continuous data (Section 3),

2. over-regularization by prior (Section 4), and

3. poor performance with insufficient data (Section 5).

1.1 Instability of Training for Continuous Data

First, we focus on the instability of training for continuous data, which is caused by

the sensitivity of the decoder. For continuous data points, the decoder is modeled by

the Gaussian distribution, where its mean and variance is estimated from an input
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data point by using deep neural networks. We call this type of VAE the Gaussian

VAE. However, the training of the Gaussian VAE often becomes unstable. The

reason is as follows: the training objective function of Gaussian VAE is sensitive to

the error between the data point and its decoded mean when its decoded variance is

almost zero, and hence, the objective function can give an extremely large value even

with a small error. We call this problem zero-variance problem. This zero-variance

problem often occurs with biased data, i.e. in which some clusters of data points

have small variance. In the example of sensor data, some sensors show the same

values most of the time, but sometimes show different values. Such biased features

would be important for e.g. anomaly detection. In addition to sensor data, datasets

such as network and media datasets often have this bias. Therefore, this problem is

serious considering the application of the VAE to real-world applications.

Our purpose is to solve this instability by making the decoder robust to the

error between the data point and its decoded mean. Intuitively, we can improve the

robustness of the decoder by replacing the Gaussian distribution with the Student-t

distribution, which is a heavy-tailed distribution (Lange et al., 1989). In chapter 3,

we verify the validity of this intuition through introducing a Bayesian approach to the

Gaussian decoder. At first, to prevent the decoded variance from being too small, we

set a Gamma distribution as the conjugate prior for its inverse. Unfortunately, this

prior has constant hyperparameters and lacks the flexibility in density estimation.

To solve this, we next make these hyperparameters dependent on latent variables

and marginalize the decoded variance out analytically. As a result, we obtain the

Student-t distribution as the decoder distribution. We call this proposed method the

Student-t VAE. As can be seen from this derivation, the Student-t VAE can avoid

the zero-variance problem without lacking the flexibility, which leads to the stability

of the training.

1.2 Over-Regularization by Prior

Next, we focus on the over-regularization. Recent research shows that the prior plays

an important role in the VAE (Hoffman and Johnson, 2016). Although the standard

Gaussian prior is usually used, this simple prior incurs over-regularization. This leads

to poor performance and prevents us from meeting the performance requirements
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of real-world applications. This over-regularization is also known as the posterior-

collapse phenomenon (van den Oord et al., 2017). To improve the performance of the

VAE, the aggregated posterior prior has been introduced, which is the expectation of

the encoder over the data distribution (Hoffman and Johnson, 2016). The aggregated

posterior is an optimal prior in terms of maximizing the training objective function of

the VAE. However, KL divergence with the aggregated posterior cannot be calculated

in a closed form, which prevents us from using this optimal prior. In previous work

(Tomczak and Welling, 2018), the aggregated posterior is modeled by using the finite

mixture of encoders for calculating the KL divergence in a closed form. Nevertheless,

it has sensitive hyperparameters such as the number of mixture components, which

are difficult to tune.

Our purpose is to solve this over-regularization without difficult hyperparameter

tuning. In chapter 4, we propose the VAE with implicit optimal priors, where the

aggregated posterior is used as the prior, but the KL divergence is directly estimated

without modeling the aggregated posterior explicitly. This implicit modeling enables

us to avoid the difficult hyperparameter tuning for the aggregated posterior model.

We use the density ratio trick, which can estimate the density ratio between two

distributions without modeling each distribution explicitly, since the KL divergence

is the expectation of the density ratio between the encoder and aggregated posterior.

Although the density ratio trick is powerful, it is experimentally shown to work poorly

in high dimensions (Sugiyama et al., 2012; Rosca et al., 2018). Unfortunately, with

high-dimensional datasets, the density ratio between the encoder and the aggregated

posterior also becomes high-dimensional. To avoid the density ratio estimation in

high dimensions, we rewrite the KL divergence with the aggregated posterior to the

sum of two terms. The first term is the KL divergence between the encoder and

the standard Gaussian prior, which can be calculated in a closed form. The other

term is the low-dimensional density ratio between the aggregated posterior and the

standard Gaussian distribution, to which the density ratio trick is applied.

1.3 Poor Performance with Insufficient Data

Finally, we focus on the poor performance with insufficient data points. Although

the VAE is the powerful generative model, it cannot perform well with insufficient
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Figure 1.2: Diagram of CVAE.

data points since it requires many data points for training neural networks. This

is a serious problem in real-world applications considering it is often impossible to

prepare sufficient data points. For example, when detecting anomalies in a new

factory, there is initially not enough data for training.

To overcome the lack of training data on the target task, multi-task learning

(Caruana, 1997), which improves the performance on each task by sharing task-

invariant knowledge with multiple tasks, has been widely researched. In the above

example, we can obtain training data points from the other factories. To share

task-invariant knowledge effectively, recent research has mainly focused on obtaining

the task-invariant representations of data points and has shown promising results in

many applications (Ghifary et al., 2015; Liu et al., 2017; Long et al., 2017). To apply

the multi-task learning for the VAE, the conditional VAE (CVAE) (Kingma et al.,

2014; Sohn et al., 2015) has been widely used, which aims to obtain the task-invariant

variable in an unsupervised manner.

The CVAE is composed of the encoder, decoder, and prior of the latent variable.

The encoder models the posterior of the latent variable given the data point and task.

The decoder models the posterior of the data point given the latent variable and

task. The prior regularizes the encoder using the Kullback-Leibler (KL) divergence

and is modeled by a standard Gaussian distribution. The encoder and decoder are

optimized by maximizing the evidence lower bound (ELBO), which is the tractable

lower bound of the log-likelihood. Figure 1.2 shows the diagram of the CVAE. In
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chapter 2, we provide a more detailed review of the CVAE. Since the encoder of

all tasks is regularized by the same standard Gaussian prior, the CVAE is expected

to reduce the dependency of the latent variable on the task. We call this the task-

dependency.

However, the task-dependency of the CVAE remains in many cases (Louizos

et al., 2016). In such cases, the encoder maps data points of a task and another task

to different parts in the latent space, even if these data points represent the same

concept (e.g., same class). This worsens the performance of downstream applications

for target tasks. As an approach to reduce the task-dependency, the variational fair

autoencoder (VFAE) (Louizos et al., 2016) was presented. The VFAE introduces

the additional regularizer for the posteriors of the latent variables given tasks on

the basis of maximum mean discrepancy (MMD) (Gretton et al., 2007) so that they

become similar. Although the VFAE can reduce the task-dependency, its learned

representation does not work well on the target tasks. This is because the MMD

regularizer loosens the lower bound of the log-likelihood, preventing the VFAE from

maximizing the log-likelihood sufficiently. As a result, the VFAE does not generalize

well for the test data on the target tasks.

In chapter 5, we first reveal the cause of the remaining task-dependency in the

CVAE. To measure the task-dependency, we introduce the mutual information (Cover

and Thomas, 2012) between tasks and latent variables. We show that this mutual

information is bounded above by the expectation of the KL divergence between

the encoder and the prior, which is minimized in the CVAE training. Thus, the

CVAE tries to minimize this mutual information via minimizing its upper bound.

However, this is not a tight upper bound because the simple standard Gaussian

prior loosens the upper bound, and the mutual information cannot be minimized

sufficiently. Hence, the simple prior is one of the causes of the remaining task-

dependency in the CVAE.

To solve this, we propose an optimal prior for reducing the task-dependency,

which provides the tightest upper bound of the mutual information. We also show

that this optimal prior presents a better lower bound of the log-likelihood than those

of the CVAE and VFAE, which enables us to obtain better representations for the

improved performance on the target tasks. Therefore, our approach can obtain better

task-invariant latent representations than existing methods.
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Chapter 2

Preliminaries

In this chapter, we provide a detailed review of the variational autoencoder (VAE)

(Kingma and Welling, 2014; Rezende et al., 2014) and conditional VAE (Kingma

et al., 2014; Sohn et al., 2015).

2.1 Variational Autoencoder

First, we review the VAE. The VAE is a probabilistic latent variable model that

relates an observed variable vector x to a low-dimensional latent variable vector z

by a conditional distribution. The VAE models the probability of a data point x by

pθ(x) =

∫
pθ(x|z)p(z)dz, (2.1)

where pθ(x|z) is the conditional distribution of x given z and s, and p(z) is a prior of

z. pθ(x|z) is modeled by a neural network with parameter θ, called the decoder. For

example, if x is binary, the decoder is modeled by a Bernoulli distribution B(x|µθ(z)),
where µθ(z) is neural networks with parameter θ. If x is continuous, the decoder

is modeled by a Gaussian distribution N (x|µθ(z), σ2
θ(z)), where µθ(z) and variance

σ2
θ(z) are neural networks with parameter θ. Figure 2.1(a) shows the graphical

model of the decoder. p(z) is modeled by a standard Gaussian distribution N (z|0, I)
(Kingma and Welling, 2014; Rezende et al., 2014).

The VAE is trained to maximize the ELBO, which is the tractable lower bound

of the log-likelihood since the log-likelihood itself is hard to handle. The ELBO for
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Figure 2.1: Graphical models of the encoder and the decoder of the VAE. (a) The de-
coder estimates data point x from latent variable vector z. (b) The encoder estimates
z from x.

each data point x is derived from Jensen’s inequality as follows:

ln pθ(x) = lnEqϕ(z|x)
[
pθ(x|z)p(z)
qϕ(z|x)

]
≥ Eqϕ(z|x)

[
ln
pθ(x|z)p(z)
qϕ(z|x)

]
≡ L(x; θ, ϕ), (2.2)

where E[·] is the expectation, and qϕ(z|x) is the posterior of z given x. qϕ(z|x) is

modeled by a neural network with parameter ϕ, called the encoder. The encoder

is usually modeled by a Gaussian distribution N (z|µϕ(x), σ2
ϕ(x)), where µϕ(x) and

σ2
ϕ(x) are neural networks with parameter ϕ. Figure 2.1(b) shows the graphical

model of the encoder. The ELBO (Eq. (2.2)) can be also written as

L(x; θ, ϕ) = Eqϕ(z|x) [ln pθ(x|z)]−DKL(qϕ(z|x)∥p(z)), (2.3)

where DKL(P∥Q) is the Kullback Leibler (KL) divergence between P and Q. The

second expectation term in Eq. (2.3) is called the reconstruction term, which is also

known as the negative reconstruction error.

The parameters θ and ϕ are optimized by maximizing the ELBO as follows:

max
θ,ϕ

∫
pD(x)L(x; θ, ϕ)dx, (2.4)

where pD(x) is the data distribution.
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Figure 2.2: Graphical models of the encoder and the decoder of the CVAE. (a) The
decoder estimates data point x from latent variable vector z and task index s. (b)
The encoder estimates z from x and s.

2.2 Conditional Variational Autoencoder

Next, we review the CVAE. Suppose that we are given task index s for each data

point x. The CVAE models the conditional probability of x given s using latent

variable vector z as follows:

pθ(x|s) =
∫
pθ(x|z, s)p(z)dz, (2.5)

where pθ(x|z, s) is the conditional distribution of x given z and s, and p(z) is a

prior of z. pθ(x|z, s) is modeled by a neural network with parameter θ, called the

decoder. Figure 2.2(a) shows the graphical model of the decoder. p(z) is modeled by

a standard Gaussian distribution N (z|0, I) (Kingma et al., 2014; Sohn et al., 2015).

The CVAE is trained to maximize the ELBO, which is the tractable lower bound

of the log-likelihood since the log-likelihood itself is hard to handle. The ELBO for

each data point x is derived from Jensen’s inequality as follows:

ln pθ(x|s) = lnEqϕ(z|x,s)
[
pθ(x|z, s)p(z)
qϕ(z|x, s)

]
(2.6)

≥ Eqϕ(z|x,s)
[
ln
pθ(x|z, s)p(z)
qϕ(z|x, s)

]
(2.7)

≡ L(x, s; θ, ϕ), (2.8)
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where qϕ(z|x, s) is the posterior of z given x and s. qϕ(z|x, s) is modeled by a neural

network with parameter ϕ, called the encoder. Figure 2.2(b) shows the graphical

model of the encoder. Eq. (2.8) can be rewritten as follows:

L(x, s; θ, ϕ) = Eqϕ(z|x,s) [ln pθ(x|z, s)]−DKL(qϕ(z|x, s)∥p(z)). (2.9)

The first expectation term in Eq. (2.9) is known as the negative reconstruction error.

The parameters θ and ϕ are optimized by maximizing the ELBO as follows:

max
θ,ϕ

EpD(x,s) [L(x, s; θ, ϕ)] , (2.10)

where pD(x, s) = pD(x|s)pD(s) is the joint distribution of the data point and task.
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Chapter 3

Student-t Variational Autoencoder

for Robust Density Estimation

3.1 Introduction

In this chapter, we focus on the instability of training for continuous data, described

in Section 1.1. For continuous data, the Gaussian distribution is used as the decoder.

We provide a detailed review of this Gaussian VAE in section 3.2. However, the

training of the Gaussian VAE often becomes unstable. In section 3.3, we investigate

this instability problem by applying the Gaussian VAE to some dataset, and reveal

that the training objective function of Gaussian VAE becomes sensitive to the error

between the data point and its decoded mean when its decoded variance is almost

zero. In section 3.4, to solve this problem, we propose the Student-t VAE, which

introduces Bayesian approach to the inference of the Gaussian decoder. We evaluate

our Student-t VAE on various datasets in section 3.5, and discuss the relationship

between our Student-t VAE and existing approaches in section 3.6. Finally, we

summarize our contributions and discuss the future work in section 3.7.

3.2 Preliminaries

First, we again review the VAE (Kingma and Welling, 2014; Rezende et al., 2014),

focusing on the case of continuous data points. The VAE estimates the probability
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of data point x by using latent variable vector z as follows:

pθ(x) =

∫
pθ(x|z)p(z)dz, (3.1)

where pθ(x|z) = N (x|µθ(z), σ2
θ(z)) is the Gaussian decoder, and p(z) = N (z|0, I) is

the standard Gaussian prior. We call this type of VAE the Gaussian VAE.

Given a dataset X =
{
x(1), . . . ,x(N)

}
, the ELBO for each data point x(i) can be

written as

L(x(i); θ, ϕ) = Eqϕ(z|x(i))

[
ln pθ(x

(i)|z)
]
−DKL(qϕ(z|x(i))∥p(z)), (3.2)

where qϕ(z|x) = N (z|µϕ(x), σ2
ϕ(x)) is the encoder. The expectation term in Eq.

(3.2), known as the negative reconstruction error, can be approximated by using the

reparameterization trick (Kingma and Welling, 2014) as follows:

Eqϕ(z|x(i))

[
ln pθ(x

(i)|z)
]
≃ 1

L

L∑

ℓ=1

ln pθ(x
(i)|z(i,ℓ)), (3.3)

where z(i,ℓ) = µϕ(x
(i)) + ε(i,ℓ)σϕ(x

(i)), ε(i,ℓ) is a sample drawn from N (0, I), and L

is the sample size of the reparameterization trick. L = 1 is usually used (Kingma

and Welling, 2014). The KL divergence term in Eq. (3.2) and its gradient can

be calculated in a closed form since both distributions are Gaussian (Kingma and

Welling, 2014). Hence, Eq. (3.2) is approximated as

L(x(i); θ, ϕ) ≃ 1

L

L∑

ℓ=1

ln pθ(x
(i)|z(i,ℓ))−DKL(qϕ(z|x(i))∥p(z)) (3.4)

≡ L̂(x(i); θ, ϕ), (3.5)

and the parameters θ and ϕ are optimized by maximizing the following ELBO:

1

N

N∑

i=1

L̂(x(i); θ, ϕ) (3.6)

using stochastic gradient descent (SGD) (Duchi et al., 2011; Zeiler, 2012; Tieleman

and Hinton, 2012; Kingma and Ba, 2015). In this chapter, we minimize the negative
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Figure 3.1: Visualization of the SMTP data.

of (3.6) instead of maximizing it.

3.3 Instability of Training Gaussian VAE

To investigate the Gaussian VAE, we applied it to SMTP data1, which is a subset

of the KDD Cup 1999 data and provided by the scikit-learn community (Pedregosa

et al., 2011). The KDD Cup 1999 data were generated using a closed network and

hand-injected attacks for evaluating the performance of supervised network intrusion

detection, and they have often been used also for unsupervised anomaly detection.

The SMTP data consists of three-dimensional continuous data, and contains 95,156

data points. Figure 3.1 shows a visualization of this dataset. This dataset has

some bias: the variance of some clusters of data points is small along the dimension

directions.

We trained the Gaussian VAE using this dataset by Adam (Kingma and Ba, 2015)

with mini-batch size of 100. We used a two-dimensional latent variable vector z, two-

layer neural networks (500 hidden units per layer) as the encoder and the decoder,

and a hyperbolic tangent as the activation function. The data were standardized

with zero mean and unit variance. We used 10% of this dataset for training.

Figure 3.2(a) shows the mean training loss, which equals −∑N
i=1 L̂(x(i); θ, ϕ)/N .

The training loss was very unstable. One reason for this is that the variance σ2
θ(z

(i,ℓ))

1This dataset is available at http://scikit-learn.org/stable/modules/generated/

sklearn.datasets.fetch_kddcup99.html
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Figure 3.2: (a) Mean training loss for the SMTP data. The inset is an enlargement
near the 983rd epoch. (b) Relation of the decoded variance to the difference in
training losses. Loss(t) represents −L̂(x(i); θ, ϕ) for each data at the tth epoch, and
min(ln σ2

θ(z)) represents minimum of ln σ2
θ(z). We plotted the means and standard

deviations of Loss(t) − Loss(t−1), where min(ln σ2
θ(z)) ∈ [c− 0.5, c+ 0.5], for c in

Z. From 982nd to 983rd, training loss of data points with small ln σ2
θ(z) increased

drastically.

in the decoder N (x(i)|µθ(z(i,ℓ)), σ2
θ(z

(i,ℓ))) becomes almost zero, where z(i,ℓ) is sampled

from the encoder N (z(i,ℓ)|µϕ(x(i)), σ2
ϕ(x

(i))). For example, at the 983rd epoch, the

training loss jumped up sharply. Figure 3.2(b) shows the relationship between the

difference in the training losses and the variance σ2
θ(z

(i,ℓ)) at this epoch. The training

loss of the data points with small variance σ2
θ(z

(i,ℓ)) increased drastically.

When the decoded variance σ2
θ(z

(i,ℓ)) is almost zero, the Gaussian decoder is

sensitive to the error between the data point and its decoded mean: even if x(i)

differs only slightly from its decoded mean µθ(z
(i,ℓ)), the value of the first term of

the training objective function (3.5):

ln pθ(x
(i)|z(i,ℓ)) = lnN (x(i)|µθ(z(i,ℓ)), σ2

θ(z
(i,ℓ)))

=
∑

d

[
−(x

(i)
d − µθ,d(z

(i,ℓ)))2

2σ2
θ,d(z

(i,ℓ))
− 1

2
ln 2πσ2

θ,d(z
(i,ℓ))

]
(3.7)

changes drastically, where d is the dimension index of x(i), µθ(z
(i,ℓ)), and σ2

θ(z
(i,ℓ)).

This sensitivity makes the training of the Gaussian VAE unstable. We call this

problem the zero-variance problem. This zero-variance problem often occurs with
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biased data, since some data points are from a cluster with very small variance,

and their decoded variance becomes much smaller as the training proceeds. Since

the cause of this problem is the sensitivity of the objective function, changing the

optimizer and tuning the hyperparameters of optimizer do not matter.

3.4 Student-t VAE

We would like to solve this zero-variance problem by making the decoder robust to

the error between the data point and its decoded mean. Intuitively, we can solve this

problem by using the Student-t distribution as the decoder, as described in section

1.1, In this section, we theoretically derive the Student-t decoder through a Bayesian

approach to the inference of the Gaussian decoder.

We introduce a prior distribution for the variance of the Gaussian decoder. Let

the precision parameter τθ(z) be the inverse of the variance, τθ(z) = 1/σ2
θ(z). We

use the conjugate prior for the precision parameter, which is the following Gamma

distribution:

Gam(τ |a, b) = baτa−1 exp(−bτ)
Γ(a)

, (3.8)

where a is a shape parameter and b is a rate parameter. The domains of a and b are

positive.

3.4.1 MAP Estimation

First, we present the maximum a posteriori (MAP) estimation as a way to solve the

zero-variance problem. To simplify the calculation, we use Gam(τ | 1, b) as the prior
for 1/σ2

θ(z). Its log probability is given by

lnGam(τθ(z) | 1, b) = ln b− bτθ(z) ∝ − b

σ2
θ(z)

. (3.9)

Accordingly, the objective function of MAP estimation for the VAE is:

1

L

L∑

l=1

{
ln pθ(x

(i)|z(i,ℓ))− b

σ2
θ(z

(i,ℓ))

}
−DKL(qϕ(z|x(i))∥p(z)). (3.10)

35



We call this type of VAE the MAP VAE. This objective function can be viewed as

a regularized version of the original Gaussian VAE objective function (3.5), where

the small variance σ2
θ(z

(i,ℓ)) is penalized by −b/σ2
θ(z

(i,ℓ)) with the regularization pa-

rameter b. This regularization parameter b can be tuned by cross-validation, which

requires a heavy computational cost. In addition, the MAP VAE has a problem in

that the prior distribution is assumed to be independent of latent variables z, which

leads to a lack of flexibility in density estimation.

3.4.2 Marginalization of the Variance Parameter

We propose a more flexible and computationally efficient approach by introducing

a Gamma prior distribution that depends on latent variables, Gam(τ |a(z), b(z)),
where a(z) and b(z) are the shape and rate parameters, respectively, which take the

latent variable z as their inputs. By analytically integrating out the precision τ , the

conditional distribution of the data point x given the latent variable z becomes a

Student-t distribution as follows:

pθ(x|z) =
∞∫

0

N (x|µθ(z), τ−1)Gam(τ |a(z), b(z))dτ

=
Γ(νθ(z)+1

2
)

Γ(νθ(z)
2

)

(
λθ(z)

πνθ(z)

) 1
2
[
1 +

λθ(z)(x− µθ(z))
2

νθ(z)

]− νθ(z)+1

2

= St(x|µθ(z), λθ(z), νθ(z)), (3.11)

where λθ(z) = a(z)/b(z) is a precision2 of a Student-t distribution, and νθ(z) = 2a(z)

is a degree of freedom. We use neural networks to model the parameters of the

Student-t distribution, λθ(z) and νθ(z) as well as µθ(z), and use them as the decoder.

We call this type of VAE the Student-t VAE. The diagram of Student-t decoder is

illustrated in Figure 3.3.

Figure 3.4 shows a plot of the Student-t distribution. The Student-t distribution

is obtained by mixing an infinite number of Gaussians that have the same mean

but different variances, and it has an important property: the tail heaviness. It

is well-known that a heavy-tailed distribution is robust because the probability in

the tail region is higher than that of a light-tailed distribution such as a Gaussian

2This parameter is not always equal to the inverse of the variance.
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(b) Student-t decoder.

Figure 3.3: The diagram of decoders. The decoder network takes the latent variable
z as input, and estimates the parameters of assumed distribution. (a) Gaussian
decoder network estimates the mean µθ(z) and variance σ2

θ(z). (b) Student-t decoder
network estimates the mean µθ(z), precision λθ(z), and degree of freedom νθ(z).

distribution (Lange et al., 1989). Therefore, the Student-t decoder is robust to the

error between the data point and its decoded mean, which makes the training of

the Student-t VAE stable. Since the degree of tail heaviness can be adjusted by

tuning ν, the Student-t VAE can set an appropriate robustness for each data point

by estimating νθ(z), which leads to obtaining better flexibility than the MAP VAE.

Since there is no need to use the cross-validation for tuning the parameters such as

the MAP VAE, the Student-t VAE requires only a lightweight computational cost.

3.5 Experiments

In this section, we evaluate the robustness of the training and the density estimation

performance of the Student-t VAE.
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Figure 3.4: Plot of Student-t distribution St(x | 0, 1, ν) in log scale for various values
of ν. The Student-t distribution has a heavier tail compared with a Gaussian, and
in the case of ν → ∞, St(x|µ, λ, ν) corresponds to a Gaussian N (x|µ, λ−1).

SMTP Aloi Thyroid Cancer Satellite

Data size 95,156 50,000 6,916 367 5,100
Dimension 3 27 21 30 36

Table 3.1: Number of data points and dimensions of five datasets.

3.5.1 Data

We used the following five datasets: SMTP, Aloi, Thyroid, Cancer and Satellite.

The SMTP data is the same as the data used in Section 3.3, where we used 10%

of this dataset for training. We also used 10% of this dataset for validation and

the remaining 80% for test. The Aloi data is the Amsterdam library of object

images (Geusebroek et al., 2005), and the Thyroid, Cancer and Satellite datasets

were obtained from the UCI Machine Learning Repository (Lichman, 2013). We

used the transformations of these datasets by (Goldstein and Uchida, 2016) 3. We

used 50% of the dataset for training, 10% for validation, and the remaining 40% for

test. The total number of data points and the dimensions of the data points of the

five datasets are listed in Table 5.1.

3These datasets are available at https://dataverse.harvard.edu/dataset.xhtml?

persistentId=doi:10.7910/DVN/OPQMVF
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Dataset Gaussian MAP(b = 1) MAP(b = 0.001) Student-t

SMTP -1.248 ± 0.404 -4.864 ± 0.020 -1.932 ± 0.404 0.827 ± 0.105
Aloi 45.418 ± 5.457 -38.210 ± 0.156 30.406 ± 0.383 77.022 ± 0.539
Thyroid 15.519 ± 4.422 -31.266 ± 0.159 18.037 ± 1.318 69.543 ± 0.634
Cancer -18.668 ± 3.448 -45.895 ± 0.843 -19.017 ± 3.273 -18.253 ± 2.629
Satellite -1.852 ± 0.370 -50.895 ± 0.238 -1.899 ± 0.372 -1.811 ± 0.289

Table 3.2: Comparison of test log-likelihoods. We highlighted the best result in bold,
and we also highlighted the results in bold which are not statistically different from
the best result according to a pair-wise t-test. We use 5% as p-value.

3.5.2 Setup

We used two-layer neural networks (500 hidden units per layer) as the encoder and

the decoder, and a hyperbolic tangent as the activation function. We trained the

VAE by using Adam (Kingma and Ba, 2015) with mini-batch size of 100. We set

the sample size of the reparameterization trick to L = 1. The maximum number of

epochs was 500, and we used early-stopping (Goodfellow et al., 2016) based on the

validation data. We used a two-dimensional latent variable vector z with the SMTP

data, and a 20-dimensional latent variable vector for the other datasets. For the

evaluation, we calculated the log-likelihood of the test data by using the importance

sampling (Burda et al., 2016). We set the sample size of the importance sampling to

100. We ran all experiments ten times each. The data was standardized with zero

mean and unit variance. We used the following setup: CPU was Intel Xeon E5-2640

v4 2.40GHz, the memory size was 1 TB, and GPU was NVIDIA Tesla M40.

3.5.3 Results

Figures 3.5(a)–3.5(e) show the relationship between the mean training loss and wall

clock (seconds), and Table 4.2 compares the test log-likelihoods of the Gaussian VAE,

MAP VAE, and Student-t VAE.

First, we focused on the Gaussian VAE. With the SMTP, Aloi and Thyroid

data, training of the Gaussian VAE was unstable, and the test log-likelihoods of the

Gaussian VAE were worse than those of the Student-t VAE. On the other hand,

with the Cancer and Satellite data, the training of the Gaussian VAE was stable,

and the Gaussian VAE and the Student-t VAE achieved the comparable test log-
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(a) SMTP data.
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(b) Aloi.

0 20 40 60
wall clock (seconds)

−50

0

50

100

N
eg

at
iv

e
va

ri
at

io
n

al
lo

w
er

b
ou

n
d

Gaussian

MAP(b = 1)

MAP(b = 0.001)

Student-t

(c) Thyroid.
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(d) Cancer.
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(e) Satellite.

Figure 3.5: Mean training loss (−∑N
i=1 L̂(x(i); θ, ϕ)/N) for each data set.

likelihoods. Figures 3.6(a) and 3.6(b) show the test log-likelihoods by the Gaussian

VAE for different mini-batch sizes, and different learning rates for the SMTP data,

respectively. Even though the mini-batch size and learning rate changed, the test

log-likelihood with the Gaussian VAE was worse than that with the Student-t VAE.

These results indicate that improving the robustness of the objective function is

better than tuning the hyper parameters of the optimizer.

Second, we focused on the MAP VAE. When the regularization parameter was

large, b = 1, the negative variational lower bound was stable but it did not decrease

well. When the regularization parameter was small, b = 0.001 with the SMTP, Aloi

and Thyroid data, the negative variational lower bound became unstable, and it

behaved similarly to that of the Gaussian VAE. The test log-likelihoods of the MAP

VAE were equal to or worse than the Gaussian VAE, because the constant parameter

of the Gamma prior b was not flexible. Figure 3.7 shows the test log-likelihoods with

different regularization parameter values b for the SMTP data. When b ≤ 0.001, the

test log-likelihood of the MAP VAE was not statistically different from the Gaussian

VAE, and when b ≥ 0.01, the larger b was, the worse the test log-likelihood of the

MAP VAE became. These results indicate that setting an appropriate robustness

40



200 400 600 800 1000
batch size

−3

−2

−1

0

1

T
es

t
lo

g
lik

el
ih

oo
d

Student-t

Gaussian

(a) different mini-batch sizes.

−10 −9 −8 −7 −6 −5 −4 −3
learning rate (log scale)

−5

−4

−3

−2

−1

0

1

T
es

t
lo

g
lik

el
ih

oo
d

Student-t

Gaussian

(b) different learning rates.

Figure 3.6: Test log-likelihoods by the Gaussian VAE for different mini-batch sizes
and learning rates for the SMTP data. We plotted the test log-likelihoods of the
Student-t VAE in Table 4.2 by dashed line for comparison. The semi-transparent
area and error bar represent standard deviations.

for each data point is effective to avoid zero-variance problem without lacking the

flexibility of density estimation.

Third, we focused on the Student-t VAE. With all of the datasets, the Student-t

VAE reduced the training loss stably, and obtained the equal to or better density

estimation performance than that of the Gaussian VAE and the MAP VAE. Since the

Student-t VAE can set the appropriate robustness for each data point by estimating

νθ(z), it avoids zero-variance problem while improving the flexibility of the decoder,

which makes the training stable and leads to obtaining good density estimation

performance.

In addition, we evaluated the stability of training under the noisy environment.

We added noisy samples which follows uniform distribution to SMTP data, and

evaluated the test log-likelihoods. Figure 3.8 shows the relationship between the test

log-likelihoods and the ratio of noisy samples to dataset. Whereas the training of

Gaussian VAE becomes unstable as the ratio of noisy samples increases, the training

of Student-t VAE continues to be stable. This result indicates that the Student-t

VAE is useful under the noisy environments such as real-world applications.

These results indicate that the Student-t VAE is a good alternative to the Gaus-

sian VAE: the training of the Student-tVAE is stable, which requires only a lightweight

computational cost, and the density estimation performance of the Student-t VAE
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Figure 3.7: Relationship between the test log-likelihoods and regularization parame-
ter b with the MAP VAE for SMTP data. We plotted the test log-likelihoods of the
Gaussian VAE and Student-t VAE in Table 4.2 by dashed line for comparison. The
semi-transparent area and error bar represent standard deviations.
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Figure 3.8: Comparison of the test log-likelihoods of the Gaussian VAE and those of
Student-t VAE under noisy environment. The semi-transparent area and error bar
represent standard deviations.

is equal to or better than that of the Gaussian VAE.

3.6 Related Work

Regarding related work on improving the stability of training the VAE, a number

of methods have been proposed that reduce the variance of stochastic gradients

(Johnson and Zhang, 2013; Wang et al., 2013; Kingma et al., 2015; Roeder et al.,

2017; Miller et al., 2017). These methods focused on the stability of optimization

methods, such as the reparameterization trick and the stochasticity due to data

subsampling. The Student-t VAE focuses on the different part from these methods:
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the robustness of the training objective function. This requires only a lightweight

computational cost, and can be used together with these existing methods.

It is well-known that the Student-t distribution has robustness (Lange et al.,

1989), and this robustness has been applied to a number of machine learning algo-

rithms, such as stochastic neighbor embedding (Maaten and Hinton, 2008), Gaussian

process (Jylänki et al., 2011), and Bayesian optimization (Martinez-Cantin et al.,

2017). These algorithms used a Student-t distribution to reduce the influence of

noise included in the observed data. The Student-t VAE uses a Student-t distribu-

tion for reducing the influence of the error between the data point and its decoded

mean, which makes the training objective function of Student-t VAE robust.

3.7 Conclusion

We proposed the Student-t variational autoencoder: a robust multivariate density

estimator based on the variational autoencoder (VAE). The training of the Gaussian

VAE often becomes unstable. We investigated the cause of this instability, and

revealed that the Gaussian decoder is sensitive to the error between the data point

and its decoded mean when the decoded variance is almost zero.

In order to improve the robustness of the VAE, we introduced a Bayesian ap-

proach to the Gaussian decoder: we set a Gamma prior for the inverse of the decoded

variance and marginalized it out analytically, which led to using the Student-t distri-

bution as the decoder. Since the Student-t distribution is a heavy-tailed distribution,

the Student-t decoder is robust to the error, which makes the training stable. We

demonstrated that the robustness of the training and the high density estimation

performance of the Student-t VAE in experiments using five datasets.

In the future, we will try to apply the Student-t VAE to real-world applications

such as anomaly detection (Suh et al., 2016) and image generation (van den Oord

et al., 2016).
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Chapter 4

Variational Autoencoder with

Implicit Optimal Priors

4.1 Introduction

In this chapter, we focus on the over-regularization by prior, described in Section 1.2.

Although the standard Gaussian distribution is usually used for the prior, this simple

prior incurs over-regularization. The aggregated posterior prior, the expectation of

the encoder over the data distribution, has been introduced as the optimal prior

in terms of the maximizing the ELBO (Hoffman and Johnson, 2016). Since the

KL divergence with the aggregated posterior cannot be calculated in a closed form,

the previous work (Tomczak and Welling, 2018) models this optimal prior by using

the finite mixture of encoders, called the VampPrior. Nevertheless, it has sensitive

hyperparameters that are difficult to tune. we review these priors in section 4.2,

In section 4.3, we directly approximate the KL divergence with the aggregated

posterior. This enables us to avoid the difficult hyperparameter tuning for modeling

the aggregated posterior. We can simply use the density ratio trick to approximation

this KL divergence. However, since this KL divergence is high-dimensional density

ratio, the density ratio trick does not work well. To avoid density ratio estimation in

high dimension, we rewrite this KL divergence into the sum of following two terms:

• the KL divergence between the encoder and the standard Gaussian, and

• the density ratio between the aggregated posterior and the standard Gaussian.
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The first term can be calculated in a closed form, and we can accurately appropriate

second term since this is low-dimensional density ratio.

We discuss the relationship between our approach and existing approaches in

section 4.4, and evaluate our approach on various datasets in section 4.5. Finally, we

summarize our contributions in section 4.6.

4.2 Preliminaries

4.2.1 Variational Autoencoder

First, we again review the VAE (Kingma and Welling, 2014; Rezende et al., 2014),

focusing on the prior pλ(z). The VAE estimates the data point x by using a low-

dimensional latent variable vector z as follows:

pθ(x) =

∫
pθ(x|z)pλ(z)dz, (4.1)

where pθ(x|z) is the decoder.

The ELBO for each data point x can be written as

L(x; θ, ϕ) = Eqϕ(z|x) [ln pθ(x|z)]−DKL(qϕ(z|x)∥pλ(z)), (4.2)

where qϕ(z|x) is the encoder. The expectation term in Eq. (4.2) is known as the

negative reconstruction error, which we also call the the reconstruction term in this

chapter.

The parameters of the encoder θ and decoder ϕ are optimized by maximizing the

following ELBO:

max
θ,ϕ

∫
pD(x)L(x; θ, ϕ)dx, (4.3)

where pD(x) is the data distribution.

4.2.2 Aggregated Posterior

The training of VAE is maximizing the reconstruction term with regularization by

KL divergence between the encoder and the prior pλ(z). pλ(z) is usually modeled by
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a standard Gaussian distribution N (z|0, I) (Kingma and Welling, 2014). However,

this is not an optimal prior for the VAE. This simple prior incurs over-regularization,

which is one of the causes of the poor performance (Hoffman and Johnson, 2016).

This phenomenon is called the posterior-collapse (van den Oord et al., 2017).

The optimal prior that maximizes the objective function of VAE (Eq. (4.3)) can

be derived analytically. The maximization of Eq. (4.3) with respect to the prior

pλ(z) is written as follows:

argmax
pλ(z)

∫
pD(x)L(x; θ, ϕ)dx = argmax

pλ(z)

∫
pD(x)Eqϕ(z|x) [ln pλ(z)] dx

= argmax
pλ(z)

∫ {∫
pD(x)qϕ(z|x)dx

}
ln pλ(z)dz

= argmax
pλ(z)

−H(

∫
pD(x)qϕ(z|x)dx, pλ(z)), (4.4)

where −H(P,Q) is the negative cross entropy between P and Q. Since −H(P,Q)

takes a maximum value when P is equal to Q, the optimal prior p∗λ(z) that maximizes

Eq. (4.3) is

p∗λ(z) =

∫
pD(x)qϕ(z|x)dx ≡ qϕ(z). (4.5)

This distribution qϕ(z) is called the aggregated posterior 1.

When we use the standard Gaussian prior p(z) = N (z|0, I), the KL divergence

DKL(qϕ(z|x)∥p(z)) can be calculated in a closed form (Kingma and Welling, 2014).

However, when we use the aggregated posterior qϕ(z) as the prior, the KL divergence

DKL(qϕ(z|x)∥qϕ(z)) = Eqϕ(z|x)
[
ln
qϕ(z|x)
qϕ(z)

]
(4.6)

cannot be calculated in a closed form, which prevents us from using the aggregated

posterior as the prior.

1Note that the aggregated posterior is NOT the product of the prior and the likelihood, which
is the way the word posterior is usually used.
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4.2.3 Previous work: VampPrior

In previous work, the aggregated posterior is modeled by using the finite mixture of

encoders to calculate the KL divergence. Given a dataset X =
{
x(1), . . . ,x(N)

}
, the

aggregated posterior can be simply modeled by an empirical distribution:

qϕ(z) ≃
1

N

N∑

i=1

qϕ(z|x(i)). (4.7)

Nevertheless, this empirical distribution incurs over-fitting (Tomczak and Welling,

2018). Thus, the VampPrior (Tomczak and Welling, 2018) models the aggregated

posterior by

qϕ(z) ≃
1

K

K∑

k=1

qϕ(z|u(k)), (4.8)

where K is the number of mixtures, and u(k) is the same dimensional vector as a data

point. u is regarded as the pseudo input for the encoder, and is optimized during the

training of the VAE through the stochastic gradient descent (SGD). If K ≪ N , the

VampPrior can avoid over-fitting (Tomczak and Welling, 2018). The KL divergence

with the VampPrior can be calculated by the Monte Carlo approximation. The VAE

with the VampPrior achieves better density estimation performance than the VAE

with the standard Gaussian prior and the VAE with the Gaussian mixture prior

(Dilokthanakul et al., 2016). However, this approach has a major drawback: it has

sensitive hyperparameters such as the number of mixtures K, which are difficult to

tune.

From the above discussion, the aggregated posterior seems to be difficult to model

explicitly. In the next section, instead, we estimate the KL divergence with the

aggregated posterior without modeling the aggregated posterior explicitly.

4.3 Proposed Method

In this section, we propose the approximation method of the KL divergence with the

aggregated posterior, and describe the optimization procedure of our approach.
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4.3.1 Estimating the KL Divergence

As shown in Eq. (4.6), the KL divergence with the aggregated posterior is the

expectation of the logarithm of the density ratio qϕ(z|x)/qϕ(z). In this section, we

introduce the density ratio trick (Sugiyama et al., 2012; Goodfellow et al., 2014),

which can estimate the ratio of two distributions without modeling each distribution

explicitly. Hence, there is no need to model the aggregated posterior explicitly. By

using the density ratio trick, qϕ(z|x)/qϕ(z) can be estimated by using a probabilistic

binary classifier D(x, z).

However, the density ratio trick has a serious drawback: it is experimentally

shown to work poorly in high dimensions (Sugiyama et al., 2012; Rosca et al.,

2018). Unfortunately, if x is high-dimensional, qϕ(z|x)/qϕ(z) also becomes a high-

dimensional density ratio. The reason is as follows. Since the qϕ(z|x) is a conditional

distribution of z given x, the density ratio trick has to use a probabilistic binary

classifier D(x, z), which takes x and z jointly as an input. In fact, D(x, z) estimates

the density ratio of joint distributions of x and z, which is a high-dimensional density

ratio with high-dimensional x (Mescheder et al., 2017).

To avoid the density ratio estimation in high dimensions, we rewrite the KL

divergence DKL(qϕ(z|x)∥qϕ(z)) as follows:

DKL(qϕ(z|x)∥qϕ(z)) = Eqϕ(z|x)
[
ln
qϕ(z|x)
qϕ(z)

]

=

∫
qϕ(z|x) ln

qϕ(z|x)
p(z)

dz+

∫
qϕ(z|x) ln

p(z)

qϕ(z)
dz

= DKL(qϕ(z|x)∥p(z))− Eqϕ(z|x)
[
ln
qϕ(z)

p(z)

]
. (4.9)

The first term in Eq. (4.9) is KL divergence between the encoder and standard

Gaussian distribution, which can be calculated in a closed form. The second term

is the expectation of the logarithm of the density ratio qϕ(z)/p(z). We estimate

qϕ(z)/p(z) with the density ratio trick. Since the latent variable vector z is low-

dimensional, the density ratio trick works well.

We can estimate the density ratio qϕ(z)/p(z) as follows. First, we prepare the

samples from qϕ(z) and samples from p(z). We can sample from p(z) and qϕ(z|x)
since these distributions are a Gaussian, and we can also sample from the aggregated
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posterior qϕ(z) by using ancestral sampling: we choose a data point x from a dataset

randomly and sample z from the encoder given this data point x. Second, we label

y = 1 to samples from qϕ(z) and y = 0 to samples from p(z). Then, we define p∗(z|y)
as follows:

p∗(z|y) ≡




qϕ(z) (y = 1)

p(z) (y = 0)
. (4.10)

Third, we introduce a probabilistic binary classifier D(z) that discriminates between

the samples from qϕ(z) and samples from p(z). IfD(z) can discriminate these samples

perfectly, we can rewrite the density ratio qϕ(z)/p(z) by using Bayes theorem and

D(z) as follows:

qϕ(z)

p(z)
=
p∗(z|y = 1)

p∗(z|y = 0)
=
p∗(y = 0)p∗(y = 1|z)
p∗(y = 1)p∗(y = 0|z) =

p∗(y = 1|z)
p∗(y = 0|z) ≡ D(z)

1−D(z)
, (4.11)

where p∗(y = 0) equals p∗(y = 1) since the number of samples is the same. We model

D(z) by σ(Tψ(z)), where Tψ(z) is a neural network with parameter ψ and input z,

and σ(·) is a sigmoid function. We train Tψ(z) to maximize the following objective

function:

T ∗(z) = max
ψ

Eqϕ(z) [ln(σ(Tψ(z)))] + Ep(z) [ln(1− σ(Tψ(z)))] . (4.12)

By using T ∗(z), we can estimate the density ratio qϕ(z)/p(z) as follows:

qϕ(z)

p(z)
=

σ(T ∗(z))

1− σ(T ∗(z))
⇔ T ∗(z) = ln

qϕ(z)

p(z)
. (4.13)

Therefore, we can estimate the KL divergence between the encoder and aggregated

posterior DKL(qϕ(z|x)∥qϕ(z)) by

DKL(qϕ(z|x)∥qϕ(z)) = DKL(qϕ(z|x)∥p(z))− Eqϕ(z|x) [T
∗(z)] . (4.14)
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4.3.2 Optimization Procedure

From the above discussion, we obtain the training objective function of the VAE

with our implicit optimal prior:

max
θ,ϕ

∫
pD(x)

{
Eqϕ(z|x) [ln pθ(x|z) + Tψ(z)]−DKL(qϕ(z|x)∥p(z))

}
dx, (4.15)

where Tψ(z) maximizes the Eq. (4.12). Given a dataset X =
{
x(1), . . . ,x(N)

}
, we

optimize the Monte Carlo approximation of this objective:

max
θ,ϕ

1

N

N∑

i=1

{
Eqϕ(z|x(i))

[
ln pθ(x

(i)|z) + Tψ(z)
]
−DKL(qϕ(z|x(i))∥p(z))

}
, (4.16)

and we approximate the expectation term by the reparameterization trick (Kingma

and Welling, 2014):

Eqϕ(z|x(i))

[
ln pθ(x

(i)|z) + Tψ(z)
]
≃ 1

L

L∑

ℓ=1

{
ln pθ(x

(i)|z(i,ℓ)) + Tψ(z
(i,ℓ))

}
, (4.17)

where z(i,ℓ) = µϕ(x
(i)) + ε(i,ℓ) ⊙ σϕ(x

(i)), ε(i,ℓ) is a sample drawn from N (z|0, I), ⊙ is

the element-wise product, and L is the sample size of the reparameterization trick.

Then, the resulting objective function is

max
θ,ϕ

1

N

N∑

i=1

[ 1
L

L∑

ℓ=1

{
ln pθ(x

(i)|z(i,ℓ)) + Tψ(z
(i,ℓ))

}
−DKL(qϕ(z|x(i))∥p(z))

]
. (4.18)

We optimize this model with stochastic gradient descent (SGD) (Duchi et al.,

2011; Zeiler, 2012; Tieleman and Hinton, 2012; Kingma and Ba, 2015) by iterating

a two-step procedure: we first update θ and ϕ to maximize Eq. (4.18) with fixed ψ

and next update ψ to maximize the Monte Carlo approximation of Eq. (4.12) with

fixed θ and ϕ, as follows:

max
ψ

1

M

M∑

i=1

ln(σ(Tψ(z
(i)
1 ))) +

1

M

M∑

j=1

ln(1− σ(Tψ(z
(j)
0 ))), (4.19)

where z
(i)
1 is a sample drawn from qϕ(z), z

(j)
0 is a sample drawn from p(z), and M
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is the sampling size of Monte Carlo approximation. Note that we need to compute

the gradient of Tψ(z) with respect to ϕ in the optimization of Eq. (4.18) since Tψ(z)

models ln qϕ(z)/p(z). However, when Tψ(z) equals T ∗(z), the expectation of this

gradient becomes zero, as follows:

EpD(x)qϕ(z|x) [∇ϕT
∗(z)] = Eqϕ(z) [∇ϕ ln qϕ(z)]

=

∫
qϕ(z)

∇ϕqϕ(z)

qϕ(z)
dz

= ∇ϕ

∫
qϕ(z)dz

= ∇ϕ1

= 0. (4.20)

Therefore, we ignore this gradient in the optimization 2. We also note that Tψ(z) is

likely to overfit to the log density ratio between the empirical aggregated posterior

(Eq. (4.7)) and the standard Gaussian distribution. As mentioned in Section 4.2.3,

this over-fitting also incurs over-fitting of the VAE (Tomczak and Welling, 2018).

Therefore, we use the regularization techniques such as dropout (Srivastava et al.,

2014) for Tψ(z), which prevents it from over-fitting. We train ψ more than θ and

ϕ: if we update θ and ϕ for J1 steps, we update ψ for J2 steps, where J2 is larger

than J1. Algorithm 5.1 shows the pseudo code of the optimization procedure of this

model, where K is the minibatch size of SGD.

4.4 Related Work

For improving the performance of the VAE, numerous works have focused on the

regularization effect of the KL divergence between the encoder and the prior. These

works improve either the encoder or the prior.

First, we focus on the works about the prior. Although the optimal prior for the

VAE is the aggregated posterior, the KL divergence with the aggregated posterior

cannot be calculated in a closed form. As described in Section 4.2.3, the VampPrior

(Tomczak and Welling, 2018) has been presented to solve this problem. However, it

has sensitive hyperparameters such as the number of mixtures K. Since the Vamp-

2There is almost the same discussion in (Mescheder et al., 2017).
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Algorithm 4.1 VAE with Implicit Optimal Priors

1: while not converged do

2: for J1 steps do

3: Sample minibatch
{
x(1), . . . ,x(K)

}
from X

4: Compute the gradients of Eq. (4.18) w.r.t. θ and ϕ

5: Update θ and ϕ with their gradients

6: for J2 steps do

7: Sample minibatch
{
z
(1)
0 , . . . , z

(K)
0

}
from p(z)

8: Sample minibatch
{
z
(1)
1 , . . . , z

(K)
1

}
from qϕ(z)

9: Compute the gradient of Eq. (4.19) w.r.t. ψ

10: Update ψ with its gradient

Prior requires a heavy computational cost, these hyperparameters are difficult to

tune. In contrast to this, our approach can estimate the KL divergence more easily

and robustly than the VampPrior since it does not need to model the aggregated pos-

terior explicitly. In addition, since the computational cost of our approach is much

more lightweight than that of VampPrior, the hyperparameters of our approach are

easier to tune than those of VampPrior.

There are approaches on improving the prior other than the aggregated posterior.

For example, non-parametric Bayesian distribution (Nalisnick and Smyth, 2017) and

hyperspherical distribution (Davidson et al., 2018) are used for the prior. These ap-

proaches aim to obtain the useful and interpretable latent representation rather than

improving the density estimation performance, which is opposite to our purpose. We

should mention the disadvantage of our approach compared with these approaches.

Since our prior is implicit, we cannot sample from our prior directly. Instead, we

can sample from the aggregated posterior, which our implicit prior models, by using

ancestral sampling. That is, when we sample from the prior, we need to prepare a

data point.

Next, we focus on the works about the encoder. To improve the performance of

the VAE, these works increase the flexibility of the encoder. The normalizing flow

(Rezende and Mohamed, 2015; Kingma et al., 2016; Huang et al., 2018) is one of

the main approaches, which applies a sequence of invertible transformations to the

latent variable vector until a desired level of flexibility is attained. Our approach is
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orthogonal to the normalizing flow and can be used together with it.

The similar approaches to ours are the adversarial variational Bayes (AVB)

(Mescheder et al., 2017) and the adversarial autoencoders (AAE) (Makhzani et al.,

2015; Tolstikhin et al., 2017). These approaches use the implicit encoder network,

which takes as input a data point x and Gaussian random noise and produces a latent

variable vector z. Since the implicit encoder does not assume the distribution type, it

can become a very flexible distribution. In these approaches, the standard Gaussian

distribution is used for the prior. Although the KL divergence between the implicit

encoder and the standard Gaussian prior DKL(qϕ(z|x)∥p(z)) cannot be calculated

in a closed form, the AVB estimates this KL divergence by using the density ratio

trick. However, this estimation does not work well with high-dimensional datasets

since this KL divergence also becomes a high-dimensional density ratio (Rosca et al.,

2018). Our approach can avoid this problem since we use the density ratio trick in a

low dimension. The AAE is an expansion of the Autoencoder rather than the VAE.

The AAE regularizes the aggregated posterior to be close to the standard Gaussian

prior by minimizing the KL divergence DKL(qϕ(z)∥p(z)). The AAE also uses the

density ratio trick to estimate this KL divergence, and this works well since this KL

divergence is a low-dimensional density ratio. However, the AAE cannot estimate

the probability of a data point. Our approach is based on the VAE, and can estimate

the probability of a data point.

4.5 Experiments

In this section, we experimentally evaluate the performance of our approach.

4.5.1 Data

We used five datasets: OneHot (Mescheder et al., 2017), MNIST (Salakhutdinov and

Murray, 2008), OMNIGLOT (Burda et al., 2016), FreyFaces3, and Histopathology

(Tomczak and Welling, 2016). OneHot consists of only four-dimensional one hot

vectors: (1, 0, 0, 0)T, (0, 1, 0, 0)T, (0, 0, 1, 0)T, and (0, 0, 0, 1)T. This simple dataset is

useful for observing the posterior of the latent variable, which is used in (Mescheder

et al., 2017). MNIST and OMNIGLOT are binary image datasets, and FreyFaces

3This dataset is available at https://cs.nyu.edu/~roweis/data/frey_rawface.mat
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Table 4.1: Number and dimensions of datasets

Dimension Train size Valid size Test size

OneHot 4 1,000 100 1,000
MNIST 784 50,000 10,000 10,000
OMNIGLOT 784 23,000 1,345 8,070
FreyFaces 560 1,565 200 200
Histopathology 784 6,800 2,000 2,000

and Histopathology are grayscale image datasets. These image datasets are useful

for measuring the density estimation performance, which are used in (Tomczak and

Welling, 2018). The number and the dimensions of data points of the five datasets

are listed in Table 5.1.

4.5.2 Setup

We compared our implicit optimal prior with standard Gaussian prior and Vamp-

Prior. We set the dimensions of the latent variable vector to 2 for OneHot, and

40 for other datasets. We used two-layer neural networks (500 hidden units per

layer) for the encoder, the decoder, and the density ratio estimator. We used the

gating mechanism (Dauphin et al., 2016) for the encoder and the decoder and used

a hyperbolic tangent as the activation function for the density ratio estimator. We

initialized the weights of these neural networks in accordance with the method in

(Glorot and Bengio, 2010). We used a Gaussian distribution as the encoder. As the

decoder, we used a Bernoulli distribution for OneHot, MNIST, and OMNIGLOT

and used a Gaussian distribution for FreyFaces and Histopathology, means of which

were constrained to the interval [0, 1] by using a sigmoid function. We trained all

methods by using Adam (Kingma and Ba, 2015) with a mini-batch size of 100 and

learning rate in [10−4, 10−3]. We set the maximum number of epochs to 1,000 and

used early-stopping (Goodfellow et al., 2016) on the basis of validation data. We

set the sample size of the reparameterization trick to L = 1. In addition, we used

warm-up (Bowman et al., 2015) for the first 100 epochs of Adam. For MNIST and

OMNIGLOT, we used dynamic binarization (Salakhutdinov and Murray, 2008) dur-

ing the training of VAE to avoid over-fitting. For image datasets, we calculated the
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log-likelihood of the test data by using the importance sampling (Burda et al., 2016).

We set the sample size of the importance sampling to 10. We ran all experiments

eight times each.

With VampPrior, we set the number of mixtures K to 50 for OneHot, 500 for

MNIST, FreyFaces, and Histopathology, and 1,000 for OMNIGLOT. In addition, for

image datasets, we used a clipped relu function that equals min(max(x, 0), 1) to scale

the pseudo inputs in [0, 1] since the range of data points of these datasets is [0, 1] 4.

With our approach, we used dropout (Srivastava et al., 2014) in the training of

the density ratio estimator since it is likely to over-fit. We set the keep probability

of dropout to 50%. We updated the parameter of the density ratio estimator: ψ for

10 epochs during the updating of the parameters of VAE: θ and ϕ for one epoch. We

set the sampling size of Monte Carlo approximation in Eq. (4.19) to M = N .

In addition, we compared our approach with adversarial variational Bayes (AVB)

on OneHot. We set the dimension of the Gaussian random noise input of AVB to

10, and other settings are almost the same as those for our approach.

4.5.3 Results

Figures 4.1(a)–4.1(d) show the posteriors of latent variable of each approach on

OneHot, and Figures 4.2(a)–4.2(d) show the evidence lower bound of each approach

on OneHot.

These results show the difference between these approaches. We can see that

the evidence lower bound (ELBO) of the standard VAE (VAE with standard Gaus-

sian prior) on OneHot was worse than the optimal log-likelihood on this dataset:

− ln(4) ≈ −1.386. The over-regularization incurred by the standard Gaussian prior

can be given as a reason. The posteriors were overlapped, and it became difficult

to discriminate between samples from these posteriors. Hence, the decoder became

confused when reconstructing. This caused the poor density estimation performance.

On the other hand, the ELBOs of AVB, VAE with VampPrior, and our approach

are much closer to the optimal log-likelihood than the standard VAE. We note that

the ELBOs of the AVB and our approach are the estimated values, and that these

approaches may overestimate the ELBO on OneHot since the training data and

validation data of OneHot are the same. First, we focus on the AVB. Although there

4We referred to https://github.com/jmtomczak/vae_vampprior
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Figure 4.1: Comparison of posteriors of latent variable on OneHot. We plotted
samples drawn from qϕ(z|x), where x is a one hot vector: (1, 0, 0, 0)T, (0, 1, 0, 0)T,
(0, 0, 1, 0)T, or (0, 0, 0, 1)T. We used test data for this sampling. Samples in each color
correspond to each latent representation of one hot vectors. (a) Standard VAE (VAE
with standard Gaussian prior). (b) AVB. (c) VAE with VampPrior. (d) Proposed
method.

is still the strong regularization by the standard Gaussian prior, the posteriors barely

overlapped, and the data point was easy to reconstruct from the latent representation.

The reason is that the implicit encoder network of AVB can learn complex posterior

distributions. Next, we focus on the VAE with VampPrior and our approach. The

VampPrior and our implicit optimal prior model the aggregated posterior that is

the optimal prior for the VAE. These priors made the posteriors of these approaches

different from each other, and the data point was easy to reconstruct from the latent

representation.

Table 4.2 compares the test log-likelihoods on four image datasets. We used bold
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(c) VAE with VampPrior.
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(d) Proposed method.

Figure 4.2: Comparison of the evidence lower bound (ELBO) with validation data on
OneHot. We plotted the ELBO from 100 to 1,000 epochs since we used warm-up for
the first 100 epochs. The optimal log-likelihood on this dataset is − ln(4) ≈ −1.386.
We plotted this value by a dashed line for comparison. (a) Standard VAE (VAE
with standard Gaussian prior). (b) AVB. (c) VAE with VampPrior. (d) Proposed
method.

to highlight the best result and the results that are not statistically different from

the best result according to a pair-wise t-test. We used 5% as the p-value. We

did not compare with AVB since the estimated log marginal likelihood of AVB with

high-dimensional datasets such as images is not accurate (Rosca et al., 2018).

First, we focus on the VampPrior. We can see that test log-likelihoods of Vamp-

Prior are better than those of standard VAE. However, we found two drawbacks with

the VampPrior. One is that the pseudo inputs of VampPrior are difficult to opti-

mize. For example, the pseudo inputs have an initial value dependence. Although

the warm-up helps in solving this problem, it seems difficult to solve completely. The
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Table 4.2: Comparison of test log-likelihoods on four image datasets.

Standard VAE VAE with VampPrior Proposed method

MNIST -85.84 ± 0.07 -83.90 ± 0.08 ≈ -83.21 ± 0.13
OMNIGLOT -111.39 ± 0.11 -110.53 ± 0.09 ≈ -108.48 ± 0.16
FreyFaces 1382.53 ± 3.57 1392.62 ± 6.25 ≈ 1396.27 ± 2.75
Histopathology 1081.53 ± 0.70 1083.11 ± 2.10 ≈ 1087.42 ± 0.60
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Figure 4.3: Relationship between the test log-likelihoods and number of pseudo
inputs of VampPrior on Histopathology. We plotted the test log-likelihoods of our
approach by a dashed line for comparison. The semi-transparent area and error bar
represent standard deviations.

other is that the number of mixtures K is a sensitive hyperparameter. Figure 4.3

shows the test log-likelihoods with various K on Histopathology. The high standard

deviation of the VampPrior indicates its high dependence of the pseudo input initial

values. In addition, even though we choose the optimal K, the test log-likelihood of

the VampPrior is worse than that of our approach.

Next, we focus on our approach. Our approach obtained the equal to or better

density estimation performance than the VampPrior. Since our approach models

the aggregated posterior implicitly, it can estimate the KL divergence more easily

and robustly than the VampPrior. In addition, it has a much more lightweight

computational cost than the VampPrior. In the training phase on MNIST, our

approach was almost 2.83 times faster than the VampPrior. Therefore, although our

approach has as many hyperparameters, like the neural architecture of the density

ratio estimator, as the VampPrior, these hyperparameters are easier to tune than
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those of the VampPrior.

These results indicate that our implicit optimal prior is a good alternative to the

VampPrior: our implicit optimal prior can be optimized easily and robustly, and its

density estimation performance is equal to or better than that of the VAE with the

VampPrior.

4.6 Conclusion

In this chapter, we proposed the VAE with implicit optimal priors. Although the

standard Gaussian distribution is usually used for the prior, this simple prior incurs

over-regularization, which is one of the causes of poor performance. To solve this, the

aggregated posterior has been introduced, which is optimal in terms of maximizing

the training objective function of VAE. However, KL divergence between the encoder

and the aggregated posterior cannot be calculated in a closed form, which prevents

us from using this optimal prior. Even though explicit modeling of the aggregated

posterior has been tried, this optimal prior is difficult to model explicitly.

With the proposed method, we introduced the density ratio trick for estimating

this KL divergence directly. Since the density ratio trick can estimate the density

ratio between two distributions without modeling each distribution explicitly, there is

no need to model the aggregated posterior explicitly. Although the density ratio trick

is useful, it does not work well in a high dimension. Unfortunately, the KL divergence

between the encoder and the aggregated posterior is high-dimensional. Hence, we

rewrite the KL divergence into the sum of two terms: the KL divergence between the

encoder and the standard Gaussian distribution that can be calculated in a closed

form, and the low-dimensional density ratio between the aggregated posterior and

the standard Gaussian distribution, to which the density ratio trick is applied. We

experimentally showed the high density estimation performance of the VAE with this

implicit optimal prior.
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Chapter 5

Learning Optimal Priors for

Task-Invariant Representations in

Variational Autoencoders

5.1 Introduction

In this chapter, we focus on the poor performance with insufficient data, described

in Section 1.3. Although the VAE is powerful generative model, it cannot perform

well with insufficient data points since it requires many data points for training

neural networks. To overcome the lack of training data on the target task, we can

apply multi-task learning (Caruana, 1997) to the VAE, where task-invariant latent

variable shares task-invariant knowledge effectively. On the multiple tasks, the CVAE

(Kingma et al., 2014; Sohn et al., 2015) has been widely used.

Although the CVAE is expected to reduce the dependency of the latent variable

on the task, this task-dependency remains in many cases (Louizos et al., 2016). As

an approach to reduce the task-dependency, the variational fair autoencoder (VFAE)

(Louizos et al., 2016) was presented, which introduces the additional regularizer on

the basis of maximum mean discrepancy (MMD) (Gretton et al., 2007). However,

its learned representation does not work well on the target tasks. The reason is why

the MMD regularizer loosens the ELBO, which prevents the VFAE from maximizing

the log-likelihood sufficiently. We review the CVAE and VFAE in section 5.2.
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In section 5.3, we first reveal the cause of the remaining task-dependency in the

CVAE by using mutual information (Cover and Thomas, 2012) between tasks and

latent variables. We show that this mutual information is bounded above by the

expectation of the KL divergence between the encoder and the prior, Since this

expectation term is minimized in the training, the CVAE also tries to minimize the

mutual information. However, this expectation term is not a tight upper bound

because the simple standard Gaussian prior loosens the upper bound. This prevents

the CVAE from minimizing the mutual information sufficiently. Hence, the simple

prior is one of the causes of the remaining task-dependency in the CVAE. To solve

this, we propose an optimal prior for reducing the task-dependency. We also show

that this optimal prior presents a better lower bound of the log-likelihood than those

of the CVAE and VFAE. This enables us to obtain better representations for the

improved performance on the target tasks.

Our contributions can be summarized as follows:

• We show why the simple standard Gaussian prior cannot sufficiently reduce

the task-dependency in the CVAE.

• We propose a theoretical optimal prior for reducing the task-dependency.

• We show that this optimal prior presents a better lower bound of the log-

likelihood than those of the CVAE and VFAE, which enables us to obtain

better representations for the improved performance on the target tasks.

• We experimentally show that our approach obtains better task-invariant rep-

resentations than existing approaches on various datasets, which improves the

performances of various downstream applications such as density estimation

and classification.

We discuss the relationship between our approach and existing approaches in

section 5.4, and evaluate our approach on various datasets in section 5.5. Finally, we

conclude this chapter in section 5.6.
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5.2 Preliminaries

5.2.1 Conditional Variational Autoencoder

First, we again review the CVAE (Kingma et al., 2014; Sohn et al., 2015), focusing

on the task-dependency. The CVAE models the conditional probability of the data

point x given task index s using latent variable vector z as follows:

pθ(x|s) =
∫
pθ(x|z, s)p(z)dz, (5.1)

where pθ(x|z, s) is the decoder, and p(z) is the prior. p(z) is modeled by a standard

Gaussian distribution N (z|0, I) (Kingma et al., 2014; Sohn et al., 2015).

The ELBO of the CVAE for each data point x can be written as

L(x, s; θ, ϕ) = Eqϕ(z|x,s) [ln pθ(x|z, s)]−DKL(qϕ(z|x, s)∥p(z)), (5.2)

where qϕ(z|x, s) is the encoder. The expectation term in Eq. (5.2) is known as the

negative reconstruction error.

The parameters θ and ϕ are optimized by maximizing the ELBO as follows:

FCVAE(θ, ϕ) = EpD(x,s) [L(x, s; θ, ϕ)] (5.3)

= EpD(x,s)qϕ(z|x,s) [ln pθ(x|z, s)]− EpD(x,s) [DKL(qϕ(z|x, s)∥p(z))] , (5.4)

where pD(x, s) = pD(x|s)pD(s) is the joint distribution of the data point and task.

Since encoder qϕ(z|x, s) is regularized by task-invariant prior p(z) through the

KL divergence during the above optimization, the CVAE can reduce the dependency

of z on s, called the task-dependency. Task-invariant z helps us to overcome the

lack of training data points for each task since it helps in sharing the task-invariant

knowledge with multiple tasks.

Although the CVAE can reduce the task-dependency to some extent, the task-

dependency remains in many cases (Louizos et al., 2016). That is, the posteriors of

z given s:

qϕ(z|s) =
∫
qϕ(z|x, s)pD(x|s)dx, (5.5)
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differ whenever s differs.

5.2.2 Variational Fair Autoencoder

In previous work, the VFAE (Louizos et al., 2016) regularizes qϕ(z|s) for each s so

that they become similar by minimizing the MMD (Gretton et al., 2007), which is

a distance on the space of probability measures. When s is binary, the training

objective function of the VFAE is

FVFAE(θ, ϕ) = FCVAE(θ, ϕ)− αℓMMD(qϕ(z|s = 0), qϕ(z|s = 1)), (5.6)

where ℓMMD(P,Q) is the approximation of MMD between P and Q, and α > 0 is

a hyperparameter that is tuned according to the validation data. When there are

K ≥ 3 tasks, the VFAE minimizes the sum of the MMD between qϕ(z|s = k) and

its marginalized posterior qϕ(z) for each task k:

FVFAE(θ, ϕ) = FCVAE(θ, ϕ)− α
K∑

k=1

ℓMMD(qϕ(z|s = k), qϕ(z)), (5.7)

where

qϕ(z) =
K∑

k=1

qϕ(z|s = k)pD(s = k). (5.8)

Although this MMD regularization can reduce the task-dependency, the learned rep-

resentation does not work well on the target tasks for the following reason. Since the

MMD provides a non-negative value, the following inequality holds:

FCVAE(θ, ϕ) ≥ FVFAE(θ, ϕ). (5.9)

That is, FVFAE(θ, ϕ) is the looser lower bound of the log-likelihood than FCVAE(θ, ϕ)

and the VFAE cannot maximize the log-likelihood sufficiently. As a result, the VFAE

does not generalize well for test data on the target tasks.

64



5.3 Proposed method

5.3.1 Analyzing Task-Dependency

Our aim is to obtain the task-invariant latent variable z without loosening the ELBO

of the CVAE. To tackle this problem, we first investigate the cause of the dependency

of z on the task s in the CVAE.

For the degree of this task-dependency, we introduce the mutual information

(Cover and Thomas, 2012) between tasks and latent variables I(S;Z), where S is a

random variable for tasks and Z is that for latent variables. Assume that we have

K tasks and the probability of the task k is given by pD(s = k) = πk, where πk ≥ 0

and
∑

k πk = 1. Then, the mutual information I(S;Z) can be written as follows:

I(S;Z) = Eqϕ(z|s)pD(s)

[
ln
qϕ(z|s)
qϕ(z)

]
=

K∑

k=1

πkDKL(qϕ(z|s = k)∥qϕ(z)). (5.10)

This mutual information measures the dependency of S and Z. I(S;Z) is non-

negative, providing a large value when Z depends on S and a small value when Z is

almost independent of S. Note that I(S;Z) gives zero if and only if Z is completely

independent of S.

For this mutual information, we have the following theorem:

Theorem 5.1. R(ϕ) ≡ EpD(x,s) [DKL(qϕ(z|x, s)∥p(z))] is upper bound of I(S;Z),

which is minimized in FCVAE(θ, ϕ).

Proof. R(ϕ) can be rewritten as follows:

R(ϕ) = Eqϕ(z|x,s)pD(x,s)

[
ln
qϕ(z|x, s)
qϕ(z)

]
+DKL(qϕ(z)∥p(z)), (5.11)

65



and the expectation term can be also rewritten as

Eqϕ(z|x,s)pD(x,s)

[
ln
qϕ(z|x, s)
qϕ(z)

]
=

K∑

k=1

πkEqϕ(z|x,s=k)pD(x|s=k)

[
ln
qϕ(z|x, s = k)

qϕ(z)

]
(5.12)

=
K∑

k=1

πkEqϕ(z|x,s=k)pD(x|s=k)

[
ln
qϕ(z|x, s = k)

qϕ(z|s = k)

]

+
K∑

k=1

πkDKL(qϕ(z|s = k)∥qϕ(z)) (5.13)

=
K∑

k=1

πkI(X
(k);Z(k)) + I(S;Z), (5.14)

where X is a random variable for data points, and

I(X(k);Z(k)) = Eqϕ(z|x,s=k)pD(x|s=k)

[
ln
qϕ(z|x, s = k)

qϕ(z|s = k)

]
(5.15)

is the mutual information between X and Z when s = k. Therefore, R(ϕ) can be

finally rewritten as

R(ϕ) =
K∑

k=1

πkI(X
(k);Z(k)) + I(S;Z) +DKL(qϕ(z)∥p(z)). (5.16)

Since the KL divergence and mutual information give a non-negative value, R(ϕ) is

upper bound of the mutual information I(S;Z). □

Figure 5.1 shows the relationship between the mutual information I(S;Z) and

the KL term R(ϕ). This theorem shows that the CVAE tries to minimize the mutual

information I(S;Z) by minimizing its upper bound R(ϕ). However, R(ϕ) is not a

tight upper bound of I(S;Z) because the KL divergence between the marginalized

posterior and simple standard Gaussian prior DKL(qϕ(z)∥p(z)) usually gives a large

value. This prevents the CVAE from minimizing I(S;Z) sufficiently. That is, the

simple prior p(z) = N (z|0, I) is one cause of the task-dependency.
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Figure 5.1: Relationship between the mutual information I(S;Z), the KL term of
the CVAE R(ϕ) and our KL term in Eq. (5.17).

5.3.2 Optimal Prior for Task-Invariant Representations

When the prior p(z) is equal to the marginalized posterior qϕ(z), DKL(qϕ(z)∥p(z))
gives zero, and R(ϕ) becomes the tightest upper bound of I(S;Z) since the other

terms in R(ϕ) do not depend on the prior. Therefore, qϕ(z) is the optimal prior in

terms of reducing the task-dependency.

By replacing the standard Gaussian prior p(z) in FCVAE(θ, ϕ) with the optimal

prior qϕ(z), we obtain the ELBO with this optimal prior as follows:

FProposed(θ, ϕ) = EpD(x,s)qϕ(z|x,s) [ln pθ(x|z, s)]− EpD(x,s) [DKL(qϕ(z|x, s)∥qϕ(z))] .
(5.17)

For this objective function, we have the following theorem:

Theorem 5.2. FProposed(θ, ϕ) (Eq. (5.17)) is always larger than or equal to FCVAE(θ, ϕ)

(Eq. (5.4)) and FVFAE(θ, ϕ) (Eqs. (5.6) and (5.7)).
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Proof. FProposed(θ, ϕ) can be rewritten as follows:

FProposed(θ, ϕ) = EpD(x,s)qϕ(z|x,s) [ln pθ(x|z, s)]
− EpD(x,s) [DKL(qϕ(z|x, s)∥p(z))]
+DKL(qϕ(z)∥p(z)) (5.18)

= FCVAE(θ, ϕ) +DKL(qϕ(z)∥p(z)). (5.19)

Since the KL divergence gives a non-negative value, the following inequality holds:

FProposed(θ, ϕ) ≥ FCVAE(θ, ϕ) ≥ FVFAE(θ, ϕ). (5.20)

□

This theorem shows that FProposed(θ, ϕ) is also a better lower bound of the log-

likelihood than FCVAE(θ, ϕ) and FVFAE(θ, ϕ). This contributes to obtaining better

representation for the improved performance on the target tasks.

From the above discussion, we can reduce the task-dependency and obtain better

representations by using qϕ(z) as the prior.

5.3.3 Optimization with Density Ratio Trick

Although our aim is to optimize our objective function (Eq.(5.17)), it is difficult to

approximate DKL(qϕ(z|x, s)∥qϕ(z)) because this contains a high-dimensional density

ratio. Instead, we approximate and optimize Eq. (5.19), which is the deformation of

Eq.(5.17). We can accurately estimate the KL divergence between qϕ(z) and p(z):

DKL(qϕ(z)∥p(z)) =
∫
qϕ(z) ln

qϕ(z)

p(z)
dz (5.21)

with the density ratio trick (Sugiyama et al., 2012; Goodfellow et al., 2014; Takahashi

et al., 2019), which can estimate the density ratio between two distributions using

samples from both distributions.

To obtain qϕ(z)/p(z), we apply the density ratio trick as follows. Suppose that y

is the binary label representing whether z comes from qϕ(z) (y = 1) or p(z) (y = 0),
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and p∗(z|y) is the following conditional distribution:

p∗(z|y) ≡




qϕ(z) (y = 1)

p(z) (y = 0)
. (5.22)

According to the Bayes theorem, the density ratio qϕ(z)/p(z) is rewritten as

qϕ(z)

p(z)
=
p∗(z|y = 1)

p∗(z|y = 0)
=
p∗(y = 1|z)
p∗(y = 0|z)

p∗(y = 0)

p∗(y = 1)
=
p∗(y = 1|z)
p∗(y = 0|z) , (5.23)

where we assume p∗(y = 0) = p∗(y = 1) because we can prepare the same number of

samples from both distributions. Hence, if we have a probabilistic binary classifier

p∗(y|z) that outputs the probability of y with input z, we can estimate the density

ratio. We model p∗(y = 1|z) by σ(Tψ(z)), where σ(·) is a sigmoid function and Tψ(z)

is a neural network with parameter ψ. To train Tψ(z), we solve the following binary

classification problem:

ψ∗ = argmax
ψ

Eqϕ(z) [ln(σ(Tψ(z)))] + Ep(z) [ln(1− σ(Tψ(z)))] . (5.24)

With Tψ∗(z), the density ratio qϕ(z)/p(z) can be rewritten as

qϕ(z)

p(z)
=

σ(Tψ∗(z))

1− σ(Tψ∗(z))
, (5.25)

and its logarithm can be rewritten as

ln
qϕ(z)

p(z)
= Tψ∗(z). (5.26)

Therefore, DKL(qϕ(z)∥p(z)) can be approximated by Tψ∗(z) as follows:

DKL(qϕ(z)∥p(z)) ≃ Eqϕ(z) [Tψ∗(z)] . (5.27)
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With Eq. (5.27), FProposed(θ, ϕ) (Eq. (5.19)) can be approximated as

FProposed(θ, ϕ) ≃ FCVAE(θ, ϕ) + Eqϕ(z) [Tψ∗(z)] (5.28)

= EpD(x,s)

[
L(x, s; θ, ϕ) + Eqϕ(z|x,s) [Tψ∗(z)]

]
(5.29)

= EpD(x,s)qϕ(z|x,s) [ln pθ(x|z, s) + Tψ∗(z)]

− EpD(x,s) [DKL(qϕ(z|x, s)∥p(z))] . (5.30)

Given a dataset D =
{
(x(1), s(1)), . . . , (x(N), s(N))

}
, we can approximate Eq.

(5.30) by the Monte Carlo approximation and the reparameterization trick (Kingma

and Welling, 2014) as follows:

N∑

n=1

L∑

ℓ=1

{
ln pθ(x

(n)|z(n,ℓ), s(n)) + Tψ(z
(n,ℓ))

}
− 1

N

N∑

n=1

DKL(qϕ(z|x(n), s(n))∥p(z)),

(5.31)

where L is the sample size of the reparameterization trick, and z(n,ℓ) is a sample drawn

from qϕ(z|x(n), s(n)) by the reparameterization trick. Similarly, we approximate Eq.

(5.24) as follows:

1

N ′

N ′∑

n′=1

{
ln(σ(Tψ(z

(n′)
1 ))) + ln(1− σ(Tψ(z

(n′)
0 )))

}
, (5.32)

where z
(n′)
0 is a sample drawn from p(z), z

(n′)
1 is a sample drawn from qϕ(z) by the

ancestral sampling1, and N ′ is the sample size of the Monte Carlo approximation. We

set N ′ to be the same as the dataset size of all tasks N . We alternately optimize Eq.

(5.31) and Eq. (5.32) like generative adversarial networks (Goodfellow et al., 2014)

by the stochastic gradient descent (SGD) such as Adam (Kingma and Ba, 2015).

Note that we fix ψ when optimizing Eq. (5.31) and fix θ and ϕ when optimizing Eq.

(5.32). Algorithm 5.1 shows pseudo code of our approach, where M and M ′ are the

sizes of mini-batch, and I1 and I2 are numbers of iteration for SGD.

1We choose (x(n′), s(n
′)) from a dataset randomly and sample z from qϕ(z|x(n′), s(n

′)) by the
reparameterization trick.
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Algorithm 5.1 Training procedure of our approach.

Input: Dataset D, mini-batch sizes M,M ′, numbers of iteration I1, I2 and size of
reparameterization trick L

Output: Parameters of CVAE θ, ϕ and density ratio estimator ψ
1: while not converged do

2: for I1 steps do ▷ Training CVAE with our prior

3: Sample mini-batch
{
(x(m), s(m))

}M
m=1

from dataset D
4: Sample

{
z(m,ℓ)

}M,L

m=1,ℓ=1
from qϕ(z|x(m), s(m))

5: Compute the gradients of Eq. (5.31) w.r.t. θ and ϕ

6: Update θ and ϕ with their gradients

7: for I2 steps do ▷ Training density ratio estimator

8: Sample mini-batch
{
z
(m′)
0 , z

(m′)
1

}
from p(z) and qϕ(z)

9: Compute the gradient of Eq. (5.32) w.r.t. ψ

10: Update ψ with its gradient

5.4 Related work

5.4.1 Transfer and Multi-Task Learning

Numerous approaches have been presented to overcome the lack of training data for

the VAE. They can be roughly divided into transfer learning and multi-task learning.

Transfer learning aims to improve the performance on the target task by transfer-

ring the knowledge of the source task to the target task, and many approaches based

on this have recently been presented (Brunner et al., 2018; Ćıfka et al., 2021). In

contrast, our approach is based on multi-task learning. Although transfer learn-

ing approaches can only improve the performance on the target task, our approach

can improve the performance on multiple tasks simultaneously by sharing the task-

invariant knowledge through the task-invariant latent variable. For training the VAE

on multiples tasks, the CVAE (Kingma et al., 2014; Sohn et al., 2015) and its vari-

ants such as the VFAE (Louizos et al., 2016) have been used, which aims to obtain

the task-invariant representations. However, the task-dependency often remains in

the CVAE, and the VFAE does not work well because its training objective function

is not a tight lower bound of the log-likelihood. Our approach can reduce the task-

dependency and provide better lower bound of the log-likelihoods, which enables us

to obtain better representations for the improved performance.
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5.4.2 Learning Priors of VAE

Numerous approaches focus on the VAE prior. For example, the non-parametric

(Nalisnick and Smyth, 2017; Casale et al., 2018) or hyper-spherical (Davidson et al.,

2018) distribution is used as the prior to obtain the interpretable representations.

Among them, the aggregated posterior (Hoffman and Johnson, 2016), which improves

the density estimation performance, has been widely researched. Since this prior is

hard to handle, many approaches try to approximate this prior. These approaches

can be divided into two categories: explicit modeling and implicit approximation.

The former approximates this prior explicitly by using generative models such as the

mixture of the encoder (Tomczak and Welling, 2018) or another VAE (Klushyn et al.,

2019). The latter approximates this prior implicitly using density ratio estimation

(Takahashi et al., 2019; Aneja et al., 2021). Our prior (Eq. (5.8)) corresponds to the

multi-task extension of the aggregated posterior, and we approximate it implicitly.

We theoretically show that our prior is optimal in terms of reducing task-dependency.

5.4.3 Introducing Task-Specific Representations

Recent approaches introduce the task-specific latent variable into the CVAE archi-

tecture (Ilse et al., 2020) for disentangling the task-invariant and task-specific rep-

resentations. With the task-specific latent variable, the conditional probability of x

given s is modeled as

∫
pθ(x|z, ζ)p(z)pλ(ζ|s)dzdζ, (5.33)

where pθ(x|z, ζ) is the decoder distribution, z is the task-invariant latent variable, ζ

is the task-specific latent variable, p(z) is the task-invariant prior, and pλ(ζ|s) is the
task-specific prior. pλ(ζ|s) is modeled by a neural network with parameter λ.

Its training objective function for each data point is given as

Eqϕ(z,ζ|x,s) [ln pθ(x|z, ζ)]− β1DKL(qϕ(z|x, s)∥p(z))− β2DKL(qϕ(ζ|x, s)∥pλ(ζ|s)),
(5.34)
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where

qϕ(z, ζ|x, s) = qϕ(z|x, s)qϕ(ζ|x, s) (5.35)

is the encoder distribution, and β1 and β2 are hyperparameters that are equal to

or larger than one. Especially when β1 = β2 = 1, this becomes the ELBO. Since

latent variables z and ζ are regularized by task-invariant and task specific priors,

respectively, it is expected that the task-invariant components of data points are

encoded to z and their task-specific components are encoded to ζ. In addition,

recent approaches (Ilse et al., 2020) introduce an additional classifier qφ(s|ζ) to make

ζ dependent on s. qφ(s|ζ) is modeled by a neural network with parameter φ. We

call this model the β-CVAE.

However, this requires carefully tuning hyperparameters β1 and β2 to disentangle

task-invariant and task-specific representations (Ilse et al., 2020). This incurs heavy

computational costs. Moreover, it has been reported to work well even without the

task-specific latent variable (Ilse et al., 2020). In Section 5.5, we compare our ap-

proach with the β-CVAE. Note that our approach can be used with such approaches

for learning the prior of task-invariant latent variable.

5.5 Experiments

In this section, we qualitatively and quantitatively evaluate our approach on multi-

task datasets.

5.5.1 Evaluation Metrics

For qualitative evaluation, we visualize the latent variable by using t-distributed

Stochastic Neighbor Embedding (Maaten and Hinton, 2008) to reduce the dimensions

of the latent variable to 2. For quantitative evaluation, we used following three

metrics: density estimation performance, number of active units, and downstream

classification accuracy.
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Density Estimation Performance

First, we calculated the log-likelihood of test data using the importance sampling

(Burda et al., 2016) to evaluate the generalization performance of the generative

model. Given test data (x∗, s∗), its conditional log-likelihood under our approach is

approximated as follows:

ln pθ(x
∗|s∗) = lnEqϕ(z|x∗,s∗)

[
pθ(x

∗|z, s∗)qϕ(z)
qϕ(z|x∗, s∗)

]
(5.36)

≃ ln
1

J

J∑

j=1

pθ(x
∗|z(j), s∗)p(z(j))
qϕ(z(j)|x∗, s∗)

exp(Tψ(z
(j))), (5.37)

where J is the sample size of the importance sampling and z(j) is a sample drawn

from qϕ(z|x∗, s∗). We set J to 10.

Downstream Classification Accuracy

Next, we calculated the downstream classification accuracy, which measures the effect

of task-invariant representations on classification problem. Suppose that the target

task has a small amount of labeled data whereas source tasks have a large amount of

unlabeled data. We first obtain task-invariant representations from target and source

tasks using an unsupervised estimator, after which we train an additional classifier

with the representations of target data and these labels. Using the estimator and

classifier, we calculated the classification accuracy for test data of the target task.

We used k-nearest neighbor classifier as an additional classifier, and set the number

of neighbors to three.

Number of Active Units

Finally, we calculated the number of active units (Burda et al., 2016), which measures

the activity of each dimension of latent variables. This metric is frequently used to

evaluate the latent variable of the VAE. The d-th dimension of the latent variable:

zd is active if

VpD(x,s)

[
Eqϕ(zd|x,s) [zd]

]
> δ, (5.38)
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Table 5.1: Numbers and dimensions of data points of datasets.

Dimension Train size Valid size Test size

USPS 784 6,438 1,000 1,860
MNIST 784 10,000 10,000 10,000
SynthDigits 1,024 10,000 10,000 9,553
SVHN 1,024 10,000 10,000 26,032
Frey 560 1,565 200 200
Olivetti 560 150 100 150
UMist 560 300 75 200

where V(·) computes the variance, and δ is a user-defined threshold. We set δ to 0.01

(Burda et al., 2016). If zd contains useful information about the data, it becomes

active since it changes as the data point changes. Hence, the higher the number of

active dimensions, the better the learned representation.

5.5.2 Data

We used two handwritten digits (USPS (Hull, 1994) and MNIST (LeCun et al.,

1998)), two house number digits (SynthDigits (Ganin and Lempitsky, 2015) and

SVHN (Netzer et al., 2011)), and three face datasets (Frey, Olivetti, and UMist)2.

We binarized USPS and MNIST and resized USPS to have the same resolution as

MNIST. We converted SVHN and SynthDigits into gray-scale images. We resized

face datasets to have the same resolution. The numbers and dimensions of data

points of the datasets are listed in Table 5.1.

On digit datasets, we conducted two-task experiments, in which the source task

has a large amount of data whereas the target task has a small amount of data. We

evaluated all metrics on test data of the target task. We used all data points of the

training and validation of the source task but used only 100 training data points of

the target task. The pairs of source and target tasks are as follows: USPS→MNIST,

MNIST→USPS, SynthDigits→SVHN, and SVHN→SynthDigits.

On face datasets, we conducted the three-task experiment, in which evaluation

on each task was performed simultaneously using a single estimator. We evaluated

the density estimation performance and the number of active units by the mean score

2These datasets are available at https://cs.nyu.edu/~roweis/data.html
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for test data of each task.

5.5.3 Setup

We compared our approach with the VAE, CVAE, β-CVAE, and VFAE. We set

the dimensions of the latent variable vector to 40 for all datasets. We used two-

hidden-layer neural networks for the encoder and the decoder of all approaches, the

prior and the additional classifier of the β-CVAE, and the density ratio estimator

of our approach. We set the number of units of a hidden layer to 500 and used a

hyperbolic tangent as the activation function. For the encoder, we used a Gaussian

distribution. For the decoder, we used a Bernoulli distribution for USPS and MNIST

and a Gaussian distribution for SynthDigits, SVHN, and face datasets.

We trained all methods using Adam (Kingma and Ba, 2015) optimizer with a

mini-batch size of 100. We set the learning rate to 10−3 for the density ratio es-

timator and to 10−4 for the other neural networks. We set the maximum number

of epochs to 1000 for digit datasets and to 2000 for face datasets. We used early-

stopping (Goodfellow et al., 2016) on the basis of validation data. We set the sample

size of the reparameterization trick to L = 1. We updated the parameter of the

density ratio estimator: ψ for 10 epochs during the updating of the parameters of

the encoder and decoder: θ and ϕ for one epoch. To avoid over-fitting, we used

dropout (Goodfellow et al., 2016) for the last hidden layer of the aforementioned

neural networks. We set the dropout rate to 50% for the density ratio estimator

and to 10% for the other neural networks. For the VAE, we ignored the task index

in the training. For the VFAE, we tuned the hyperparameter α in Eq. (5.6) from

[0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000] in accordance with the validation data. For

the β-CVAE, we set the dimension of task-specific latent variable to 40, and set the

hyperparameters β1 = β2 = 1 since this is most advantageous for density estimation.

We ran all experiments eight times while changing the random seeds. We provide

the details of the set up in the appendix. The machine specifications used in the

experiments are as follows: CPU is Intel Xeon E5-2699A v4 2.40GHz, the memory

size is 500GB, and GPU is NVIDIA Tesla P100.
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5.5.4 Justification of Hyperparameters

Numbers of Layers and Units of Neural Networks The VFAE (Louizos et al.,

2016) used one-hidden-layer neural networks for the encoder and decoder, and set

the maximum number of hidden units to 500. However, we experimentally confirmed

that deeper and wider neural networks achieve better performance. Therefore, we

used two-hidden-layer neural networks, and set the number of all hidden units to

500.

Dimension of Latent Variable We set the dimensions of the latent variable

vector to 40 for all datasets. We confirmed that tuning the dimension of the latent

variable has almost no effect on the performance when the dimension is high enough.

Dropout Rate We used dropout to avoid over-fitting, which works better than

other regularization techniques such as weight decay (Krogh and Hertz, 1992). We

also set the dropout rate to 10% for the encoder and decoder and to 50% for the

density ratio estimator. We set the high dropout rate for the density ratio estimator

because it is likely to over-fit.

5.5.5 Results

Qualitative Results

We first provide an intuitive explanation with visualization. Figure 5.2 visualizes

the latent variables of each approach on USPS→MNIST. Figures 5.2(a)–5.2(e) are

color-coded by the source training data, target training data, and target test data.

Figures 5.2(f)–5.2(j) are color-coded by digits, which are unknown during training.

They show the task-dependency of each approach intuitively.

First, we focus on the VAE (Figures 5.2(a) and 5.2(f)). With some digits such

as 0, 6, and 9, the latent variables of the source task were farther from those of the

target task. That is, the task-dependency remained in the VAE.

Second, we focus on the CVAE (Figures 5.2(b) and 5.2(g)), β-CVAE (Figures

5.2(c) and 5.2(h)), and VFAE (Figures 5.2(d) and 5.2(i)). Compared with the VAE,

the latent variables of the source task were closer to those of the target task when the

latent variables corresponded to the same digit. That is, the task-dependency was
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Figure 5.2: (a-e) Visualization of the latent variables on USPS→MNIST. Samples
in each color correspond to each digit. (f-j) Visualization of the latent variables on
USPS→MNIST. The color indicates that the node is in source training data, target
training data, or target test data.

reduced to some extent by using the CVAE architecture. There was no significant

difference between the CVAE and β-CVAE in this visualization. For example, the

β-CVAE reduced the task-dependency for digit 6 but did not reduce that for digit 2,

which is opposite to the result of the CVAE. This shows the difficulty of disentangling

task-specific and task-independent representations. The VFAE reduced the task-

dependency more than the CVAE (e.g., the digit 6) and the β-CVAE (e.g., the digit

2) in accordance with the MMD regularizer. However, the latent variables that

corresponded to different digits heavily overlapped. In this case, it is difficult for the

decoder to reconstruct the data points from the latent variables, which causes the

large reconstruct error. This leads to the poor performance of density estimation

and downstream classification.

Third, we focus on our approach (Figures 5.2(e) and 5.2(j)). Our approach re-

duced the task-dependency similar to the VFAE. In addition, the latent variables

that corresponded to different digits rarely overlapped. Hence, the data points were

easy to reconstruct from the latent variables, which reduced the reconstruction er-

ror. This leads to the improved performances of density estimation and downstream

classification.

78



Table 5.2: Comparison of density estimation performance. We use bold to highlight
the best result and the results that are not statistically different from the best result
according to a pair-wise t-test. We used 5% as the p-value.

VAE CVAE β-CVAE VFAE Proposed

USPS→MNIST -163.23 ± 2.15 -152.32 ± 1.64 -168.95 ± 2.20 -151.86 ± 2.12 -149.08 ± 0.86
MNIST→USPS -235.23 ± 1.54 -211.18 ± 0.55 -268.21 ± 42.53 -210.93 ± 0.50 -212.11 ± 1.48
SynthDigits→SVHN 1146.04 ± 35.65 1397.36 ± 10.89 1314.95 ± 60.26 1395.64 ± 11.61 1430.27 ± 11.44
SVHN→SynthDigits 760.66 ± 8.85 814.63 ± 10.09 938.83 ± 13.84 820.55 ± 12.21 855.51 ± 11.41
Face Datasets 895.41 ± 2.98 902.99 ± 3.69 855.24 ± 48.60 823.08 ± 7.39 913.08 ± 5.05

Table 5.3: Comparison of downstream classification accuracy. We use bold to high-
light the best result and the results that are not statistically different from the best
result according to a pair-wise t-test. We used 5% as the p-value.

VAE CVAE β-CVAE VFAE Proposed

USPS→MNIST 0.52 ± 2.15 0.53 ± 0.02 0.54 ± 0.01 0.53 ± 0.01 0.68 ± 0.01
MNIST→USPS 0.64 ± 0.01 0.67 ± 0.01 0.65 ± 0.02 0.67 ± 0.01 0.74 ± 0.02
SynthDigits→SVHN 0.20 ± 0.00 0.21 ± 0.00 0.19 ± 0.01 0.20 ± 0.00 0.19 ± 0.00
SVHN→SynthDigits 0.25 ± 0.01 0.25 ± 0.00 0.17 ± 0.01 0.25 ± 0.00 0.26 ± 0.00

Quantitative Results

We next give quantitative evaluation by metrics described in Section 5.5.1. Tables

5.2, 5.3, and 5.4 compare the density estimation performances, downstream classifi-

cation accuracies, and numbers of active units, respectively.

First, we focus on the VAE. The density estimation performances of the VAE were

worse than those of other approaches, and the downstream classification accuracies

of the VAE were equal to or worse than those of other approaches. This indicates

that the CVAE architecture works well for obtaining task-invariant representation

to some extent. Interestingly, the numbers of active units of the VAE are equal

to or larger than those of other approaches, except for the face datasets. This is

likely because the VAE tries to encode task-specific components of all tasks to latent

variables, which requires larger representation capacity than the CVAE architecture.

Next, we focus on the VFAE and CVAE. The density estimation performances of

the VFAE were almost the same as those of the CVAE in digit datasets but worse

than those of the CVAE in face datasets. The downstream classification accuracies of

the VFAE were almost the same as or worse than those of the CVAE. These results

indicate that the MMD regularizer of the VFAE does not improve the quality of

representation. The numbers of active units indicate the similar tendency, except for
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Table 5.4: Comparison of number of active units. We use bold to highlight the best
result and the results that are not statistically different from the best result according
to a pair-wise t-test. We used 5% as the p-value.

VAE CVAE β-CVAE VFAE Proposed

USPS→MNIST 8.00 ± 2.29 7.38 ± 0.48 7.75 ± 1.30 8.00 ± 0.87 9.00 ± 0.00
MNIST→USPS 10.25 ± 3.31 9.00 ± 0.00 7.75 ± 0.43 8.88 ± 0.33 14.00 ± 4.36
SynthDigits→SVHN 40.00 ± 0.00 39.88 ± 0.33 14.62 ± 3.04 40.00 ± 0.00 40.00 ± 0.00
SVHN→SynthDigits 39.88 ± 0.33 39.62 ± 0.48 11.12 ± 4.91 39.50 ± 0.87 40.00 ± 0.00
Face Datasets 17.38 ± 4.85 22.38 ± 10.00 9.62 ± 1.11 40.00 ± 0.00 37.25 ± 2.49

the face datasets. The reason the number of active units of the VFAE on face datasets

is larger than that of the CVAE may be as follows. As the MMD regularization on

more than two tasks (Eq. (5.7)) is likely to be too strong, the VFAE tries to maximize

its ELBO using latent variables to the fullest extent.

Next, we focus on the β-CVAE. On SVHN→SynthDigits, the density estimation

performance was better than other approaches. However, the density estimation

performances were worse than other approaches on the other datasets. Moreover,

the downstream classification performances were almost the same as those of the

other approaches except in the case of our approach. These results indicate that

task-specific latent variable does not always work well. Furthermore, the numbers of

active units were smaller than those of other approaches. This is because the active

units are distributed to the task-invariant and task-specific latent variables.

Finally, we focus on our approach. Our approach achieved equal to or better den-

sity estimation performance than other approaches except the SVHN→SynthDigits,

and achieved equal to or better downstream classification accuracies than the other

approaches. In addition, the numbers of active units of our approach were larger

than those of the other approaches except in the case of face datasets, and slightly

worse than that of VFAE on face datasets. These results indicate that our approach

can obtain good task-invariant latent variables in many situations.

5.6 Conclusion

In this chapter, we explain why the standard Gaussian prior cannot sufficiently re-

duce the task-dependency in the CVAE, and propose a theoretical optimal prior

for reducing the task-dependency. We also show that this optimal prior presents a
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better lower bound of the log-likelihood than that of the CVAE and VFAE, which

enable us to obtain better representation for the improved performance. In addition,

we demonstrate that our approach can obtain better task-invariant representations

than existing approaches, which leads to the improved performances of density esti-

mation and downstream classification on various datasets. In the future, we will try

to extend our approach to deal with more difficult problem settings such as meta

learning (Vilalta and Drissi, 2002) or test-time adaptation (Wang et al., 2021).
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Chapter 6

Conclusion and Future Direction

6.1 Conclusion

This dissertation solved following three serious drawbacks in real-world applications

of the VAE:

1. instability of training for continuous data (Section 3),

2. over-regularization by prior (Section 4), and

3. poor performance with insufficient data (Section 5).

We summarize our contributions as follows.

Instability of Training for Continuous Data For continuous data points, the

decoder of the VAE is modeled by the Gaussian, which we call the Gaussian

VAE. However, the training of the Gaussian VAE often becomes unstable. We

investigated why the training becomes unstable, and revealed that the Gaussian

decoder is sensitive to the error between the data point and its decoded mean

when the decoded variance is almost zero. To solve this, we introduced a

Bayesian approach to the Gaussian decoder: we set a Gamma prior for the

inverse of the decoded variance and marginalized it out analytically, which led

to proposing our Student-t VAE. Since the Student-t distribution is a heavy-

tailed distribution, the Student-t decoder is robust to the error, which makes

the training stable. We experimentally showed the robustness of the training

and the high density estimation performance of our Student-t VAE.
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Over-Regularization by Prior The prior in the VAE is usually modeled by the

standard Gaussian distribution, but this simple prior incurs over-regularization,

which is one of the causes of poor performance. As a sophisticated prior,

the aggregated posterior has been introduced, which is optimal in terms of

maximizing the ELBO of VAE. However, since the KL divergence with the

aggregated posterior cannot be calculated in a closed form, we cannot this

optimal prior directly. Although the VampPrior has been presented to model

the aggregated posterior explicitly, it has sensitive hyperparameters that are

difficult to tune.

With the proposed method, we directly estimated the KL divergence with the

aggregated posterior by using the density ratio trick. This enabled us to avoid

modeling the aggregated posterior explicitly. That is, there is no need to model

the aggregated posterior explicitly. However, the density ratio trick does not

work well for the high-dimensional density ratio such as the KL divergence with

the aggregated posterior. To solve this, we rewrote the KL divergence into the

sum of two terms: the KL divergence between the encoder and the standard

Gaussian distribution, and the low-dimensional density ratio between the ag-

gregated posterior and the standard Gaussian distribution. The first term can

be calculated in a closed form, and we can accurately approximate the sec-

ond term since it is low-dimensional density ratio. We experimentally showed

that the VAE with our implicit optimal prior achieved better performance than

existing approaches.

Poor Performance with Insufficient Data Although the VAE is powerful, its

performance becomes poor with insufficient data points since it requires many

data points for training neural networks. To overcome the lack of training

data on the target task, we focused on training the VAE on multiple tasks.

This enables us to obtain the task-invariant latent variable that shares task-

invariant knowledge effectively. For this purpose, the CVAE has been widely

used. The CVAE tries to minimize the dependency of the latent variable on the

task through the minimizing the KL divergence the encoder and the standard

Gaussian prior. However, this task-dependency remains in many cases.

To solve this, we investigated why the CVAE cannot reduce the task-dependency
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sufficiently, and revealed that the standard Gaussian prior is one of the causes.

Based on this investigation, we proposed a theoretical optimal prior for reducing

the task-dependency, and showed that this optimal prior can provide a better

lower bound of the log-likelihood than that of the CVAE. This enabled us to

obtain better representation for the improved performance. We experimentally

showed that our approach obtained better task-invariant representations and

achieved better performances than existing approaches.

Through the above contributions, we have made the VAE somewhat practically

applicable: our VAE can be applied to biased data, perform well, and handle the

case that the target task has insufficient data points. We have applied our VAE to

several anomaly detection applications such as factory monitoring and autonomous

driving.

6.2 Future Direction

Finally, we discuss the future directions. Our goal is to solve the drawbacks of the

VAE and make the VAE practically applicable. Although this goal has been achieved

to some extent with the above contributions, some serious drawbacks still remain in

the VAE.

One of the serious drawbacks is that the VAE does not work well in the case

where the data distribution is not stationary, i.e., the data distribution changes over

time. For example, in anomaly detection for autonomous driving, sensor values

change gradually as each component degrades over time. Like this, non-stationary

real-world datasets are common and need to be addressed. Another serious drawback

is that deep generative models including the VAE are actually not able to detect the

out-of-distribution samples sufficiently (Nalisnick et al., 2018). This is very serious

problem for anomaly detection, one of the key applications of VAE.

We will try to solve these critical problems and make VAE truly practically

applicable.
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