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Chapter 1

Introduction

1.1 Background of research

1.1.1 Origami in academic field

Origami is a kind of art and pastime creating a two-dimensional or a three-dimensional
objects by folding a sheet of paper. Origami is originally a Japanese word but recently in-
ternationally used. A word "origami" is decomposed into two words "ori" meaning "folding"
and "kami" ("gami" is a conjugation of it) meaning "paper". In this study, "origami" is used
as both a countable and uncountable noun. When it is used as a countable noun, it denotes
the individual objects formed by folding a sheet of paper or a thin object. On the other
hand, when it is used as an uncountable noun, it refers to the concept of origami as the
art and the methodology. In Japan, origami has been widely practiced through the ages,
and a huge number of books have been published for introducing techniques of origami. It
should be noted that a book titled Secret Fold Techniques of Connected Cranes has been
published in 1797 which explains various methods of constructing a paper crane and con-
nected cranes [1]. There also exists English literature on the folding patterns and methods
of traditional and modern origami [2].

Origami has also attracted attention of researchers and engineers because of its math-
ematical and physical properties. In the field of computational geometry, origami forms an
academic field referred to as computational origami, and the properties attributed to the
operation of folding are studied from the perspectives of geometry and computational the-
ory [1, 3, 4]. An origami in this field is often regarded as an abstract object which does not
have thickness. Although origami has been popular among people as the art and pastime
for a long time, there are many mathematical open problems, e.g., about foldability; an
origami can be folded or not by a specified operation. On the other hand, kinematics and
statics of origami have also widely been studied as structural origami [5] or engineering
origami [6] for engineering applications in the fields of mechanical, civil, and architectural
engineering. An origami is often treated as a mechanism which can be deformed without
external loads or a shell structure which has a corrugated shape. In this field, thickness
and material property of an origami may or may not be incorporated. Origami’s nonlinear
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Figure 1.1: Orizuru (paper crane, folded by Kentaro Hayakawa); (a) Three-dimensional
form, (b) Crease pattern.

continuous folding motions have wide potential for application to deployable and morph-
ing structures. Its mechanical properties of the whole structure, such as the load bearing
capacity and deformation characteristics resulting from folding, have also been studied to
realize high-performance structures. These origami’s properties have been applied to a va-
riety of purposes; e.g., solar panels mounted on artificial satellites [7], foldable and portable
shelters [8, 9], crushable structures for energy absorption [10, 11], medical devices used
in human bodies [12], and metamaterials which have unique mechanical properties; e.g.,
bistability [13] and tunable Poisson’s ratio [14]. Origami can improve the efficiency of man-
ufacturing and assembly processes and also can realize the materials with novel physical
properties.

Origami’s properties are also actively studied for architectural design and engineering.
In practice, origami has been applied to the design of building envelopes to realize charac-
teristic shapes consisting of faces and edges [15]. The kinematics of origami is also applied
to a retractable roof and a temporal shelter. However, the mechanical and kinematic prop-
erties of origami are still not fully understood, and there are few practical examples that
take full advantage of the characteristics of origami; the folding motion and unique mechan-
ical properties. In the academic field, the International Association for Shell and Spatial
structures (IASS) has organized a research group on origami in Working Group 15 [16], and
various research papers and presentations have been produced on the potential applications
of origami in architecture.

1.1.2 Nomenclature of origami

An origami is often regarded as a polyhedral surface in the two- or three-dimensional space,
and a surface formed by an origami is referred to as an origami surface in this study. It is
assumed that an origami basically consists of vertices, faces, and edges as shown in Fig. 1.1
after the structure of a mesh used in the field of geometry. A vertex is a point where two or
more edges joins. A face is a flat surface bounded by several edges. An edge is a line segment
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Figure 1.2: Mountain and Valley fold crease lines; (a) Mountain fold, (b) Valley fold.

classified into a crease line between two faces or a perimeter edge on the boundary. Further
classification of edges is provided in Chapters 2 and 3 for form generation and kinematic
analysis, however, it is not explained in this section. Only flat faces and straight edges are
considered in this study although there is a concept of curved-folding origami [17] where
faces and crease lines are curved.

A pair of adjacent faces can relatively rotate about a crease line between them. Accord-
ing to the relative position between a crease line and the faces adjacent to it, the crease line
is referred to as the mountain fold crease line represented by a red chain line in Fig. 1.2(a)
or the valley fold crease line by a red dotted line in Fig. 1.2(b). Viewing from the front
side of an origami, a mountain fold crease line is above the adjacent faces, and a valley fold
crease line is below the adjacent faces as shown in Fig. 1.2. Combination of the connectivity,
length, and direction of the crease lines of an origami is referred to as the crease pattern.
A folding angle of a crease line is defined as a supplementary angle of a dihedral angle
between the faces adjacent to the crease line. When the faces adjacent to a crease line are
on the same plane and do not overlap with each other, a folding angle of the crease line is
equal to 0, and when the faces are coplanar and overlap with each other, a folding angle
is equal to π. If necessary, the sign of each folding angle is defined in accordance with the
arrangement of mountain and valley; folding angle of a mountain/valley fold crease line is
negative/positive. An origami is at an unfolded state and at a flat-folded state especially
when all the folding angles are equal to 0 and ±π, respectively. Other states are referred
as partially folded state or simply folded state. The shape of origami or the diagram of the
crease lines in the unfolded state is referred to as the development diagram.

1.1.3 Rigid origami

Rigid origami, which is the main subject of this study, can be folded and unfolded without
in-plane or out-of-plane deformation of its faces. The folding mechanism of a rigid origami
is called a rigid-foldable mechanism and determined only by its crease pattern; i.e., its
deformation mechanism is independent of its material properties. Therefore, a rigid origami
is often regarded as a mechanism consisting of rigid panels connected by hinges. A rigid-
foldable mechanism is very suitable for engineering applications and has been applied to a
deployable structure consisting of stiff panels [18] and kinematics modeling of a robot [19].
It also has been utilized in the fields of architecture and civil engineering; e.g., the movable
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Figure 1.3: Rigid-foldable crease patterns (folded by Kentaro Hayakawa); (a) Miura-ori, (b)
Yoshimura pattern, (c) Waterbomb tessellation, (d) Resch’s pattern.

sunshade of Al Bahr Towers in the UAE and Rolling Bridge in the UK which can be rolled
up [20]. In addition, rigid origami can contribute to developing new construction methods of
building roofs and facades with distinctive shapes like the Panta-dome by Kawaguchi [21].

There are some known and well studied crease patterns such as Miura-ori, Yoshimura-
pattern, waterbomb tessellation, and Recsh’s pattern as shown in Fig. 1.3. However, the
rigid-foldability of a non-regular crease pattern is not trivial, and many studies have been
done for the investigation of the properties of a rigid-foldable mechanism and the form gen-
eration of rigid origami. Various techniques from mathematics and structural engineering
are utilized for research on rigid origami. The rigid-foldability of quadrilateral mesh has
been investigated with respect to the integrability theory in the field of mathematics [22]
and the infinitesimal mechanism in the field of structural engineering [23]. Tachi [24] has
proposed a method for simulating a folding process of an input crease pattern based on the
projection to the constraint space. A design method of rigid origami based on the Bayesian
topology optimization has been proposed by Shende et al. [25]. Graph theory of mathemat-
ics is utilized for rigidity analysis based on the theory of combinatorial rigidity [26]. The
method for assigning the mountain or valley fold to each crease line based on graph theory
and mixed-integer linear programming has been proposed by Chen et al. [27].
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Figure 1.4: Numerical models of rigid origami; (a) Rotational hinge model, (b) Truss model,
(c) Frame model.

1.2 Objectives and methods

In this study, methods for design and analysis of a rigid origami are proposed mainly for
the architectural purposes. In order to apply rigid origami to the architectural design and
construction methods, it is important to be able to generate a crease pattern that realizes
a shape required by the designer and a deformation mechanism that takes into account
the efficiency and safety of construction. Therefore, a method is developed to approximate
a target curved surface using a rigid origami with a small number of crease lines and a
small deformation degrees of freedom, which contributes to the constructability. Proposed
method generates a crease pattern that can realize a curved surface from a flat state by a
rigid-folding motion for the application to roof structures and building envelopes. In addi-
tion, it is also necessary to sufficiently understand the complex deformation path to apply
the rigid-folding mechanism to the construction method. When applying a rigid origami
to building structures, it is important to consider the external loads and the stability of
equilibrium although the deformation mechanism of a rigid origami is determined by geo-
metrical conditions. Then, a method is proposed to analyze the deformation path of a rigid
origami determined by the equilibrium of forces under geometric conditions. A numerical
model referred to as the frame model [28–31] is developed as a model with properties suit-
able for the above purposes and is used throughout this study. The detailed objectives and
methods of this study are outlined below, and the further background and objectives are
given in the corresponding chapters.

To manipulate a rigid origami on a computer program, it is important to develop a
numerical model suitable for representing the configuration and the kinematics of a rigid
origami. Research that focuses on the mathematical properties of rigid origami requires
a simple and accurate model to represent the folding state. By contrast, for engineering
applications, it is preferable to use models that can easily adapt existing methods in me-
chanics and structural engineering and that can represent physical properties. For the
first purpose, a rotational hinge model (folding angle model) shown in Fig. 1.4(a) is often
used, which represents a folding state of a rigid origami only by the folding angles of crease
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(a) (b)

Figure 1.5: Image of the form generation of a rigid origami; (a) Target surface, (b) Gener-
ated origami surface.

lines [24,32,33]. This model is suitable for dealing with rigid origami in an abstract manner.
However, it is difficult to intuitively comprehend the shape of the origami since the positions
of the vertices are not explicitly expressed in the methods using the rotational hinge model.
Therefore, if the positions of vertices need to be referred to, updated, and constrained in the
study of a rigid origami such as form generation, the rotational hinge model has a disadvan-
tage. On the other hand, for the second purpose, a truss model (bar and hinge model) shown
in Fig. 1.4(b) is often used. It represents a rigid origami by an assembly of pin-jointed bars
in a truss model, where the nodal coordinates are the variables [34–37]. When this model is
used, the existing methods for the analysis of truss structures can be utilized for the analy-
sis of a rigid origami. However, if a rigid origami has a face with more than three edges, the
structure of the model tends to be complicated to constrain the in-plane and out of plane
deformation of the face.

To overcome the difficulty of the models described above, a numerical model referred
to as the frame model [28–31] shown in Fig. 1.4(c) is developed and used, which is con-
structed based on the theory used in the partially rigid frames [38–40]. It consists of rigid
frame elements connected by hinges corresponding to crease lines of an origami and has
an advantage of being able to represent a rigid origami with a simpler configuration for
the purpose of this study than the existing numerical models such as the rotational hinge
models and the truss models. Further explanations of the models are provided in Chapter 2.

In order for rigid origami to be applicable to the architectural design, the shape of a
rigid origami needs to be manipulated to fulfill the designer’s requirements while satisfy-
ing the strict geometric constraints for rigid-foldability, and only directly using well-known
crease patterns such as the Miura-ori pattern shown in Fig. 1.3 limits the range of designs
for structures utilizing a rigid origami. Therefore, the development of methods for gener-
ating rigid-foldable crease patterns is essential for the engineering applications of a rigid
origami. As explained in Chapter 3, there are various methods which generalize and extend
the existing well-known crease patterns [41–45] and generate a new rigid-foldable crease
pattern [23,46–50].

6



Figure 1.6: Image of the equilibrium path analysis of a rigid origami.

In this study, a form generation method of a rigid origami is proposed for further enhanc-
ing the flexibility of the design of a rigid origami. A curved surface defined as the Bézier
surface [51] is approximated by a rigid origami with or without cuts which can be developed
to a plane [28–30, 52] as shown in Fig. 1.5. The crease pattern is generated from the tri-
angulated target surface; the proposed method does not rely on the typical crease pattern
such as Miura-ori. The optimization approach is utilized to minimize the approximation
error under the condition so that the origami surface is developable to a plane. Developabil-
ity conditions of the origami surface and approximation error functions between the target
surface and the origami surface are formulated by using the geometric properties of poly-
hedral surfaces such as Gaussian curvature. In the process of form generation, crease lines
of the origami surface are sequentially fixed (removed) to reduce the degrees of freedom of
the rigid-folding mechanism. The faces adjacent to a fixed crease line are combined into a
single flat face, and the face with more than three edges is generated. The crease lines to be
fixed are selected by the criteria reflecting the infinitesimal mechanism of the rigid origami,
which help to prevent the crease lines to be locked and to be unable to rotate during the de-
ployment process. The proposed method can approximate the target surface with a simple
rigid origami with few crease lines and small folding angles, which has not often been seen
in previous studies.

Analysis of the deformation path of a rigid origami is also important to realize a struc-
ture utilizing the concept of rigid origami which can be folded/unfolded safely and efficiently.
In the previous studies, mainly two types of deformation path analysis of a rigid origami are
preformed, which are the pure mechanism analysis [24,32] and the structural analysis with
respect to the equilibrium of the structure [34,53,54]. The former analysis can trace the ex-
act rigid-folding deformation path without deformation of the faces by using the rotational
hinge model while boundary conditions such as constraints on the positions of vertices are
not incorporated, and the physical implications of the deformation path, such as the equi-
librium of force, are not considered. The latter analysis mainly traces the equilibrium path
which is a sequence of equilibrium states under external loads or forced displacements as-
suming small rotational stiffness of crease lines and/or elastic deformation of the faces of a
rigid origami. The truss model is often used in this analysis by allowing the deformation
of bars, and the exact rigid-folding deformation path may not be obtained. At present, few
studies have been conducted to clarify the relationship between the results of the analysis
from a pure mechanism perspective and the results of the analysis from a equilibrium per-
spective while it is important to understand the foldability [55] of a crease pattern and for
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the prototyping of the deployable structure using a rigid-fold mechanism.
Therefore, in this study, methods of equilibrium path analysis and stability analysis

of an equilibrium state are developed for a rigid origami to be folded/unfolded in the exact
rigid-folding motion. The equilibrium state of a frame model with the external loads applied
to the nodes is investigated by assuming the small rotational stiffness proportional to the
length of each crease line. The total potential energy is defined with respect to the strain
energy of the springs introduced in the hinges and the external work by the nodal loads,
and it is minimized to obtain an equilibrium state under the compatibility conditions so that
the displacements of the nodes and the members are compatible. An equilibrium path is
traced by the incremental loading analysis as shown in Fig. 1.6, and the bifurcations of the
equilibrium path is investigated in the numerical examples. The relationship between the
deformation mechanism obtained from geometric constraints and the deformation modes
obtained in terms of the equilibrium of forces is also numerically investigated, which has
not often been investigated in previous studies.

1.3 Thesis structure

This thesis consists of six chapters including this chapter for the introduction. The follow-
ing chapters are organized as follows. Chapter 2 provides the explanations of the numerical
models used in the previous studies and this study. The structure of the frame model used
in this study is described and the method for the analysis of the infinitesimal mechanism is
provided based on the method for partially rigid frames [38–40]. By extending the formula-
tion of the geometric constraint equations in Ref. [40], variables are newly selected and the
constraint equations are reconstructed so that the calculation for the form generation and
the deformation path analysis proposed in this study to be simplified. A form generation
method of a rigid origami is proposed in Chapter 3, and the case studies of the form gen-
eration is shown in Chapter 4. The method proposed in Chapter 3 is the summary of the
methods proposed in Refs. [28–30, 52]. The result of the infinitesimal mechanism analysis
described in Chapter 2 is utilized to define the selection criteria of the crease lines to be
fixed in the process of form generation. Effectiveness of the approximation error functions
and the selection criteria of the crease lines are numerically confirmed by the examples
shown in Chapter 4. The proposed method improves design flexibility of a rigid origami by
approximating the target curved surface without depending on the well-known crease pat-
terns. In addition, by generating a rigid origami structure with a small degrees of freedom
of deformation mechanism, the proposed method contributes to realize structures which
can be efficiently and safely folded and developed. In Chapter 5, equilibrium path and
stability analysis of a rigid origami is explained, which is proposed in Ref. [31]. The total
potential energy is minimized under the compatibility conditions formulated in Chapter 2.
Equilibrium paths of the waterbomb pattern are traced, and the several deformation paths
for different boundary conditions are obtained. The proposed method can be used to obtain
a deformation path that simultaneously achieves an exact rigid-folding motion and an equi-
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librium of forces. Chapter 6 concludes this thesis. It provides the summaries of the above
chapters and the remarks on the results of the numerical examples of the form generation
and the equilibrium path analysis.

1.4 Published works included in the thesis

This thesis is the collection of several published papers by the author and co-authors, and
detailed information and supplementary materials of these papers are provided. The corre-
spondence between the published papers and the chapters in this thesis is summarized as
follows:

Chapter 2

K. Hayakawa and M. Ohsaki, Form generation of rigid origami for approximation of a
curved surface based on mechanical property of partially rigid frames, International
Journal of Solids and Structures, Vol. 216, pp.182–199, May 2021.

K. Hayakawa and M. Ohsaki, Equilibrium path and stability analysis of rigid origami
using energy minimization of frame model, Frontiers in Built Environment, Vol. 8,
Aug. 2022.

Chapter 3

K. Hayakawa and M. Ohsaki, Form generation of rigid origami for approximation of a
curved surface based on mechanical property of partially rigid frames, International
Journal of Solids and Structures, Vol. 216, pp.182–199, May 2021.

K. Hayakawa, Y. Maruyama, A. Adachi, and M. Ohsaki, Approximation of curved sur-
face by rigid origami with cutting lines, Journal of Architecture and Planning (Trans-
actions of AIJ), Vol. 87, No. 801, pp. 2288–2297, Nov. 2022 (in Japanese).

Chapter 5

K. Hayakawa and M. Ohsaki, Equilibrium path and stability analysis of rigid origami
using energy minimization of frame model, Frontiers in Built Environment, Vol. 8,
Aug. 2022.

9



Chapter 2

Frame model for kinematic
analysis and form generation of
rigid origami

In this chapter, several numerical models for the kinematic analysis and the form gener-
ation of the rigid origami proposed in the previous studies are briefly reviewed, and the
configuration of the frame model [28–31] used in this study is introduced. The frame model
is a numerical model based on the theory used in the partially rigid frames [38–40]. The
analysis method is also presented for the infinitesimal mechanism of the frame model uti-
lizing the formulations of partially rigid frames.

2.1 Numerical models of rigid origami

While geometry plays an important role in the form generation of an origami, mechanics
and kinematics are also important for understanding folding properties and applying them
to engineering application. Even if each face is assumed to be rigid, the deformation prop-
erties of an origami are complicated, and it is important to use an appropriate numerical
model suitable for the form generation and the kinematic analysis.

In the study of a rigid origami, a rotational hinge model shown in Fig. 2.1(a) and a truss
model (bar and hinge model) shown in Fig. 2.1(b) are often used. In the rotational hinge
model, a folding state of a rigid origami is represented only by the folding angles of the
crease lines, and this helps us to express the folding state in a simple form [24,32,33]. The
compatibility constraints on the folding angles which is used as variables are formulated
so that the loop around each inner vertex and each hole formed by the origami faces is
appropriately closed under the assumption of the rigidity of each face. This approach is
also used for the analysis of linkages [56, 57]. Rigid Origami Simulator [58] developed by
Tachi [24] is a software that can trace an exact folded shape without deformation of faces by
successively solving the linearized constraints on the folding angles. Since only the angles
between the crease lines and the fold angles are considered in the rotational hinge model,

10



rigid panel

hinge

(a)

bar

pin-joint

(b)

hinge

shell element

(c)

hinge

frame element

(d)

Figure 2.1: Numerical models representing a Miura-ori pattern (Partly reshown, see Chap-
ter 1); (a) Rotational hinge model, (b) Truss model, (c) FE model, (d) Frame
model and assignment of mountain and valley.

the positions of vertices should be computed from the complicated nonlinear equations of
these angles to obtain the actual shape of the rigid origami. Therefore, the rotational hinge
model has a disadvantage for the form generation and the kinematic analysis where the
positions of vertices are often referred to, updated, and constrained.

On the other hand, a rigid origami is represented by an assembly of pin-jointed bars in
a truss model, where the nodal coordinates are the variables [34–37]. Since the nodes of
the truss model are located at the vertices of the origami, it is easy to incorporate the con-
straints on the nodal positions and displacements. In addition, the equilibrium with nodal
loads are easily considered in the deformation path analysis. Therefore, it is often used for
the analysis of the equilibrium path under the external loads or the forced displacements;
e.g., MERLIN2 [59] by Liu and Paulino [53] and Origami Simulator [60] by Ghassaei et.
al. [54], and they are also used within the form generation process. The rigidity of each face
can be guaranteed by simply placing the rigid bars along the edges for the rigid origami
with only triangular faces. However, to constrain the in-plane and out of plane deforma-
tion of faces with more than three edges, it is necessary to constrain the relative nodal
displacements [34,35] or to introduce diagonal bars and construct a bar-joint structure in a
three-dimensional manner [36,37], which tends to make the model complicated.

The conventional FE methods are also often used for the elastic and plastic deformation
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analysis of rigid origami [10, 61]. Shell elements are usually used in a finite element (FE)
model of a rigid origami to model the origami faces, and the crease lines are represented by
hinge elements or narrow shell elements with small bending stiffness as shown in Fig. 2.1(c)
They are suited to the analysis of detailed mechanical properties of rigid origami, such
as local deformation. However, their computational cost is often high and not suited to
the large scale analysis and the form generation where the analysis should be carried out
repeatedly.

To overcome the difficulty in a rotational hinge model, a truss model, and an FE model
as mentioned above, a frame model shown in Fig. 2.1(d) has been proposed by Hayakawa
and Ohsaki [28–31] based on the concept of a partially rigid frame [38–40]. Frame members
are connected by hinges whose axes are parallel to the crease lines, and rigidly connected on
the faces. Details of the configuration of a frame model are explained in Section 2.2. A frame
model is used for the form generation and the kinematic analysis with the assumption that
the faces of a rigid origami is completely rigid, and the exact rigid-fold path can be obtained.
A frame model has an advantage of being able to represent a rigid origami with a simpler
configuration than a rotational hinge model and a truss model. Analysis with boundary
conditions can be easily performed compared to a rotational hinge model since the nodal
coordinates are variables in the frame model. In addition, there is no need to constrain
nodal displacements or arrange members three-dimensionally, as is the case with a truss
model, to constrain the deformation of faces with more than three edges since each face
is composed of multiple rigidly-joined frame elements. The structure of the frame model
can be represented directly using beam elements and hinges implemented in general FEA
software, and the kinematic analysis can be easily performed with FEA software without
using special software.

2.2 Structure of frame model

2.2.1 Components of frame model

A frame model is a kind of partially rigid frame [38–40] representing a rigid origami mech-
anism [28–31]. Figure 2.2 shows an example of Miura-ori modeled by a frame model. A
frame model consists of nodes, members (frame elements), and hinges. The basic structure
of a frame model is shown by gray bold lines in Fig. 2.2(a) which represents a shape of the
rigid origami. The face with more than three edges is divided into some triangles by the
dividing edges. The crease lines and the dividing edges are collectively referred to as the
inner edges. In addition, the inner edges and perimeter edges are collectively referred to
as the origami edges or simply the edges in this study. Although cuts along the edges are
also introduced in Chapter 3, they are not considered in this chapter for simplicity. Note
that the edges constituting the cuts are treated the same as the inner edges in the formu-
lation of constraints considered in Section 2.2.2. Nodes are located at the center points of
origami edges and at the barycenters of triangular faces. As shown by gray in Fig. 2.2(b),
two members are connected to the node on a crease line, and a member is connected to
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Figure 2.2: Configuration of a frame model representing a Miura-ori pattern; (a) Overall
view, (b) Enlarged view of the region surrounded by the dotted lines in the
overall view.

the node rigidly and another member is connected to the node via a hinge. In this study,
the member end connected to a node rigidly is called the rigid end, and the member end
connected via a hinge is called the hinged end. The axis of each hinge coincides with the
corresponding crease line. Note that a member axis is not necessarily perpendicular to the
origami edge where the node to which its end connects is located, and a hinge axis is not
necessarily perpendicular to the axis of the member connected to it.

The nodal coordinates are used to represent the coordinates of the origami vertices,
and they are treated as the design variables in the form generation method proposed in
Chapter 3. The number of nodes in a frame model is generally larger than the number of
vertices of the corresponding origami surface, and if all nodal coordinates are given arbi-
trarily, the vertex coordinates cannot be determined consistently. Therefore, the constraint
equations satisfied by the nodal coordinates are formulated in Section 2.2.2 on the basis
that the origami faces are divided into triangles and the nodes are located at the center
points of edges and at the barycenters of triangular faces. Furthermore, a method is shown
for extracting a sufficient number of independent nodal coordinates from the constraint
equations to represent the vertex coordinates. On the other hand, in the analysis of de-
formation mechanism of the frame model, the displacements of nodes and members and
the increments of the rotation angles of hinges are treated as independent variables. The
geometric constraint equations referred to as the compatibility equations are formulated
with respect to these variables based on the formulation by Watada and Ohsaki [40] which
considers the finite translational and rotational displacement. While the hinge rotation
angle increments are not included in the formulation in Ref. [40], they are included in the
independent variables to simplify the calculation of the stiffness matrix of the frame model
used in Chapters 3 and 5. Therefore, the compatibility equations for the hinge rotation
angle increments are added to the formulation in Ref. [40].
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Figure 2.3: Local indices of nodes on the triangular faces adjacent to the crease line or the
dividing edge where node 5 is located.

2.2.2 Independent nodal coordinates

In the form generation method, the nodal coordinates of a frame model are used as the de-
sign variables. However, the number of those variables is much larger than that required
to determine the positions of vertices of the corresponding origami surface. Therefore, in
the form generation of rigid origami, the number of variables are reduced by considering
the geometric constraints for a consistent representation of the origami shape, and only the
independent nodal coordinates are treated as variables. In the following, the constraint
equations which nodal coordinates satisfy are formulated assuming that the nodes are al-
ways located at the center points of edges and the barycenters of faces, and a method is
shown to identify the independent nodal coordinates using the constraint equations. The
consistency equations are first formulated locally, and extended to the global expression for
the entire origami surface.

Let ζ1, . . . ,ζ7 ∈ R3 denote the position vectors of nodes 1–7 shown in Fig. 2.3 where the
indices of nodes are the local indices defined at the adjacent triangular faces. Since the
nodes on the edges are located at the center points of the edges, ζ1 −ζ4 and ζ2 −ζ3 should
be equal to the vector parallel to the edge where node 5 is located as shown in Fig. 2.3, and
ζ1, . . . ,ζ4 satisfy the following consistency equations

ζ1 −ζ4 = ζ2 −ζ3 (2.1)

Equation (2.1) is rewritten by using a 3×21 matrix and a 21-dimestional vector as follows:

[
I3 −I3 I3 −I3 O3 O3 O3

]



ζ1

ζ2

ζ3

ζ4

ζ5

ζ6

ζ7


= 0 (2.2)

where In and On are the n×n identity matrix and the n×n zero matrix, respectively. Note
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that the edge where node 5 is located is a crease line or a dividing edge. The member con-
necting nodes 5 and 6 and the member connecting nodes 5 and 7 are connected via a hinge
if the edge where node 5 is located is a crease line and the members are rigidly connected
if the edge is a dividing edge. In addition, since the nodes on the faces are located at the
barycenters of the faces, the position vectors of the nodes satisfy the following consistency
equations:

ζ6 =
ζ1 +ζ4 +ζ5

3
(2.3)

ζ7 =
ζ2 +ζ3 +ζ5

3
(2.4)

Equations (2.3) and (2.4) are rewritten for each face by using 3× 21 matrices and a 21-
dimestional vector as follows:

[
1
3

I3 O3 O3
1
3

I3
1
3

I3 −I3 O3

]


ζ1

ζ2

ζ3

ζ4

ζ5

ζ6

ζ7


= 0 (2.5)

[
O3

1
3

I3
1
3

I3 O3
1
3

I3 O3 −I3

]


ζ1

ζ2

ζ3

ζ4

ζ5

ζ6

ζ7


= 0 (2.6)

Here, let NE, NEin, and NF denote the number of edges, inner edges, and triangular faces
of the origami surface, respectively. Then, the number of nodes of the frame model is cal-
culated as NN = NE + NF. The position vectors of nodes are assembled into a vector for
all nodes as Z = (ζT1 , . . . ,ζTNN

)T ∈ R3nN . Then, the edge consistency matrix CE ∈ R3NEin×3NN is
defined by extending and assembling the coefficient matrix in the left-hand side of Eq. (2.2)
for all the inner edges and all the nodes, and the consistency equation at the inner edges
for the entire origami surface is written as follows:

CEZ= 0 (2.7)

In the same way, the face consistency matrix CF ∈ R3NF×3NN is defined by extending and
assembling the coefficient matrices in the left-hand sides of Eqs. (2.5) and (2.6) for all the
faces and all the nodes, and the consistency equation at the faces for the entire origami
surface is written as follows:

CFZ= 0 (2.8)
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Therefore, the linear constraints for the consistent representation of the origami surface by
the nodal coordinates of the frame model can be summarized as follows:[

CE

CF

]
Z=CNZ= 0 (2.9)

In this study, CN ∈R3(NEin+NF)×3NN is referred to as the node consistency matrix.
The independent components of Z satisfying the consistency equation (2.9) are iden-

tified by a method utilizing the reduced row-echelon form (RREF) [62] of the node con-
sistency matrix CN. Details of the method is explained in Appendix A. The columns of
the RREF of a matrix can be classified into pivot and non-pivot columns, and let Zpivot ∈
Rrank(CN) and Zfree ∈ R3NN−rank(CN) denote the vectors whose components are those of Z
corresponding to the pivot and non-pivot columns of the RREF of CN. Then, defining
Cfree ∈ Rrank(CN)×(3NN−rank(CN)) as the matrix which is the assemblage of the components
of the RREF of CN in the non-zero rows and the non-pivot columns, Eq. (2.9) is equivalent
to the following equation:

[
Irank(CN) Cfree

](
Zpivot

Zfree

)
=Zpivot +CfreeZfree = 0 (2.10)

Therefore, the vectors of independent and dependent nodal coordinates of the frame model
can be identified as Zpivot and Zfree, respectively. Note that the number of independent coor-
dinates is Nfree = 3NN−rank(CN). The vector of the dependent nodal coordinates satisfying
Eq. (2.9) is calculated from the RREF of CN as follows:

Zpivot =−CfreeZfree (2.11)

In addition, the vector of all the nodal coordinates Z can be written as the rearrangement
of the components of Zpivot and Zfree as follows:

Z=CO

(
Zpivot

Zfree

)
(2.12)

where, CO ∈R3NN×3NN is a matrix representing the rearrangement of the components from
(ZT

pivot, ZT
free)T to Z, whose (i, j) component is 1 if the i-th component of Z corresponds to

the j-th component of (ZT
pivot, ZT

free)T; and otherwise 0. Substituting Eq. (2.11) to (2.12), Z
satisfying Eq. (2.9) can be calculated form the independent nodal coordinates as follows:

Z=CAZfree (2.13)

CA =CO

[
−Cfree

INfree

]
∈R3NN×Nfree

The example of a single inner vertex origami surface is shown in Appendix B.
The positions of the origami vertices are also determined by the independent nodal co-

ordinates Zfree if Eq. (2.9) is satisfied. First, the linear constraint equations are formulated
for the position vectors of a single inner vertex and the nodes around it. Let MF denote the
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Figure 2.4: Local indices of nodes around an origami vertex; (a) Inner vertex, (b) Perimeter
vertex.

number of faces around to an inner vertex to be considered. The local indices of 2MF nodes
on the edges are arranged in counterclockwise as shown in Fig. 2.4(a). The position vector ξ

of the center vertex in Fig. 2.4(a) can be expressed in MF different ways using the position
vectors of nodes ζ1, . . . ,ζ2MF as follows:

ξ= ζ1 −ζ2 +ζ3
...

ξ= ζ2MF−1 −ζ2MF +ζ1

(2.14)

where the subscripts of position vectors of nodes are the local indices of nodes on the edges.
Then, MF equations in Eq. (2.14) can be combined into a vector equation as follows:


I3
...

I3

ξ=


I3 −I3 I3 . . . O3 O3
...

...
...

. . .
...

...
I3 O3 O3 . . . I3 −I3





ζ1

ζ2

ζ3
...

ζ2MF−1

ζ2MF


(2.15)

where the coefficient matrix of ξ in the left-hand side of Eq. (2.15) is a 3MF × 3 matrix
consisting of MF identity matrices stacked in the row direction and the coefficient matrix
of the assemblage of the position vectors of nodes in the right-hand side of Eq. (2.15) is a
3MF ×6MF matrix. Here, the Moore-Penrose inverse [63] of the coefficient matrix of ξ in
the left-hand side of Eq. (2.15) can be calculated as the transpose of EMF divided by MF,
and the following equation holds:

1
MF

[
I3 . . . I3

]
I3
...

I3

= I3 (2.16)
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Therefore, Eq. (2.15) can be solved for ξ as follows:

ξ= 1
MF

[
2I3 −I3 2I3 . . . 2I3 −I3

]


ζ1

ζ2

ζ3
...

ζ2MF−1

ζ2MF


(2.17)

where coefficient matrix of the assemblage of the position vectors of nodes in the right-hand
side of Eq. (2.19) is a 3×6MF matrix. Note that if the nodal coordinates satisfy Eq. (2.9),
MF−1 of the MF equations in Eq. (2.14) are equivalent to Eq. (2.7), and Eq. (2.17) is equiv-
alent to one of the MF equations in Eq. (2.14). On the other hand, if the nodal coordinates
do not satisfy Eq. (2.9) and have some errors, the number of independent equations among
the 3MF equations in Eq. (2.14) is not necessarily three, and Eq. (2.17) represents the aver-
age position of the considered vertex calculated from MF different forms in Eq. (2.14). This
situation arises other than for form generation; e.g., the large-deformation analysis of the
frame model carried out using general finite element analysis software where the members
are represented by the elastic beam elements and their deformation is allowed. Because of
the property of the Moore-Penrose inverse, ξ obtained from Eq. (2.17) is the position vector
of the considered vertex with the minimum error.

In case of a single perimeter vertex shown in Fig 2.4(b), the position vector ξ of the
center vertex in Fig. 2.4(b) can also be expressed in MF different ways using the position
vectors of nodes ζ1, . . . ,ζ2MF+1 as follows:

ξ= ζ1 −ζ2 +ζ3
...

ξ= ζ2MF−1 −ζ2MF +ζ2MF+1

(2.18)

The difference between Eqs. (2.14) and (2.18) is that ζ1 in the last equation of Eq. (2.14)
is replaced with ζ2MF+1 in Eq. (2.18). In a similar manner as Eq. (2.17), Eq. (2.18) can be
solved for ξ as follows:

ξ= 1
MF

[
I3 −I3 2I3 . . . 2I3 −I3 I3

]



ζ1

ζ2

ζ3
...

ζ2MF−1

ζ2MF

ζ2MF+1


(2.19)

where coefficient matrix of the assemblage of the position vectors of nodes in the right-hand
side of Eq. (2.19) is a 3× (6MF +3) matrix.
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Let NV and Ξ ∈ R3NV denote the number of origami vertices and a vector which is an
assemblage of the position vectors of vertices for all the vertices. A 3NV ×3NN matrix CV

is defined by extending and assembling the coefficient matrices of the assemblages of the
position vectors of nodes in the right-hand side of Eqs. (2.17) and (2.19) for all the vertices
and nodes, and then, Ξ can be calculated from the vector of the nodal coordinates Z as
follows:

Ξ=CVZ (2.20)

For the calculation of CV for a single inner vertex origami surface, see Appendix B. Further-
more, if Z satisfies Eq. (2.9), substitution of Z in Eq. (2.13) into Eq. (2.20) leads to expression
of Ξ by the vector of the independent nodal coordinates Zfree ∈RNfree as follows:

Ξ=CVCAZfree (2.21)

In order for Ξ to be uniquely determined from Zfree by Eq. (2.21), the following equation
needs to hold:

rank(CVCA)= 3NV (2.22)

Here, rank(CVCA) satisfies the following inequality:

rank(CVCA)≤min(3NV, Nfree) (2.23)

According to Eqs. (2.22) and (2.23), NV and Nfree should satisfy the following inequality:

Nfree ≥ 3NV (2.24)

On the other hand, Zfree is always uniquely determined from Ξ by the construction of
the frame model. Therefore, there exists a row full-rank matrix CVN ∈ RNfree×3NV ; i.e.,
rank(CVN)= Nfree, which satisfies the following equation:

Zfree =CVNΞ (2.25)

Since CVN is row full-rank, the following inequality holds:

rank(CVN)= Nfree ≤ 3NV (2.26)

According to Eqs. (2.24) and (2.26), it can be concluded that Nfree = 3NV; i.e., the number of
independent nodal coordinates is equal to the number of coordinates of all the vertices.

2.3 Infinitesimal rigid-folding mechanism of frame model

In this section, formulation of the compatibility equations of a frame model in the finite
displacement are first presented for the analysis of the infinitesimal mechanism of a frame
model. The compatibility equations are formulated with respect to the generalized dis-
placements including translational and rotational displacements of nodes and members
and increments of rotation angles of hinges [31,40,64]. Then the infinitesimal rigid-folding
mechanism is investigated based on the method presented in Ref. [40].

19



member i

center

same position

j-th end

node k

hinge h

initial

deformed

hj
iV

iΨ

kU

kΘ

x

y

z

hjɶ

hjɶ

ijd

( )i ijR Ψ d

Figure 2.5: Displacements of member i and node k and increment of the rotation angle of
hinge h of a frame model.

2.3.1 Compatibility condition at the rigid end

Let NM, NN, and NH denote the number of members, nodes, and hinges, respectively. As
shown in Fig. 2.5, the translation vectors of the center point of member i (= 1, . . . ,nM)
and node k (= 1, . . . ,nN) in the global coordinate system (x, y, z) are represented by Vi =
(V (1)

i ,V (2)
i ,V (3)

i )T and Uk = (U (1)
k ,U (2)

k ,U (3)
k )T ∈ R3, respectively. The rotation vectors are also

represented by Ψi = (Ψ(1)
i ,Ψ(2)

i ,Ψ(3)
i )T and Θk = (Θ(1)

k ,Θ(2)
k ,Θ(3)

k )T ∈ R3, respectively. The di-
rection and the norm of a rotation vector represent the rotation axis and the rotation angle,
respectively. Here, the Rodrigues’ rotation matrix R(Ψi) with respect to the rotation vector
Ψi is defined as follows [64]:

R(Ψi)= cos(‖Ψi‖)I3 + 1
‖Ψi‖2 {1−cos(‖Ψi‖)}ΨiΨi

T+ 1
‖Ψi‖

sin(‖Ψi‖) [Ψi]× (2.27)

where I3 ∈R3 is the 3×3 identity matrix and [Ψi]× represents the cross-product matrix with
respect to Ψi, which is defined as follows:

[Ψi]× =


0 −Ψ(3)

i Ψ(2)
i

Ψ(3)
i 0 −Ψ(1)

i
−Ψ(2)

i Ψ(1)
i 0


The detailed calculation of Eq. (2.27) is shown in Appendix C. Let di j ∈R3 denote the vector
directing from the center point of member i to the j-th end ( j = 1, 2) of member i at the
initial undeformed state as shown in Fig. 2.5. Then, the vector obtained by rotating di j with
member i is to be R(Ψi)di j. When j-th end of member i is connected to node k, the following
equation holds since the translation of the j-th end of member i and the translation of node
k are the same:

Uk =−di j +Vi +R(Ψi)di j

⇔Uk −Vi − {R(Ψi)−I3}di j = 0
(2.28)

In addition, if member i is rigidly connected to node k, the rotation of member i is equal to
the rotation of node k, and the following equation holds:

Θk −Ψi = 0 (2.29)
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Figure 2.6: Reference frame of hinge h and its rotation with member i and node k

2.3.2 Compatibility condition at the hinged end

As shown in Fig. 2.6, the reference frame of hinge h (= 1, . . . , NH) in the initial undeformed
state is defined by the three unit vectors τ

〈l〉
h ∈R3 (l = 1,2,3). The unit vector τ

〈1〉
h is parallel

to the rotation axis of hinge h at the initial state in the global coordinate system (x, y, z),
and τ

〈2〉
h and τ

〈3〉
h are defined as the unit vectors satisfying the following equations:

τ
〈1〉
h ×τ

〈2〉
h =τ

〈3〉
h

τ
〈2〉
h ×τ

〈3〉
h =τ

〈1〉
h

Consider the case where the j-th end of member i is connected to node k via hinge h. As
in the case of a rigid end, the translation between the center point of member i and node
k need to satisfy Eq. (2.28). Since the relative rotation of member i and node k is allowed
only around the rotation axis of hinge h, the vector obtained by rotating τ

〈1〉
h with member

i must be perpendicular to the vectors obtained by rotating τ
〈2〉
h and τ

〈3〉
h with node k, and

the rotation vectors of member i and node k need to satisfy the following equations:(
R(Ψi)τ

〈1〉
h

)
·
(
R(Θk)τ〈2〉

h

)
= 0(

R(Ψi)τ
〈1〉
h

)
·
(
R(Θk)τ〈3〉

h

)
= 0

(2.30)

As shown in Fig. 2.5, the increment of the rotation angle of hinge h from the initial state
to the deformed state is denoted by φh ∈ R. The direction of the rotation; i.e., the sign
of φh, obeys right-hand screw rule along vector τ

〈1〉
h . Note that the hinge rotation angle

at the initial state is not necessarily equal to zero, and the residual angle φ̃h ∈ R at the
initial state may exist. In this study, φh is treated as an independent variable although it
is not in Ref. [40] and calculated from the displacements of the node and the center point
of the member. This simplifies the calculation presented in the following; e.g., prediction
of the existence of a locked crease line in the form generation process in Chapter 3 and
calculation of the total potential energy and its derivatives for the equilibrium path analysis
in Chapter 5 . Assuming that Eq. (2.30) holds and R(Ψi)τ

〈1〉
h and R(Θk)τ〈1〉

h always coincide
during the deformation process, the ideal value of φh denoted by φ̄h and shown in Fig. 2.6
can be determined from the following equations:

sin φ̄h =
(
R(Ψi)τ

〈3〉
h

)
·
(
R(Θk)τ〈2〉

h

)
=−

(
R(Ψi)τ

〈2〉
h

)
·
(
R(Θk)τ〈3〉

h

)
(2.31)

cos φ̄h =
(
R(Ψi)τ

〈2〉
h

)
·
(
R(Θk)τ〈2〉

h

)
=

(
R(Ψi)τ

〈3〉
h

)
·
(
R(Θk)τ〈3〉

h

)
(2.32)
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Therefore, assuming that φh satisfies |φh − φ̄h| < 2π throughout the deformation process,
the compatibility equation for φh is written as follows [64]:

sin(φh − φ̄h)= 0

⇔
{(

R(Ψi)τ
〈2〉
h

)
·
(
R(Θk)τ〈2〉

h

)}
sinφh +

{(
R(Ψi)τ

〈2〉
h

)
·
(
R(Θk)τ〈3〉

h

)}
cosφh = 0

⇔
(
R(Ψi)τ

〈2〉
h

)
·
{
sinφh

(
R(Θk)τ〈2〉

h

)
+cosφh

(
R(Θk)τ〈3〉

h

)}
= 0

(2.33)

For the simple expression of the compatibility equations at a hinge end, the functions of Ψi,
Θk, and φh denote by Φ(l)

i j (Ψi,Θk,φh) (l = 1,2,3) are defined to represent the left-hand sides
of Eqs. (2.30) and (2.33) as follows:

Φ(1)
i j (Ψi,Θk,φh)=

(
R(Ψi)τ

〈1〉
h

)
·
(
R(Θk)τ〈2〉

h

)
Φ(2)

i j (Ψi,Θk,φh)=
(
R(Ψi)τ

〈1〉
h

)
·
(
R(Θk)τ〈3〉

h

)
Φ(3)

i j (Ψi,Θk,φh)=
(
R(Ψi)τ

〈2〉
h

)
·
{
sinφh

(
R(Θk)τ〈2〉

h

)
+cosφh

(
R(Θk)τ〈3〉

h

)} (2.34)

When the j-th end of member i is connected to node k via hinge h, the compatibility equa-
tions (2.30) and (2.33) satisfied by the rotations of member i and node k and the increment
of the rotation angle of hinge h can be combined into a vector form as follows [31]:

Φi j(Ψi,Θk,φh)=


Φ(1)

i j (Ψi,Θk,φh)

Φ(2)
i j (Ψi,Θk,φh)

Φ(3)
i j (Ψi,Θk,φh)

= 0 (2.35)

2.3.3 Compatibility equations for the entire structure

The compatibility equations for the entire structure of the frame model are formulated by
summarizing the compatibility equations formulated in Sections 2.3.1 and 2.3.2. Let NB

denote the number of fixed degrees of freedom of the nodal displacements. The assem-
blage of the nodal displacements Uk and Θk for all nodes that are not constrained and the
assemblage of the member displacements Vi and Ψi for all members are represented by
U ∈ R6NN−NB and V ∈ R6NM , respectively. In addition, the vector consisting of φh, which is
the increment of the rotation angle of the hinge, is denoted by φ ∈ RNH . Then, the gen-
eralized displacement vector is defined as W = (UT, VT, φT)T ∈ RNW where the number of
components of W is calculated as NW = 6NN −NB +6NM +NH. Note again that although φ

is not included in the generalized displacement vector in the formulation of [40], it is in-
cluded in this study to simplify the formulations described in Chapters 3 and 5. When the
j-th end of member i is connected to node k rigidly or via hinge h, translational and rota-
tional incompatibility vectors represented by ∆Ui j and ∆Θi j ∈ R3, respectively, are defined
as the violations of Eqs. (2.28), (2.29), and (2.35) as follows:

∆Ui j =Uk −Vi − (R(Ψi)−I3)ri j (2.36)

∆Θi j =
Θk −Ψi (Rigidly connected)

Φi j(Ψi,Θk,φh) (Connected by hinge h )
(2.37)
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It is assumed that the components of fixed nodal displacements are equal to 0 in Eqs. (2.36)
and (2.37). The translational and rotational incompatibility vectors ∆Ui j and ∆Θi j are
combined into the incompatibility vector G(W) ∈RNG as the nonlinear function of the gener-
alized displacement vector W. Accordingly, the compatibility equations are represented as
follows:

G(W)= 0 (2.38)

Since the compatibility equations should be satisfied at all member ends, the number of
components of G(W) is NG = 12NM.

2.3.4 Derivation of first-order infinitesimal mechanism

The series expansion of the incompatibility vector G(W) with respect to W is written as
follows:

G(W)=G(0)+ dG(0)
dW

W+·· · (2.39)

where dG(W) /dW is a NG ×NW matrix whose (i, j) component is the first-order derivative
of the i-th component of G(W) with respect to the j-th component of W. In the following,
the constant matrix dG(0)/dW is to be represented by Γ(1) ∈ RNG×NW and referred as the
compatibility matrix. The superscript (1) indicates that Γ(1) is the first-order derivative of
the compatibility matrix. Since G(0) = 0, the first-order approximation of Eq. (2.38) for the
moderately small W can be written as follows:

Γ(1)W= 0 (2.40)

If there is W satisfying Eq. (2.40), the frame model has at least first-order infinitesimal
mechanism [40]. The detailed calculation of the components of Γ(1) is provided in Ap-
pendix D. An arbitrary W satisfying Eq. (2.40) can be represented by a linear combination
of the bases of ker(Γ(1)) [63]. The dimension of ker(Γ(1)) denoted by ND is the number of
kinematic indeterminacy and computed as:

ND = NW −rank(Γ(1)) (2.41)

When the nodal displacements are appropriately constrained so that the only rigid-body
motions of the entire model are constrained, the kinematic indeterminacy is equal to the
DOF of infinitesimal rigid-folding mechanism. Let η1, . . . ,ηND

∈RNW denote the right singu-
lar vectors of Γ(1) corresponding to zero singular values, which are normalized as ‖ηi‖ = 1
(i = 1, . . . , ND). They are the bases of ker(Γ(1)) as explained in Appendix E and referred to
as the first-order infinitesimal mechanism modes [40]. An arbitrary W satisfying Eq. (2.40)
can be expressed as the linear combination of ηi and written as follows:

W= a1η1 +·· ·+aNDηND
=

[
η1 · · · ηND

]
a1
...

aND

=Ha (2.42)

H=
[
η1 · · · ηND

]
∈RNW×ND
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where a = (a1, . . . ,aND)T ∈ RND is an arbitrary vector. The matrix H is divided into three
matrices as follows:

H=


HU

HV

Hφ

 (2.43)

HU ∈R(6NN−NB)×ND , HV ∈R6NM×ND , Hφ ∈RNH×ND

where HU, HV, and Hφ correspond to the nodal displacements U, the member displace-
ments V, and the increments of hinge rotation angles φ, respectively. Then, arbitrary vec-
tors U, V, and φ satisfying Eq. (2.40), which represent the first-order infinitesimal mecha-
nism, can be written as follows:

U=HUa (2.44)

V=HVa (2.45)

φ=Hφa (2.46)

As described above, the deformation modes of rigid origami represented by the frame model
are obtained by using the mechanism analysis method of the partially rigid frames. The
displacement modes of the vertices and the folding angle variation modes of rigid origami
can be easily and simultaneously obtained from the nodal displacement modes of the frame
and the hinge rotation modes, respectively, whereas only one of them can be obtained using
the truss model or the rotational hinge model.

2.4 Conclusions

In this chapter, the review of the numerical models representing the shape and the kine-
matics of a rigid origami are first provided for a rotational hinge model, a truss model, a
FE model, and a frame model. The frame model is used in this study for the form genera-
tion and the deformation path analysis of the rigid origami. It consists of frame elements
and hinges and can represent a rigid origami in a simpler way than the other three models
mentioned above.

The equations reflecting the geometric constraints on the nodal coordinates of the frame
model are formulated based on the locations of the nodes on the origami surface so that the
frame model represents the corresponding rigid origami appropriately. From the formu-
lated constraint equations, the independent nodal coordinates are identified by utilizing
the properties of the RREF of a matrix. The equations to obtain the position of the origami
vertices from the nodal coordinates of the frame model are also formulated.

In addition, the infinitesimal mechanism of the frame model is investigated by the anal-
ysis method for partially rigid frames. The generalized displacement vector is defined as
the assemblage of the unconstrained translational and rotational displacements of nodes,
the translational and rotational displacements of center points of members, and the incre-
ments of the hinge rotation angles. The compatibility equations satisfied by the generalized
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displacement are formulated at each member end with respect to the compatibility between
the translational and rotational displacement of the member end and the node to which the
member end connects. The kinematic indeterminacy and the first-order infinitesimal mech-
anism modes are derived from the compatibility matrix which is the first-order derivative
of the incompatibility vector with respect to the generalized displacement. The geometric
properties and the method of the kinematic analysis of the frame model introduced in this
chapter is used in the following chapters.
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Chapter 3

Form generation of rigid origami
for approximating a curved surface

In this chapter, a method is presented for approximating a curved surface by a developable
rigid origami with and without cuts along edges. Geometric properties of polyhedral sur-
faces such as Gaussian curvature are utilized to formulate developability conditions of the
origami surface and approximation error functions between the target surface and the
origami surface. Variables are selected according to the definition of the approximation
error function so that the calculation of the error function is performed efficiently. The in-
dependent variables are identified to satisfy the linear constraint equations such as those
describing the symmetry of the origami surface. An optimization approach is utilized to
minimize the approximation error of the target surface under the developability conditions.
Form generation starts from a triangulated surface, and crease lines of the origami surface
are sequentially fixed to reduce the degrees of freedom of the rigid-folding mechanism. The
crease lines to be fixed are determined by the selection criteria introduced in this study re-
flecting the infinitesimal mechanism of the rigid origami, which help to prevent the crease
lines to be locked during the deployment process. The frame model introduced in Chapter 2
is used for the infinitesimal and finite mechanism analysis of the obtained solutions. Only
the form generation method and examples of an origami surface with locked crease lines are
shown in this chapter, and case studies of the form generation are presented in Chapter 4.

3.1 Introduction

3.1.1 Background

Origami has the advantage that it can be folded from a flat or folded state to form com-
plex three-dimensional shapes, and various form generation methods have been proposed
to obtain a rigid origami which can realize a desired shape. Various approaches have been
proposed to generalize well-known crease patterns; e.g., Dudte et al. [41] and Song et al. [42]
used Miura-ori, Tachi [43] used Resch’s pattern, Zhao et al. [44] used waterbomb tessella-
tion, and Wu [45] used Yoshimura pattern. A rigid origami with non-regular quadrilateral
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crease pattern has also been generated by Tachi [23, 46] and He and Guest [47, 48] based
on the necessary and sufficient condition for the rigid-foldability of a quadrilateral mesh
which is expressed with respect to the folding angles and the sector angles (angles between
the adjacent crease lines) and called the loop condition. Although a rigid origami that
approximates the desired shape can be obtained by the above methods through a trial-and-
error or optimization approach, those methods are not suitable for generating rigid origami
structures with various non-typical crease patterns and degrees of freedom (DOFs) of rigid-
folding mechanism because the topology of the crease lines is limited. On the other hand,
the methods which does not rely on the typical crease patterns have also been proposed
by utilizing the topology optimization approach [49, 50], and various crease patterns can
be obtained by these methods. However, these methods focus on obtaining a crease pat-
tern which achieves the desired actuation and are not suitable for approximating a curved
shape. Therefore, a form generation method utilizing non-regular crease patterns for the
approximation of a target shape can improve the flexibility of the origami design.

The idea of kirigami [65, 66] and papercraft [67, 68] is also utilized to realize a curved
surface from a flat or folded state. Compared to origami without cuts or holes, the intro-
duction of cuts greatly increases the degree of freedom of curved surface shapes that can
be generated from a flat surface. However, papercrafts generally consist of multiple parts,
and it is difficult to join them in a complex manner for application to architectural-scale
structures. In addition, the size of the joints is often neglected in the existing methods of
approximating a curved surface using kirigami, and the faces are connected at very nar-
row widths or even points. There are also many examples of large degrees of freedom of
mechanism. From the viewpoint of construction and safety, a structure with large degrees
of freedom of mechanism is not suitable for application in the architectural scale such as a
roof, and it is desirable to obtain a structure with small degrees of freedom of mechanism.

In this chapter, a method for form generation of a rigid origami approximating an open
curved surface is proposed based on Refs. [28–30,52]. A rigid origami developable to a plane
can be obtained by using an optimization method that does not depend on the typical crease
patterns. Thus, flat panels are connected at ground level by hinges, and then folded up to
obtain a three-dimensional polyhedral shape. The three-dimensional polyhedral shape of
a rigid origami approximating the target surface obtained by the proposed method is espe-
cially referred to as the folded shape although the shape in the process of being developed
into a plane is also a folded three-dimensional shape. A rigid origami considered in this
chapter may have the cuts along with its edges which may generate holes in the develop-
ment diagram while there are no holes in the folded shape as explained in Sections 3.1.2
and 3.2.3. To obtain a shape of a developable origami, the developability conditions are for-
mulated in Section 3.2 with respect to the geometric properties of a polyhedral surface such
as discrete Gaussian curvature defined as the angle defect [69]. The developability condi-
tion here refers to the condition that the origami faces can be placed on a plane without any
deformation while the connectivity of the adjacent faces in the folded shape is maintained
except at the specified cuts. The approximation accuracy of the target surface is measured
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for several aspect such as the Euclidean distance, the surface area, and the normal vectors
as shown in Section 3.3.1. The form generation procedure in Section 3.4 starts from the tri-
angulated surface, and the shape of origami is obtained by solving the optimization problem
formulated in Section 3.3.3 to minimize the error of the developability or the approximation
of the target surface. However, a rigid origami with only triangular faces has a very large
number of DOFs, which leads to the undesirable situation in view of engineering applica-
tion where the mechanism cannot be stabilized by simply supporting a part of the structure
and the rotation of the crease lines should be constrained to maintain the curved polyhe-
dral shape. Therefore, some crease lines are to be sequentially fixed (removed) to reduce the
DOFs. The adjacent facets connected to each fixed crease line are integrated into a flat face
with more than three edges by adding the squared norm of the cross product of their unit
normal vectors to the objective function of the optimization problem. By solving the opti-
mization problem multiple times while increasing the number of fixed crease lines, multiple
optimal shapes with the different DOFs can be obtained. The variables in the optimization
problem are selected in Section 3.3.2 for the efficient calculations of the errors of the devel-
opability and surface approximation. The crease lines to be fixed are selected taking into
account the shape and the deformation mechanism of the rigid origami to prevent crease
lines to be locked; i.e. some crease lines that are not fixed become unable to rotate by fixing
an inappropriate crease line. If there is a locked crease line, the faces adjacent to it can-
not rotate around it even though they are not coplanar, and consequently, the rigid origami
cannot be developed to a plane without deformation of its faces. Therefore, the transition
of the deformation mechanism of the rigid origami due to choosing and fixing some crease
lines is predicted based on the kinematic analysis of the frame model, and the selection
criteria of the crease lines to be fixed reflecting this prediction are proposed in Section 3.5.
To evaluate the transition of the deformation mechanism, the stiffness matrix assembled
using the rigid-folding modes and the fictitious stiffness of the hinges is introduced. The
criterion introduced in this study reduces the number of times to solve the optimization
problems and improves the computational efficiency compared to the case where the crease
lines to be fixed are selected only by considering the shape of the rigid origami.

3.1.2 Structure of origami surface

As introduced in Chapters 1 and 2, a polyhedral origami surface is regarded as a mesh and
consists of vertices, edges, and faces as shown in Fig. 3.1. In the following, unless otherwise
noted, an origami surface is considered to be a triangular mesh and all faces are assumed
to be triangle; every mention of faces is taken to mean triangular faces. An origami surface
may contain cuts which may generate holes and gaps in the development diagram while
there are no holes and gaps in the folded shape as shown in Fig. 3.2. A cut is defined as
the sets of edges which are connected each other and referred to as the cut lines. In the
three dimensional shape, it is assumed that the structure of a graph consists of cut lines of
a single cut and relating cut vertices is a tree; i.e., it is connected and does not have any
loops. In addition, a cut is assumed not to break the origami surface into multiple parts,
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Figure 3.1: Structure of an origami surface.
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inner cut

perimeter cut

(b)

Figure 3.2: Inner cut and perimeter cut; (a) folded shape, (b) development diagram.

and the origami faces are allowed to overlap each other around the cut in the development
diagram. Cuts are further classified according to the positions of the endpoints of its cut
lines into

• inner cut where no endpoints of its cut lines exist on the perimeter of the origami
surface, and

• perimeter cut where one of the endpoints of its cut lines exists on the perimeter of the
origami surface.

Then, the edges of an origami surface are classified into

• crease line which is the inner edge around which origami faces rotate,

• perimeter edge at the exterior boundary of the origami surface,

• dividing edge which divides a face with more than three edges into triangular faces,

• inner cut line consisting of an inner cut of the origami surface, and

• perimeter cut line consisting of a perimeter cut of the origami surface.

29



ik
a

vertex i
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Figure 3.3: Inner angle of triangular face k at inner vertex i.

A single cut line in the folded shape corresponds to two edges in the development diagram,
and the number of cut lines in the development diagram is twice as the number of cut lines
in the folded shape. In addition, the vertices are classified into

• cut vertex which is an endpoint of the inner or perimeter cut lines,

• perimeter vertex which is at the perimeter of the origami surface and not a cut vertex,
and

• inner vertex which is not a perimeter or cut vertex.

3.2 Developability conditions

In this section, the conditions for the developability of an origami surface are formulated
considering 1) developability around each inner vertex, 2) flatness of the faces with more
than three edges, and 3) developability around each inner cut [28–30, 52]. Note that an
overlap of faces in the development diagram and a self-intersection of faces in the develop-
ment process are allowed and neglected in the formulation of the developability conditions,
and thus, an origami surface is always locally developable to a plane around a perimeter
cut. The developability conditions are first locally formulated in Sections 3.2.1 – 3.2.3, and
they are assembled for an entire origami surface in Section 3.2.4. The optimization problem
for generating a development diagram is also proposed in Section 3.2.4.

3.2.1 Developability around an inner vertex

When an origami surface can be developed to a plane around its inner vertices, the Gaussian
curvature at each inner vertex must be equal to zero. The Gaussian curvature is defined
as the angle defect [69], which is equal to the difference between 2π and the sum of the
inner angles of the triangular faces around an inner vertex. Let NV and FV

i (i = 1, . . . , NV)
denote the number of origami vertices and the set of global indices of the triangular faces
adjacent to vertex i, where i is the global vertex index, respectively. In the following, unless
otherwise noted, the indices of the components of an origami surface such as vertices, edges,
and faces are global indices defined for the entire origami surface. Note that FV

i is defined
for all the vertices; vertex i is not necessarily an inner vertex and can be a cut vertex or a
perimeter vertex. As shown in Fig. 3.3, the inner angle of face k ∈FV

i at vertex i is denoted
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Figure 3.4: Unit normal vectors of faces k1 and k2 adjacent to dividing edge j.

by αik ∈ R. When vertex i is not a perimeter vertex, the Gaussian curvature κi at vertex i
is defined as follows:

κi = 2π− ∑
k∈FV

i

αik (3.1)

Then, the developability condition at inner vertex i ∈ Vin is formulated as

κi = 0 (3.2)

where Vin is the set of indices of inner vertices.

3.2.2 Flatness of a face with more than three edges

In order for the origami surface to be developable to a plane by the rigid-folding deformation,
its faces with more than three edges must be flat; i.e., the faces adjacent to each dividing
edge must be in the same plane. Let FE

j denote the set of indices of faces adjacent to edge
j. As shown in Fig. 3.4, the unit normal vector of face k is denoted by nk ∈R3. Defining Ediv

as the set of global edge indices of the dividing edges, the condition for the flatness of the
face at dividing edge j ∈ Ediv is formulated as

‖nk1 ×nk2‖ = 0 (k1,k2 ∈FE
j ) (3.3)

3.2.3 Developability around cuts

The developability around a single inner cut is considered, and the global indices of cuts
are omitted for simplicity although it is necessary to identify the cut. The cut is assumed
to consist of MC cut lines in the folded shape. As shown in Fig. 3.5, the local indices of
cut lines 1, . . . ,2MC in the development diagram are assigned so that they are in ascending
order when the cut lines in the development diagram are traced such that the hole by the cut
exists on the left side and the face exists on the right side of each cut line when viewed from
the positive side of the z-axis. A pair cut lines in the development diagram correspond to
the same cut line in the folded shape; e.g., edge 2 and j+2 in Fig. 3.5 are the same cut line in
the three-dimensional shape. The length and the direction vector of edge j (= 1, . . . ,2MC) in
the development diagram are denoted by l̄ j ∈R and ē j ∈R2, respectively. ē j is a unit vector
and directed from the vertex between edges j−1 and j to the vertex between edges j and
j+1. The local edge indices 0 and 2MC +1 are regarded to be 2MC and 1, respectively. The
local vertex indices in the development diagram are also defined so that vertex j is located
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Figure 3.5: Configuration of an inner cut; (a) Local edge indices and angles around cut
lines in the three-dimensional shape, (b) Vectors along cut lines and angles
around cut lines in the development diagram shape.

between edge j and j+1. Let FC
j denote the set of global indices of the faces connected to

vertex j in the development diagram. Note that FC
j is a subset of FV

i when i is the global
index of vertex j, where j is the local index. As shown in Fig. 3.5, the sum of the inner
angles of the triangular faces at the vertex j in the development diagram is denoted by
ϑ j ∈R and calculated as follows:

ϑ j =
∑

k∈FC
j

α jk (3.4)

where α jk the inner angle of face k at vertex j. Then, the edge direction vector ē j+1 in the
development diagram satisfies the following equation for j = 1, . . . ,2MC:

ē j+1 =R(ϑ j −π)ē j

=R(ϑ j −π) · · ·R(ϑ1 −π)ē1

=R

(
j∑

m=1
ϑm − jπ

)
ē1

(3.5)

where R(θ) ∈R2×2 represents the rotation matrix which rotate a vector counterclockwise on
a plane by the angle θ and is defined as

R(θ)=
[

cosθ −sinθ

sinθ cosθ

]

ē2MC+1 obtained from Eq. (3.5) by assigning j = 2MC need to be identical to ē1, and the
following equation holds:

R

(
2MC∑
j=1

ϑ j −2MCπ

)
ē1 = ē1 ⇔

[
R

(
2MC∑
j=1

ϑ j −2MCπ

)
−I2

]
ē1 = 0 (3.6)

Since the choice of edge 1 on the cut and the placement of the development diagram on
the xy-plane are arbitrary, Eq. (3.6) holds for any ē1. Therefore, the following equation is
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obtained for an arbitrary integer m:

2MC∑
j=1

ϑ j −2MCπ= 2mπ ⇔
2MC∑
j=1

ϑ j = 2(MC +m)π (3.7)

According to Eq. (3.6), m represents the number of counterclockwise 2π rotations of the
direction vector of the edge when the cut is passed around on the development diagram, and
is called the turning number used in the field such as geometric topology and differential
geometry. If the polygon on the development diagram formed by the cut lines does not
have any self-intersections and the faces do not overlap each other as shown in Fig. 3.5, the
turning number m is equal to 1. Conversely, if the faces are allowed to overlap each other,
it is not necessarily equal to 1. However, it is assumed that m = 1 holds in this study, and
the case where m is more or less than 1 is neglected since the three-dimensional shape is
expected to be too complicated for an architectural purposes if m is not 1. On the other
hand, since the number of the cut vertices is MC+1 in the folded shape and there is no loop
in the cut in the three-dimensional shape, the sum of the Gaussian curvature of the cut
vertices satisfies following equation:

∑
i∈VC

κi =
∑
i∈VC

2π− ∑
k∈FV

i

αik


= 2(MC +1)π−

2MC∑
j=1

∑
k∈FC

j

α jk

= 2(MC +1)π−
2MC∑
j=1

ϑ j

(3.8)

According to Eqs. (3.7) and (3.8) and the assumption of m = 1, the following equation needs
to be satisfied for the developability around the cut:∑

i∈VC

κi = 2(1−m)π= 0 (3.9)

Furthermore, in addition to the condition for the direction of the cut lines on the develop-
ment diagram represented by Eq. (3.9), there must be a condition for the inner cut lines to
form a loop on the development diagram, which can be written as follows:

2MC∑
j=1

l̄ jē j = 0 (3.10)

Substituting Eq. (3.5) into the left-hand side of Eq. (3.10), the following equation is obtained:

2MC∑
j=1

l̄ jē j = l̄1ē1 +
2MC−1∑

j=1
l̄ j+1ē j+1

= l̄1ē1 +
2MC−1∑

j=1
l̄ j+1

{
R

(
j∑

m=1
ϑm − jπ

)
ē1

}

=
[

l̄1I2

2MC−1∑
j=1

(−1) j l̄ j+1R

(
j∑

m=1
ϑm

)]
ē1

(3.11)
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According to Eq. (3.11), the conditions for the existence of ē1 satisfying Eq. (3.10) can be
written as follows:

det

[
l̄1I2

2MC−1∑
j=1

(−1) j l̄ j+1R

(
j∑

m=1
ϑm

)]
= 0

⇔
{

l̄1 +
2MC−1∑

j=1
(−1) j l̄ j+1 cos

(
j∑

m=1
ϑm

)}2

+
{

2MC−1∑
j=1

(−1) j l̄ j+1 sin

(
j∑

m=1
ϑm

)}2

= 0

(3.12)

Consequently, l̄ j and ϑ j ( j = 1, . . . ,2MC) need to satisfy the following equations:

l̄1 +
2MC−1∑

j=1
(−1) j l̄ j+1 cos

(
j∑

m=1
ϑm

)
= 0 (3.13)

2MC−1∑
j=1

(−1) j l̄ j+1 sin

(
j∑

m=1
ϑm

)
= 0 (3.14)

Conversely, if l̄ j and ϑ j for j = 1, . . . ,2MC satisfy Eqs. (3.13) and (3.14), Eq. (3.10) holds for
an arbitrary ē1. Therefore, the conditions for the cut lines to form a loop on the develop-
ment diagram are represented by Eqs. (3.13) and (3.14). From the above, the developability
conditions around an inner cut are represented by the three equations (3.9), (3.13), and
(3.14).

3.2.4 Developability of entire origami surface

The developability conditions formulated in the previous sections are assembled for all the
inner vertices, dividing edges, and inner cuts to formulate the developability condition of
the entire origami surface. Let NVin, NEdiv, and NCin denote the number of inner vertices,
dividing edges, and inner cuts, respectively. Then, the total number of the developability
conditions is NVin + NEdiv +3NCin, and the left-hand sides of Eqs. (3.2), (3.3), (3.9), (3.13),
and (3.14) are assembled for all the inner vertices, dividing edges, and inner cuts into a
vector D ∈ RNVin+NEdiv+3NCin , which represents the violation of the developability conditions.
The values of components of D can be determined only from the quantities defined in the
folded shape, and the development diagram is not necessary to calculate D. Then, the
developability condition for the entire origami surface is written in a vector form as follows:

D= 0 (3.15)

The form generation of the rigid origami is performed so that the developability condition
formulated as Eq. (3.15) is satisfied.

Since Eq. (3.15) is only the necessary condition for the developability of an origami sur-
face, the developability of an obtained solution in the form generation procedure should be
confirmed by generating a development diagram. The development diagram of an origami
surface is generated by minimizing the sum of the squared edge length errors between the
development diagram and the folded shape according to the surface flattening method pro-
posed by Wang et al. [70]. The development diagram is to be generated on the xy-plane. The
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variables for the development diagram generation are selected according to the optimiza-
tion problem for generating the origami surface described in Section 3.3, which are the x-
and y- coordinates of vertices or the independent x- and y- coordinates of nodes of the frame
model determined in Chapter 2. In both cases, let X̄ denote the vector of the variables.
The length of edge j ( j = 1, . . . , N̄E) in the folded shape and in the development diagram are
represented by l j and l̄ j ∈ R, respectively, where N̄E is the number of origami edges in the
development diagram. Note that l j is constant while l̄ j is the function of X̄ which can be
written as l̄ j(X̄). N̄E can be different from the number of edges in the folded shape since
each cut line in the folded shape corresponds to two edges in the development diagram as
shown in Fig. 3.5. When the number of origami edges in the folded shape is NE and the
number of inner and perimeter cut lines is NEcut, N̄E is calculated as N̄E = NE +NEcut. Let
n̄k(X̄) ∈ R3 (k = 1, . . . , NF) denote the unit normal vector of face k of the development dia-
gram where NF is the number of triangular origami faces. The direction of n̄k(X̄) is defined
so that the relation n̄k(X̄) ·ez ≥ 0 is satisfied where ez = (0, 0, 1)T, if all the faces are not
flipped. Then, the development diagram is obtained by solving the following optimization
problem which minimizes the non-negative function Fdev(X̄):

min.
X̄

Fdev(X̄)=

N̄E∑
j=1

{
l̄ j(X̄)− l j

}2

N̄E∑
j=1

l2
j

s.t. n̄k(X̄) ·ez ≥ 0 (k = 1, . . . , NF)

X̄ ∈ χ̄

(3.16)

where χ̄ denotes the range of variables assigned so that the vertex positions of the develop-
ment diagram are determined uniquely and the optimization problem (3.16) has the good
convergence. The initial guess of the problem (3.16) can be arbitrarily set under the con-
dition that it has the consistent connectivity of edges as the folded shape and satisfies the
constraints of the optimization problem. In this study, the projected shape of the folded
shape onto xy-plane is used as the initial guess.

3.3 Optimization problems for form generation of a devel-
opable origami surface

In this section, optimization problems for generating a single origami shape developable to
a plane are formulated. The approximation error functions are formulated with respect to
the distance between the origami surface and the target surface, the error of the surface
area, and the difference between the unit normal vectors of the origami surface and the tar-
get surface defined in Section 3.3.1. There are some candidates for the design variables in
the optimization problem; e.g., the vertex coordinates of the origami surface, the nodal coor-
dinates of the frame model, and other parameters representing the position of the vertices
measured from the points on the target surface. They are selected in view of the efficiency
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of the calculation of the approximation error, and the discussion about the selection of the
design variables is provided in Sections 3.3.1 and 3.3.2. The optimization problems for the
form generation are proposed in several patterns in Section 3.3.3.

3.3.1 Definition of approximation error functions

(1) Target surface

A target surface is defined by the tensor product Bézier surface [51] of order Ms ×Mt. Let
p̃i j = (p̃x

i j, p̃y
i j, p̃z

i j)
T ∈ R3 (i = 0, . . . , Ms; j = 0, . . . , Mt) denote the position vector of a control

point of the Bézier surface. The surface is parametrized by s and t (0 ≤ s, t ≤ 1), and the
position vector of the point on the surface corresponding to the parameter (s, t) which is
denoted by r̃(s, t) ∈R3 is determined as follows:

r̃(s, t)=
Ms∑
i=0

Mt∑
j=0

p̃i jB
Ms
i (s)BMt

j (t) (3.17)

where BMs
i (s) and BMt

j (t) are the Bernstein basis polynomials defined as follows:

BMs
i (s)=

(
Ms

i

)
si(1− s)Ms−i, BMt

j (t)=
(

Mt

j

)
t j(1− t)Mt− j

In particular, when the control points are uniformly spaced in the x-direction with interval
∆px and in the y-direction with interval ∆py as p̃i j = (p̃x

00 + i∆p̃x, p̃y
00 + j∆p̃y, p̃z

i j)
T, the z-

coordinate of the Bézier surface can be represented as a function of the (x, y) coordinates as
follows:

z =
Ms∑
i=0

Mt∑
j=0

p̃z
i jB

Ms
i

( x− p̃x
00

Ms∆p̃x

)
BMt

j

(
y− p̃y

00

Mt∆p̃y

)
(3.18)

p̃x
00 ≤ x ≤ p̃x

00 +Ms∆p̃x

p̃y
00 ≤ y≤ p̃y

00 +Mt∆p̃y

In addition, the unit normal vector of the Bézier surface at the point r̃(s, t) which is denoted
by ñ(s, t) can be calculated as follows [71]:

ñ(s, t)=

2Ms−1∑
i=0

2Mt−1∑
j=0

q̃i jB
2Ms−1
i (s)B2Mt−1

j (t)∥∥∥∥∥2Ms−1∑
i=0

2Mt−1∑
j=0

q̃i jB
2Ms−1
i (s)B2Mt−1

j (t)

∥∥∥∥∥
(3.19)

q̃i j = MsMs(
2Ms −1

i

)(
2Mt −1

j

) ∑
m1+m2=i

0≤m1≤Ms−1
0≤m2≤Ms

∑
n1+n2= j
0≤n1≤Mt

0≤n2≤Mt−1{(
Ms −1

m1

)(
Ms

m2

)(
Mt

n1

)(
Mt −1

n2

)(
p̃(n1+1)m1 − p̃n1m1

)× (
p̃n2+(m2+1) − p̃n2m2

)}
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Figure 3.6: Quantities for defining approximation error function.

(2) Approximation error function for Euclidean distance

It is necessary to associate the point on the target surface with an origami vertex to measure
the approximation error with respect to the Euclidean distance between the origami surface
and the target surface. As shown in Fig. 3.6, the associated point on the target surface with
an origami vertex is referred to as the projected point, and the distance between vertex i
and its projected point is denoted by δi ∈R. Note that δi is signed according to which side of
the target surface vertex i is located. In Ref. [30], a projected point is defined as the point
on the target surface which have the same (x, y) coordinates with the associated vertex.
In this case, it is assumed that the control points of the target surface are aligned with
the constant intervals in the x- and y-directions, and the position of the projected point is
determined by the z-coordinates in Eq. (3.18). Therefore, it is straightforward to select the
vertex coordinates of the origami surface or the nodal coordinates of the frame model as the
variables of the optimization problem for the form generation. When the nodal coordinates
are used as the variables, the coordinates of the vertices are obtained by Eqs. (2.19) or (2.21)
formulated in Chapter 2.

On the other hand, a projected point is defined as the orthogonal projection of the vertex
onto the target surface in Ref. [52]. In this case, the recursive calculation is necessary to
determine the position of a projected point from the given vertex position [72], and this is
computationally inefficient. Therefore, the opposite approach is adopted in Ref. [52]; i.e., the
position of a origami vertex is determined from the given position of the associated projected
point as the sum of the position vector of the projected point represented by Eq. (3.17) and
the vector representing the amount and the direction of the offset from the target surface.
For example, if δi is measured in the direction of the normal vector of the target surface, the
position vector of vertex i denoted by ξi ∈R3 on the origami surface is written as follows:

ξi = r̃(si, ti)+δiñ(si, ti) (3.20)

where si and ti are the parameters associated with vertex i which determine the position
vector of the point on the target Bézier surface. In the following, the amount of offset δi

is simply referred to as the offset. The parameters si and ti and the offset δi for all the
vertices are used as the variables in the optimization problem. The direction of the offset is
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Table 3.1: Combinations of the suitable variables and the conditions to measure the ap-
proximation error with respect to the distance.

Ref. [30] Ref. [52]

Variables
Coordinates of

vertices or nodes
Parameters of Bézier surface

and offset distances

Arrangement of
control points Regularly aligned Arbitrarily aligned

Direction to
measure distance z-direction Arbitrary

origami
surface

vertex

target
surface

(a) (b)

Figure 3.7: Comparison of the appearance of two origami surfaces whose all vertices are
on the target surface but which have different surface areas; (a) Large approx-
imation error for surface area, (b) Small approximation error for surface area.

not limited to the normal of the target surface and can be arbitrary; e.g., in the z-direction
as in Ref. [30] where ñ(si, ti) in Eq. (3.20) is replaced with ez = (0, 0, 1)T. This approach also
can be used when the control points of the target Bézier surface are not aligned regularly
and the z-coordinate of the point on the Bézier surface cannot be determined from its x-
and y-coordinates. Combinations of the selection of variables, the arrangement of control
points of the target Bézier surface, and the direction in which the distance between each
origami vertex and the target surface are summarized in Table. 3.1. In both cases, the ap-
proximation error function Fdist for the distance between the origami and the target surface
is defined as follows:

Fdist =
1
2

NV∑
i=1

δ2
i (3.21)

(3) Approximation error function for surface area

As shown in Fig. 3.7(a), the appearance of the origami surface may not be similar to that of
the target surface even when all the origami vertices are on the target surface. Therefore,
the approximation accuracy with respect to the surface area is considered to obtain the
origami surface like Fig. 3.7(b) which has a similar appearance to the target surface. Let A
and Ã ∈R denote the area of the origami surface and the target surface. The approximation
error function Farea for the error of the surface area between the origami and the target
surface is defined as

Farea = |A− Ã| (3.22)
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origami
surface

vertex

target
surface

(a) (b)

Figure 3.8: Comparison of the appearance of two origami surfaces whose each vertex has
equal distance but face normal vectors are in the different directions from the
target surface; (a) Large approximation error for face normal vectors, (b) Small
approximation error for face normal vectors.

where A is calculated as the sum of the areas of all the triangular faces of the origami
surface, and Ã is approximated by triangulating the target surface into a fine mesh and
summing up the area of all the triangular faces.

(4) Approximation error function for face normal vector

Approximation accuracy with respect to the direction of the normal vectors of the origami
faces is considered since the angles of the faces are important factors for the appearance of
the polyhedral surface as shown in Fig. 3.8. The two origami surfaces in Fig. 3.8 have the
same value of Fdist; however, the surface in Fig. 3.8(b) has more similar appearance to the
target surface than the surface in Fig. 3.8(a) since the directions of the normal vectors of the
faces of the former surface approximate those of the target surface while those of the latter
surface do not. As shown in Fig. 3.6, let ñ〈1〉

k , ñ〈2〉
k , and ñ〈3〉

k ∈ R3 denote the unit normal
vectors of the target surface evaluated at the projected points of the three vertices of face k.
Then the unit reference normal vector of face k is defined as follows:

ñref
k =

ñ〈1〉
k + ñ〈2〉

k + ñ〈3〉
k∥∥∥ñ〈1〉

k + ñ〈2〉
k + ñ〈3〉

k

∥∥∥ (3.23)

The approximation error function Fnormal for the error of the direction of the normal vectors
between the origami faces and the reference normal vectors of the target surface is defined
as follows:

Fnormal =
1
2

NF∑
k=1

∥∥∥nk − ñref
k

∥∥∥2
(3.24)

Note that the initial direction of nk is defined so that nk · ñref
k ≥ 0 holds for k = 1, . . . , NF in

the initial shape of the form generation.

3.3.2 Independent variables for form generation

As discussed in Section 3.3.1, design variables of the optimization problem for generating a
developable origami surface are the coordinates of origami vertices, the nodal coordinates of
the frame model, or the pairs of the parameters and the offset which determine the points on
the target Bézier surface and the distances from these points to the origami vertices. When
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the nodal coordinates of a frame model are used, the independent coordinates are identified
from the linear constraints on the nodal coordinates for the consistent representation of
the origami surface by the frame model as shown in Chapter 2. The variables are selected
according to the computational efficiency of the approximation errors as shown in Table. 3.1.
In this section, further reduction of the number of design variables is considered by taking
into account the linear constraints on the boundary shape and the symmetry of the origami
surface [30].

(1) Linear constraints on coordinates of vertices of origami surface or nodes of
frame model

Consider the case where the coordinates of origami vertices or the nodes of frame model
are used as the variables. To prevent the perimeter shape of the origami surface from
being drastically different from that of the target surface, the boundary planes where the
perimeter vertices exist are introduced. Here, it is assumed that a perimeter curve of the
target Bézier surface is on the boundary plane defined as β(1)

bndx+β(2)
bnd y+β(3)

bndz+1 = 0 for
the coefficients β

( j)
bnd ∈ R ( j = 1,2,3). Note that the Bézier surface has four perimeter curves

obtained by setting the parameters as (s,0), (s,1), (0, t), (1, t) (0≤ s, t ≤ 1) in Eq. (3.17). When
the vertex i is on the boundary plane, its position vector ξi needs to satisfy the following
equation: [

βTbnd 1
](

ξi

1

)
= 0 (3.25)

where βbnd = (β(1)
bnd, β(2)

bnd, β(3)
bnd)T ∈ R3. Let Ξ ∈ R3NV denote the assemblage of the position

vectors of all the vertices. Then, Eq. (3.25) for all the vertices on the boundary planes are
combined into the following equation:

Bbnd

(
Ξ

1

)
= 0 (3.26)

where Nbnd is the number of constraint equations for the perimeter vertices and Bbnd ∈
RNbnd×(3NV+1) is a constant matrix whose components are 0, 1, or the coefficients of the
equations of the boundary planes. In addition, the vertices at the corners of the origami
surface are fixed at their original position. When the initial position vector of the vertex i
at the corner of the origami surface is ξ̄i, this condition is formulated as

ξi − ξ̄i =
[

I3 −ξ̄i

](
ξi

1

)
= 0 (3.27)

Equation (3.27) for all the corner vertices are combined into the following equation:

Bcnr

(
Ξ

1

)
= 0 (3.28)

where Bcnr ∈ R12×(3NV+1) is a constant matrix whose components are 0, 1, or the initial
coordinates of the corner vertices.
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If the target surface and the crease pattern of the origami surface have the symmetry
property, the form generation is carried out so that the symmetry is preserved. In this
study, at most two planes of symmetry are considered, and if two planes of symmetry are
considered, they are assumed to be perpendicular to each other. Suppose the vertices i and
i′ are located symmetrically with respect to a plane of symmetry while they are assumed
not to be on the plane. When a plane of symmetry is defined as β(1)

symx+β(2)
sym y+β(3)

symz+1= 0
for the coefficients β

( j)
sym ∈ R ( j = 1,2,3), the position vectors of vertices i and i′ denoted by

ξi and ξi′ ∈R3, respectively, need to satisfy the following equation throughout the process of
the form generation:

ξi −ξi′ = 2

[
β(1)

sym β(2)
sym β(3)

sym 1
](

ξi

1

)
(
β(1)

sym

)2 +
(
β(2)

sym

)2 +
(
β(3)

sym

)2


β(1)

sym

β(2)
sym

β(3)
sym



⇔

 I3 −
2βsym

(
βsym

)T
∥∥∥βsym

∥∥∥2 −I3 −
2βsym∥∥∥βsym

∥∥∥2




ξi

ξi′

1

= 0

(3.29)

where βsym = (β(1)
sym, β(2)

sym, β(3)
sym)T ∈ R3. When the number of constraint equations for the

symmetry in Eq. (3.29) for all the pairs of vertices and for all the planes of symmetry is
Nsym, all the equations are combined into a vector form using a constant matrix Bsym ∈
RNsym×(3NV+1) as follows:

Bsym

(
Ξ

1

)
= 0 (3.30)

The components of Bsym are determined by the coefficient matrix of (ξTi , ξTi′ , 1)T in the left-
hand side of the second equation of Eq. (3.29). If vertex i is on the plane of symmetry
represented as β(1)

symx+β(2)
sym y+β(3)

symz+1= 0, vertex i needs to stay on the plane of symmetry
and its position vector ξi should satisfy the following equation throughout the process of the
form generation: [

βTsym 1
](

ξi

1

)
= 0 (3.31)

Equation (3.31) for all the vertices on the planes of symmetry and for all the planes of
symmetry are combined into the following equation:

Bon

(
Ξ

1

)
= 0 (3.32)

where Non is the number of constraint equations for the vertices on the planes of symmetry
and Bon ∈RNon×(3NV+1) is a constant matrix whose components are 0, 1, or the coefficients of
the equations of the planes of symmetry.

When the number of linear constraint equations on the vertex coordinates represented
by Eqs. (3.26), (3.28), (3.30), and (3.32) is denoted by Ncon = Nbnd +12+ Nsym + Non, these
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constraint equations are combined into a vector equation as follows:

BV

(
Ξ

1

)
= 0 (3.33)

BV =


Bbnd

Bcnr

Bsym

Bon

 ∈RNcon×(3NV+1)

Note that in the case where the symmetry of the origami surface is not considered, Bsym

and Bon are omitted from BV, and the number of the constraint equations is reduced to
Ncon = Nbnd +12.

Next, consider the case where the nodal coordinates of the frame models are used as
the design variable. As shown in Chapter 2, the independent coordinates of nodes are
identified by utilizing the properties of the RREF of the matrix representing the equations
for the consistent representation of the origami surface by the frame model. Let Zfree ∈R3NV

denote the vector of assemblage of the independent nodal coordinates. Note that the number
of components of Zfree is equal to that of the vertex coordinates Ξ as explained in Chapter 2.
According to Eq. (2.21) in Chapter 2, Ξ and Zfree have the following relation:

Ξ=CNVZfree (3.34)

where CNV is a 3NV × 3NV constant matrix. Substituting Eq. (3.34) into Eq. (3.33), the
following equation is obtained:

BV

(
CNVZfree

1

)
=BV

[
CNV 0

0 1

](
Zfree

1

)
= 0 (3.35)

Here, define a matrix BN as follows:

BN =BNV

[
CV 0
0 1

]
∈RNcon×(3NV+1)

Then the linear constraint equations which the independent nodal coordinates vector Zfree

needs to satisfy can be written as follows:

BN

(
Zfree

1

)
= 0 (3.36)

(2) Linear constraints on the parameters of Bézier surface and the offsets

Consider the case where the design variables of the optimization problem for the form gen-
eration are the pairs of (s, t) parameters and the offset which determine the points on the
target Bézier surface and the distances from these points to the origami vertices. In this
case, the perimeter shape of the origami surface is constrained by simply fixing the values
of (s, t) parameters of the of target Bézier surface if their initial values are 0 or 1. Here,
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ωi ∈R3 is defined as ωi = (si, ti, δi)T where si and ti are the parameters of the target Bézier
surface corresponding to vertex i and δi is the offset value of vertex i from the target Bézier
surface, respectively. If the initial value of si which is denoted by s̄i is equal to 0 or 1, ωi

needs to satisfy the following equation:[
1 0 0 −s̄i

](
ωi

1

)
= 0 (3.37)

On the other hand, if the initial value of ti which is denoted by t̄i is equal to 0 or 1, ωi needs
to satisfy the following equation:[

0 1 0 −t̄i

](
ωi

1

)
= 0 (3.38)

Let Ω ∈ R3NV denote the assemblage of ωi for all the vertices. When the number of con-
straints represented by Eqs. (3.37) and (3.38) is Ñbnd, these constraints for all the perimeter
vertices are combined into the following equation:

B̃bnd

(
Ω

1

)
= 0 (3.39)

where B̃bndR
N̄bnd×(3NV+1) is a constant matrix whose components are 0 or 1. Note that the

number of constraints Nbnd and Ñbnd may be different. The constraints for the positions of
corner vertices are also easily satisfied by fixing their offset values δi to 0 for all the corner
vertices under the assumption that the constraint equation (3.39) is satisfied. In a similar
manner as the derivation of Eq. (3.28), this condition can be written as follows:

B̃cnr

(
Ω

1

)
= 0 (3.40)

where B̃cnr ∈R4×(3NV+1) is a constant matrix which has only one non-zero component in each
row that is 1 and corresponds to the offset value of a corner vertex.

If the target surface and the crease pattern of the origami surface have the symmetry
property, the constraints for the symmetry is considered in the parameter space (s, t). When
a plane of symmetry in the parameter space is defined as β̃(1)

syms+ β̃(2)
symt+1 = 0 for the coef-

ficients β̃(1)
sym and β̃(2)

sym ∈ R, the parameters and the offset values of vertices i and i′ which
are located symmetrically with respect to the plane need to satisfy the following equation
throughout the process of the form generation: I3 −

2β̃sym

(
β̃sym

)T
∥∥∥β̃sym

∥∥∥2 −I3 −
2β̃sym∥∥∥β̃sym

∥∥∥2




ωi

ωi′

1

= 0 (3.41)

where ωi = (si, ti, δi)T ∈R3 and β̃sym = (β̃(1)
sym, β̃(2)

sym, 0)T ∈R3. Let Ω ∈R3NV denote the assem-
blage of the parameters si and ti, and the offset value δi for all the vertices. Then, all the
constraint equations for the symmetry are combined into a following equation:

B̃sym

(
Ω

1

)
= 0 (3.42)
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where B̃sym is a Nsym× (3NV+1) constant matrix whose components are determined by the
coefficient matrix in the left-hand side of Eq. (3.41). If vertex i is on the plane of symmetry
represented as β̃(1)

syms+ β̃(2)
symt+1 = 0, its parameters si and ti need to satisfy the following

equation throughout the process of the form generation:[
β̃
T
sym 1

](
ωi

1

)
= 0 (3.43)

Equation (3.43) for all the vertices on the planes of symmetry and for all the planes of
symmetry are combined into the following equation:

B̃on

(
Ω

1

)
= 0 (3.44)

where B̃onR
Non×(3NV+1) is a constant matrix whose components are 0, 1, or the coefficients

of the equations of the planes of symmetry. Note that the number of constraints for the ver-
tices located at the symmetric positions and the constraints for the vertices on the planes of
symmetry are equal to the above two cases of design variables. When the number of linear
constraint equations on the parameters and the offset values represented by Eqs. (3.39),
(3.40), (3.42), and (3.44) is denoted by Ñcon = N̄bnd +4+Nsym +Non, these constraint equa-
tions are combined into a vector equation as follows:

BP

(
Ω

1

)
= 0 (3.45)

BP =


B̃bnd

B̃cnr

B̃sym

B̃on

 ∈RÑcon×(3NV+1)

Note that in the case where the symmetry of the origami surface is not considered, B̃sym

and B̃on are omitted from BP, and the number of the constraint equations is reduced to
Ncon = Ñbnd +4 as in the previous section.

(3) Variable reduction reflecting the linear constraints

Let a matrix B̄ represent BV ∈ RNcon×(3NV+1) in Eq. (3.33), BN ∈ R(Ncon+3NEin+3NF)×(3NV+1) in
Eq. (3.36), or BP ∈RÑcon×(3NV+1) in Eq. (3.45). In addition, let a vector X̄ represent Ξ ∈R3NV

in Eq. (3.33), Zfree ∈ R3NV in Eq. (3.36), or Ω ∈ R3NV in Eq. (3.45). B̄ and X̄ are determined
in accordance with the selection of the design variables. Then, the linear constraint equa-
tions (3.33), (3.36), and (3.45) are written in a common form as follows:

B̄

(
X̄
1

)
= 0 (3.46)

According to the identification method of the independent variables introduced in Appendix A,
X̄ satisfying Eq. (3.46) is divided into the vectors of the independent and dependent com-
ponents X̂ and X, respectively. Defining B as the matrix which is an assemblage of the
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components of the RREF of B̄ in the non-zero rows and the non-pivot columns, Eq. (3.46) is
rewritten as the following form:

[
Irank(B̄) B

]
X̂
X
1

= X̂+B

(
X
1

)
= 0 (3.47)

Therefore, the vector of the dependent components of X̄ satisfying Eq. (3.46) is calculated
as

X̂=−B

(
X
1

)
(3.48)

Here, the size of B and the number of independent variables are rank(B̄)×(3NV−rank(B̄)+1)
and 3NV − rank(B̄), respectively, regardless of the choice of variables. Consequently, X is
used as the independent variables in the optimization problem for the form generation of a
developable origami surface.

3.3.3 Formulation of optimization problems

Optimization problems are formulated to obtain an origami surface which can be devel-
oped to a plane. The design variables used for optimization are identified as shown in Sec-
tions 3.3.1 and 3.3.2. A vector of the design variables is denoted by X ∈ R3NV−rank(B̄) where
B̄ is the matrix representing linear constraints reflecting the perimeter shape and the sym-
metry of the origami surface. Then, the vector representing the errors of the developability
conditions in Eq. (3.15) is regarded as a function of X written as D(X) ∈ RNVin+NEdiv+3NCin .
The non-negative approximation error functions defined as Eqs. (3.21), (3.22), and (3.24)
are also regarded as functions of X and written as Fdist(X), Farea(X), and Fnormal(X) ∈ R,
respectively. To generate a developable origami surface which approximates the target sur-
face, the weighted sum of the approximation error functions is defined as

Fapp(X)= Fdist(X)+ careaFarea(X)+ cnormalFnormal(X) (3.49)

The non-negative function Fapp(X) is minimized under the developability conditions D(X)=
0 where carea and cnormal ∈ R are the non-negative weight coefficients. To avoid an exces-
sively acute triangular faces, the upper bound αmax and lower bound αmin are assigned for
αik(X), which is the inner angle of face k at vertex i (i = 1, . . . , NV; k = 1, . . . , NF). In addition,
the lower bound lmin is assigned for the length of each edge l j(X) ( j = 1, . . . , NE) to prevent
the faces from degenerating into lines or points, and the angle between each face normal
vector nk(X) (k = 1, . . . , NF) and its reference unit normal vector ñref

k (X) is restricted to less
than or equal to π /2 to avoid a flipped face. The ranges of the design variables denoted as
X ∈ χ are also incorporated so that if the design variables are the parameters of the tar-
get Bézeir surface, they are in the range between 0 and 1. The ranges of the offset may
also be incorporated to assign the upper bound of the approximation error for the distance
between the origami surface and the target surface. If the design variables are the vertex

45



coordinates or the nodal coordinates, the ranges of the design variables are assigned for
improving convergence of the optimization process.

The optimization problem to obtain a developable origami surface approximating the
target surface is formulated as follows as a nonlinear programming (NLP) problem [52]:

min.
X

Fapp(X)

s.t. D(X)= 0

αmin ≤αik(X)≤αmax (i = 1, . . . , NV; k = 1, . . . , NF)

l j(X)≥ lmin ( j = 1, . . . , NE)

nk(X) · ñref
k (X)≥ 0 (k = 1, . . . , NF)

X ∈ χ

(3.50)

Since the form generation starts from the triangulated target surface as explained in Sec-
tion 3.4, the initial shape of the form generation does not satisfy the developability condi-
tions D(X)= 0. When the target surface has the large Gaussian curvature and the errors of
D(X)= 0 are too large in the initial triangulated shape, a feasible solution of Problem (3.50)
with sufficiently small errors of the developability conditions may not be found. There-
fore, if an initial solution without fixed crease lines is not found, the following optimization
problem is solved to find an initial guess of Problem (3.50) satisfying the developability
conditions with small errors [30]:

min.
X

Fdev(X)= ‖D(X)‖2

s.t. αmin ≤αik(X)≤αmax (i = 1, . . . , NV; k = 1, . . . , NF)

l j(X)≥ lmin ( j = 1, . . . , NE)

nk(X) · ñref
k (X)≥ 0 (k = 1, . . . , NF)

X ∈ χ

(3.51)

Developability and rigid-foldability of the obtained origami surface are also confirmed by
generation of the development diagram and large-deformation analysis to simulate the de-
ployment process, respectively.

3.4 Overall procedure of form generation to obtain the mul-
tiple solutions

In this section, an overall form generation procedure is explained to obtain several devel-
opable and rigid-foldable origami shapes approximating the target surface with different
number of fixed crease lines and the DOFs of mechanism. The form generation starts from
the triangulated target surface whose edge topology defines the basic crease pattern of the
rigid origami to be generated. The optimization problem (3.50) is repeatedly solved to ob-
tain the shape of the developable rigid origami while the crease lines are sequentially fixed
and converted to the dividing edges to reduce the DOF of the rigid-folding mechanism. The
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variables of the optimization problem are selected from the vertex coordinates, the nodal
coordinates, and the pair of (s, t) parameters of the target Bézier surface and the offsets
from the target surface in accordance with the arrangement of the control points of the
target surface and the direction to measure the distance between the origami vertices and
the target surface as described in Section 3.3.1. The number of independent variables is
reduced by the method introduced in Section 3.3.2. If a solution process of Problem (3.50)
is not converged with sufficiently small errors of the developability conditions when Prob-
lem (3.50) is first solved in Step 4 of the form generation procedure, Problem (3.51) is solved
to obtain a shape satisfying the developability conditions with small errors. The tolerances
of the errors of the developability conditions are set empirically in this study. In the second
and subsequent iteration of Step 4, the solution obtained in the last iteration is used for the
initial shape of the optimization. This may help to find a feasible solution by directly solving
Problem (3.50) from the second optimization process. If some crease lines that are not fixed
are locked in the solution of the problem (3.50), alternative crease lines are to be selected.
The method for finding the locked crease lines and the criteria for selecting the crease line
to be fixed are proposed in Section 3.5. The procedure of form generation of developable
rigid origamis that have faces with more than three edges and small DOFs is summarized
as follows [28–30]:

Step 1. Define the target surface as the Bézier surface and triangulate it to define the basic
crease line topology.

Step 2. Select the design variables used in Step 4 and identify the independent variables
by the method shown in Section 3.3.2.

Step 3. Initialize the index set of fixed crease lines and the solution set as Ediv = ϕ and
Ssol =ϕ, respectively.

Step 4. Solve Problem (3.50) to obtain a developable origami shape using the initial trian-
gulated target surface or the solution of the previous step as the initial guess.

Step 5. If the optimization is not converged with sufficiently small errors, go to Step 6;
otherwise, go to Step 8.

Step 6. If the last optimization process in Step 4 is the first one, go to Step 7; otherwise, go
to Step 10.

Step 7. Solve Problem (3.51), and return to Step 4 if a feasible solution is obtained; other-
wise, no developable origami surface is obtained and try a different triangulation
pattern.

Step 8. Evaluate the infinitesimal mechanism using the method for partially rigid frames [38–
40] summarized in Chapter 2. If DOF ≥ 1 and there is no locked crease line, add
the solution to Ssol and go to Step 9; if DOF≥ 1 and the locked crease line exists, go
to Step 10; otherwise, go to Step 11.
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Step 9. Add the specified number of indices of the crease lines to be fixed to Ediv in accor-
dance with the criterion presented in Section 3.5, and return to Step 4.

Step 10. If Ediv =ϕ, no developable polyhedron is obtained and try a different triangulation
pattern; otherwise, replace the indices of the last fixed crease lines in Ediv with
indices of the other crease lines.

Step 11. Generate the development diagram of each obtained origami shape in Ssol by solv-
ing the optimization problem (3.16), and evaluate the errors between the lengths of
corresponding edges in the folded shape and the development diagram.

Step 12. Carry out large-deformation analysis of each origami shape in Ssol to simulate the
deployment process, and evaluate its finite rigid-foldability.

The optimal shapes obtained in Step 4 satisfy the developability conditions with small er-
rors. However, the conditions introduced in Section 3.2 are only the necessary conditions
for developability, and we should confirm in Step 11 that the development diagram of the
obtained solutions can be generated with good accuracy instead of simply confirming that
the values of components of D(X) are approximately zero. The global finite rigid-foldability
of each solution also need to be confirmed by the large-deformation analysis since the devel-
opability conditions only guarantee the local rigid-foldability in the neighborhood of each
inner vertex. The case studies of the form generation with various target surfaces are de-
scribed in Chapter 4.

3.5 Selection criteria of crease lines to be fixed

In this section, the selection criteria of the crease lines to be fixed are proposed reflecting
the infinitesimal mechanism of the frame model. The infinitesimal mechanism of the frame
model is evaluated by the method for partially rigid frames [38–40]. To predict the exis-
tence of locked crease lines and to define the selection criteria, a pseudo stiffness matrix of
the frame model is introduced using the total potential energy of the frame model defined
under the assumption that the members are rigid and the hinges have fictitious rotational
stiffness. The selection criteria are defined as the scores of the hinges obtained from eigen-
value analysis of the pseudo stiffness matrix.

3.5.1 Infinitesimal displacement modes of the frame model

The number of nodes, members, and hinges of the frame model are denoted by NN, NM, and
NH, respectively. The total number of fixed nodal displacement degrees of freedom including
both the translation and rotation is denoted by NB. Let U ∈R6NN−NB , V ∈R6NM , and φ ∈RNH

denote vectors of the assemblages of the free nodal displacements, the displacements of
center points of members, and the increments of hinge rotation angles from the initial state
to the deformed state, respectively. Note that the nodal displacements and the member
displacements consist of translations and rotations of the nodes and the center points of
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members. A generalized displacement vector is defined as W = (UT, VT, φT)T ∈ RNW where
the number of components of W is calculated as NW = 6NN − NB +6NM + NH. Then, the
incompatibility vector G(W) ∈ RNG is defined as the function of W so that its components
represents the errors of the relative displacements between the nodes and the member
ends of the frame model as shown in in Chapter 2. The number of components of G(W) is
NG = 12NM, and the gradient of G(W) with respect to W evaluated at W = 0 is denoted in
a matrix form by the compatibility matrix Γ(1) ∈ RNG×NW . As shown in Chapter 2, a gener-
alized displacement vector W satisfying the following equation is a first-order infinitesimal
mechanism:

Γ(1)W= 0 (3.52)

Assuming that the nodal displacements are constrained so that the only rigid-body motions
of the entire model are constrained, the DOF of an infinitesimal rigid-folding mechanism is
calculated as follows:

ND = NW −rank(Γ(1)) (3.53)

An arbitrary first-order infinitesimal mechanism W, which satisfies Eq. (3.52), can be ex-
pressed as a linear combination of the first-order infinitesimal mechanism modes which are
the bases of ker(Γ(1)) [40]. Defining H ∈ RNW×ND as a matrix whose columns are the first-
order infinitesimal mechanism modes, a vector W satisfying Eq. (3.52) can be written for a
coefficient vector a ∈RND as follows:

W=Ha (3.54)

The first-order infinitesimal mechanism modes are assumed to be orthonormal bases of an
NW-dimensional vector space; i.e., H satisfies the following equation:

HTH= IND (3.55)

Vectors U, V, and φ satisfying Eq. (3.52), which represent the first-order infinitesimal mech-
anism, can be written as follows:

U=HUa (3.56)

V=HVa (3.57)

φ=Hφa (3.58)

where HU ∈R(6NN−NB)×ND , HV ∈R6NM×ND , and Hφ ∈RNH×ND are the submatrices of H. In the
following, U, V, and φ represented as Eqs. (3.56), (3.57), and (3.58), respectively, are also
referred to as first-order infinitesimal mechanisms or simply infinitesimal mechanisms. The
details of the derivation of the infinitesimal mechanism are presented in Chapter 2.

When the displacement is restricted to the infinitesimal mechanism, an equilibrium
equation of the frame model is derived by assigning fictitious rotational stiffness Kh (≥ 0)
at hinge h (= 1, . . . , NH). An external load P ∈ R6NN−NB is applied to the unconstrained
degrees of freedom of nodal displacement. A total potential energy Π of the frame model is
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formulated for a diagonal matrix of hinge stiffness KH = diag(Kh) ∈RNH×NH as follows:

Π= 1
2
φTKHφ−PTU

= 1
2

aT
(
HT

φKHHφ

)
a− (HUP)Ta

(3.59)

Here, the pseudo stiffness matrix K̃ ∈ RND×ND and the pseudo external load P̃ ∈ RND are
defined as follows [30]:

K̃=HT
φKHHφ (3.60)

P̃=HUP (3.61)

The pseudo displacement is also defined as a vector a ∈ RND in Eq. (3.59). Substituting
Eqs. (3.60) and (3.61) into Eq. (3.59), the total potential energy is rewritten as follows:

Π= 1
2

aTK̃a− P̃Ta (3.62)

According to the stationary condition of the total potential energy Π with respect to a, the
equilibrium equation is derived as

P̃= K̃a (3.63)

The i-th eigenvalue λi ∈ R and the corresponding eigenvector αi ∈ RND (i = 1, . . . , ND) of
K̃ satisfy the following equation:

K̃αi =λiαi (3.64)

Because the eigenvectors form the orthonormal bases of a ND-dimensional vector space,
they are normalized as ‖αi‖ = 1 for i = 1, . . . , ND and are orthogonal to each other. Since
αi satisfies Γ(1)Hαi = 0 for each i = 1, . . . , ND, Hαi can also be used as an infinitesimal
mechanism mode of the frame model. According to Eq. (3.64), λi can be regarded as the
stiffness of the frame model in the direction of Hαi. The eigenvector αi is combined into a
matrix A ∈ RND×ND which is a matrix whose i-th column is αi (i = 1, . . . , ND), and according
to Eq. (3.55), the following equation holds:

(HA)T(HA)=ATHTHA= IND (3.65)

Therefore, Hαi, which is the i-th column of HA, is orthogonal to each other. As in Eq. (3.58),
a vector φ representing the infinitesimal mechanism for the hinge rotation angles can be
expressed as a linear combination of ϕi = Hφαi for i = 1, . . . , ND. On the other hand, αi

satisfies the following relationship derived from Eq. (3.64):

αT
j K̃αi =λiα

T
j αi =

0 (i 6= j)

λi (i = j)
(3.66)

Substituting K̃ = HT
φKHHφ and ϕi = Hφαi into Eq. (3.66), the following equation is ob-

tained:

ϕT
j KHϕi =

0 (i 6= j)

λi (i = j)
(3.67)
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3.5.2 Prediction of the existence of locked crease lines

In this section, transition of the deformation mechanism by fixing the crease lines is pre-
dicted based on the result of the analysis of infinitesimal mechanism presented in Sec-
tion 3.5.1 and Ref. [30]. The infinitesimal mechanism modes before fixing the crease lines
are used for estimation of an infinitesimal mechanism after fixing the crease lines. To en-
sure validity of the estimation of the transition of an infinitesimal mechanism, it should be
assumed that the difference is small between the shapes of the origami surface before and
after fixing the crease lines. The process of fixing a crease line and reducing the DOF of
the mechanism is modeled as a process of reducing the size of the pseudo stiffness matrix;
however, this is also approximately simulated as a process of increasing one eigenvalue of
the pseudo stiffness matrix to infinity as the stiffness of a hinge is increased to infinity.
Suppose the rotational stiffness of hinge h (= 1, . . . , NH) of the frame model is increased to
a moderately large value by ∆Kh (À 0) to simulate the process of fixing the corresponding
crease line. It is assumed that there is no locked hinge (crease line) before fixing hinge h.
Let ∆Kh ∈RNH×NH denote a matrix whose (h,h) element is ∆Kh and the other elements are
0. Then, the diagonal matrix of the hinge rotational stiffness after increasing the stiffness
of hinge h is represented as K′

H = KH +∆Kh ∈ RNH×NH . Assuming that the infinitesimal
mechanism modes for the hinge rotation angles are invariant under the process of fixing
hinge h, the pseudo stiffness matrix after increasing the stiffness of hinge h is calculated as
K̃′ =HT

φK′
HHφ =HT

φ(KH +∆Kh)Hφ where Hφ is invariant. The i-th eigenvalue and the cor-
responding eigenvector of the pseudo stiffness matrix K̃′ are denoted by λ′

i ∈R and α′
i ∈RND

(i = 1, . . . , ND), respectively. In addition, the infinitesimal mechanism mode ϕ′
i ∈RNH for the

hinge rotation angles is defined as ϕ′
i = Hφα

′
i, and its j-th component is denoted by ϕ′

i j.
When ∆Kh is sufficiently large, the following approximation holds:

1
∆Kh

α′T
j K̃′α′

i =
1

∆Kh
ϕ′T

j (KH +∆Kh)ϕ′
i

= 1
∆Kh

(
NH∑
k=1

Kkϕ
′
ikϕ

′
jk +∆Khϕ

′
ihϕ

′
jh

)
'ϕ′

ihϕ
′
jh

(3.68)

According to Eq. (3.66), the following approximations are obtained:
ϕ′

ihϕ
′
jh ' 0 (i 6= j)

ϕ′2
ih ' λ′

i

∆Kh
(i = j)

(3.69)

The first approximation in Eq. (3.69) implies that at least one of ϕ′
ih and ϕ′

jh (i 6= j) which
are in the different infinitesimal mechanism modes is approximately zero after increas-
ing the rotational stiffness of hinge h. On the other hand, the second approximation in
Eq. (3.69) implies that if ϕ′

ih ' 0, λ′
i has a finite value; and if ϕ′

ih is not close to zero, an ab-
solute value of λ′

i is extremely large. When the rotational stiffness of hinge h is increased,
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the case where ϕ′
ih ' 0 holds for all i = 1, . . . , ND does not likely occur since λ′

i has a finite
value for all i = 1, . . . , ND in this case and the DOF of the mechanism is not reduced unless
ϕ′

ik is approximately zero for all k = 1, . . . , NH. Therefore, the number of ϕ′
ih which is not

close to zero can be assumed to be one, and hinge h can rotate only in this infinitesimal
mechanism mode. Consequently, the following property holds:

Property 3.1. The increment of the rotation angle of hinge h in the infinitesimal mech-
anism mode i (i = 1, . . . , ND) after increasing the rotational stiffness of hinge h, which is
denoted by ϕ′

ih, is approximately equal to zero except for one mode, say mode i′. The eigen-
value λ′

i′ of the pseudo stiffness matrix corresponding to mode i′ has a extremely large
value, and this lead to a extremely high stiffness of the frame in the direction corresponding
to the infinitesimal mechanism mode i′. Therefore, hinge h becomes fixed as its rotational
stiffness is increased to a moderately large value.

The transition of eigenvalues and eigenvectors of the pseudo stiffness matrix K̃ under
the process of increasing the rotational stiffness of a hinge can be estimated by the deriva-
tives of eigenvalues and eigenvectors of K̃ for the rotational stiffness. In this study, the dis-
tinct eigenvalues λi (i = 1, . . . , ND) of K̃ are assumed. Differentiating Eq. (3.64) with respect
to Kh (h = 1, . . . , NH) and rearranging its terms, the following equation is obtained [73]:

(
K̃−λiIND

) ∂αi

∂Kh
=−

(
∂K̃
∂Kh

− ∂λi

∂Kh
IND

)
αi (i = 1, . . . , ND) (3.70)

According to Eq. (3.64) and K̃T = K̃, the left-hand side of Eq. (3.70) is to be equal to zero by
pre-multiplying αT

i . Therefore, the following equation is obtained by pre-multiplying αT
i to

the both sides of Eq. (3.70):

αT
i

(
∂K̃
∂Kh

− ∂λi

∂Kh
IND

)
αi =αT

i
∂K̃
∂Kh

αi − ∂λi

∂Kh
= 0 (i = 1, . . . , ND) (3.71)

Hence, the derivative of eigenvalue λi with respect to Kh can be derived as follows:

∂λi

∂Kh
=αT

i
∂K̃
∂Kh

αi =αT
i HT

φ

∂KH

∂Kh
Hφαi

=ϕT
i
∂KH

∂Kh
ϕi =ϕ2

ih

(3.72)

where ϕih is the h-th element of ϕi.

Remark 3.2. Since the rotational stiffness at each hinge is fictitious and can be assigned
arbitrarily, assumption of distinct eigenvalues is generally satisfied by appropriately assign
the stiffness of hinges to avoid repeated eigenvalues. If there are repeated eigenvalues due
to symmetry properties of the origami surface, small random variations may be given for
the hinge stiffnesses without any effect on the criteria introduced below.

Since an eigenvalue of the pseudo stiffness matrix represents the stiffness of the frame and
the increase of the stiffness to a moderately large value leads to a fixed crease line, it is
natural to select the hinge with the maximum sensitivity coefficient of eigenvalue ∂λi /∂Kh
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to efficiently reduce the DOF of the mechanism. However, for more detailed investigation
and the prediction of the existence of locked crease lines, we need to consider the variation
of eigenvectors.

The derivative of the i-th eigenvector αi with respect to Kh corresponding to the distinct
eigenvalue is determined by Eq. (3.70). Since the rank of

(
K̃−λiIND

)
in the left-hand-side

of Eq. (3.70) is less than ND −1, ∂αi /∂Kh cannot be determined uniquely from Eq. (3.70).
However, using a coefficient vector b = (b1, . . . ,bND)T ∈ RND , it can be expressed as a linear
combination of ND orthonormal eigenvectors αi (i = 1, . . . , ND) as follows [73]:

∂αi

∂Kh
= b1α1 +·· ·+bNDαND = [

α1 · · · αND

]
b1
...

bND

=Ab (3.73)

Substituting Eq. (3.73) into Eq. (3.70) and pre-multiplying AT to both sides of the equation,
the following equation is obtained:

AT (
K̃−λiIND

)
Ab= (ATK̃A−λiIND)b=−AT

(
∂K̃
∂Kh

− ∂λi

∂Kh
IND

)
αi (3.74)

Here, according to Eq. (3.66), ATK̃A can be calculated as follows:

ATK̃A=


αT

1 K̃α1 · · · αT
1 K̃αND

...
. . .

...
αT

ND
K̃α1 · · · αT

ND
K̃αND

=


λi 0

. . .

0 λND

 (3.75)

Defining Λ= diag(λ1, . . . ,λND) ∈RND×ND , Eq. (3.74) can be rewritten as follows:

(Λ−λiIND)b=−AT
(
∂K̃
∂Kh

− ∂λi

∂Kh
IND

)
αi (3.76)

Since ∂K̃ /∂Kh = HT
φ(∂KH /∂Kh)Hφ, the j-th component of the right-hand side of Eq. (3.76)

( j = 1, . . . , ND) can be calculated as follows:

−αT
j

(
∂K̃
∂Kh

− ∂λi

∂Kh
IND

)
αi =−ϕT

j
∂KH

∂Kh
ϕi +

∂λi

∂Kh
ϕT

j ϕi =
0 (i = j)

−ϕihϕ jh (i 6= j)
(3.77)

Therefore, assuming λ j 6= λi for j 6= i, b j can be determined from Eq. (3.76) for j = 1, . . . , ND

( j 6= i) as follows:

b j =− 1
λ j −λi

ϕihϕ jh (3.78)

In addition, bi can be determined by differentiating αT
i αi = 1 with respect to Kh and divid-

ing it by 2 as follows:
1
2

{(
∂αi

∂Kh

)T
+αT

i
∂αi

∂Kh

}
=αT

i Ab= bi = 0 (3.79)

Consequently, ∂αi /∂Kh can be expressed as follows:

∂αi

∂Kh
=−

ND∑
j=1
j 6=i

1
λ j −λi

ϕ jhϕihα j (3.80)
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Using the relation ϕi = Hφαi, the first-order derivative of ϕi with respect to Kh can be
written as follows:

∂ϕi

∂Kh
=Hφ

∂αi

∂Kh
=−

ND∑
j=1
j 6=i

1
λ j −λi

ϕihϕ jhϕ j (3.81)

Let ψ j = (ψ j1, . . . ,ψ jND)T represent a normalized vector whose i-th element ψ ji is defined
as follows:

ψ ji =
ϕi j√√√√ND∑
i=1

ϕ2
i j

(3.82)

Suppose that there are hinge h and h′ (h′ 6= h) approximately satisfying ψh ·ψh′ = ±1. In
other words, ϕih′ ' γϕih is satisfied for all modes i = 1, . . . , ND with a constant γ ∈ R. Then,
according to Eq. (3.81), ∂ϕih /∂Kh ' γ∂ϕih′ /∂Kh is satisfied. This implies that ψh ·ψh′ ' 1
or ϕih′ ' γϕih is always satisfied, and according to Property 3.1, both ϕih and ϕih′ (h 6= h′)
converge to 0 as K j is increased to a moderately large value except for mode i′ corresponding
to a large increment of the eigenvalue. Therefore, the following property holds:

Property 3.3. If hinge h is fixed and there exists hinge h′ (h′ 6= h) approximately satisfying
ψh ·ψh′ =±1 or ϕih = γϕih′ for all i = 1, . . . , ND, then hinge h′ is likely to be locked.

Furthermore, substituting ϕih = sgn(ϕih)
√

∂λi /∂Kh obtained from Eq. (3.72) into Eq. (3.81)
where sgn(x) is a sign function whose value is 1 if x ≥ 0 and −1 if x < 0, the derivatives of
the distinct eigenvalue and the corresponding eigenvector satisfy the following equation:

∂ϕi

∂Kh
=−

ND∑
j=1
j 6=i

sgn(ϕih)sgn(ϕ jh)
λ j −λi

√
∂λi

∂Kh

∂λ j

∂Kh
ϕ j (3.83)

According to Eqs. (3.72) and (3.83), if ∂λi /∂Kh has a large value compared to the other
hinges, the absolute value of ∂ϕih /∂Kh for each i = 1, . . . , ND is also large, and the value
of ϕih for each i = 1, . . . , ND rapidly converges to 0 except mode i′ as Kh is increased to fix
hinge h while the values of ϕih′ (h′ 6= h) corresponding to the other hinges are not drastically
changed as demonstrated in the numerical examples in Section 3.5.4. Therefore, in this
case, hinge h can be fixed independently without locking other hinges. Consequently, the
following properties hold:

Property 3.4. When hinge h with large eigenvalue derivatives is fixed, it is unlikely that
there exists a locked hinge among the unfixed hinges when the rotation of hinge h in the
infinitesimal mechanism is modified to 0 to reduce the DOF of the mechanism.

In particular, since the largest eigenvalue derivative has the most influence on the value of
∂ϕih /∂Kh, the largest eigenvalue is focused on in this study to define the selection criteria
of the crease lines to be fixed.

54



3.5.3 Selection criteria of a crease line to be fixed

In this section, selection criteria of the crease lines be fixed is presented. The definitions of
the crease line scores are in accordance with Ref. [30]. It is important to fix an appropriate
crease line so that the objective function of the optimization problem (3.50) easily converges
to zero and unfixed crease lines are not locked after fixing the crease line. Therefore, it
is necessary to determine the crease lines to be fixed in consideration of both the shape of
the polyhedron approximating the target surface and the possibility of existence of a locked
crease line as discussed in Section 3.5.2.

The absolute value of folding angle ρh ≥ 0 of hinge h (= 1, . . . , NH) is defined as follows:

ρh = arccos
{
nk1 ·nk2

}
(k1,k2 ∈FH

h ) (3.84)

where FH
h is a set of indices of the origami faces adjacent to the crease line corresponding

to hinge h and nk1 and nk2 ∈ R3 are the unit normal vectors of faces k1 and k2. Then, the
score of hinge h in terms of the shape of the origami surface is denoted by σS

h and is defined
as follows:

σS
h = ρh

NH∑
j=1

ρ j

(3.85)

A small value of σS
h implies that the faces adjacent to the crease line corresponding to hinge

h are nearly parallel, and consequently, the shape change of the origami surface after fixing
the crease line corresponding to hinge h is expected to be small. Thus, the developabil-
ity conditions for the flatness of the faces with more than three edges considered in Prob-
lem (3.50) are likely to be satisfied with small errors when the crease line corresponding to
the smallest score σS

h is fixed.
On the other hand, the score σF

h of hinge h which reflects the prediction of the existence
of locked crease lines is defined by the eigenvalue derivatives of the pseudo stiffness matrix
K̃ with respect to the rotational stiffness Kh of hinge h as follows:

σF
h =

max
i

(
∂λi

∂Kh

)
NH∑
j=1

max
i

(
∂λi

∂K j

) (3.86)

According to the properties of the eigenmodes of the pseudo stiffness matrix described in
Section 3.5.2, a larger value of σF

h leads to a smaller possibility of locking a crease line that
is not fixed. Furthermore, if all the eigenvalues of K̃ are distinct, σF

h can be expressed by
substituting Eq. (3.72) into Eq. (3.86) as

σF
h =

max
i

(
ϕ2

ih
)

NH∑
j=1

max
i

(
ϕ2

i j

) (3.87)

The numerator of σF
h indicates how dominant the rotation of hinge h is among the rotations

in all the deformation modes. Because ϕih is the h-th component of ϕi, a large value of σF
h
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suggests that hinge h can rotate independently, and there is a small possibility of locking
an unfixed crease line. Therefore, σF

h can be used to define the score of hinge h in terms
of the deformation mechanism. However, since the vector ϕi is not normalized for each
i = 1, . . . , ND, simply comparing the values of ϕ2

ih may be insufficient to determine the crease
line to be fixed. Here, assuming that λi > 0 (i = 1, . . . , ND), a vector ϕ̂i ∈ RNH is defined so
that its j-th component ϕ̂i j ( j = 1, . . . , NH) is ϕ̂i j =

√
K j /λiϕi j. Then, according to Eq. (3.67),

ϕ̂i satisfies the following equation:

ϕ̂
T
i ϕ̂i =

NH∑
j=1

ϕ̂2
i j

= 1
λi

NH∑
j=1

K jϕ
2
i j

= 1
λi

ϕT
i KHϕi

= 1

(3.88)

Furthermore, when i′ 6= i, the following equation holds:

ϕ̂
T
i ϕ̂i′ =

NH∑
j=1

ϕ̂i jϕ̂i′ j

= 1√
λiλi′

NH∑
j=1

K jϕi jϕi′ j

= 1√
λiλi′

ϕT
i KHϕi′

= 0

(3.89)

Consequently, ϕ̂i can be used as the normalized infinitesimal displacement mode for the
hinge rotation angle. Instead of σF

h in Eq. (3.86), another score σ̂F
h of hinge h can be defined

by the j-th element ϕ̂i j of ϕ̂i as follows:

σ̂F
h =

max
i

(
ϕ̂2

ih
)

NH∑
j=1

max
i

(
ϕ̂2

i j

) (3.90)

To incorporate both of the change of the shape and the change of the deformation mech-
anism of the origami surface after fixing a crease line, the following two different scores σh

and σ̂h of hinge h (= 1, . . . , NH) are used as the criteria to determine the crease line to be
fixed in the process of form generation described in Section 3.4:

σh =
σS

h

σF
h

(3.91)

σ̂h =
σS

h

σ̂F
h

(3.92)
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Figure 3.9: Target surface and its control points; (a) Isometric view, (b) Plan view and
coordinates of control points (numbers in the parentheses are the z-coordinates
of control points).

The crease line corresponding to the hinge that has the lowest score is fixed sequentially.
Multiple crease lines can also be fixed simultaneously if the origami surface has a symme-
try property. The normalized score σ̂h should basically be used for the form generation,
however, the results of the form generation using σh and σ̂h are compared in Chapter 4.

3.5.4 Example including locked crease lines

An example of optimization process is shown where some crease lines that are not fixed
will be locked after fixing another crease line. In this section, only the results of the form
generation and the infinitesimal mechanism analysis are shown while the development
diagrams and the results of large deformation analysis are not shown. Each analysis is
carried out by using a Python 3.9 program. The optimization problems (3.50) and (3.51) are
solved using sequential quadratic programming library SNOPT Ver. 7 [74] with the Python
interface of pyOpt [75, 76]. First-order infinitesimal modes are obtained by the method
explained in Appendix E, and the singular value decomposition of the compatibility matrix
is carried out by the function linalg.svd [77] in Python library Numpy.

The target surface of the form generation is an HP surface shown in Fig 3.9 and it is
triangulated as shown in Fig. 3.10. The initial triangulated surface has 25 vertices and 40
crease lines. The conditions of the form generation are assigned as follows:

• The design variables in the optimization are the independent nodal coordinates of the
frame model.

• Offset distances between origami vertices and the target surface are measured in z-
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Figure 3.10: Initial triangulation pattern with 25 vertices and 40 crease lines; (a) Isometric
view, (b) Plan view.

direction.

• A cut is not included.

• Symmetry of an origami surface is not considered, and the crease lines are fixed one
by one.

• Boundary planes of the surface are perpendicular to the xy-plane.

• Weight coefficients in the approximation error function Fapp(X) are set to carea = 0.3
and cnormal = 0.6.

• Upper and lower bounds of the inner angles of faces in Problems (3.50) and (3.51) are
assigned as αmin =π /6 and αmax = 5π /6.

• Lower bound of the edge lengths in Problems (3.50) and (3.51) is assigned as lmin = 1.

• The x- and y-coordinates of the nodes are constrained to be in the range 0 to 10 and
the z-coordinate in the range −3 to 9.

• Crease lines are randomly fixed instead of using the scores defined in Section 3.5.3 to
obtain the origami surface with locked crease lines.

The 2 DOF optimal shape with eleven fixed crease lines and without locked crease lines
is obtained as shown in Fig. 3.11. If crease line 6 in Fig. 3.11 is fixed in the following
iteration of the form generation, the 1 DOF origami surface with twenty-four locked crease
lines is obtained as shown in Fig. 3.12. Only crease lines 20, 32, 33, 34 can rotate in the
origami surface in Fig. 3.12. On the other hand, if crease line 32 is fixed for the solution
in Fig. 3.11, the 1 DOF origami surface without locked crease lines is obtained as shown
in Fig. 3.13. The values of σS

h, 1 /σF
h, and, 1/ σ̂F

h are shown in Table 3.2 for the crease lines
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Figure 3.11: 2 DOF optimal shape with eleven fixed crease lines and no locked crease lines;
(a) Isometric view, (b) Plan view and edge indices of crease lines (gray: fixed;
green: to be locked if crease line 6 is fixed).
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Figure 3.12: 1 DOF optimal shape with twelve fixed crease lines and twenty-four locked
crease lines; (a) Isometric view, (b) Plan view and edge indices of crease lines
(gray: fixed; green: locked).
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Figure 3.13: 1 DOF optimal shape with twelve fixed crease lines and no locked crease lines;
(a) Isometric view, (b) Plan view and edge indices of crease lines (gray: fixed).

which are the candidates for the crease lines to be fixed in the origami surface in Fig. 3.11.
As shown in Table 3.2, crease lines 3–16 have the large values of 1/σF

h, and, 1/ σ̂F
h, and this

indicates that the crease lines are likely to be locked if one of crease lines 3–16 is fixed.
Next, the transition of the deformation mechanism is investigated for the origami sur-

face in Fig. 3.11 by increasing the rotational stiffness of the hinges of the frame model
corresponding to the crease lines. The size of the pseudo stiffness matrix is 2× 2 since
the DOF is 2, and two eigenvalues of the pseudo stiffness matrix are λ1 = 7.24×10−3 and
λ2 = 1.86×10−1 when the rotational stiffness of all the hinges are 1. Table 3.3 shows the
values of the components of the hinge rotation angle modes ϕ1 in the second column, the
components of ϕ2 in the third column, the inner products ψh ·ψh′ of the vectors correspond-
ing to crease line 6 and the other crease lines in the forth column, and the inner products
of the vectors corresponding to crease line 32 and the other crease lines in the fifth column.
According to Property 3.3 and Table 3.3, it can be predicted that crease lines 3–16 are likely
to be locked if crease line 6 is fixed. Conversely, it is unlikely that they are not locked if
crease line 32 is fixed. Then, the rotational stiffness of the hinges corresponding to crease
lines 6 and 32 are increased by 1020 and 1014 times, respectively, so that the crease lines 6
and 32 are fixed. The values of the components of ϕ1 abd ϕ2 after the rotational stiffness of
the hinges corresponding to crease lines 6 and 32 are increased are shown in Tables 3.4 and
3.5. When the rotational stiffness corresponding to crease lines 6 is increased, the eigen-
values of the pseudo stiffness matrix becomes λ1 = 1.00 and λ2 = 6.92×1015. Therefore, the
second mode can be regarded to be fixed by increasing the rotational stiffness the to mod-
erately large value. As shown in Table 3.4, the components of ϕ1 corresponding to crease
lines 3–16 are approximately zero, and thus, crease lines 3–16 are locked if crease lines 6
is fixed. On the other hand, when the rotational stiffness corresponding to crease lines 32
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Table 3.2: Values of scores of the crease lines of the origami surface in Fig. 3.11.

Edge index σS
h 1/σF

h 1/ σ̂F
h

3 8.78×10−2 1.46×103 1.10×102

6 8.30×10−2 2.71×103 2.03×102

7 2.53×10−2 2.17×104 1.61×103

10 7.70×10−2 1.83×103 1.37×102

12 1.82×10−2 3.73×104 2.77×103

15 9.57×10−2 1.89×103 1.41×102

16 2.27×10−2 2.34×104 1.75×103

20 1.07×10−1 50.4 4.29
32 9.11×10−5 1.90 3.65
33 5.50×10−5 2.50 4.78
34 8.94×10−2 20.2 4.28

Table 3.3: Components of the hinge rotation angle modes ϕi and the values of inner prod-
ucts ψh ·ψh′ of crease line 6 and the other crease lines and of crease line 32 and
the other crease lines.

Edge Components of ϕ1 Components of ϕ2 Values of Values of
Index (λ1 = 7.24×10−3) (λ2 = 1.86×10−1) ψ6 ·ψh ψ32 ·ψh

3 −1.13×10−2 7.56×10−4 −1.00 5.27×10−2

6 8.30×10−3 −5.56×10−4 1.00 −5.27×10−2

7 −2.93×10−3 1.96×10−4 −1.00 5.27×10−2

10 −1.01×10−2 6.77×10−4 −1.00 5.27×10−2

12 −2.24×10−3 1.50×10−4 −1.00 5.27×10−2

15 −9.95×10−3 6.66×10−4 −1.00 5.27×10−2

16 2.82×10−3 −1.89×10−4 1.00 −5.27×10−2

20 −5.70×10−2 −6.08×10−2 −6.33×10−1 −7.39×10−1

32 4.43×10−3 3.13×10−1 −5.27×10−2 1.00
33 −2.50×10−3 −2.73×10−1 5.77×10−2 −1.00
34 −5.72×10−2 9.61×10−2 −5.68×10−1 8.52×10−1

is increased, the eigenvalues of the pseudo stiffness matrix becomes λ1 = 7.28×10−3 and
λ2 = 9.83×1012. According to Table 3.5, it can be concluded that crease line 32 is fixed while
the other crease lines can rotate. From the above, Properties 3.1, 3.3, and 3.4 have been
illustrated for the origami surface shown in Fig. 3.11.

3.6 Conclusions

This chapter has presented a form generation method of a developable rigid origami struc-
ture based on the mechanical property of partially rigid frames. A generated polyhedral sur-
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Table 3.4: Components of the hinge rotation angle modes ϕ1 and ϕ2 after the rotational
stiffness of the hinge corresponding to crease line 6 is increased by 1020 times.

Edge Components of ϕ1 Components of ϕ2 State of
Index (λ1 = 1.00) (λ2 = 6.92×1015) crease line

3 −1.35×10−14 1.13×10−2 locked
6 −4.34×10−19 −8.32×10−3 fixed
7 8.45×10−16 2.94×10−3 locked
10 −1.58×10−14 1.01×10−2 locked
12 −2.66×10−15 2.24×10−3 locked
15 −1.07×10−15 9.97×10−3 locked
16 2.81×10−15 −2.83×10−3 locked
20 6.45×10−2 5.28×10−2

32 −3.13×10−1 1.65×10−2

33 2.73×10−1 −1.58×10−2

34 −9.20×10−2 6.35×10−2

Table 3.5: Components of the hinge rotation angle modes ϕ1 and ϕ2 after the rotational
stiffness of the hinge corresponding to crease line 32 is increased by 1014 times.

Edge Components of ϕ1 Components of ϕ2 State of
Index (λ1 = 7.28×10−3) (λ2 = 9.83×1012) crease line

3 −1.13×10−2 5.96×10−3

6 8.31×10−3 −4.38×10−3

7 −2.94×10−3 1.55×10−3

10 −1.01×10−2 5.34×10−3

12 −2.24×10−3 1.18×10−3

15 −9.95×10−3 5.25×10−3

16 2.83×10−3 −1.49×10−3

20 −5.61×10−2 −6.16×10−2

32 9.71×10−17 3.14×10−1 fixed
33 1.36×10−3 −2.73×10−1

34 −5.85×10−2 9.53×10−2

face approximates a target curved surface based on Refs. [28–30]. Form generation starts
from a triangulated target surface and its crease lines are sequentially fixed to reduce the
DOF of the deformation mechanism. The transition of the deformation mechanism due to
fixing the crease lines is predicted, and selection criteria of the crease lines to be fixed are
proposed to prevent the unfixed crease lines from being locked. The deformation mecha-
nism of rigid origami is investigated by using the frame model, and the deformation modes
are derived by the method for stability and mechanism analysis of a partially rigid frame
with arbitrary inclined hinges.
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An optimization problem for generating a developable origami surface has been formu-
lated to minimize an approximation error function under developability conditions. De-
velopability conditions are considered around each inner vertex, dividing edge, and inner
cuts, and they are formulated with respect to the geometric properties of the origami sur-
face such as the discrete Gaussian curvatures, normal vectors of the faces, and the sets
of the inner angles of the faces and the length of edges constituting a cut. The approxi-
mation error function is defined as the weighted sum of the three functions reflecting the
distance between the origami vertices and the target surface, the difference of the surface
area, and the difference of the face normal vectors, respectively. The design variables of the
optimization are selected from vertex coordinates of the origami surface, nodal coordinates
of the frame model, or the pairs of the parameters to determine the points on the target
Bézier surface and the offsets from the target surface. When the vertex coordinates or the
nodal coordinates are used, the shape of the origami surface can be restricted directly by
assigning the constraints on the range of the design variable while the arrangement of the
control points of the target surface is limited. Om the other hand, when the pairs of the pa-
rameters of the target Bézier surface and the offsets from the target surface are the design
variables, an arbitrary arrangement of the control points can be used while the positions of
the origami vertices are represented by non-linear functions. The number of design vari-
ables are reduced by taking into account the linear constraints on the boundary shape and
the symmetry of the origami surface.

A method has also been proposed for predicting the existence of a locked crease line in
the optimal shape after fixing a crease line based on the eigenvalue and eigenvector deriva-
tives of the pseudo stiffness matrix of the frame model. The fictious rotational stiffness
of the hinges of the frame model is assumed, and the pseudo stiffness matrix is defined
by the first-order infinitesimal mechanism of the frame and the rotational stiffness of the
hinges. The relationship between the first-order derivatives of the distinct eigenvalues and
eigenvectors of the pseudo stiffness matrix has been derived in to show that a locked crease
line likely exists if a crease line with the relatively small maximum eigenvalue derivative is
fixed. The properties related to the prediction method are illustrated for the origami surface
approximating an HP surface.

Based on the shape of the origami surface and the prediction of the existence of a locked
crease line, selection criteria of the crease line to be fixed have been defined to efficiently
carry out the form generation. The folding angle of each crease line is utilized to define a
score of a crease line with respect to the shape of the origami surface, and a crease line or
more crease lines are fixed so that the shape change of the origami surface before and after
fixing a crease line (crease lines) is reasonably small. Scores with respect to the infinitesi-
mal mechanism are defined by using the maximum eigenvalue derivatives or the maximum
squared elements of the orthonormalized rotation modes of the crease lines to prevent the
crease lines from being locked. Although two scores before and after normalized are pro-
posed, the normalized score is expected to have the better performance and should be used
basically for the form generation as demonstrated in Chapter 4.
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In Chapter 4, the performances of the introduced criteria will be confirmed in numerical
examples. In addition, to establish a guideline for setting the values of weight coefficients,
the effect of the weight coefficients on the shape generation results will be examined. The
selection of the design variables, the initial triangulation patterns, and the arrangement of
the cuts will be also investigated.
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Chapter 4

Case studies of form generation of
rigid origami

In this chapter, case studies of the form generation method proposed in Chapter 3 are pre-
sented. Randomly generated surfaces, HP surfaces with two different heights, and dome
surfaces with two different heights are approximated. Form generation with the randomly
generated surfaces is carried out to confirm effectiveness of the selection criteria of the
crease lines to be fixed introduced in Chapter 3. The investigation on the weight coeffi-
cients in the approximation error function and the arrangements of cuts are made for the
examples of HP and dome surfaces.

4.1 General settings for form generation

As stated in Section 3.5.4 of Chapter 3, each analysis is carried out by using a Python 3.9
program. The optimization problems (3.16), (3.50), and (3.51) are solved using sequential
quadratic programming library SNOPT Ver. 7 [74] with the Python interface of pyOpt [75,
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Figure 4.1: Initial triangulation patterns of a target surface; (a) Pattern G, (b) Pattern R.
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Table 4.1: Cases of form generation; combinations of the initial triangulation patterns of
the target surface, design variables in the optimization, and the directions in
which the offsets are measured.

Case index Triangulation Design variables Offset direction

Case G1 Pattern G Nodal coordinates Global z-direction

Case G2 Pattern G
Parameters of the Bézier
surface and the offsets

Global z-direction

Case G3 Pattern G
Parameters of the Bézier
surface and the offsets

Normal direction
of the target surface

Case R1 Pattern R Nodal coordinates Global z-direction

Case R2 Pattern R
Parameters of the Bézier
surface and the offsets

Global z-direction

Case R3 Pattern R
Parameters of the Bézier
surface and the offsets

Normal direction
of the target surface

76]. The singular value decomposition of the compatibility matrix is carried out by the
function linalg.svd [77] in Python library Numpy. As shown in Fig. 4.1, two patterns of
initial triangulation referred to as Patterns G and R are used in this study. Pattern G
has 49 vertices and 96 inner edges, and Pattern R has 53 vertices and 108 inner edges.
The projected shape of a target surface onto the xy-plane is a 10×10 m square in all the
examples. Since the unit of length does not affect the result of form generation, it is omitted
hereafter unless necessary. Note that the unit of angle is radian while it is omitted. Two
types of design variables of the optimization problems (3.50) and (3.51) are considered in
this chapter; the nodal coordinates of the frame model and the pairs of the (s, t) parameters
of the target Bézier surface and the offsets. The direction in which the offset is measured is
considered along the z-direction or the normal direction of the target surface. Consequently,
three combinations of the design variables and the direction of the offset are considered for
each initial triangulation pattern as summarized in Table 4.1, and the six combinations
are referred to as Cases G1–G3 and R1–R3. The weight coefficients carea and cnormal in
the approximation error function Fapp(X) are assigned in each examples. The following
conditions of the optimization problems (3.50) and (3.51) for form generation are commonly
used in this chapter:

• Boundary planes of the surface are perpendicular to the xy-plane when the design
variables are the nodal coordinates.

• Upper and lower bounds of the inner angles of faces in Problems (3.50) and (3.51) are
assigned as αmin =π /6 and αmax = 5π /6.

• Lower bound of the edge lengths in Problems (3.50) and (3.51) is assigned as lmin = 1.
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• The x- and y-coordinates of the nodes are constrained to be in the range 0 to 10 and the
z-coordinate in the range -3 to 9 when the design variables are the nodal coordinates.

• The upper and lower bounds of the offsets are assigned to ±3 when the design vari-
ables are the parameters of the target Bézier surface and the offsets.

• The tolerance of the violation of the developability condition (upper bound of the ab-
solute value of each component of D(X) in Problem (3.50) is 10−4.

• A crease line is regarded to be locked if the increments of its rotation angle in all the
first-order infinitesimal mechanism modes are less than 10−9. However, if the folding
angles of all the locked crease lines are less than 10−6, the existence of the locked
crease lines are neglected because an origami surface is developable to a plane even
when there are locked crease lines if all the locked crease lines are unfolded.

• The rotation stiffness of the hinges to compute the pseudo stiffness matrix are ran-
domly set in the range between 0.995 and 1.005 (Nm) to avoid the existence of re-
peated eigenvalues.

The large deformation analysis is carried out using Abaqus 2020 [78] to confirm the
rigid foldability of each solution. To simulate the deployment process, the forced displace-
ments along the z-direction to the xy-plane are applied to the nodes of the frame model
which are on the faces of an origami surface. The frame model is constructed with three-
dimensional beam elements which have cylindrical cross sections of 20 mm diameter and
1 mm wall thickness. Their Young’s modulus and Poisson’s ratio are 200 GPa and 0.3,
respectively. Hinge connectors representing the revolute joints are used for modeling the
crease lines. Although the rotation stiffness of the hinge connector is not necessary to the
large-deformation analysis, the small rotation stiffness 1.0×10−3 (Nm) is introduced to each
hinge connector to stabilize the analysis. The elongation of edges and the error of the dihe-
dral angles between the pairs of faces connected to fixed crease lines are calculated from the
coordinates of origami vertices which are obtained by solving Eq. (2.20) using the nodal dis-
placements of the frame model in the analysis. If these edge length error and face flatness
error are sufficiently small, the obtained surface is regarded to be rigid-foldable. Note that
these parameters of the large deformation analysis have little impact on the evaluation of
the rigid-foldability of the solutions obtained by solving the optimization problem.

4.2 Randomly generated surface

In this section, 100 randomly generated Bézier surfaces are used as the target surfaces to
confirm the effectiveness of the selection criteria of the crease lines to be fixed introduced in
Chapter 3. The example of an target surface is shown in Fig. 4.2. The (x, y) coordinates of
the 5×5 control points are uniformly arranged as shown in Fig. 4.2(b), and the z-coordinates
of the control points are randomly distributed in the range from −4 to 4. Form generation is
carried out for Cases G1, G2, R1, and R2 in Table 4.1. The weight coefficients in Fapp(X) are
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Figure 4.2: Randomly generated target surface; (a) Isometric view, (b) Plan view and ar-
rangement of control points.

assigned as (carea, cnormal) = (0.3, 0.6) to approximately unify the order of Fdist(X), Farea(X),
and Fnormal(X).

Five selection criteria of crease lines to be fixed are used in the form generation; the
crease line with smallest value of σh, σ̂h, σS

h, 1 /σF
h, or 1/ σ̂F

h is fixed in each iteration of the
form generation process. In addition, the case where crease lines are randomly fixed is also
considered. Therefore, form generation is carried out six times for each target surface with
the different selection criterion of crease lines to be fixed, and 600 trials of form generation
are made in total in Case G1, G2, R1, and R2. The number of times when the optimization
problem (3.50) is successfully converged without locked crease lines (No. of solutions), when
the problem (3.50) is not converged in good accuracy (No. of failures), and when the opti-
mization problem (3.50) is converged with locked crease lines (No. of locking) are counted
and compared to evaluate the performance of each selection criterion.

The results of form generation in Case G1, G2, R1, and R2 are summarized in Ta-
bles 4.2–4.5. The maximum, minimum, and average values among the 100 trials for each
item in the first columns of Tables 4.2–4.5 are shown. As shown in Tables 4.2–4.5, the over-
all trend is that the number of locking is reduced when the criteria σh or σ̂h is used, which
reflects the shape and the deformation mechanism of an origami surface. The number of
solutions and failures tends to be larger and smaller, respectively, than when σS

h is used,
while this tendency is opposite when 1/σF

h or 1/ σ̂F
h is used or the crease lines are randomly

fixed. In addition, when σh or σ̂h is used, the values of approximation error function Fapp(X)
of the solutions tend to be smaller than especially when 1/σF

h or 1/ σ̂F
h is used or the crease

lines are randomly fixed. Therefore, considering the overall trend, σh and σ̂h can improve
the performance of form generation by reducing the times to solve the optimization problem
and improving the approximation accuracy compared to the other criteria. Especially when
σ̂h is used, the values of approximation error function Fapp(X) of the solutions can be effec-
tively reduced. Note that the minimum values of Fapp(X) are the same for all the selection
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criteria since these values are the solutions without fixed crease lines; i.e., the solutions are
the same for all the selection criteria.

The 1 DOF optimal shapes obtained in Cases G1 and R1 by using σ̂h are shown in
Figs. 4.3 and 4.4 which approximate the target surface shown in Fig. 4.2(a). The length
errors of edges are both less than 10−5 % in the development diagrams of the 1 DOF solu-
tions, and it has been confirmed that the solutions can be developed to a plane with good
accuracy. In the large deformation analysis, the solution in Fig. 4.3 has been developed to
a plane with the edge length error of up to 0.60 % and the angular error between the pairs
of faces adjacent to the dividing edges of up to 5.5×10−3 radians, which are calculated from
the nodal displacement of the frame model. The average values of the edge length error and
the angular error are much smaller than the maximum values, and they are about 0.031
% and 6.5×10−4 radians, respectively. Therefore, the solution in Fig. 4.3 can be regarded
as rigid-foldable. On the other hand, the edge length error and the angular error of the
solution in Fig. 4.4 in the large deformation analysis are larger than those of the solution in
Fig. 4.3, and the maximum and average values of them are about 29 %, 1.0 %, 1.0 radians,
and 0.096 radians, respectively. Even if the error in the development diagram is small, the
error in the large deformation analysis may be large. This is considered to be due to the fact
that the solution has the crease lines with the large folding angles near the center. From the
above, a rigid-folding development path to the xy-plane was not obtained for the solution
shown in Fig. 4.4 at least for the forced displacement setting considered in this section.

When the results are compared with respect to the choice of the design variables, it can
be seen from Tables 4.2–4.5 that the form generation process has better performance for
the convergence of the optimization and for the approximation accuracy when the nodal
coordinates are used in Cases G1 and R1. When the design variables are nodal coordinates,
the number of solutions tends to be larger, and the values of the approximation error func-
tion tends to be smaller. Since the offset directions are the same among Cases G1, G2, R1,
and R2, this tendency is attributed to the nonlinear representations of the coordinates of
vertices in Cases G2 and R2, which may affect the performance of the optimization. The
topology of the initial triangulation is also affect the performance of form generation. Al-
though the difference of the values of Fapp(X) is small, the number of failures is much larger
in Cases R1 and R2.
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Table 4.2: Results among 100 trials of form generation in Case G1 with five selection crite-
ria of the crease lines to be fixed.

Selection criterion σh σ̂h σS
h 1/σF

h 1/ σ̂F
h Random

max. 25 22 27 24 21 29
No. of solutions min. 1 1 1 1 1 1

avg. 4.42 4.34 4.08 4.12 4.65 5.40

max. 196 148 255 126 118 178
No. of failures min. 23 22 41 47 46 31

avg. 65.04 63.35 71.29 59.07 57.47 64.12

max. 8 3 19 8 0 13
No. of locking min. 0 0 0 0 0 0

avg. 0.18 0.03 1.15 0.22 0.00 0.66

max. 21 21 21 21 21 21
Min. DOF min. 1 1 1 1 1 1

avg. 17.67 17.68 18.27 17.98 17.35 16.86

max. 23.99 13.33 11.26 24.16 44.73 17.43
Avg. Fapp(X) min. 0.58 0.58 0.58 0.58 0.58 0.58

avg. 2.81 2.61 2.42 2.79 3.93 3.29

Table 4.3: Results among 100 trials of form generation in Case G2 with five selection crite-
ria of the crease lines to be fixed.

Selection criterion σh σ̂h σS
h 1/σF

h 1/ σ̂F
h Random

max. 22 21 28 21 21 21
No. of solutions min. 1 1 1 1 1 1

avg. 2.84 2.66 2.60 2.51 2.47 2.52

max. 229 217 358 194 152 199
No. of failures min. 13 47 47 46 30 47

avg. 64.53 61.38 67.99 62.00 54.31 56.12

max. 2 0 16 1 0 9
No. of locking min. 0 0 0 0 0 0

avg. 0.03 0.00 0.46 0.01 0.00 0.11

max. 21 21 21 21 21 21
Min. DOF min. 1 1 1 1 1 1

avg. 19.17 19.34 19.52 19.49 19.53 19.49

max. 34.48 26.72 27.68 35.44 43.95 39.22
Avg. Fapp(X) min. 0.46 0.46 0.46 0.46 0.46 0.46

avg. 4.25 3.77 3.89 4.18 4.51 4.42
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Table 4.4: Results among 100 trials of form generation in Case R1 with five selection crite-
ria of the crease lines to be fixed.

Selection criterion σh σ̂h σS
h 1/σF

h 1/ σ̂F
h Random

max. 21 21 26 22 22 28
No. of solutions min. 0 0 0 0 0 0

avg. 4.68 4.51 4.87 5.50 5.69 5.07

max. 442 360 650 295 222 391
No. of failures min. 2 2 2 2 2 2

avg. 109.78 113.81 131.86 98.92 93.27 105.37

max. 0 0 30 6 1 14
No. of locking min. 0 0 0 0 0 0

avg. 0.00 0.00 1.03 0.13 0.02 0.57

max. 21 21 21 21 21 21
Min. DOF min. 1 1 1 1 1 1

avg. 17.27 17.44 17.31 16.47 16.28 17.12

max. 9.77 12.16 22.35 17.71 34.06 29.73
Avg. Fapp(X) min. 0.55 0.55 0.55 0.55 0.55 0.55

avg. 2.61 2.51 2.72 3.45 4.24 3.19

Table 4.5: Results among 100 trials of form generation in Case R2 with five selection crite-
ria of the crease lines to be fixed.

Selection criterion σh σ̂h σS
h 1/σF

h 1/ σ̂F
h Random

max. 21 21 32 23 21 29
No. of solutions min. 1 1 1 1 1 1

avg. 4.23 4.20 4.56 4.44 4.42 4.78

max. 504 486 694 359 218 331
No. of failures min. 91 40 91 92 39 41

avg. 155.37 147.28 181.45 126.76 106.78 126.66

max. 0 0 59 1 0 11
No. of locking min. 0 0 0 0 0 0

avg. 0.00 0.00 1.09 0.01 0.00 0.29

max. 21 21 21 21 21 21
Min. DOF min. 1 1 1 1 1 1

avg. 17.77 17.8 17.75 17.59 17.58 17.45

max. 41.78 74.01 58.56 45.12 40.19 50.84
Avg. Fapp(X) min. 0.54 0.54 0.54 0.54 0.54 0.54

avg. 5.93 5.96 7.04 6.33 6.52 6.87
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Figure 4.3: 1 DOF origami surface in Case G1 approximating the target surface in
Fig. 4.2(a) generated by using the score σ̂h; (a) Isometric view, (b) Plan view, (c)
Development diagram.
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Figure 4.4: 1 DOF origami surface in Case R1 approximating the target surface in
Fig. 4.2(a) generated by using the score σ̂h; (a) Isometric view, (b) Plan view, (c)
Development diagram.

4.3 Regular surfaces

In this section, an HP surface in Fig. 4.5 and a dome surface in Fig. 4.6 are used as the
target surfaces to demonstrate applicability of the proposed method to the curved surface
with negative and positive Gaussian curvatures, respectively. The coordinates of the control
points are shown in Figs. 4.5(b) and 4.6(b). The initial shapes and the planes of symmetry
are shown in Figs. 4.5 and 4.6. As in Section 4.2, two patterns of initial triangulation of
the target surfaces are considered, which are shown in Fig. 4.1 and referred to as Pat-
terns G and R. Three cut patterns referred to as Cut patterns C, E, and X are introduced
in this study for each initial triangulation pattern as shown in Fig. 4.7. Form generation
is performed in Cases G1–R3 in Table 4.1. Crease lines to be fixed are selected by using
σ̂h, and the crease lines in the symmetric positions are simultaneously fixed. Since the
origami surface is symmetrical, the scores are also expected to be approximately symmet-
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Figure 4.5: HP surface; (a) Isometrix view of the target HP surface, (b) Plan view and the
coordinates of the control points, (c) Isometric view of Pattern G, (d) Isometric
view of Pattern R.

rically distributed. Therefore, the crease line with the smallest score is selected, and one
or three other crease lines symmetrically located with that crease line are also selected at
the same time. The weight coefficients in Fapp(X) are set to (carea, cnormal)= (0, 0), (0.2, 0.5),
(0.2, 1.0), (0.4, 0.5), or (0.4, 1.0), and the results of form generation with each pair of weight
coefficients are compared to each other in Section 4.3.1 to investigate how carea and cnormal

influence the values of Fdist(X), Farea(X), and Fnormal(X). The results are also compared be-
tween Case G1–R3 without cuts and with (carea, cnormal) = (0.2, 1.0) in Section 4.3.2. Then,
the optimal shapes are shown in Sections 4.3.3 and 4.3.4, and the effects of cut patterns on
the approximation accuracy are examined.

4.3.1 Comparison between values of weight coefficients

The influence of carea and cnormal on the values of Fdist(X), Farea(X), and Fnormal(X) is in-
vestigated for Case G1 without cuts, where the nodal coordinates are used as the design
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Figure 4.6: Dome surface; (a) Isometrix view of the target dome surface, (b) Plan view
and the coordinates of the control points, (c) Isometric view of Pattern G, (d)
Isometric view of Pattern R.

variables and the offsets are measured along the z-direction. The maximum, minimum,
and average values of Fdist(X), Farea(X), and Fnormal(X) among the solutions obtained in
each form generation process are shown in Table 4.6. The number of solutions without
locked crease lines and the minimum DOF among the solutions are also shown in the table.
The DOFs and the values of Fdist(X), Farea(X), and Fnormal(X) of each solutions are plotted
in Fig. 4.8. The results for the approximation of the HP and dome surfaces are shown in
Figs. 4.8(a)–4.8(d) and 4.8(e)–4.8(h), respectively. The results in the other cases are sum-
marized in Appendix F. Appendix F also shows graphs of the values of the approximation
error functions versus the number of fixed crease lines for each cases.

It is confirmed from Table 4.6 and Fig. 4.8 that the values of Farea(X) and Fnormal(X) tend
to be reduced by assigning values greater than 0 to carea and cnormal. It is reasonable to
observe that as the value of the weight coefficient increases, the value of the corresponding
approximation error function decreases, as seen in the table and graphs. However, the
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Figure 4.7: Cut patterns for initial triangulation patterns G and R; (a) and (d) Cut pattern
C, (b) and (e) Cut pattern E, (c) and (f) Cut pattern X.

value of Fdist(X) does not necessarily increase when carea and cnormal are greater than 0,
and there is no clear trade-off relationship between the values of Fdist(X), Farea(X), and
Fnormal(X). This trend can also be seen in the other cases as shown in Appendix F. Therefore,
it is appropriate to use the weight coefficients carea and cnormal to balance the order of
magnitude of each approximation error function, and the detailed adjustment of the values
of carea and cnormal should be done by referring to the results of the form generation to

Table 4.6: Form generation results without cuts in Case G1.

HP surface dome surface

carea 0.0 0.2 0.2 0.4 0.4 0.0 0.2 0.2 0.4 0.4
cnormal 0.0 0.5 1.0 0.5 1.0 0.0 0.5 1.0 0.5 1.0

No. solutions 7 7 6 7 8 7 7 7 7 1
Min. DOF 3 1 5 1 1 3 1 1 3 21

max. 4.95 3.80 1.90 2.23 4.64 2.50 33.22 5.93 18.33 2.32
Fdist(X) min. 1.79 1.51 1.82 1.87 1.98 2.06 2.24 2.61 2.18 2.32

avg. 2.33 2.44 1.87 2.03 2.49 2.30 11.40 4.17 9.82 2.32

max. 6.73 9.20 3.43 3.65 3.45 1.25 8.82 3.35 4.31 0.00
Farea(X) min. 5.17 2.94 2.93 2.37 2.31 0.00 0.00 0.00 0.00 0.00

avg. 6.41 4.72 3.15 2.96 2.76 0.56 2.25 0.56 0.62 0.00

max. 4.38 4.01 2.28 2.69 3.95 4.43 15.83 8.11 13.44 2.31
Fnormal(X) min. 3.75 2.19 2.06 2.11 2.02 4.12 3.21 2.70 3.35 2.31

avg. 4.22 2.88 2.16 2.38 2.39 4.21 8.43 4.14 8.58 2.31

75



(a) (b)

(c) (d)

(e) (f)

(g) (h)
c

area
 = 0.0; c

normal
 = 0.0 c

area
 = 0.2; c

normal
 = 0.5 c

area
 = 0.2; c

normal
 = 1.0

c
area

 = 0.4; c
normal

 = 1.0c
area

 = 0.4; c
normal

 = 0.5

Figure 4.8: DOFs and the values of Fdist(X), Farea(X), and Fnormal(X) of the solutions with
different combinations of the weight coefficients carea and cnormal and without
cuts in Case G1; (a)–(d) Results for the HP surface, (e)–(h) Results for the dome
surface.
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Table 4.7: Results for the approximation of the HP surface without cuts and with
(carea, cnormal)= (0.2, 0.5).

Cases G1 G2 G3 R1 R2 R3

No. solutions 7 1 10 6 1 9
Min. DOF 1 21 3 1 21 1

max. 3.80 5.80 46.56 2.00 8.71 21.65
Fdist(X) min. 1.51 5.80 3.53 1.62 8.71 17.85

avg. 2.44 5.80 22.46 1.71 8.71 20.05

max. 9.20 0.00 9.93 5.11 0.00 4.70
Farea(X) min. 2.94 0.00 2.83 4.01 0.00 2.61

avg. 4.72 0.00 4.76 4.36 0.00 2.86

max. 4.01 2.31 7.41 3.83 2.34 5.23
Fnormal(X) min. 2.19 2.31 2.03 3.37 2.34 1.96

avg. 2.88 2.31 3.52 3.45 2.34 2.34

Table 4.8: Results for the approximation of the dome surface without cuts and with
(carea, cnormal)= (0.2, 0.5).

Cases G1 G2 G3 R1 R2 R3

No. solutions 7 5 9 2 1 1
Min. DOF 1 5 1 19 21 21

max. 33.22 23.34 17.28 2.95 3.36 4.66
Fdist(X) min. 2.24 8.56 6.12 2.25 3.36 4.66

avg. 11.40 16.52 9.53 2.60 3.36 4.66

max. 8.82 0.00 0.03 0.00 0.00 0.00
Farea(X) min. 0.00 0.00 0.00 0.00 0.00 0.00

avg. 2.25 0.00 0.01 0.00 0.00 0.00

max. 15.83 3.60 11.10 4.49 2.85 2.89
Fnormal(X) min. 3.21 2.61 4.16 2.75 2.85 2.89

avg. 8.43 3.14 5.88 3.62 2.85 2.89

improve the appearances of the obtained shapes. As a method for the initial setting of the
weight coefficients, the values of carea and cnormal can be determined approximately from
the values of Fdist(X) /Farea(X) and Fdist(X) /Fnormal(X) after the order of the approximation
error functions is checked by applying imperfections to the initial triangulated shape.

4.3.2 Comparison between choices of design variables and initial trian-
gulation patterns

The results in Case G1–R3 are compared to each other for the HP surface and the dome
surface. In this section, cuts are not considered and the weight coefficients in the approxi-
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mation error function are set to (carea, cnormal) = (0.2, 0.5). For the results in the other con-
ditions, see Appendix F. The maximum, minimum, and average values of Fdist(X), Farea(X),
and Fnormal(X) among the solutions obtained in each condition are shown in Tables 4.7 and
4.8. The number of solutions without locked crease lines and the minimum DOF among the
solutions are also shown in those tables.

As shown in Tables 4.7 and 4.8, few solutions are obtained especially in Cases G2 and
R2. This trend is common to the results for the examples with the random target surfaces.
As mentioned in Section 4.2, this may attributed to the nonlinear representations of the
coordinates of vertices in Cases G2 and R2. On the other hand, more solutions are obtained
in Cases G3 and R3, which are not considered in Section 4.2, while the values of the ap-
proximation error functions are larger than those in Cases G1 and R1. This is because the
boundary planes are not considered in Cases G3 and R3, and the vertices can be located
more widely than in Cases G1 and R1. This reason also can explain why the values of the
approximation error functions are larger in Cases G2 and R2 especially for Fdist(X).

When the dome surface is approximated, the values of the approximation error functions
tend to be larger than those of the HP surface except for Farea(X) although the height of the
target dome surface is lower than the HP surface. The results obtained by assigning the
other conditions shown in Appendix F have the approximately same trend. In addition, the
number of the solutions drastically changes according to the conditions of form generation
as shown in Table 4.8 and Appendix F when the proposed method is applied to the dome
surface. This implies that the approximation of the dome surface is more difficult than the
approximation of the HP surface.

4.3.3 Approximation of HP surface in Case G3

In this section, the effects of cut patterns on the approximation accuracy are examined in
Case G3 for the HP surface in Fig. 4.5. The weight coefficients in the approximation error
function are set to (carea, cnormal)= (0.2, 1.0). The DOFs and the values of the approximation
error functions Fdist(X), Farea(X), and Fnormal(X) at each number of fixed crease lines are
plotted in Fig. 4.9.

As shown in Fig. 4.9, the values of the approximation error functions are reduced by
introducing the cut of pattern E. However, they are not improved when the cuts of pat-
terns C and X are introduced. A possible reason for this is that the inner cuts only change
the distribution of the Gaussian curvature at the interior vertices without changing the
sum, whereas the exterior cuts can directly relax the conditions of the Gaussian curvature.
Therefore, an inner cut is expected to have an effect on improving the approximation accu-
racy when it is placed across parts of the surface with different signs of Gaussian curvature.

The maximum DOFs among the solutions without cuts and with Cut pattern C, E, and X
are 21, 26, 26, and 29, respectively, and the minimum DOFs are 1, 6, 1, and 2, respectively.
Comparing solutions with the same number of fixed crease lines, the approximation error
tends to be smaller when a cut is introduced than when no cut is introduced, whereas the
DOF tend to be larger. On the other hand, when compared for solutions with the same
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(a) (b)

(c) (d)
without cut Cut pattern C Cut pattern E Cut pattern X

Figure 4.9: DOFs and the values of Fdist(X), Farea(X), and Fnormal(X) of the solutions for
the HP surface in Case G3.

DOF, the approximation accuracy may be worse when a cut is introduced than when no cut
is introduced because the number of fixed crease lines becomes larger. Although the DOF of
the mechanism is preferred to be small in view of the stability of the deployment motion of
the origami surface, the above results show an approximate trade-off relationship between
approximation accuracy and deformation degree of freedom.

Here, the optimal solutions with the similar number of fixed crease lines are shown

(a)
(b)

(c)

Figure 4.10: Optimal shape approximating the HP surface without cuts in Case G3; (a)
Isometric view, (b) Plan view, (c) Development diagram.
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(a)
(b)

(c)

Figure 4.11: Optimal shape approximating the HP surface with Cut pattern C in Case G3;
(a) Isometric view, (b) Plan view, (c) Development diagram.

(a) (b) (c)

Figure 4.12: Optimal shape approximating the HP surface with Cut pattern E in Case G3;
(a) Isometric view, (b) Plan view, (c) Development diagram.

(a)
(b)

(c)

Figure 4.13: Optimal shape approximating the HP surface with Cut pattern C in Case G3;
(a) Isometric view, (b) Plan view, (c) Development diagram.
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Table 4.9: Values of the optimal shapes in Figs. 4.10–4.13 approximating the HP surface
with (carea, cnormal)= (0.2, 1.0) in Case G3.

without cuts Cut pattern C Cut pattern E Cut pattern X

No. of fixed crease lines 16 16 16 16

DOFs of mechanism 5 10 13 10

Fdist(X) 7.11 7.72 0.67 11.50

Farea(X) 3.10 2.93 1.59 3.16

Fnormal(X) 1.92 1.83 0.98 1.86

Avg.
∣∣∣dldev

j

∣∣∣ [m] 1.31×10−6 1.49×10−6 2.81×10−6 1.52×10−6

Max.
∣∣∣dldev

j

∣∣∣ [m] 8.47×10−6 7.94×10−6 8.31×10−6 8.89×10−6

Avg.
∣∣∣dldev

j /l j

∣∣∣ [%] 6.34×10−7 7.17×10−7 1.30×10−6 7.27×10−7

Max.
∣∣∣dldev

j /l j

∣∣∣ [%] 2.74×10−6 3.51×10−6 3.68×10−6 2.77×10−6

Avg.
∣∣∣dllda

j

∣∣∣ [m] 1.89×10−4 1.12×10−4 2.65×10−5 8.79×10−5

Max.
∣∣∣dllda

j

∣∣∣ [m] 2.38×10−3 1.63×10−3 2.98×10−4 8.30×10−4

Avg.
∣∣∣dllda

j /l j

∣∣∣ [%] 7.86×10−3 4.64×10−3 1.29×10−3 3.80×10−3

Max.
∣∣∣dllda

j /l j

∣∣∣ [%] 1.01×10−1 5.58×10−2 1.36×10−2 3.69×10−2

Avg. dρlda
j [rad] 2.31×10−4 8.45×10−5 4.14×10−6 2.84×10−5

Max. dρlda
j [rad] 2.90×10−3 3.60×10−4 1.85×10−5 1.41×10−4

in Figs. 4.10–4.13. Table 4.9 summarizes the number of fixed crease lines, the number of
DOFs, the values of the approximation error functions, and the shape errors in the devel-
opment diagrams and the large deformation analyses of the solutions in Figs. 4.10–4.13.
In Table 4.9, l j represents the length of edge j, and dldev

j and dllda
j are the elongation of

edge j in the development diagram and the large deformation analysis. dρlda
j is the error of

the dihedral angle between the faces connected to dividing edge j from π; i.e., the error of
the flatness of a face with more than three edges. The maximum value of

∣∣∣dllda
j /l j

∣∣∣, which
represents the absolute strain of an edge in the process of deployment, is about 10 times
larger than the average, and the local deformation may occur. However, the average error
of the edge length is less than 1 mm, and the maximum value is also small compared to the
span of the surface. In addition, the errors of face flatness is quite small. Therefore, the
solutions in Figs. 4.10–4.13 can be regarded to be approximately rigid-foldable.

As shown Figs. 4.10–4.13, when a cut is not introduced or the inner cuts are introduced,
the solutions are almost flat near the center and the corners are intensively folded. On
the other hand, this tendency is alleviated in the solution with Cut pattern E shown in
Fig. 4.12, which looks more similar to the target surface. In the solutions for Cut patterns C
and X shown in Figs. 4.11 and 4.13, the cuts are hardly open in the development diagrams,
and this also indicates that the effect on improving the approximation accuracy is small for
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(a) (b)

(c) (d)
without cut Cut pattern C Cut pattern E Cut pattern X

Figure 4.14: DOFs and the values of Fdist(X), Farea(X), and Fnormal(X) of the solutions for
the dome surface in Case G3.

the inner cuts. Note that when the Cut pattern E is introduced, faces are overlapped each
other at the cuts in the development diagram as shown in Fig. 4.12(c).

4.3.4 Approximation of dome surface

In this section, the effects of cut patterns on the approximation accuracy are examined in
Case G3 with (carea, cnormal) = (0.2, 1.0) for the dome surface in Fig. 4.6. The DOFs and

(a)

(b) (c)

Figure 4.15: Optimal shape approximating the dome surface without cuts in Case G3; (a)
Isometric view, (b) Plan view, (c) Development diagram.
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(a)

(b) (c)

Figure 4.16: Optimal shape approximating the dome surface with Cut pattern C in Case
G3; (a) Isometric view, (b) Plan view, (c) Development diagram.

(a)
(b) (c)

Figure 4.17: Optimal shape approximating the dome surface with Cut pattern E in Case
G3; (a) Isometric view, (b) Plan view, (c) Development diagram.

(a)
(b) (c)

Figure 4.18: Optimal shape approximating the dome surface with Cut pattern C in Case
G3; (a) Isometric view, (b) Plan view, (c) Development diagram.
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Table 4.10: Values of the optimal shapes in Figs. 4.15–4.18 approximating the dome sur-
face with (carea, cnormal)= (0.2, 1.0) in Case G3.

without cuts Cut pattern C Cut pattern E Cut pattern X

No. of fixed crease lines 14 14 16 16

DOFs of mechanism 7 12 13 10

Fdist(X) 10.30 6.54 0.75 12.50

Farea(X) 1.32×10−6 1.54×10−7 2.08×10−7 1.26×10−2

Fnormal(X) 4.97 2.73 0.90 5.86

Avg.
∣∣∣dldev

j

∣∣∣ [m] 1.24×10−6 1.23×10−6 3.47×10−6 2.11×10−6

Max.
∣∣∣dldev

j

∣∣∣ [m] 5.80×10−6 6.40×10−6 2.11×10−5 1.46×10−5

Avg.
∣∣∣dldev

j /l j

∣∣∣ [%] 5.28×10−7 5.53×10−7 1.53×10−6 8.92×10−7

Max.
∣∣∣dldev

j /l j

∣∣∣ [%] 1.72×10−6 1.66×10−6 6.03×10−6 3.34×10−6

Avg.
∣∣∣dllda

j

∣∣∣ [m] 1.29×10−3 3.71×10−4 2.58×10−5 5.61×10−3

Max.
∣∣∣dllda

j

∣∣∣ [m] 1.17×10−2 5.65×10−3 1.69×10−4 6.61×10−2

Avg.
∣∣∣dllda

j /l j

∣∣∣ [%] 6.59×10−2 1.84×10−2 1.39×10−3 2.71×10−1

Max.
∣∣∣dllda

j /l j

∣∣∣ [%] 6.59×10−1 2.16×10−1 1.27×10−2 3.33

Avg. dρlda
j [rad] 2.64×10−4 9.31×10−5 2.51×10−5 1.25×10−2

Max. dρlda
j [rad] 1.49×10−3 4.81×10−4 1.94×10−4 7.53×10−2

the values of the approximation error functions Fdist(X), Farea(X), and Fnormal(X) at each
number of fixed crease lines are plotted in Fig. 4.14.

As shown in Fig. 4.14, the values of the approximation error functions Fdist(X) and
Fnormal(X) are reduced by introducing the cut of pattern E, while Farea(X) is approximately
equal to zero in almost solutions. The maximum DOFs among the solutions without cuts
and with Cut pattern C, E, and X are 21, 26, 26, and 29, respectively, and the minimum
DOFs are 1, 12, 13, and 2, respectively. The trend of the values of the approximation error
functions are similar to that of the HP surface.

The optimal solutions with 14 or 16 fixed crease lines are shown in Figs. 4.15–4.18. The
number of fixed crease lines, the number of DOFs, the values of the approximation error
functions, and the shape errors in the development diagrams and the large deformation
analyses are summarized in Table 4.10. Although the values of

∣∣∣dldev
j

∣∣∣ and dρlda
j are suffi-

ciently small, the values of
∣∣∣dllda

j

∣∣∣ are about 10 times larger than those of the HP surface.
However, they are still small compared to the span of the surface. Therefore, the solutions
in Figs. 4.15–4.18 can be regarded to be approximately rigid-foldable.

As shown Figs. 4.15–4.18, the approximation error tends to concentrate at the boundary
edges of the surface when the dome surface is approximated. For the examples in Figs. 4.15,
4.16, and 4.18, the entire surfaces appears to approach cylindrical shapes which have curva-
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ture in only one direction rather than dome shapes which have curvature in two directions.
Then, the approximation accuracy is significantly improved when the exterior cuts are in-
troduced. In the development diagrams in Figs. 4.16(c) and 4.18(c), the faces are locally
overlapped each other around the cuts. However, the cuts are mostly closed, and it can be
inferred that the effects of the cuts are minor.

4.4 Conclusions

Case studies of the approximation of curved surfaces by the method proposed in Chapter 3
have been provided. As demonstrated in this chapter, curved surfaces with positive and
negative Gaussian curvature have been approximated by a developable rigid origami struc-
ture. First, the form generation procedure has been carried out for 100 randomly generated
target surfaces with two types of crease patterns and two combinations of design variables
and direction of offsets. It is confirmed from the 400 trials of form generation that the two
selection criteria of crease lines to be fixed which reflect the shape and the deformation
mechanism of an origami surface can improve the efficiency of form generation by prevent-
ing the crease lines from being locked and reducing the times of solving the optimization
problems compared to the other selection criteria which only reflect the shape or the mech-
anism. Furthermore, comparing the two proposed criteria, the performance of the criterion
defined by the orthonormalized hinge rotation modes is better than the other criterion de-
fined by the eigenvalue derivatives of the pseudo stiffness matrix of the frame model. The
approximation accuracy is also better when these two criteria are used. Therefore, the
normalized score should basically be used for the form generation.

Form generation has also been carried out for an HP and a dome surfaces to demon-
strate the impacts of the weight coefficients in the approximation error function, the choice
of the design variables, and the introduction of cuts. In these examples, five combinations
of the weight coefficients and three combinations of the design variables and the direction
of offsets are considered. Although the values of the approximation error functions are
reduced by increasing the corresponding weight coefficients, there is no clear trade-off re-
lation between the three approximation error functions, and the weight coefficients should
basically be used to balance the order of magnitude of each approximation error function.
For further improvement of the surface appearance, the values of the weight coefficients are
adjusted manually by referring to the results of the form generation. On the other hand,
the choice of the design variables may affect the stability of the process of form generation.
When the design variables are the pairs of parameters of the Bézier surface and offsets,
and the directions of the offsets are the z-direction, the number of solutions without locked
crease lines tend to be smaller because of the nonlinear representations of the coordinates
of vertices. However, when the directions of the offsets are the normal directions of the tar-
get surface, more solutions are obtained since the boundary planes of the origami surface is
not considered while the approximation error becomes larger. Therefore, it is preferable to
use the coordinates of the origami vertices or the nodal coordinates of the frame model as
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variables when the arrangement of the control points of the target Bézier surface is uniform
in x- and y-coordinates.

The form generation for the HP and the dome surfaces is performed with two types
of inner cuts and one type of exterior cut. As shown in the examples, exterior cuts can
significantly improve the approximation accuracy while the inner cuts does not. This is
because the inner cuts only change the distribution of the Gaussian curvature at the interior
vertices without changing the sum of it, whereas the exterior cuts can directly relax the
conditions of the Gaussian curvature.

This study only considered a limited number of types of crease and cut patterns, and
the optimization of these patterns are not studied. Therefore, design of origami surfaces
using the proposed method may require trial and error with respect to the crease and cut
patterns, and it is not always possible to select the best crease and cut patterns for surface
approximation. In future research, it is important to investigate methods for finding good
crease and cut patterns.
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Chapter 5

Equilibrium path analysis

In this chapter, methods of equilibrium path analysis and stability analysis of an equilib-
rium state are proposed for a rigid origami represented by the frame model. The equilib-
rium state of a frame model with the external loads applied to the nodes is investigated. It is
uniquely determined by assuming a small rotational stiffness proportional to the length of a
crease line and by minimizing the total potential energy under the compatibility conditions
so that the displacements of the nodes and the members are compatible. The augmented
Lagrangian method is utilized to solve the minimization problem, and the stability of the
equilibrium state is evaluated with respect to the positive definiteness of the Hessian of the
augmented Lagrangian. When an eigenvalue of the Hessian of the augmented Lagrangian
is equal to zero, the equilibrium state is unstable, and a critical eigenmode corresponding
to the zero eigenvalue is numerically compared to the infinitesimal mechanism of a frame
model to investigate the relationship between them. An equilibrium path is traced by the
incremental loading analysis, and bifurcation of the equilibrium path is investigated in the
numerical examples.

5.1 Introduction

It is important to understand the properties of rigid-folding motions for engineering appli-
cations utilizing the kinematics of rigid origami that can be efficiently and safely deployed.
However, the folding/unfolding process of rigid origami is quite complicated and nonlinear,
and generally exhibits a multi-degree-of-freedom mechanism except for some special crease
patterns such as Miura-ori [79]. Therefore, it is difficult to obtain an analytical solution
of the deformation path (folding path) of a rigid origami, and a numerical solution such as
Newton’s method is generally used to iteratively obtain the folding states of rigid origami
to trace the path. In general, a numerical path tracing can be regarded as the process of
iteratively finding a solution to the nonlinear equations f(x) = 0 representing the compati-
bility equations and the equilibrium equations [80]. Here, x is the vector of variables such
as folding angles and nodal displacements (possibly including a load factor and Lagrange
multipliers), and f(x) is a vector-valued function. The process of path tracing often starts
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from a known solution of f(x)= 0, and this equation is iteratively solved while x is updated
as x ← x+∆x. The increment ∆x along the path is determined as a vector satisfying the
following equation:

df(x)
dx

∆x+e= 0

where d f (x) /dx is a matrix form of the gradient of f(x) and e is a residual vector.
The existing path tracing methods that follow the above directions can mainly be cate-

gorized into two types. One is the pure mechanism analysis that considers only geometric
constraints based on the assumption that faces are completely rigid, and f(x)= 0 represents
the compatibility equations. A rotational hinge model introduced in Chapter 2 is often used
for this pure mechanism analysis; e.g. Refs. [24, 32]. The other is the structural analy-
sis to trace an equilibrium path; a sequence of equilibrium states under external loads or
forced displacements assuming rotational stiffness of crease lines and/or elastic deforma-
tion of the faces of a rigid origami, and f(x) = 0 represents the equilibrium equations. A
truss model introduced in Chapter 2 is often used for this equilibrium path analysis by al-
lowing the deformation of bars; e.g. Refs. [34, 53, 54]. In both analysis types, there may
exist a singular point where the rank of d f (x) /dx changes in the process of tracing the de-
formation path, and the increment ∆x cannot be determined uniquely. Since the singular
point can be a bifurcation point where one or more branching paths exist or a limit point
where a snap-through behavior can be observed, special consideration should be given to
path tracing analysis including singularity. In the analysis of pure mechanisms, it has been
shown that it is necessary to consider the second-order or higher-order derivative of f(x)
with respect to x at the singular point for tracing the path satisfying the nonlinear com-
patibility conditions [81–83]. Besides, in the analysis of equilibrium path, the bifurcation
or the snap-through may occur at the singular point, and various studies exist based on
the general theory of elastic stability [84]. For rigid origami, Gillman et al. [85] proposed a
method for the analysis of equilibrium paths including bifurcation and limit points.

Many studies have been done for the pure mechanism analysis and the equilibrium
path analysis including singular points as mentioned above, however, there are few studies
on the method for investigating the equilibrium path of a rigid origami with strictly rigid
faces; i.e. the hybrid analysis of the pure mechanism and the structural analysis. This type
of analysis is also important to understand the foldability [55] of a crease pattern and for
the prototyping of the deployable structure using a rigid-fold mechanism. The study on the
equilibrium of a rotational hinge model is provided by He and Guest [33]. However, the
physical interpretation of the loads and the internal forces considered in their study is dif-
ficult to grasp intuitively since they are torques applied at crease lines. On the other hand,
an exact rigid-folding path reflecting the equilibrium obtained by using the truss model has
been studied by Li [86], although the equilibrium condition is not strictly satisfied.

In this chapter, the frame model described in Chapter 2 and shown in Fig. 5.1 is utilized
to perform an equilibrium path analysis and a stability analysis of an equilibrium state of
a rigid origami. An equilibrium state is considered between a nodal load and moments of
springs introduced at the hinges of a frame model as in most equilibrium path analyses
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load

additional member
for support

basic structure
of frame model

additional member
for load

Figure 5.1: Configuration of a frame model for the equilibrium path analysis.

using truss models. To incorporate a nodal load and a support constraining the displace-
ment of a rigid origami, the members indicated by blue bold lines in Fig. 5.1 are added to
the basic structure of the frame model whose members are indicated by gray bold lines in
Fig. 5.1. One end of each additional member is rigidly connected to the basic structure,
while the other end is loaded or supported. In this study, an energy minimization approach
is adopted to the equilibrium analysis, and the total potential energy minimization problem
is solved under the compatibility conditions of the displacement to obtain an equilibrium
path with the exact rigid-folding motion. The proposed method in this chapter has the
following features [31].

• The springs are introduced at the hinges of a frame model to stabilize the equilibrium
and to determine the deformation path uniquely except for the possible existence of
singular points. This enables us to avoid the difficulty of determining the direction of
the path exploration in tracing a deformation path caused by the possible existence of
many multiple bifurcation points [87, 88] on the deformation path which may exist if
the rotation stiffnesses of the hinges are not incorporated.

• The process of directly solving the equilibrium equations with the compatibility equa-
tions often fails to converge due to its nonlinearity. Therefore, the equilibrium state is
obtained by minimizing the total potential energy to use the stability theories based
on the energy principle and to obtain the equilibrium state by utilizing sophisticated
optimization techniques.

• The total potential energy minimization problem under the compatibility conditions
of the displacement is solved by the augmented Lagrangian method [89, 90], which
often has better convergence than the conventional Lagrangian and penalty methods.

• Positive definiteness of the Hessian matrix of the augmented Lagrangian is evaluated
to determine the stability of the equilibrium state of a rigid origami.

• The eigenvector of the Hessian matrix of the augmented Lagrangian corresponding
to a zero eigenvalue can be regarded as the unstable displacement mode, and it is
numerically compared to the infinitesimal mechanism of a frame model to investi-
gate the relationship between the eigenvector and the first-order and second-order
infinitesimal mechanism.
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The structure of this chapter is as follows. A brief review is provided in Section 5.2
about the formulations of the compatibility equations of a frame model presented in Chap-
ter 2. Section 5.3 presents the definition of the total potential energy to be minimized and
the method of equilibrium path analysis of a rigid origami using the frame model. The
compatibility equations formulated in Chapter 2, which guarantees the rigid-folding mo-
tion, are used as equality constraints for the minimization problem of the total potential
energy. An equilibrium path analysis is carried out by the incremental loading analysis
where a load factor increases from zero to a finite value. In Section 5.4, a method is pre-
sented for investigating the stability of an equilibrium state by using the Hessian matrix
of the augmented Lagrangian. Section 5.5 provides a method for numerically investigating
the relationship between the first-order and second-order infinitesimal mechanism and the
eigenvector of the Hessian matrix of the augmented Lagrangian corresponding to a zero
eigenvalue which can be regarded as the unstable displacement mode. Examples of equi-
librium path and stability analyses using the proposed method are shown in Section 5.6. It
is confirmed that the proposed method can accurately detect the singularity phenomenon
by the analysis of a two-dimensional two-member model which can analytically determine
the singularity on the equilibrium path. The analysis of a rigid origami is performed for a
unit cell of waterbomb tessellation which has a single inner vertex and multiple degrees of
freedom of rigid-folding mechanism. A unit cell of waterbomb tessellation is referred to as
the waterbomb cell, and there are some examples of the deformation path analyses includ-
ing a bifurcation and a limit point; e.g., Gillman et al. [85]. A fully developed flat state that
is a singular point on the deformation path of a rigid origami as pointed out in Ref. [91]
is especially investigated, and it is shown that the degrees of freedom of the mechanism
decreases when the out-of-plane deformation occurs. Although a waterbomb cell has often
been studied, the stability of a flat state and a bifurcation path from the flat state have not
been investigated well. In this study, the stabilities and the equilibrium paths of the flat
states with two types of boundary and load conditions are investigated. Note again that the
springs at the hinges of a frame model enable us to uniquely determine the equilibrium path
although the waterbomb cell has the multiple degrees of freedom mechanism. By assigning
the initial imperfection in addition to the rotational springs, the multiple bifurcation at the
flat state, which is investigated in Ref. [92], can be avoided. In Section 5.7, the conclusions
of this chapter are given. Methods and examples to be described in this chapter is based on
Ref. [31].

5.2 Preliminaries on compatibility equations of frame model

In this section, a brief review of the formulations of the compatibility equations of a frame
model presented in Chapter 2 is provided. Let NN, NM, and NH denote the number of
nodes, members, and hinges, respectively. The vectors Uk, Θk, Vi, and Ψi ∈ R3 are defined
as the translation and rotation vectors of node k (= 1, . . . , NN) and member i (= 1, . . . , NM),
respectively. The increment of the rotation angle of hinge h (= 1, . . . , NH) from the unde-
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formed state to the deformed state is denoted by φh ∈R. According to Eqs. (2.28) and (2.36)
in Chapter 2, when the j-th end ( j = 1, 2) of member i is connected to node k, the compati-
bility equation for the translational displacement at the j-th end of member i is written as
follows:

∆Ui j =Uk −Vi − {R(Ψi)−I3}di j = 0 (5.1)

where R(Ψi) ∈ R3×3 and di j ∈ R3 are the Rodrigues’ rotation matrix with respect to Ψi [64]
and the vector directing from the center point of member i to the j-th end of member i at
the undeformed state, respectively. ∆Ui j ∈ R3 is the translational incompatibility vector at
the j-th end of member i. According to Eqs. (2.29) and (2.37) in Chapter 2, the compatibil-
ity equation for the rotational displacement at the j-th end of member i is written as the
following equation when the j-th end of member i is rigidly connected to node k:

∆Θi j =Θk −Ψi = 0 (5.2)

where ∆Θi j ∈ R3 is the rotational incompatibility vector at the j-th end of member i. On
the other hand, when the j-th end of member i is connected to node k via hinge h, the
compatibility equation for the rotational displacement at the j-th end of member i is written
as

∆Θi j =Φi j(Ψi,Θk,φh)= 0 (5.3)

where Φi j(Ψi,Θk,φh) ∈R3 is defined by Eqs. (2.34) and (2.35) in Chapter 2 as follows:

Φi j(Ψi,Θk,φh)=


Φ(1)

i j (Ψi,Θk,φh)

Φ(2)
i j (Ψi,Θk,φh)

Φ(3)
i j (Ψi,Θk,φh)


Φ(1)

i j (Ψi,Θk,φh)=
(
R(Ψi)τ

〈1〉
h

)
·
(
R(Θk)τ〈2〉

h

)
Φ(2)

i j (Ψi,Θk,φh)=
(
R(Ψi)τ

〈1〉
h

)
·
(
R(Θk)τ〈3〉

h

)
Φ(3)

i j (Ψi,Θk,φh)=
(
R(Ψi)τ

〈2〉
h

)
·
{
sinφh

(
R(Θk)τ〈2〉

h

)
+cosφh

(
R(Θk)τ〈3〉

h

)}
(5.4)

Here, τ〈l〉
h ∈ R3 (l = 1,2,3) are the unit vectors representing a reference frame of hinge h (=

1, . . . , NH) in the initial state.
The unconstrained components of Uk and Θk for all nodes, the components of Vi and Ψi

for all members, and φh for all hinges are assembled into vectors U ∈ R6NN−NB , V ∈ R6NM ,
and φ ∈ RNH , respectively. These vectors are combined into a generalized displacement
vector W ∈ RNW defined as W = (UT, VT, φT)T whose number of components is calculated
as NW = 6NN − NB +6NM + NH. The translational and rotational incompatibility vectors
∆Ui j and ∆Θi j in Eqs. (5.1), (5.2), and (5.3) for all the member ends are combined into
an incompatibility vector G(W) ∈ RNG which is regarded as the nonlinear function of W
and whose number of components is NG = 12NM. Then the compatibility equations are
represented in a vector form as follows:

G(W)= 0 (5.5)

Note that Eq. (5.5) is the same as Eq. (2.38) in Chapter 2.
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5.3 Energy minimization for equilibrium path analysis

This section presents an energy minimization problem and a method to solve it for the anal-
ysis of the equilibrium path and stability of the equilibrium state. The analysis is carried
out in the case where nodal loads are applied to a frame model with rotational springs in-
troduced at the hinges. The members of a frame model are assumed to be rigid, and the
total potential energy of a frame model is considered with respect to the strain energy of the
springs and the work by the nodal loads. The variables of the energy minimization problem
are the generalized displacements defined in Chapter 2 and Section 5.2. A load factor is de-
noted by Λ, and the pair (W, Λ) is referred to as the equilibrium point when the generalized
displacement vector W minimizes the total potential energy. An equilibrium path is defined
as a curve in the space of the load factor and the generalized displacements which is the
trajectory drawn by the equilibrium points. In the following, the total potential energy is
regarded to be zero at W = 0 while the initial displacement for the equilibrium analysis is
assigned as W = W0 = (UT

0 , VT
0 , φT

0 )T; i.e., the initial displacement vector for the analysis
is not necessarily equal to zero. This initial displacement is intended to assign the initial
imperfection to avoid the multiple bifurcation at the flat state.

5.3.1 Formulation of energy minimization problem

Let ΛPU ∈ R6NN−NB denote the nodal load vector applied to the unconstrained degrees of
freedom of the nodal displacement where PU ∈ R6NN−NB is a constant vector. In this study,
the increments of the rotation angles of the hinges, which are assembled into φ, may be
different from the rotation angles of the springs, and the assemblage of the residual rotation
angles of the springs at the initial state W = W0 is represented by φ̃ ∈ RNH . Therefore, the
rotation angles of the springs at W can be denoted by φ− φ̃. If they are set to zero at
the initial state W = W0, φ̃ is assigned as φ̃ = φ0. Here, KH ∈ RNH×NH is defined as the
diagonal matrix whose (h,h) component is the rotational stiffness Kh of the spring at hinge
h (= 1, . . . , NH). In a similar manner as Eq. (3.59) in Chapter 3, the total potential energy
with the constant load factor Λ is defined as Π

φ

Λ(φ,U) which is the function of φ and U as
follows:

Π
φ

Λ(φ,U)= 1
2

(φ− φ̃)TKH(φ− φ̃)−UT(ΛPU) (5.6)

To write the total potential energy as the function of a generalized displacement vector W,
the following constant vectors and matrix are defined:

W̃=
(

0ND−NH

φ̃

)
∈RNW

P=
(

PU

06NM+NH

)
∈RNW

K=
[

O(NW−NH)×(NW−NH) O(NW−NH)×NH

ONH×(NW−NH) KH

]
∈RNW×NW
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Then, incorporating W = (UT, VT, φT)T, the total potential energy can be reformulated as
the function of the generalized displacement vector W as follows:

ΠΛ(W)= 1
2

(
W−W̃

)TK
(
W−W̃

)−WT(ΛP) (5.7)

When the load factor Λ is constant, the equilibrium point is determined as the station-
ary point of the total potential energy ΠΛ(W) with respect to the generalized displacement
W. Therefore, the equilibrium state which obeys the exact rigid-folding motion under the
constant nodal load ΛPU is obtained as the solution (stationary point) of the following opti-
mization problem whose variables are the components of W:min.

W
ΠΛ(W)

s.t. G(W)= 0
(5.8)

In this study, general contact between nodes and members is neglected, however, it is con-
firmed that no contact occurs along the equilibrium path of the examples shown in Sec-
tion 5.6.

5.3.2 Augmented Lagrangian method

First, the stationary conditions of Problem (5.8) are formulated with respect to the con-
ventional Lagrangian. The (conventional) Lagrangian of Problem (5.8) is defined with the
Lagrange multiplier λ ∈RNG as

L(W,λ)=ΠΛ(W)+G(W)Tλ (5.9)

As in the similar manner to Chapter 2, the compatibility matrix is defined as the function
of W and denoted by Γ(1)(W) ∈ RNG×NW whose (i, j) component is ∂G i(W) /∂Wj where G i(W)
and Wj are the i-th component of G(W) and the j-th component of W, respectively. Then,
the gradient of the Lagrangian L(W,λ) with respect to W is written as follows:

∂L(W,λ)
∂W

= dΠΛ(W)
dW

+Γ(1)(W)Tλ

=K
(
W−W̃

)−ΛP+Γ(1)(W)Tλ
(5.10)

The detailed calculation of Γ(1)(W) is shown in Appendix D. When W∗ and λ∗ are the solu-
tion and the corresponding Lagrange multiplier of Problem (5.8), respectively, they satisfy
the following stationary conditions:

∂L(W∗,λ∗)
∂W

=K
(
W∗−W̃

)−ΛP+Γ(1)(W∗)Tλ∗ = 0 (5.11)

∂L(W∗,λ∗)
∂λ

=G(W∗)= 0 (5.12)

Next, the process of solving the optimization problem (5.8) by the augmented Lagrangian
method (ALM) [89, 90] is presented. Let cp ∈ R denote the positive penalty parameter, and
the augmented Lagrangian Lc(W) is defined as follows:

Lc(W)=ΠΛ(W)+G(W)Tλ+ cp

2
G(W)TG(W)

= 1
2

(
W−W̃

)TK
(
W−W̃

)−WT(ΛP)+G(W)T
(
λ+ cp

2
G(W)

) (5.13)
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In the ALM, the Lagrange multiplier λ is regarded to be constant, and the augmented
Lagrangian Lc(W) is the function of only W. The augmented Lagrangian Lc(W) has an ad-
ditional penalty term (cp /2)G(W)TG(W) compared to the conventional Lagrangian L(W,λ)
defined as Eq. (5.9). This penalty term contributes to the convergence of the method. Ac-
cording to Eq. (5.13), the gradient of Lc(W) with respect to W can be calculated as follows:

dLc(W)
dW

=K
(
W−W̃

)−ΛP+Γ(1)(W)T
(
λ+ cpG(W)

)
(5.14)

Therefore, W∗ and λ∗ satisfying Eqs. (5.11) and (5.12), which are the solution and the corre-
sponding Lagrange multiplier of Problem (5.8), respectively, satisfy the following equation:

dLc(W∗)
dW

=K
(
W∗−W̃

)−ΛP+Γ(1)(W∗)T
(
λ∗+ cpG(W∗)

)= 0 (5.15)

Hence, W∗ is the solution to the following optimization problem with the Lagrange multi-
plier λ∗ which corresponds to a solution of Problem (5.8):

min.
W

Lc(W) (5.16)

Conversely, if W̄ is the solution of Problem (5.16) and satisfies the compatibility equa-
tion (5.5), it satisfies both the stationary condition of Problem (5.16) represented by Eq. (5.15)
and the stationary conditions of Problem (5.8) represented by Eqs. (5.11) and (5.12) where
λ∗ is the Lagrange multiplier corresponding to a solution of Problem (5.8). Therefore, W̄ is
also the solution of Problem (5.8), and the equilibrium point can be obtained by solving the
optimization problem (5.16) and checking that the solution satisfies the compatibility equa-
tions instead of solving the optimization problem (5.8) directly. Note that the load factor Λ

is given and constant in the process of obtaining an equilibrium point by the ALM.
Although the appropriate Lagrange multiplier λ∗ corresponding to the solution to Prob-

lem (5.8) is unknown, it can be estimated by solving problem (5.16) successively while up-
dating λ as follows [89,90]:

λ←λ+ cpG(W̄)

The magnitude of the penalty parameter cp affects the convergence of the above update
process, and it is preferable to be adjusted automatically in the process of the ALM. In this
study, cp is updated by the following method proposed by Birgin and Martínez [90]. In
the k-th iteration of the process of the augmented Lagrangian method, the values of the
generalized displacement W, the Lagrange multiplier λ, and the penalty parameter cp are
denoted by W(k), λ(k), and c(k)

p , respectively. The function C(W(k)) is defined as

C(W(k))= 1
2

G(W(k))TG(W(k))

In addition, the binary function O(W(k),λ(k)) that indicates convergence of the optimization
problem (5.16) with sufficient small error in Eq. (5.15) is defined as

O(W(k),λ(k))=
1 (Optimization process is converged)

0 (Otherwise)
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Algorithm 5.1 Augmented Lagrangian method

Input: W(0), λ(1), ϵtol > 0, c̄p > 0, 0< cmin < cmax, γ> 1, 0≤α≤ 1
Output: W∗ =W(k), λ∗ =λ(k)

1: k ← 1, βk ← 0,
c(k)

p ←min
{
max

{
cmin, c̄p

max{1,Π(W(0))}
max{1,C(W(0))}

}
, cmax

}
2: while O(W(k),λ(k))= 0 and max

i
|G i(W(k))| > ϵtol do

3: Solve Problem(5.16) with λ=λ(k), and let the solution be W(k).
4: λ(k+1) ←λ(k) + c(k)

p G(W(k))
5: if k = 1 then
6: βk+1 ←βk,

cp(k+1)←min
{
max

{
cmin, c̄p

max{1,Π(W(k))}
max{1,C(W(k))}

}
, cmax

}
7: else if max

i
|G i(W(k))| ≤ ϵtol then

8: if k ≥ 3 and max
i

|G i(W(k))| ≤ ϵtol and O(W(k−1),λ(k−1))=O(W(k),λ(k))= 0 then
9: βk+1 ←βk +1,

ca ←min{γβk cmin, 1}, cb ←max{γ−βk cmax, 1},
c(k+1)

p ←min
{
max

{
ca, c̄p

max{1,Π(W(k))}
max{1,C(W(k))}

}
, cb, c(k)

p

}
10: else
11: βk+1 ←βk, c(k+1)

p ← c(k)
p

12: end if
13: else
14: βk+1 ←βk

15: if ‖G(W(k))‖ ≤α‖G(W(k−1))‖ then
16: c(k+1)

p ← c(k)
p

17: else
18: c(k+1)

p =max{γc(k)
p , γβk cmin}

19: end if
20: end if
21: k ← k+1
22: end while

The update process of the Lagrange multiplier λ and the penalty parameter cp is repeated
until the maximum absolute value among the components of the incompatibility vector
G(W) is less than or equal to the tolerance ϵtol > 0. The process of obtaining the solution W∗

and the corresponding Lagrange multiplier λ∗ of Problem (5.8) using the ALM is presented
in Algorithm 5.1. As stated in Ref. [93], there is some flexibility in the choice of the initial
value of λ since the ALM has good global convergence property and robustness under the
degenerate constraints.
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5.3.3 Equilibrium path tracing by the incremental loading analysis

The equilibrium path is traced by iteratively obtaining the equilibrium points by solving
Problem (5.8) while updating the load factor as Λ ← Λ+ dΛ (dΛ > 0), i.e., the equilib-
rium path is traced by the incremental loading analysis. The initial value of the load
factor increment is denoted by dΛ0, and if the ALM does not terminate with the suf-
ficient accuracy, dΛ decreases to find an equilibrium point. Defining a and b (0 < a <
1, b > 1) as the user-specified update ratios of the load factor increment, dΛ is updated
as dΛ←max{b(dΛ), dΛ0}, if the ALM terminates successfully; otherwise, dΛ is reduced as
dΛ← a(dΛ). The equilibrium path analysis starts from Λ = 0 and continues until one of
the following termination conditions is satisfied:

• The specified component Wi of W reaches the target value Wmax
i or Wmin

i (Wmin
i <

Wmax
i ).

• The load factor Λ is greater than the specified maximum value Λmax > 0.

• The load factor increment dΛ is less than the specified minimum value dΛmin > 0.

The first two conditions indicate that the equilibrium path analysis has progressed to the
user-specified degree. On the other hand, third condition implies that the equilibrium point
cannot be found with a load factor greater than that of the last step. In this study, the con-
straints for avoiding general contact between nodes and members are not incorporated in
Problem (5.8), and therefore, the presence of contact is checked manually after the process
presented above is terminated.

5.4 Stability of equilibrium state

In this section, the stability of an equilibrium point is investigated. According to the stabil-
ity theories based on the energy principle [94], the equilibrium point at a given load factor
Λ is stable if the solution to the energy minimization problem (5.8) is an isolated local min-
imum. Assume that W̄ and λ are the local minimum solution of Problem (5.16) and the
corresponding Lagrange multiplier, respectively, with a given load factor Λ, and G(W̄) = 0
is satisfied with the specified tolerance ϵtol. When a neighborhood of W̄ is represented by
W̄+δW̄ (δW̄ ∈RNW), the inequality Lc(W̄)< Lc(W̄+δW̄) holds for any δW̄. Furthermore, if a
neighborhood is restricted to the range satisfying G(W̄+δW̄)= 0, the equation ΠΛ(W̄+δW̄)=
Lc(W̄+δW̄) holds for any δW̄ from Eq. (5.13). Accordingly, ΠΛ(W̄) < ΠΛ(W̄+δW̄) always
holds, and the isolated local minimum solution of Problem (5.16) satisfying the compati-
bility equation (5.5) is also the isolated local minimum solution of Problem (5.8) [89]; i.e.,
(W̄, Λ) is a stable equilibrium point. When W̄ satisfies G(W̄)= 0, it is an isolated local min-
imum solution of Problem (5.16), if and only if the stationary condition dLc(W̄) /dW = 0 is
satisfied and the Hessian matrix of the augmented Lagrangian d2Lc(W̄) /dW2 ∈RNW×NW is
positive definite [95]. The Hessian matrix of Lc(W) is a matrix whose ( j,k) component is
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∂2Lc(W) /∂Wj∂Wk and can be written as follows if G(W)= 0 is satisfied:

d2Lc(W)
dW2 =K+λTΓ(2)(W)+ cpΓ

(1)(W)TΓ(1)(W) (5.17)

Here, Γ(2)(W) is the order-three tensor of size NG × NW × NW whose (i, j,k) component is
∂2G i(W) /∂Wj∂Wk, and the second term in the right-hand side of Eq. (5.17) is calculated as

λTΓ(2)(W)=
NG∑
i=1

λi
d2G i(W)

dW2 =
NG∑
i=1

λi



∂2G i(W)
∂W1∂W1

. . .
∂2G i(W)
∂W1∂WNW

...
. . .

...

∂2G i(W)
∂WNW∂W1

. . .
∂2G i(W)

∂WNW∂WNW


(5.18)

From the above, relationship between the stability of an equilibrium point and the aug-
mented Lagrangian can be summarized as follows:

Property 5.1. The equilibrium point (W̄, Λ) is stable for a given load factor Λ, if the solu-
tion W̄ of Problem (5.16) satisfies the compatibility equation (5.5) and the Hessian matrix
d2Lc(W̄) /dW2 is positive definite, where λ is the Lagrange multiplier obtained by the ALM.
Conversely, if d2Lc(W̄) /dW2 is not positive definite, (W̄, Λ) is an unstable equilibrium point.
In particular, if one or more eigenvalues of d2Lc(W̄) /dW2 are equal to zero, the correspond-
ing load factor and the equilibrium point are referred to as the critical load factor and the
critical point, respectively. In addition, the eigenvector corresponding to a zero eigenvalue
of d2Lc(W̄) /dW2 is called the critical eigenmode. A critical point is a candidate for a bifur-
cation or limit point.

5.5 Critical eigenmode and infinitesimal mechanism

The relationship between a critical eigenmode and the infinitesimal mechanism of a frame
model is investigated. Since it is not straightforward to discover the relationship analyti-
cally, it is investigated numerically in this study. Consider a critical point (W̄, Λcr) where
Λcr is a critical load factor. The critical eigenmode corresponding to the critical load factor
Λcr is denoted by wcr ∈ RNW , which satisfies

(
d2Lc(W̄) /dW2)

wcr = 0. On the other hand, a
first-order infinitesimal mechanism W′ ∈ RNW and a second-order infinitesimal mechanism
W′′ ∈RNW at an equilibrium point (W̄, Λcr) satisfy following equations [33,40]:

Γ(1)(W̄)W′ = 0 (5.19)

Γ(1)(W̄)W′′+
[
Γ(2)(W̄)W′

]
W′ = 0 (5.20)

In the following, Γ(1)(W̄) and Γ(2)(W̄) are always evaluated at W̄, and the argument (W̄)
is omitted for a simple expression. Here,

[
Γ(2)(W̄)W′]W′ is the NG-dimensional vector

whose i-th component is W′T (
d2G i /dW2)

W′. The degrees of kinematic indeterminacy ND
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and statical indeterminacy NS are equal to NW − rank
(
Γ(1)) and NG − rank

(
Γ(1)), respec-

tively [40]. The left and right singular vectors corresponding to the zero singular values of
the compatibility matrix Γ(1) are denoted by υ1, . . . ,υNS ∈RNG and η1, . . . ,ηND

∈RNW , respec-
tively. Note that υ1, . . . ,υNS and η1, . . . ,ηND

are referred to as the first-order self-equilibrium
modes and the first-order infinitesimal mechanism modes, respectively [33, 40]. In addi-
tion, the remaining left and right singular vectors are denoted by υNS+1, . . . ,υNG ∈ RNG and
ηND+1, . . . ,ηNW

∈ RNW , respectively, which correspond to the positive singular values. Note
that υ1, . . . ,υNG and η1, . . . ,ηNW

are the orthonormal bases of the NG-dimensional vector
space and the NW-dimensional vector space, respectively. Then, wcr can be represented as
the linear combination of η1, . . . ,ηNW

with the coefficients αcr
1 , . . . ,αcr

NW
∈R as follows:

wcr =αcr
1 η1 +·· ·+αcr

NW
ηNW

(5.21)

When wcr and η1, . . . ,ηNW
are given, the coefficients αcr

i (i = 1, . . . , NW) are determined as

αcr
i =wT

crηi (5.22)

According to Eqs. (5.19) and (5.21), wcr is the first-order infinitesimal mechanism, if
and only if αcr

i is equal to zero for any i = ND +1, . . . , NW; i.e., wcr is represented as wcr =
αcr

1 η1 + ·· · +αcr
ND

ηND
. Therefore, the value of αcr

i is evaluated in the examples shown in
Section 5.6. Considering the numerical error, wcr is determined to be the first-order in-
finitesimal mechanism if the values of |αcr

i | for i = ND +1, . . . , NW are sufficiently smaller
than those of |αcr

i | for i = 1, . . . , ND. As shown in Section 5.6, it can be confirmed that the
critical eigenmodes are the first-order infinitesimal mechanism. Furthermore, if wcr is the
first-order mechanism, the necessary and sufficient condition for existence of the second-
order infinitesimal mechanism W′′ which satisfies Γ(1)W′′+ [

Γ(2)(W̄)W′]W′ = 0 is that the
following equation holds for any i = 1, . . . , NS [33,40]:

υTi

[
Γ(2)(W̄)W′

]
W′ =W′T

[
υTi Γ

(2)
]
wcr = 0 (5.23)

Appendix E provides the detailed explanation of this condition. Therefore, the value of
βcr

i ∈R which is defined as follows is evaluated for i = 1, . . . , NS:

βcr
i = υTi

[
Γ(2)(W̄)W′

]
W′ =wT

cr

[
υTi Γ

(2)
]
wcr (5.24)

If βcr
i is equal to zero for any i = 1, . . . , NS, the first-order infinitesimal mechanism wcr can be

extended to the second-order infinitesimal mechanism. In the similar manner as the eval-
uation of αcr

i , βcr
i is regarded to be zero if the values of |βcr

i | for i = 1, . . . , NS are sufficiently
smaller than those of |βcr

i | for i = NS +1, . . . , NG.

5.6 Examples

First, an example of a three-node two-member planar frame, for which an analytical solu-
tion can be easily obtained, is presented in Section 5.6.1. Validity of the proposed method is
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Figure 5.2: Configuration and variables of the planer two bar frame.

verified by comparing the results obtained by the proposed method with the analytical solu-
tion. In Sections 5.6.2 and 5.6.3, examples are shown for the analysis of a waterbomb cell,
which is a unit of the waterbomb tessellation and has a rigid-foldable crease pattern. Each
analysis is carried out by using a Python 3.9 program. The optimization problem (5.16) is
solved using an NLP software library L-BFGS-B [96] available in Python library SciPy. The
units of length and force are omitted because they do not have an effect on the result. The
parameters and the termination conditions of the equilibrium path analysis are specified
for each section. Note that the examples described in this chapter are the same as those in
Ref. [31].

5.6.1 Planer two bars model

(1) Analytical solution

As shown in Fig. 5.2, consider a three-node two-member planar frame whose length of each
member is 1 and each hinge is parallel to the z-axis, i.e., perpendicular to the paper. The
rotational stiffness of each spring installed into the hinge is 1. The frame is straight along
with y-axis at the initial state, and the translational displacements of node k (= 1,2) in x-
and y-directions are denoted by uk and vk, respectively. Let θi denotes the rotation angle of
member i (= 1,2) which is positive when the member rotates counterclockwise as shown in
Fig. 5.2. The load factor is denoted by Λ, and a load of magnitude Λ is applied to node 2 in
the negative direction of the y-axis. In this section, only translations of nodes and rotations
of members are used to express the compatibility equations for the simple calculation, and
the generalized forms of displacement vector and the compatibility equations defined in
Section 5.2 are not used for obtaining the analytical solution. Accordingly, the compatibility
equations which are to be satisfied by the nodal displacements and the member rotation
angles are formulated as follows:

u1 =−sinθ1

v1 = cosθ1 −1

u2 =−sinθ1 −sinθ2
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v2 = cosθ1 +cosθ2 −2

Since the total potential energy of the frame can be written in a polynomial form when
θ1 and θ2 are treated as the independent variables, the total potential energy ΠΛ(θ1,θ2) is
formulated as the function of θ1 and θ2 as follows:

ΠΛ(θ1,θ2)= 1
2
θ2

1 +
1
2

(θ2 −θ1)2 +Λv2

= 1
2

(2θ2
1 +θ2

2 −2θ1θ2)+Λ(cosθ1 +cosθ2 −2)

The Hessian matrix of ΠΛ(θ1,θ2) with respect to θ1 and θ2 can be calculated as follows:
∂2ΠΛ

∂θ2
1

∂2ΠΛ

∂θ1∂θ2
∂2ΠΛ

∂θ1∂θ2

∂2ΠΛ

∂θ2
2

=
[

2−Λcosθ1 −1
−1 1−Λcosθ2

]

When θ1 = θ2 = 0, the determinant of the Hessian matrix of ΠΛ(θ1,θ2) is calculated as
follows:

det


∂2ΠΛ

∂θ2
1

∂2ΠΛ

∂θ1∂θ2
∂2ΠΛ

∂θ1∂θ2

∂2ΠΛ

∂θ2
2

=Λ2 −3Λ+1=
(
Λ− 3−p

5
2

)(
Λ− 3+p

5
2

)

Since the determinant of the Hessian matrix of ΠΛ(θ1,θ2) is zero if an equilibrium point is a
critical point, two critical load factors Λcr1 and Λcr2 can be derived as follows at θ1 = θ2 = 0:

Λcr1 = 3−p
5

2
' 0.382

Λcr2 = 3+p
5

2
' 2.618

(5.25)

Note that the equilibrium can be achieved for any Λ at θ1 = θ2 = 0. The eigenvectors xcr1 and
xcr2 of the Hessian matrix of ΠΛ(θ1,θ2) corresponding to zero eigenvalues at Λ=Λcr1, Λcr2

are calculated as follows:

xcr1 = 1√
10−2

p
5

(
−1+p

5
2

)
'

(
0.526
0.851

)

xcr2 = 1√
10+2

p
5

(
−1−p

5
2

)
'

(
−0.851
0.526

) (5.26)

(2) Stability of two bars model at undeformed state

Here, the Hessian matrix of the augmented Lagrangian formulated in Section 5.3 is evalu-
ated for the stability analysis of the planer two bars model, and the validity of the proposed
method is confirmed. The generalized displacement vector W consisting of the displace-
ments of nodes and members and the rotation angle increments of hinges is used in this
section. It is set to zero at the initial shape θ1 = θ2 = 0 of the frame shown in Fig. 5.2,
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Figure 5.3: Smallest and second smallest eigenvalues of the Hessian matrix of the aug-
mented Lagrangian of the two bar model.
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Figure 5.4: Critical eigenmodes of the two bar model at W= 0; (a) First critical eigenmode
at Λ= 0.382, (b) Second critical eigenmode at Λ= 2.618.

and the stability of the frame is evaluated at W = 0. The Lagrange multiplier λ in the
augmented Lagrangian Lc(0) is calculated from dLc(0) /dW= 0 as follows:

λ̄=−Λ(
Γ(0)+

)TP (5.27)

where the superscript + denotes the Moore-Penrose inverse [63]. Note that the frame is in
the equilibrium state for any Λ at W = 0 if λ is determined from Eq. (5.27). Therefore, the
critical load factors are investigated at W = 0 by successively increasing the load factor Λ

and evaluating the eigenvalues of the Hessian matrix of the augmented Lagrangian. Since
the penalty parameter cp in the augmented Lagrangian can be any value at the equilibrium
point, it is fixed to c = 1×106 in this section for simplicity.

Figure 5.3 shows the smallest and second smallest eigenvalues of the Hessian matrix of
Lc(0) when the load factor Λ is sequentially increased from 0 to 3. As shown in the figure, an
eigenvalue of the Hessian matrix of Lc(0) becomes zero when Λ'Λcr1, Λcr2 where Λcr1 and
Λcr2 calculated as Eq. (5.25, and the critical load factors obtained by the proposed method
coincide with the analytical solution. In addition, the critical eigenmodes corresponding the
critical load factors and the values of θ1 and θ2 calculated from the eigenmodes are shown in
Fig. 5.4. It can easily be confirmed that the eigenmodes (0.224,0.362)T and (0.348,−0.215)T
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Figure 5.5: Nodal displacements with the initial imperfection corresponding to the first
critical eigenmode; (a) wini = 0.01, (b) wini = 0.05.

obtained from the Hessian matrix of Lc(0) are identical (proportional) to xcr1 and xcr2 in
Eq. (5.26), respectively, which are obtained analytically. From above results, it is expected
that the stability of the equilibrium state can be determined from the eigenvalue analysis
of the Hessian matrix of the augmented Lagrangian.

(3) Equilibrium path analysis of two bars model with initial imperfection

The equilibrium path analysis is performed by increasing the magnitude of load shown in
Fig. 5.2. The initial displacement W0 of the analysis is determined by adding an initial
imperfection in proportion to the eigenmodes shown in Fig. 5.4 to the straight state W = 0,
and the analysis starts from W=W0. The two scales of imperfection are considered so that
the maximum nodal translational displacement wini is wini = 0.01 and 0.05 for each mode.
The rotation angles of the springs introduced in the hinges are set to zero at W=W0; i.e., φ̃
is set to φ0 so that the strain energy of the springs in Eq. (5.7) is equal to zero at W = W0.
The initial value of Lagrange multiplier vector and the tolerance of the absolute value of an
error in incompatibility vector G(W) are assigned as λ0 = 0 and ϵtol = 1×10−8, respectively.
The load factor is sequentially increased from Λ= 0 by dΛ0 = 5.0×10−3, and the equilibrium
path analysis terminates just before v2 shown in Fig. 5.2 reaches −2. For detailed investi-
gation, the increment of the load factor is reduced from 5.0×10−3 when v2 approaches −2.
Since the process of the ALM is stable and shows good convergence, the penalty parameter
is fixed at cp = 1×106 for simplicity. It is confirmed that the eigenvalues of the Hessian ma-
trix of the augmented Lagrangian change slightly if the updating algorithm of the penalty
parameter in Algorithm 5.1 is used.

Figures 5.5 and 5.6 show the nodal displacements obtained from the initial imperfec-
tions based on the first and second critical eigenmodes shown in Fig. 5.4, respectively. When
the initial imperfection corresponding to the second eigenmode is given with wini = 0.01, v2

suddenly exceeds −2 from the initial value as shown in Fig. 5.6(a). Hence, the termination
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Figure 5.6: Nodal displacements with the initial imperfection corresponding to the second
critical eigenmode; (a) wini = 0.01, (b) wini = 0.05.
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Figure 5.7: Smallest eigenvalues of the Hessian matrix of the augmented Lagrangian with
the initial imperfection corresponding to the first critical eigenmode; (a) Over-
all view, (b) Enlarged view near the critical load factor.
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Figure 5.9: Configuration of the analysis model, load, and boundary conditions; The frame
model is represented by bold lines, and the edges of waterbomb cell are repre-
sented by dotted lines.

condition with respect to v2 is ignored in this example, and the equilibrium path analysis
proceeds until the displacement becomes visible. As shown in Fig. 5.5, when the initial
imperfection is based on the first critical eigenmode, the displacements drastically increase
around Λcr1 ' 0.382, and the equilibrium path shows a feature like the Euler buckling of a
cantilever column. The values of the eigenvalues of the Hessian matrix of the augmented
Lagrangian are shown in Figs. 5.7 and 5.8. It is observed from Fig. 5.7 that the smallest
eigenvalue of the Hessian matrix on the equilibrium path takes its minimum value near
Λcr1 and approaches zero. In the other region, the smallest eigenvalue is positive, which
confirms that the equilibrium path is stable. On the other hand, when the initial imper-
fection is based on the second eigenmode, almost no displacement occurs around Λ =Λcr1,
and the displacement progresses rapidly at a point where the load factor exceeds Λcr1 by a
certain amount as shown in Fig. 5.6. Figure 5.8 shows that the smallest eigenvalue of the
Hessian matrix on the equilibrium path becomes zero at Λ'Λcr1 and takes negative value
until the displacement occurs. Therefore, the equilibrium state is unstable in the range of
Λ>Λcr1.

5.6.2 Waterbomb cell (1)

(1) Stability of waterbomb cell (1) at fully developed state

Equilibrium path of the waterbomb cell shown in Fig. 5.9 is investigated. The frame model’s
number of nodes, members, and hinges are NN = 22, NM = 22, and NH = 6, respectively.
Therefore, the number of components of the generalized displacement vector and the in-
compatibility vector are calculated as NW = 264 and NG = 264, respectively. As shown in
Fig. 5.9, the nodal load is applied to node A indicated by blue star in the positive x-direction.
The translational displacements of nodes are constrained so that the rigid-body motion of
the entire model is restricted. The rotational stiffness of each spring installed in the hinge
is assigned to be proportional to the length of the corresponding crease line; 1 for a crease
line of length 5 and

p
2 for a crease line of length 5

p
2. The generalized displacement vector

W is set to zero at the perfectly flat and developed state where all the nodes are on the xy-
plane. At the flat state W= 0, the degrees of kinematic and static indeterminacy calculated
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Figure 5.10: Smallest to the fourth smallest eigenvalues of the Hessian matrix of the aug-
mented Lagrangian at W= 0.
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Figure 5.11: Critical eigenmodes at W = 0; (a) First critical eigenmode at Λ ' 1.137, (b)
Second critical eigenmode at Λ ' 2.704, (c) Third critical eigenmode at Λ '
2.909.

from the rank of the compatibility matrix are both 4. Since the equilibrium state can be
realized for any Λ at W = 0, the critical load factor is investigated at W = 0 by increasing
the load factor and evaluating the eigenvalues of the Hessian matrix of the augmented La-
grangian Lc(0). As in Section 5.6.1, the Lagrange multiplier for each load factor is obtained
from Eq. (5.27), and the penalty parameter is fixed at cp = 1×106.

Figure 5.10 shows the four smallest eigenvalues of the Hessian matrix of the augmented
Lagrangian Lc(0) when the load factor Λ is increased from 0 to 5. The fifth smallest eigen-
value is about 10000 times larger than the fourth smallest one. Three critical load factors
are obtained as Λcr1 ' 1.137, Λcr2 ' 2.704, and Λcr3 ' 2.909, respectively. The critical eigen-
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Figure 5.13: Values of |αcr
i | and |βcr

i | for the second critical eigenmode; (a) Values of |αcr
i |,

(b) Values of |βcr
i |.

modes at Λ =Λcr1, Λcr2, Λcr3 are shown in Fig. 5.11. Note that the number of critical load
factors is equal to the degrees of kinematic indeterminacy at the folded state to be inves-
tigated in the next subsection. The obtained critical points are the symmetric bifurcation
points; i.e., a critical eigenmode wcr satisfies Lc(wcr)= Lc(−wcr).

Next, the values of |αcr
i | defined in Eq. (5.22) and the values of |βcr

i | defined in Eq. (5.24)
are calculated for each critical eigenmode to investigate the relationship between the crit-
ical eigenmodes and the first-order infinitesimal mechanism. The values calculated for all
the singular vectors of the compatibility matrix at W = 0 are shown in Figs. 5.12–5.14.
Note again that a critical eigenmode is the first-order infinitesimal mechanism if the val-
ues of |αcr

i | corresponding to the non-zero singular values, which are indicated by red + in
Figs. 5.12(a)–5.14(a), are sufficiently smaller than that corresponding to the zero singular
values, which are indicated by blue × in Figs. 5.12(a)–5.14(a). In addition, a critical eigen-
mode can be extended to the second-order infinitesimal mechanism if the values of |βcr

i |
corresponding to the zero singular values, which are indicated by blue × in Figs. 5.12(b)–
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5.14(b), are sufficiently smaller than that corresponding to the non-zero singular values,
which are indicated by red + in Figs. 5.12(b)–5.14(b). As shown in Figs. 5.12(a)–5.14(a),
the values of |αcr

i | corresponding to all the non-zero singular values are less than 1/104 of
those corresponding to zero singular values and approximately equal to zero. Therefore,
each critical eigenmode can be regarded as the first-order infinitesimal mechanism. On the
other hand, the values of |βcr

i | corresponding to the zero singular values are not equal to
zero as shown in Figs. 5.12(b)–5.14(b), and the critical modes cannot be extended to the
second-order mechanism.

(2) Equilibrium path analysis of waterbomb cell (1) with initial imperfection

The equilibrium path analysis is carried out for the waterbomb cell shown in Fig. 5.9. The
initial imperfection is assigned by scaling each eigenmode shown in Fig. 5.11, and the
three scales of imperfection modes are adopted so that the maximum nodal translation
is wini = 0.05, 0.1, 0.5, respectively. The initial displacement after assigning the imperfec-
tion is represented by W0, and each analysis starts from W = W0. The maximum absolute
value among the components of the incompatibility vector G(W0) is about 1.07×10−2 which
corresponds to the translational displacement and is about 1/1000 of the span of the model.
As in the case of the two bar model, the rotation angles of the hinges at W0 are assigned to
φ̃ to regard the rotation angles of the springs at W=W0 as the undeformed state φ− φ̃= 0.
The initial value of λ is given as λ = 0 since it approximately satisfy the stationary condi-
tions of Problem (5.16) and can be a good estimation of the multiplier corresponding to the
stationary point of problem (5.8) at W=W0 and Λ= 0. The tolerance of the maximum error
of G(W) is set as ϵtol = 1×10−7, and the penalty parameter cp is updated automatically in
accordance with Algorithm 5.1 for the stability of the equilibrium path analysis. The initial
increment of the load factor is dΛ0 = 5.0×10−3, and the update ratios of dΛ are a = 0.125
and b = 2.0. Λmax = 10.0 and dΛmin = 1×10−10 are assigned as the maximum value of the
load factor and the minimum value of the load factor increment, respectively. The trans-
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Figure 5.15: Displacement of node A in the x-direction with three different initial imper-
fection modes with three different magnitudes, respectively.

lational displacement in the x-direction of node A indicated by the blue star in Fig. 5.9 is
referred for the termination condition of the equilibrium path analysis with Wmax

i = 10 and
Wmin

i =−1.
The translational displacement of node A in the x-direction is shown in Fig. 5.15 for

the analyses with nine different initial imperfections. Figure. 5.16 shows the transition of
the shape of the waterbomb cell on each equilibrium path with wini = 0.05. The deformed
shapes at the end of the analysis are similar for all examples except for the symmetry about
the xy-plane. The largest absolute value among the components of the compatibility vector
G(W) is less than 1×10−7 throughout each path analysis as shown in Fig. 5.17, and the
obtained equilibrium paths can be regarded as the rigid-folding deformation paths.

In each case, the displacement of node A significantly progresses around the first critical
load factor Λcr1 ' 1.137. As shown in Fig.5.15, the displacement progresses gradually before
the load factor reaches the first critical load factor when the initial imperfection based on
the first eigenmode is applied. On the other hand, the displacement scarcely progresses
until the load factor exceeds the first critical load factor when the initial imperfection based
on the second or third eigenmode is applied. The deformed shapes at the end of the analysis
are similar for all cases except for the symmetry about the xy-plane. This similarity of the
final shapes is attributed to the isolated second and third critical load factors which are
significantly larger than the first critical load factor; i.e., the deformation occurs before
the load factor reaches the second and third critical load factors and the load factor is less
than the second and third critical load factors even at the end of the equilibrium path
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Figure 5.16: Deformation process with wini = 0.05 in the equilibrium with the rigid-folding
motion; (a) Imperfection corresponding to the first critical eigenmode, (b) Im-
perfection corresponding to the second critical eigenmode, (c) Imperfection
corresponding to the third critical eigenmode.

analysis. Consequently, the equilibrium paths approximately converge to the bifurcation
path corresponding to the first critical point.

Figures 5.18 and 5.19 show the value of the penalty parameter and the smallest eigen-
value of the Hessian matrix of the augmented Lagrangian on each equilibrium path, re-
spectively. The minimum value of the eigenvalue on each equilibrium path is also plotted
in Fig. 5.19 by × mark. The penalty parameters tend to drastically change in the range
where the load factor is less than the first critical load factor, and the smallest eigenval-
ues change as the penalty parameters change. When the penalty parameter is large, it
indicates that the maximum error of the compatibility equations is slow to reach the ac-
ceptable value. On the other hand, when the penalty parameter is small, the augmented
Lagrangian method converges quickly or the minimization of the augmented Lagrangian
may fail to converge. Therefore, the drastic change of the penalty parameter in the range
Λ < Λcr1 indicates the instability of finding the equilibrium point. Although the smallest
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Figure 5.20: Configuration of the analysis model, load, and boundary conditions.

eigenvalues oscillate in the range Λ <Λcr1, the overall trend is that the eigenvalues have
minima near the first critical load factor. It is reasonable that the equilibrium point with a
small imperfection in the shape of the second or third eigenmode is difficult to find.

5.6.3 Waterbomb cell (2)

(1) Stability of waterbomb cell (2) at fully developed state

Equilibrium path of the waterbomb cell shown in Fig. 5.20 is investigated. The crease pat-
tern and the rotation stiffness of the springs are the same as those of the previous example,
respectively, while the loading and boundary conditions are different. This contributes to
obtaining various deformation patterns of the waterbomb cell. The number of nodes, mem-
bers, and hinges of the frame model are NN = 22, NM = 22, and NH = 6, respectively. Hence,
the generailized dispalcement vector and the incompatibility vector have ND = 264 compo-
nents and NG = 264, respectively. The degrees of kinematic and static indeterminacy are
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Figure 5.21: Smallest to the fourth smallest eigenvalues of the Hessian matrix of the aug-
mented Lagrangian at W= 0.
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Figure 5.22: Critical eigenmodes at W = 0; (a) First critical eigenmode at Λ ' 0.280, (b)
Second critical eigenmode at Λ ' 0.788, (c) Third critical eigenmode at Λ '
3.750.

both 4 at W = 0. As in the previous subsection, the eigenvalues of the Hessian matrix of
the augmented Lagrangian is evaluated to identify the critical load factors at the flat fully
developed state W = 0 by successively increasing the load factor from zero. The penalty
parameter is fixed at cp = 1×106.

The change of the smallest to the forth smallest eigenvalues of the Hessian matrix of
the augmented Lagrangian Lc(0) are shown in Fig. 5.21 when the load factor Λ is increased
from 0 to 5. The fifth smallest eigenvalue is more than 10000 times larger than the fourth
smallest one. The load factor is critical when it is Λ = Λcr1 ' 0.280, Λ = Λcr2 ' 0.788, and
Λ = Λcr3 ' 3.750. Three critical eigenmodes are shown in Fig. 5.22. It is confirmed that
Lc(wcr) = Lc(−wcr) holds and the obtained critical points are the symmetric bifurcation
points.
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Values of |βcr
i |.
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Figure 5.24: Values of |αcr
i | and |βcr

i | for the second critical eigenmode; (a) Values of |αcr
i |,

(b) Values of |βcr
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Figure 5.25: Values of |αcr
i | and |βcr

i | for the third critical eigenmode; (a) Values of |αcr
i |, (b)

Values of |βcr
i |.
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Figure 5.26: Displacement of node A in the x-direction with three different initial imper-
fection modes with three different magnitudes, respectively.

The values of |αcr
i | and |βcr

i | are calculated for all the singular vectors of the compat-
ibility matrix at W = 0 and shown in Figs. 5.23–5.25. As shown in Figs. 5.23(a)–5.25(a),
the values of |αcr

i | corresponding to all the non-zero singular values are less than 1/104 of
those corresponding to zero singular values and approximately equal to zero. Therefore,
each critical eigenmode can be regarded as the first-order infinitesimal mechanism. On the
other hand, the critical modes cannot be extended to the second-order mechanism since the
values of |βcr

i | corresponding to the zero singular values are not equal to zero as shown in
Figs. 5.23(b)–5.25(b).

(2) Equilibrium path analysis of waterbomb cell (2) with initial imperfection

The equlibrium path of the waterbomb cell shown in Fig. 5.20 is traced. The initial im-
perfections are assigned based on the critical eigenmodes shown in Fig. 5.22. The same
conditions as those used in the previus subsection of the analysis of another waterbomb cell
are used except for dΛ0 and Λmax, which are set as dΛ0 = 0.01 and Λmax = 15.0, respectively.
The initial maximum absolute value among the components of G(W0) after assigning the
imperfection is about 1.66×10−2 which corresponds to the component of the translational
incompatibility vector and is about 1/600 of the span of the model. The displacement in the
x-direction of node A indicated by blue star in Fig. 5.20 is used as the reference displace-
ment.

Figure 5.26 shows the relationship between the displacement at node A in the x-direction
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Figure 5.27: Deformation process with wini = 0.05 in the equilibrium with the rigid-folding
motion; (a) Imperfection corresponding to the first critical eigenmode, (b) Im-
perfection corresponding to the second critical eigenmode, (c) Imperfection
corresponding to the third critical eigenmode.

and the value of the load factor. The transition of the shape on each equilibrium path with
wini = 0.05 is shown in Fig. 5.27. As in the previous examples of the waterbomb cell, the
final shapes of the analysis are almost identical except for the symmetry about the xy-plane
since the critical load factors are isolated. The degrees of kinematic and static indetermi-
nacy are both 3 after the out-of-plane deformation occurs. The obtained equilibrium paths
can be regarded as the rigid-folding deformation paths since the largest absolute value
among the components of the compatibility vector G(W) is less than 1×10−7 throughout
each path analysis as shown in Fig. 5.28.

The overall trends of the analysis results are similar to those of the previous exam-
ples. In all the nine cases of initial imperfection, the displacement progresses significantly
around the first critical load factor Λcr1 ' 0.280. A × mark in Fig. 5.30 represents the
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minimum value of the eigenvalue of the Hessian matrix of the augmented Lagrangian on
each equilibrium paths, and all the eigenvalues have minima near the first critical load
factor. In contrast to the previous examples of the waterbomb cell, the load factor exceeds
the second and third critical load factors at the final stage of analysis. However, when Λ

exceeds Λcr1, a finite deformation occurs and all eigenvalues are positive for each equilib-
rium path as shown in Fig. 5.30. Therefore, the equilibrium state is always stable after
the load factor exceeds the first critical load factor. Since the penalty parameters tend to
drastically change, the smallest eigenvalues also oscillate in the range Λ≤Λcr1. Therefore,
the equilibrium state before Λ reaches Λcr1 may be unstable.

5.7 Conclusions

A method of equilibrium path and stability analysis of a rigid origami represented by a
frame model has been proposed in this chapter. An equilibrium state between the nodal
loads and the moments of the springs introduced into the hinges are achieved with the ex-
act rigid-folding motion. The equilibrium path can be uniquely determined locally except
at the critical points by introducing the rotation springs. An equilibrium point is found
by solving the energy minimization problem under the compatibility equations of a frame
model, and an equilibrium path is traced by the incremental loading analysis. The aug-
mented Lagrangian method is adopted to solve the optimization problem since it has good
convergence even if the constraints degenerates. The eigenvalues of the Hessian matrix
of the augmented Lagrangian are investigated at each equilibrium point to evaluate the
stability of the equilibrium state and to find the critical load factor. If the Hessian matrix
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is positive definite at an equilibrium point, the total potential energy is local minimum and
the equilibrium state is stable. Conversely, if the Hessian matrix has a zero eigenvalue,
the equilibrium point is a candidate for a bifurcation or a limit point. The relationship
between the first-order infinitesimal mechanism modes and the critical eigenmodes, which
are the eigenvectors corresponding to the zero eigenvalues of the Hessian matrix is also
numerically investigated for the waterbomb cell examples.

The proposed method was first applied to a planar frame consisting of two members
whose analytical solution can be easily obtained. The critical load factors and the critical
eigenmodes obtained analytically and from the proposed method agree with good accuracy,
and it has been confirmed that the critical load factors that may cause instability in the
equilibrium can be determined by the proposed method. After verifying the validity of the
proposed method, the method was applied to fully developed flat waterbomb cells with two
different loads and boundary conditions. In both cases, three critical load factors are found,
and the number of them is equal to the degrees of kinematic indeterminacy at the folded
state, not at the flat state. All the critical eigenmodes have been numerically confirmed
to be the first-order infinitesimal mechanism while they cannot be extended to the second-
order infinitesimal mechanism. In the equilibrium path analysis, the initial imperfection is
assigned to avoid the multiple bifurcation at the flat state. The three critical eigenmodes at
the flat state are used for each waterbomb cell example to determine the direction of the ini-
tial imperfection, and the three different scales of imperfection are assigned to investigate
the impact of the initial imperfection on the equilibrium path. The out-of-plane deforma-
tion drastically progresses after the load factor exceeds the first critical load factor for each
initial imperfection. Since the critical points are isolated, similar final shapes are obtained
and the equilibrium paths converge to the bifurcation path of the first critical point. From
these results, it can be concluded that the waterbomb cell admits the several deformation
paths for different boundary conditions and realizes the stable equilibrium path regardless
of the initial imperfection except for around the first equilibrium point.

The proposed method only supports the incremental loading analysis at present, and
the equilibrium path may not be fully traced if it contains the limit point where a snap-
thorough behavior is observed. To trace this kind of equilibrium path, it is expected in
future work that the proposed method is extended to include the incremental displacement
method and the arc length method. In addition, the computational cost can be a major
issue in the analysis of a large-scale origami which has many faces and crease lines since
the augmented Lagrangian is minimized using BFGS in this study and the computational
cost of the optimization is proportional to the square of the number of variables which
is approximately determined by the number of faces. Therefore, to reduce the cost, the
number of variables should be reduced by simplifying the structure of the frame model and
by eliminating the dependent variables for the analysis of large-scale origami.
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Chapter 6

Conclusions

The methods of form generation and equilibrium path analysis of a rigid origami are pro-
posed in this thesis. The proposed methods are constructed based on the geometric and
kinematics of the frame model which can represent a rigid origami in a simpler way than
the other models. A form generation method is proposed for surface approximation with
non-regular crease patterns, and it may contribute to enhance the flexibility of the design
of the roofs and facades utilizing a rigid origami. A method of equilibrium path analysis is
proposed to trace the equilibrium path in the exact rigid-folding motion. This hybrid analy-
sis of the pure mechanism and the equilibrium is rarely performed while it is important to
understand the deformation properties of a rigid origami with the multi-degrees of freedom
mechanism. In the following, the results obtained in Chapters 2–5 are summarized.

In Chapter 2, the review of the numerical models of a rigid origami are provided, and
the frame model used in this study is described. A frame model consists of rigid frame ele-
ments connected by hinges representing the crease lines of an origami. The equations of the
geometric constraints on the nodal coordinates of the frame model are formulated so that
the frame model represents the corresponding rigid origami appropriately, and the indepen-
dent nodal coordinates are identified from these equations. The infinitesimal mechanism of
the frame model is investigated by the methods for partially rigid frames. The compatibil-
ity equations are formulated by using nonlinear functions of the generalized displacement
vector defined as the assemblage of the unconstrained translational and rotational displace-
ments of nodes, the translational and rotational displacements of center points of members,
and the increments of the hinge rotation angles. The kinematic indeterminacy and the
first-order infinitesimal mechanism modes are derived from the compatibility matrix which
is the first-order derivative of the incompatibility vector with respect to the generalized dis-
placement. The geometric properties and the method of the kinematic analysis of the frame
model introduced in this chapter is used in the following chapters.

Chapter 3 has presented a form generation method of a developable rigid origami struc-
ture approximating a Bézier surface. An optimization problem for generating a developable
origami surface has been formulated to minimize an approximation error function under
developability conditions. Developability conditions are considered around each inner ver-
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tex, dividing edge, and inner cuts, and they are formulated with respect to the geometric
properties of the origami surface such as the discrete Gaussian curvatures, normal vectors
of the faces, and the sets of the inner angles of the faces and the length of edges constituting
a cut. Three approximation error functions are defined reflecting the distance between the
origami vertices and the target surface, the difference of the surface area, and the differ-
ence of the face normal vectors, respectively. The weighted sum of the three functions are
minimized in the optimization problem. Form generation starts from a triangulated target
surface and its crease lines are sequentially fixed to reduce the DOF of the deformation
mechanism. The transition of the deformation mechanism due to fixing the crease lines is
predicted by utilizing the kinematic properties of the frame model. The pseudo stiffness ma-
trix of the frame model is defined by assuming the fictious rotational stiffness of the hinges,
and its eigenvalue and eigenvector derivatives are used for the prediction. Selection criteria
of the crease lines to be fixed are proposed to prevent the unfixed crease lines from being
locked. They are defined based on the shape of an origami surface and the prediction of the
transition of the deformation mechanism. The properties related to the prediction method
are illustrated for the origami surface approximating an HP surface.

The case studies of form generation are shown in Chapter 4. The form generation pro-
cedure has been carried out for 100 randomly generated target surfaces and for an HP
and a face surfaces. From the results of the approximation of the randomly generated sur-
face, the proposed selection criteria of crease lines, which reflect both the shape and the
deformation mechanism of an origami surface, are confirmed to be able to improve the ef-
ficiency of form generation by preventing the crease lines from being locked and reducing
the times of solving the optimization problems. Furthermore, the approximation accuracy
is also better when the proposed criteria are used. On the other hand, the impacts of the
weight coefficients in the approximation error function, the choice of the design variables,
and the introduction of cuts on the results of form generation are demonstrated for an HP
and a dome surfaces. It can be seen from the results that there is no clear trade-off relation
between the three approximation error functions and the values of the weight coefficients
do not have large impact on the results while the choice of the design variables may affect
the stability of the process of form generation. It is preferable to use the coordinates of the
origami vertices or the nodal coordinates of the frame model as variables when the arrange-
ment of the control points of the target Bézier surface is uniform in x- and y-coordinates.
Effectiveness of cuts is evaluated for an HP and a dome surface. As shown in the results, ex-
terior cuts can significantly improve the approximation accuracy while the inner cuts does
not. Since a limited number of types of crease and cut patterns are considered in this study,
it is important to investigate methods for finding good crease and cut patterns in future
research.

In Chapter 5, a method of equilibrium path and stability analysis of a rigid origami
represented by a frame model has been proposed. An equilibrium state between the nodal
loads and the moments of the springs introduced into the hinges are achieved with the ex-
act rigid-folding motion. An equilibrium point is found by solving the energy minimization
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problem under the compatibility equations of a frame model, and an equilibrium path is
traced by the incremental loading analysis. The augmented Lagrangian method is adopted
to solve the optimization problem, and the eigenvalues of the Hessian matrix of the aug-
mented Lagrangian are evaluated to investigate the stability of the equilibrium state and
to find the critical load factor. If the Hessian matrix has a zero eigenvalue, the equilibrium
point is a candidate for a bifurcation or a limit point. The proposed method was first ap-
plied to a planar frame consisting of two members whose analytical solution can be easily
obtained, and it has been confirmed that the critical load factors that may cause insta-
bility in the equilibrium can be determined by the proposed method. Then, the method
was applied to fully developed flat waterbomb cells with two different loads and boundary
conditions. Three critical eigenmodes have been found for each example, and it has been
numerically confirmed that these eigenmodes are the first-order infinitesimal mechanism
while they cannot be extended to the second-order infinitesimal mechanism. The equilib-
rium path analysis was performed from the flat state with the initial imperfection based on
the obtained critical eigenmodes. The out-of-plane deformation drastically progresses after
the load factor exceeds the first critical load factor for each initial imperfection. Since the
critical points are isolated, similar final shapes are obtained and the equilibrium paths con-
verge to the bifurcation path of the first critical point. It is expected in future work that the
proposed method is extended to include the incremental displacement method and the arc
length method to fully trace the path which contains the limit point where a snap-thorough
behavior is observed. In addition, to reduce the cost, the number of variables should be
reduced by simplifying the structure of the frame model and by eliminating the dependent
variables for the analysis of large-scale origami.
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Appendix A

Identification of independent
variables by the reduced
row-echelon form of a matrix

Consider the following linear equation for A ∈Rm×n, b ∈Rm, and x ∈Rn:

Ax=b (A.1)

Here, A and b are constant and given, and the existence of x satisfying Eq. (A.1) is assumed.
If rank(A) < n, there are n− rank(A) components of x which can be arbitrarily determined,
and rank(A) < n is assumed in the following. The independent components of x satisfying
Eq. (A.1) can be identified by the method utilizing the reduced row-echelon form (RREF) of
a matrix [52,97,98]. The RREF of a matrix can be obtained from a finite sequence of linear
elementary row operation and has the following three properties [62]:

1. The first nonzero component in any nonzero row is one. This non-zero component is
referred to as the pivot, and the column including the pivot is referred to as the pivot
column.

2. All the components other than the pivot are equal to zero in any pivot column, and
the pivot columns are linearly independent with each other.

3. The column containing the pivot of a row is to the right of the column containing the
pivot above that row.

4. The number of pivots is equal to the rank of the matrix whose RREF is computed.

For the procedure of deriving the RREF of a matrix, see Ref. [62]. If b 6= 0 holds, Eq. (A.1) is
rewritten as follows: [

A −b
](

x
1

)
= Āx̄= 0 (A.2)

where n̄ = n+1, Ā ∈ Rm×n̄, and x̄ ∈ Rn̄. On the other hand, if b = 0 holds, n̄, Ā, and x̄ are
defined as n̄ = n, Ā = A, and x̄ = x, respectively, and the linear equation to be considered
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Figure A.1: Reduced row-echelon form of matrix Ā; the leading 1 of each row is pivot, and
the gray shaded columns are not the pivot columns.

is written in the same form as Eq. (A.2). Since the existence of x satisfying Eq. (A.1) is
assumed, the rank of A and Ā is the same and denoted as r = rank(Ā)= rank(A).

Let RREF(Ā) ∈ Rn×n̄ denote the RREF of Ā. It can be written as in Fig. A.1, and all
the components in the last m− r rows are equal to zero. Cpivot and Cother are defined as
the sets of indices of pivot columns and the other columns of RREF(Ā), respectively. The
number of elements of Cpivot and Cother are r and n̄− r ≥ 1, respectively. As shown in
Fig. A.1, Ã ∈Rr×(n̄−r) is constructed by assembling the first r components of each column of
RREF(Ā) corresponding to Cother. The columns of Ã is arranged in ascending order of the
column indices of RREF(Ā). Here, the vectors x̄pivot ∈Rr and x̄free ∈Rn̄−r are defined as the
vectors whose components are the components of x̄ corresponding to the indices in Cpivot and
Cother, respectively, arranged in ascending order of the component indices. Since RREF(Ā)
is obtained from a finite sequence of linear elementary row operation on Ā, Eq. (A.2) is
equivalent to the following equation:

[
Ir Ã

](
x̄pivot

x̄free

)
= x̄pivot + Ãx̄free = 0 (A.3)

Therefore, the independent components and the dependent components of x̄ satisfying
Eq. (A.2) are identified as x̄free and x̄pivot, respectively, and x̄pivot can be calculated from
x̄free as follows:

x̄pivot =−Ãx̄free (A.4)

Note that when b 6= 0; i.e., n̄ = n+1, the last 1 in x̄, which is a constant component, is always
the last component of x̄free. In conclusion, the independent components of x satisfying
Eq. (A.1) can be identified as the components corresponding to the first n− r components of
x̄free.
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Appendix B

Example of independent nodal
coordinates identification

In this appendix, the process of identifying the independent nodal coordinates introduced
in Chapter 2 is presented for the single vertex model shown in Fig. B.1. The matrix CV

for calculating the vertex coordinates from all the nodal coordinates and the matrix CN

for calculating all the nodal coordinates from the independent nodal coordinates are also
shown. When the global indices of vertices and nodes are arranged as shown in Fig. B.1,
the edge consistency matrix CE ∈ R12×36 is constructed according to Eqs. (2.2) and (2.7) in
Chapter 2 as

CE =


1 −1 0 1 −1 0 0 0 0 0 0 0
0 0 1 −1 0 1 −1 0 0 0 0 0

−1 0 0 0 1 −1 0 1 0 0 0 0
0 1 −1 0 0 0 1 −1 0 0 0 0

⊗I3 (B.1)
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Figure B.1: Vertex and node indices of single vertex model (Each vertex index is sur-
rounded by a rectangle).
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where A⊗B ∈ Rmp×nq represents the Kronecker product of matrices A = [ai j] ∈ Rm×n and
B ∈Rp×q defined as follows:

A⊗B=


a11B . . . a1nB

...
. . .

...
am1B . . . amnB



The face consistency matrix CF ∈ R12×36 is constructed according to Eqs. (2.5), (2.6), and
(2.8) as

CF = 1
3


1 1 1 0 0 0 0 0 −3 0 0 0
0 0 1 1 1 0 0 0 0 −3 0 0
0 0 0 0 1 1 1 0 0 0 −3 0
1 0 0 0 0 0 1 1 0 0 0 −3

⊗I3 (B.2)

The RREF of the node consistency matrix CN = [
CT

E CT
F

]T ∈ R24×36 is calculated as fol-
lows [62]:

RREF(CN)= 1
2



2 0 0 0 0 0 2 2 0 0 0 −6
0 2 0 0 0 0 0 −2 0 −3 3 0
0 0 2 0 0 0 −2 0 0 −3 3 0
0 0 0 2 0 0 0 −2 0 −3 0 3
0 0 0 0 2 0 2 2 0 0 −3 −3
0 0 0 0 0 2 0 −2 0 0 −3 3
0 0 0 0 0 0 0 0 2 −2 2 −2
0 0 0 0 0 0 0 0 0 0 0 0


⊗I3 (B.3)

Therefore, the coordinates of nodes 1–6 and 9 correspond to the pivots of RREF(CN), and
the independent coordinates are determined as those of nodes 7, 8 and 10–12. The position
vectors of nodes 1–6 and 9 denoted by ζ1, . . . ,ζ6, and ζ9 ∈R3 are determined by those of nodes
7, 8, and 10–12 denoted by ζ7, ζ8, ζ10, ζ11, and ζ12 ∈R3 as follows:



ζ1

ζ2

ζ3

ζ4

ζ5

ζ6

ζ9


=−1

2



2 2 0 0 −6
0 −2 −3 3 0

−2 0 −3 3 0
0 −2 −3 0 3
2 2 0 −3 −3
0 −2 0 −3 3
0 0 −2 2 −2


⊗I3



ζ7

ζ8

ζ10

ζ11

ζ12

 (B.4)

125



Consequently, the matrix CA ∈ R36×15 for calculating all the nodal coordinates from the
independent nodal coordinates is written as

CA =−1
2



2 2 0 0 −6
0 −2 −3 3 0

−2 0 −3 3 0
0 −2 −3 0 3
2 2 0 −3 −3
0 −2 0 −3 3
2 0 0 0 0
0 2 0 0 0
0 0 −2 2 −2
0 0 2 0 0
0 0 0 2 0
0 0 0 0 2



⊗I3 (B.5)

On the other hand, according to Eqs. (2.17) and (2.18) in Chapter 2, the matrix CV ∈R15×36

for calculating the vertex coordinates from all the nodal coordinates is constructed as fol-
lows:

CV = 1
4



2 −1 2 −1 2 −1 2 −1 0 0 0 0
−2 2 4 2 −2 0 0 0 0 0 0 0

0 0 −2 2 4 2 −2 0 0 0 0 0
−2 0 0 0 −2 2 4 2 0 0 0 0

4 2 −2 0 0 0 −2 2 0 0 0 0

⊗I3 (B.6)

Therefore, the position vectors of vertices 1–5 denoted by ξ1, . . . ,ξ5 ∈ R3 are determined by
the independent noral coordinates as follows:

ξ1

ξ2

ξ3

ξ4

ξ5

=−1
2



2 3 0 0 −6
−4 −4 −6 6 6

2 0 0 −6 0
0 −2 0 0 6
2 2 0 0 −6

⊗I3



ζ7

ζ8

ζ10

ζ11

ζ12

 (B.7)
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Appendix C

Rotation matrix and its derivatives

The Rodrigues’ rotation matrix R(θ) ∈ R3×3 with respect to a rotation vector θ = θn that
rotates an arbitrary vector in three-dimensional space by an angle θ (θ ≥ 0) around the
rotation axis n= (n1,n2,n3)T ∈R3 (‖n‖ = 1) is written as follows [64]:

R(θ)= cosθI3 + (1−cosθ)nnT+sinθ[n]×

=


n2

1(1−cosθ)+cosθ n1n2(1−cosθ)−n3 sinθ n3n1(1−cosθ)+n2 sinθ

n1n2(1−cosθ)+n3 sinθ n2
2(1−cosθ)+cosθ n2n3(1−cosθ)−n1 sinθ

n3n1(1−cosθ)−n2 sinθ n2n3(1−cosθ)+n1 sinθ n2
3(1−cosθ)+cosθ


(C.1)

If θ and n are considered as functions of the vector θ= (θ1,θ2,θ3)T, the following equations
hold:

θ = ‖θ‖ =
√

θ2
1 +θ2

2 +θ2
3

n= θ

θ
= θ√

θ2
1 +θ2

2 +θ2
3

Accordingly, the first-order derivatives of θ and n with respect to θl (l = 1,2,3) are calculated
for positive θ as

∂θ

∂θl
= θl√

θ2
1 +θ2

2 +θ2
3

= nl (C.2)

∂n
∂θl

= 1
θ2

(
θ
∂θ

∂θl
−θ

∂θ

∂θl

)
= 1

θ
(el −nln) (C.3)

where e1 = (1,0,0)T, e2 = (0,1,0)T, and e3 = (0,0,1)T. In addition, the derivatives of nk (k =
1,2,3) with respect to θl (l = 1,2,3) are calculated as

∂nk

∂θl
= 1

θ
(δkl −nknl) (C.4)
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where δkl is the Kronecker delta. According to Eqs. (C.2) and (C.3), the following equations
hold for l = 1,2,3:

∂

∂θl

(
nnT

)
= 1

θ

(
elnT+neT

l −2nlnnT
)

(C.5)

∂

∂θl
[n]× = 1

θ
([el]×−nl[n]×) (C.6)

∂cosθ
∂θl

=−nl sinθ (C.7)

∂sinθ

∂θl
= nl cosθ (C.8)

Therefore, the first- and second-order derivatives of R(θ) are calculated as follows:

∂R(θ)
∂θl

=−nl sinθI3 +nl

(
sinθ−2

1−cosθ
θ

)
nnT

+nl

(
cosθ− sinθ

θ

)
[n]×+ 1−cosθ

θ

(
elnT+neT

l

)
+ sinθ

θ
[el]×

(C.9)

∂2R(θ)
∂θk∂θl

=−
{

nknl cosθ+ (δkl −nknl)
sinθ

θ

}
I3

+
{

nknl cosθ+ (δkl −5nknl)
sinθ

θ
−2(δkl −4nknl)

1−cosθ
θ2

}
nnT

+
{
−nknl sinθ+ (δkl −3nknl)

(
cosθ
θ

− sinθ

θ2

)}
[n]×

+
(

sinθ

θ
−2

1−cosθ
θ2

){
(nkel +nlek)nT+n (nkel +nlek)T

}
+ 1−cosθ

θ2

(
ekeT

l +eleT
k

)
+

(
cosθ
θ

− sinθ

θ2

)
(nk[el]×+nl[ek]×)

(C.10)

Since Eqs. (C.9) and (C.10) are valid only when θ > 0, the derivatives of R(θ) for θ = 0 is
calculated by utilizing the following relations:

lim
θ→0

1−cosθ
θ

= 0

lim
θ→0

sinθ

θ
= 1

lim
θ→0

1−cosθ
θ2 = 1

2

lim
θ→0

(
cosθ
θ

− sinθ

θ2

)
= 0

Hence, when θ = 0 the first- and second-order derivatives of R(θ) are calculated as follows:

∂R(0)
∂θl

= [el]× (C.11)

∂2R(θ)
∂θk∂θl

=−δklI3 + 1
2

(
ekeT

l +eleT
k

)
(C.12)
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Appendix D

Derivatives of incompatibility
vector

This appendix shows the first- and second-order derivatives of the components of the in-
compatibility vector G(W) with respect to the components of the generalized displacement
vector W. It is assumed that the j-th end ( j = 1,2) of member i (= 1, . . . , NM) is connected to
node k (= 1, . . . , NN) rigidly or via hinge h (= 1, . . . , NH) where NM, NN, and NH are the num-
ber of nodes, members, and hinges of a frame model, respectively. According to Eq. (2.36),
the non-zero first-order derivatives of the translational incompatibility vector ∆Ui j at the
j-th end of member i are calculated for l = 1,2,3 as follows:

∂∆Ui j

∂V (l)
i

=−el (D.1)

∂∆Ui j

∂Ψ(l)
i

=−∂R(Ψi)

∂Ψ(l)
i

ri j (D.2)

∂∆Ui j

∂U (l)
k

= el (D.3)

Note that the derivatives with respect to Θ(l)
k , φh are equal to zero for arbitrary k = 1, . . . , NN,

h = 1, . . . , NH, and l = 1,2,3. In addition, the derivatives with respect to V (l)
i′ , Ψ(l)

i′ , U (l)
k′ are

also equal to zero when i′ 6= i and k′ 6= k. Accordingly, the second-order derivative of ∆Ui j is
0 except for the following term:

∂2∆Ui j

∂Ψ(l)
i ∂Ψ(l′)

i

=− ∂2R(Ψi)

∂Ψ(l)
i ∂Ψ(l′)

i

ri j (D.4)

When j-th end of member i is rigidly connected to node k, the non-zero first-order deriva-
tives of the rotational incompatibility vector ∆Θi j defined in the first equation of Eq. (2.37)
are calculated as follows:

∂∆Θi j

∂Ψ(l)
i

=−el (D.5)

∂∆Θi j

∂Θ(l)
k

= el (D.6)
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Therefore, the second-order derivative of ∆Θi j with respect to any component of W is zero
if the j-th end of member i is the rigid end. According to Eqs. (2.34), (2.35), and (2.37),
when the j-th end of member i is connected to node k via hinge h, the non-zero first-order
derivatives of ∆Θi j =Φi j(Ψi,Θk,φh) are calculated as follows:

∂Φ(1)
i j

∂Ψ(l)
i

=
(
∂R(Ψi)

∂Ψ(l)
i

τ
〈1〉
h

)
·
(
R(Θk)τ〈2〉

h

)
(D.7)

∂Φ(2)
i j

∂Ψ(l)
i

=
(
∂R(Ψi)

∂Ψ(l)
i

τ
〈1〉
h

)
·
(
R(Θk)τ〈3〉

h

)
(D.8)

∂Φ(3)
i j

∂Ψ(l)
i

=
(
∂R(Ψi)

∂Ψ(l)
i

τ
〈2〉
h

)
·
{
sinφh

(
R(Θk)τ〈2〉

h

)
+cosφh

(
R(Θk)τ〈3〉

h

)}
(D.9)

∂Φ(1)
i j

∂Θ(l)
k

=
(
R(Ψi)τ

〈1〉
h

)
·
(
∂R(Θk)

∂Θ(l)
k

τ
〈2〉
h

)
(D.10)

∂Φ(2)
i j

∂Θ(l)
k

=
(
R(Ψi)τ

〈1〉
h

)
·
(
∂R(Θk)

∂Θ(l)
k

τ
〈3〉
h

)
(D.11)

∂Φ(3)
i j

∂Θ(l)
k

=
(
R(Ψi)τ

〈2〉
h

)
·
{

sinφh

(
∂R(Θk)

∂Θ(l)
k

τ
〈2〉
h

)
+cosφh

(
∂R(Θk)

∂Θ(l)
k

τ
〈3〉
h

)}
(D.12)

∂Φ(3)
i j

∂φhi j

=
(
R(Ψi)τ

〈2〉
h

)
·
{
cosφh

(
R(Θk)τ〈2〉

h

)
−sinφh

(
R(Θk)τ〈3〉

h

)}
(D.13)

Therefore, the second-order derivatives of Φi j are 0 except for the following terms:

∂2Φ(1)
i j

∂Ψ(l)
i ∂Ψ(l′)

i

=
(

∂2R(Ψi)

∂Ψ(l)
i ∂Ψ(l′)

i

τ
〈1〉
h

)
·
(
R(Θk)τ〈2〉

h

)
(D.14)

∂2Φ(2)
i j

∂Ψ(l)
i ∂Ψ(l′)

i

=
(

∂2R(Ψi)

∂Ψ(l)
i ∂Ψ(l′)

i

τ
〈1〉
h

)
·
(
R(Θk)τ〈3〉

h

)
(D.15)

∂2Φ(3)
i j

∂Ψ(l)
i ∂Ψ(l′)

i

=
(

∂2R(Ψi)

∂Ψ(l)
i ∂Ψ(l′)

i

τ
〈2〉
h

)
·
{
sinφh

(
R(Θk)τ〈2〉

h

)
+cosφh

(
R(Θk)τ〈3〉

h

)}
(D.16)

∂2Φ(1)
i j

∂Θ(l)
k ∂Θ(l′)

k

=
(
R(Ψi)τ

〈1〉
h

)
·
(

∂2R(Θk)

∂Θ(l)
k ∂Θ(l′)

k

τ
〈2〉
h

)
(D.17)

∂2Φ(2)
i j

∂Θ(l)
k ∂Θ(l′)

k

=
(
R(Ψi)τ

〈1〉
h

)
·
(

∂2R(Θk)

∂Θ(l)
k ∂Θ(l′)

k

τ
〈3〉
h

)
(D.18)

∂2Φ(3)
i j

∂Θ(l)
k ∂Θ(l′)

k

=
(
R(Ψi)τ

〈2〉
h

)
·
{

sinφh

(
∂2R(Θk)

∂Θ(l)
k ∂Θ(l′)

k

τ
〈2〉
h

)
+cosφh

(
∂2R(Θk)

∂Θ(l)
k ∂Θ(l′)

k

τ
〈3〉
h

)}
(D.19)

∂2Φ(3)
i j

∂φ2
h

=−
(
R(Ψi)τ

〈2〉
h

)
·
{
sinφh

(
R(Θk)τ〈2〉

h

)
+cosφh

(
R(Θk)τ〈3〉

h

)}
=−Φ(3)

i j (D.20)

∂2Φ(1)
i j

∂Ψ(l)
i ∂Θ(l′)

k

=
(
∂R(Ψi)

∂Ψ(l)
i

τ
〈1〉
h

)
·
(
∂R(Θk)

∂Θ(l′)
k

τ
〈2〉
h

)
(D.21)
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∂2Φ(2)
i j

∂Ψ(l)
i ∂Θ(l′)

k

=
(
∂R(Ψi)

∂Ψ(l)
i

τ
〈1〉
h

)
·
(
∂R(Θk)

∂Θ(l′)
k

τ
〈3〉
h

)
(D.22)

∂2Φ(3)
i j

∂Ψ(l)
i ∂Θ(l′)

k

=
(
∂R(Ψi)

∂Ψ(l)
i

τ
〈2〉
h

)
·
{

sinφh

(
∂R(Θk)

∂Θ(l′)
k

τ
〈2〉
h

)
+cosφh

(
∂R(Θk)

∂Θ(l′)
k

τ
〈3〉
h

)}
(D.23)

∂2Φ(3)
i j

∂Ψ(l)
i ∂φh

=
(
∂R(Ψi)

∂Ψ(l)
i

τ
〈2〉
h

)
·
{
cosφh

(
R(Θk)τ〈2〉

h

)
−sinφh

(
R(Θk)τ〈3〉

h

)}
(D.24)

∂2Φ(3)
i j

∂Θ(l)
k ∂φh

=
(
R(Ψi)τ

〈2〉
h

)
·
{

cosφh

(
∂R(Θk)

∂Θ(l′)
k

τ
〈2〉
h

)
−sinφh

(
∂R(Θk)

∂Θ(l′)
k

τ
〈3〉
h

)}
(D.25)
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Appendix E

Singular value decomposition for
infinitesimal mechanism analysis

The number of components of the generalized displacement vector W and the incompatibil-
ity vector G(W) are denoted by NW and NG, respectively. As explained in Chapters 2 and
5, a first-order infinitesimal mechanism W′ ∈ RNW and a second-order infinitesimal mech-
anism W′′ ∈ RNW satisfy following equations [33, 40] when the displacement of the frame
model is W:

Γ(1)(W)W′ = 0 (E.1)

Γ(1)(W)W′′+
[
Γ(2)(W̄)W′

]
W′ = 0 (E.2)

Here, Γ(1)(W) and Γ(2)(W) are the NG×NW matrix whose (i, j) component is ∂G i(W) /∂Wj and
the order-three tensor of size NG ×NW ×NW whose (i, j,k) component is ∂2G i(W) /∂Wj∂Wk,
respectively, where G i(W) and Wj are the i-th component of G(W) and the j-th component
W, respectively. In the following, the argument (W) is omitted for the simple expression.

When the rank of Γ(1) is denoted by rΓ and ND and NS are defined as ND = NW− rΓ and
NS = NG − rΓ, Γ(1) is decomposed as follows by the singular value decomposition [63]:

Γ(1) =
[
υ1 . . . υNG

][
diag(µ1, . . . ,µrΓ) OrΓ×ND

ONS×rΓ ONS×ND

]
ηT1
...

ηTNW

 (E.3)

where µ1, . . . ,µrΓ are the singular values ordered as µ1 ≥ ·· · ≥ µrΓ . The left singular vectors
υ1, . . . ,υNG ∈RNG and the right singular vectors η1, . . . ,ηNW

∈RNW are the orthonormal bases
of the NG and NW dimensional vector spaces, respectively. Then, they satisfy the following
equations:

Γ(1)η j =
µ jυ j ( j = 1, . . . , rΓ)

0 ( j = rΓ+1, . . . , NW)
(E.4)

Γ(1)Tυi =
µiηi (i = 1, . . . , rΓ)

0 ( j = rΓ+1, . . . , NG)
(E.5)
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According to Eqs. (E.1) and (E.4), when rΓ < NW, a first-order infinitesimal mechanism
W′ can be represented as the linear combination of the right singular vectors ηrΓ+1, . . . ,ηNW

corresponding to the zero singular values; i.e., W′ is orthogonal to η1, . . . ,ηrΓ . In addition,
if non-zero vectors W′ and W′′ satisfying Eqs. (E.1) and (E.1) exist,

[
Γ(2)(W̄)W′]W′ needs to

be orthogonal to the left singular vectors υrΓ+1, . . . ,υNG corresponding to the zero singular
values since the non-zero vector Γ(1)(W)W′′ is orthogonal to them according to Eq. (E.4);
i.e., υTi

[
Γ(2)(W̄)W′]W′ = 0 holds for all i = rΓ+1, . . . , NG. Conversely, if a non-zero W′ satis-

fies Eq. (E.1) and υTi
[
Γ(2)(W̄)W′]W′ = 0 for all i = rΓ+1, . . . , NG, there exists a non-zero W′′

satisfying Eq. (E.2). Here, υTi
[
Γ(2)(W̄)W′]W′ is equal to the quadratic form W′T [

υTi Γ
(2)]W′.

Therefore, the necessary and sufficient condition for the existence of the first-order infinites-
imal mechanism W′ which can be extended to the second-order infinitesimal mechanism W′′

is that W′ satisfies the following equations:

W′ ·η j = 0 ( j = 1, . . . , rΓ) (E.6)

W′T
[
υTi Γ

(2)
]
W′ = 0 (i = rΓ+1, . . . , NG) (E.7)

Note that if rΓ < NW and rΓ = NG, W′ and W′′ satisfying Eqs. (E.1) and (E.2) always exist.
In Chapters 2 and 5, the order of the singular vectors are reversed so that υ1, . . . ,υNG and
η1, . . . ,ηNW

in this appendix corresponds to υNG , . . . ,υ1 and ηNW
, . . . ,η1 in Chapters 2 and 5,

respectively.
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Appendix F

Results for case studies of form
generation

The tables of the DOFs and the values of the approximation error functions Fdist(X), Farea(X)
are shown to compare the results obtained from different (carea, cnormal) and from different
choice of the design variables. In addition, the graphs of the DOFs and values of approx-
imation error functions are shown for the examples of form generation in Chapter 4. The
makers and the types of lines used in the following graphs are summarized in Table. F.1.
In each graph, the DOFs or the values of the approximation error functions of the solutions
with cut pattern C, E, or X obtained by setting (carea, cnormal) = (0, 0), (0.2, 0.5), (0.2, 1.0),
(0.4, 0.5), and (0.4, 1.0) are plotted with those of the solutions without cut. The range of the
vertical axes are defined so that the average values of the solution without cut are approxi-
mately centered.

Table F.1: Markers and lines in graphs of form generation results.

carea cnormal Without cut Cut pattern C Cut pattern E Cut pattern X

0.0 0.0
0.2 0.5
0.2 1.0
0.4 0.5
0.4 1.0

F.1 Approximation of HP surface

The tables and graphs are shown for the solutions considered in Section 4.3 of Chapter 4,
which approximate the HP surface in Fig. 4.5.
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F.1.1 Tables comparing form generation results with respect to weight
coefficients of approximation error functions

This section shows the tables arranged with respect to the weight coefficients carea and
cnormal in the approximation error function. The results of the approximation of the HP
surface obtained in cases G1–R3 are summarized as follows:

• Case G1: Tables F.2–F.5

• Case G2: Tables F.6–F.9

• Case G3: Tables F.10–F.13

• Case R1: Tables F.14–F.17

• Case R2: Tables F.18–F.21

• Case R3: Tables F.22–F.25

Table F.2: Results for the approximation of the HP surface without cuts in Case G1 ar-
ranged with respect to carea and cnormal.

carea 0.0 0.2 0.2 0.4 0.4
cnormal 0.0 0.5 1.0 0.5 1.0

No. solutions 7 7 6 7 8
Min. DOF 3 1 5 1 1

max. 4.95 3.80 1.90 2.23 4.64
Fdist(X) min. 1.79 1.51 1.82 1.87 1.98

avg. 2.33 2.44 1.87 2.03 2.49
max. 6.73 9.20 3.43 3.65 3.45

Farea(X) min. 5.17 2.94 2.93 2.37 2.31
avg. 6.41 4.72 3.15 2.96 2.76
max. 4.38 4.01 2.28 2.69 3.95

Fnormal(X) min. 3.75 2.19 2.06 2.11 2.02
avg. 4.22 2.88 2.16 2.38 2.39

Table F.3: Results for the approximation of the HP surface with cut pattern C in Case G1
arranged with respect to carea and cnormal.

carea 0.0 0.2 0.2 0.4 0.4
cnormal 0.0 0.5 1.0 0.5 1.0

No. solutions 10 8 6 7 8
Min. DOF 9 5 8 6 5

max. 565.57 87.52 5.09 411.36 152.63
Fdist(X) min. 4.08 1.56 1.39 1.41 47.73

avg. 232.89 18.86 3.01 133.13 132.30
max. 1598.92 111.47 16.80 128.03 439.98

Farea(X) min. 13.69 3.20 2.51 2.30 63.01
avg. 663.91 25.18 5.45 44.39 298.32
max. 66.24 40.23 9.06 46.51 51.84

Fnormal(X) min. 11.88 2.50 2.26 2.18 24.51
avg. 40.42 12.23 4.02 17.79 42.34
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Table F.4: Results for the approximation of the HP surface with cut pattern E in Case G1
arranged with respect to carea and cnormal.

carea 0.0 0.2 0.2 0.4 0.4
cnormal 0.0 0.5 1.0 0.5 1.0

No. solutions 7 8 10 7 7
Min. DOF 7 3 3 7 11

max. 1.79 2.91 8.77 2.09 0.67
Fdist(X) min. 0.18 0.20 0.35 0.36 0.28

avg. 0.71 1.01 2.38 0.83 0.48
max. 5.16 3.32 5.49 6.91 1.68

Farea(X) min. 2.05 0.98 2.36 1.17 0.61
avg. 3.19 2.00 3.45 2.13 1.16
max. 4.10 3.16 6.67 4.05 1.10

Fnormal(X) min. 1.04 0.66 1.14 0.90 0.67
avg. 2.17 1.73 2.75 1.57 0.89

Table F.5: Results for the approximation of the HP surface with cut pattern X in Case G1
arranged with respect to carea and cnormal.

carea 0.0 0.2 0.2 0.4 0.4
cnormal 0.0 0.5 1.0 0.5 1.0

No. solutions 11 8 11 10 8
Min. DOF 1 2 3 2 3

max. 12.08 8.28 209.47 34.56 175.03
Fdist(X) min. 1.10 1.27 1.58 1.89 1.43

avg. 4.37 3.49 70.77 8.95 96.75
max. 19.40 16.22 188.61 44.40 469.95

Farea(X) min. 5.61 3.48 1.95 1.96 1.86
avg. 10.89 8.21 56.53 10.71 245.46
max. 10.92 9.42 64.36 18.89 51.20

Fnormal(X) min. 4.95 2.62 2.10 2.44 2.03
avg. 6.48 5.29 21.82 5.91 30.46

Table F.6: Results for the approximation of the HP surface without cuts in Case G2 ar-
ranged with respect to carea and cnormal.

carea 0.0 0.2 0.2 0.4 0.4
cnormal 0.0 0.5 1.0 0.5 1.0

No. solutions 7 1 6 1 8
Min. DOF 1 21 1 21 3

max. 7.31 5.80 14.70 5.25 10.39
Fdist(X) min. 6.75 5.80 4.10 5.25 2.72

avg. 7.15 5.80 7.37 5.25 5.69
max. 16.41 0.00 4.61 0.00 5.85

Farea(X) min. 3.48 0.00 0.00 0.00 0.00
avg. 11.64 0.00 2.26 0.00 2.54
max. 7.02 2.31 5.36 1.99 3.55

Fnormal(X) min. 3.58 2.31 1.89 1.99 1.85
avg. 5.90 2.31 3.24 1.99 2.57
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Table F.7: Results for the approximation of the HP surface with cut pattern C in Case G2
arranged with respect to carea and cnormal.

carea 0.0 0.2 0.2 0.4 0.4
cnormal 0.0 0.5 1.0 0.5 1.0

No. solutions 11 8 7 1 1
Min. DOF 5 8 5 26 26

max. 72.24 13.49 13.27 4.93 5.01
Fdist(X) min. 5.45 6.40 8.00 4.93 5.01

avg. 23.22 9.83 10.48 4.93 5.01
max. 62.02 4.25 3.48 0.00 0.00

Farea(X) min. 2.07 0.00 1.33 0.00 0.00
avg. 19.42 2.62 2.49 0.00 0.00
max. 19.39 2.89 3.68 1.95 1.91

Fnormal(X) min. 4.52 2.24 2.09 1.95 1.91
avg. 8.13 2.62 2.36 1.95 1.91

Table F.8: Results for the approximation of the HP surface with cut pattern E in Case G2
arranged with respect to carea and cnormal.

carea 0.0 0.2 0.2 0.4 0.4
cnormal 0.0 0.5 1.0 0.5 1.0

No. solutions 12 1 1 1 1
Min. DOF 5 29 29 29 29

max. 18.74 0.67 0.73 1.72 4.76
Fdist(X) min. 0.23 0.67 0.73 1.72 4.76

avg. 6.49 0.67 0.73 1.72 4.76
max. 5.63 0.00 0.00 0.00 0.00

Farea(X) min. 1.56 0.00 0.00 0.00 0.00
avg. 2.61 0.00 0.00 0.00 0.00
max. 5.61 0.73 0.71 1.03 0.89

Fnormal(X) min. 0.75 0.73 0.71 1.03 0.89
avg. 2.70 0.73 0.71 1.03 0.89

Table F.9: Results for the approximation of the HP surface with cut pattern X in Case G2
arranged with respect to carea and cnormal.

carea 0.0 0.2 0.2 0.4 0.4
cnormal 0.0 0.5 1.0 0.5 1.0

No. solutions 10 10 10 7 8
Min. DOF 4 4 2 4 1

max. 6.51 14.43 12.81 31.25 26.20
Fdist(X) min. 2.14 4.07 3.29 3.64 6.75

avg. 3.82 7.05 8.37 10.71 10.27
max. 11.18 8.83 6.41 28.16 6.98

Farea(X) min. 6.22 0.00 0.00 0.00 0.35
avg. 9.66 3.27 1.64 6.66 2.76
max. 6.65 4.49 3.84 15.82 6.22

Fnormal(X) min. 3.49 1.81 1.81 1.96 2.34
avg. 5.37 2.76 2.41 5.95 3.45
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Table F.10: Results for the approximation of the HP surface without cuts in Case G3 ar-
ranged with respect to carea and cnormal.

carea 0.0 0.2 0.2 0.4 0.4
cnormal 0.0 0.5 1.0 0.5 1.0

No. solutions 7 10 9 9 7
Min. DOF 1 3 1 1 5

max. 66.07 46.56 17.72 73.57 14.41
Fdist(X) min. 3.92 3.53 7.11 2.48 3.98

avg. 12.85 22.46 8.90 22.53 12.79
max. 6.78 9.93 4.51 6.75 5.64

Farea(X) min. 5.46 2.83 2.91 2.67 2.83
avg. 5.96 4.76 3.30 3.60 3.28
max. 5.52 7.41 3.63 5.57 4.02

Fnormal(X) min. 3.94 2.03 1.82 2.11 2.03
avg. 4.26 3.52 2.13 2.65 2.32

Table F.11: Results for the approximation of the HP surface with cut pattern C in Case G3
arranged with respect to carea and cnormal.

carea 0.0 0.2 0.2 0.4 0.4
cnormal 0.0 0.5 1.0 0.5 1.0

No. solutions 12 9 9 7 10
Min. DOF 6 5 6 6 5

max. 21.37 42.14 20.46 19.36 113.01
Fdist(X) min. 2.01 18.72 7.06 18.10 4.51

avg. 13.30 22.82 9.86 18.67 48.68
max. 6.46 6.22 4.96 2.80 7.12

Farea(X) min. 4.54 2.58 2.93 2.52 2.89
avg. 5.82 3.37 3.24 2.67 4.49
max. 5.07 5.32 4.21 2.34 4.87

Fnormal(X) min. 2.93 2.03 1.77 1.93 1.82
avg. 4.25 2.80 2.17 2.04 3.68

Table F.12: Results for the approximation of the HP surface with cut pattern E in Case G3
arranged with respect to carea and cnormal.

carea 0.0 0.2 0.2 0.4 0.4
cnormal 0.0 0.5 1.0 0.5 1.0

No. solutions 12 8 8 8 9
Min. DOF 4 5 1 9 3

max. 21.83 33.20 5.87 7.80 23.17
Fdist(X) min. 0.18 0.31 0.40 0.23 0.65

avg. 10.68 7.73 1.63 2.60 8.40
max. 6.91 5.30 7.17 2.93 11.16

Farea(X) min. 1.39 1.22 1.21 1.02 1.26
avg. 4.22 2.68 2.69 1.75 3.60
max. 4.91 4.33 4.78 2.27 9.11

Fnormal(X) min. 0.74 0.78 0.83 0.65 0.78
avg. 2.86 2.02 1.76 1.17 2.66
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Table F.13: Results for the approximation of the HP surface with cut pattern X in Case G3
arranged with respect to carea and cnormal.

carea 0.0 0.2 0.2 0.4 0.4
cnormal 0.0 0.5 1.0 0.5 1.0

No. solutions 10 11 10 9 10
Min. DOF 2 1 3 1 2

max. 9.54 37.17 71.35 52.51 35.60
Fdist(X) min. 1.97 3.30 3.42 3.28 2.52

avg. 3.34 18.98 23.09 23.30 10.48
max. 16.74 33.12 20.02 13.47 41.56

Farea(X) min. 8.59 2.54 3.03 2.54 2.91
avg. 11.11 6.60 7.40 4.65 7.67
max. 9.68 17.60 14.75 9.44 19.43

Fnormal(X) min. 5.99 1.80 1.63 1.93 1.66
avg. 7.09 4.07 5.44 3.35 4.16

Table F.14: Results for the approximation of the HP surface without cuts in Case R1 ar-
ranged with respect to carea and cnormal.

carea 0.0 0.2 0.2 0.4 0.4
cnormal 0.0 0.5 1.0 0.5 1.0

No. solutions 6 6 6 6 7
Min. DOF 1 1 1 1 1

max. 2.03 2.00 174.68 2.64 31.59
Fdist(X) min. 1.27 1.62 21.65 2.50 3.09

avg. 1.59 1.71 70.05 2.54 7.20
max. 10.65 5.11 82.03 3.25 24.54

Farea(X) min. 9.13 4.01 35.48 2.95 2.60
avg. 9.84 4.36 51.75 3.02 5.80
max. 7.26 3.83 33.40 3.05 11.16

Fnormal(X) min. 6.83 3.37 24.82 2.98 2.82
avg. 7.02 3.45 28.56 3.01 4.14

Table F.15: Results for the approximation of the HP surface with cut pattern C in Case R1
arranged with respect to carea and cnormal.

carea 0.0 0.2 0.2 0.4 0.4
cnormal 0.0 0.5 1.0 0.5 1.0

No. solutions 6 8 8 8 8
Min. DOF 12 4 1 3 1

max. 80.75 206.61 115.56 100.51 444.23
Fdist(X) min. 1.61 1.20 2.56 1.32 23.49

avg. 30.46 39.78 17.71 17.56 105.10
max. 202.06 80.02 73.83 213.65 215.32

Farea(X) min. 8.19 3.11 3.40 2.19 33.90
avg. 100.63 33.76 14.36 31.37 108.59
max. 55.74 41.20 29.34 49.73 50.14

Fnormal(X) min. 6.35 2.66 3.04 2.46 24.56
avg. 30.44 18.53 7.24 9.96 35.58
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Table F.16: Results for the approximation of the HP surface with cut pattern E in Case R1
arranged with respect to carea and cnormal.

carea 0.0 0.2 0.2 0.4 0.4
cnormal 0.0 0.5 1.0 0.5 1.0

No. solutions 8 10 10 8 7
Min. DOF 1 5 5 5 7

max. 14.78 100.39 1.67 1.56 1.45
Fdist(X) min. 0.45 0.66 0.59 0.76 0.63

avg. 2.62 11.82 1.27 1.22 0.86
max. 36.48 15.99 2.81 2.65 3.22

Farea(X) min. 2.40 1.72 1.37 1.06 1.34
avg. 7.71 4.03 2.00 1.93 1.79
max. 29.37 8.17 2.41 2.30 1.80

Fnormal(X) min. 2.06 1.22 0.99 1.10 1.12
avg. 6.62 2.68 1.66 1.79 1.31

Table F.17: Results for the approximation of the HP surface with cut pattern X in Case R1
arranged with respect to carea and cnormal.

carea 0.0 0.2 0.2 0.4 0.4
cnormal 0.0 0.5 1.0 0.5 1.0

No. solutions 8 8 8 8 8
Min. DOF 1 1 1 1 1

max. 9.64 16.87 86.49 331.27 97.27
Fdist(X) min. 1.03 1.77 1.88 1.41 2.07

avg. 3.26 5.98 28.36 117.13 20.18
max. 28.11 29.67 89.11 533.68 128.06

Farea(X) min. 6.35 3.56 2.87 2.79 2.48
avg. 12.37 12.08 27.83 246.50 42.85
max. 18.28 18.52 34.58 66.65 46.62

Fnormal(X) min. 5.39 2.33 2.88 2.56 2.81
avg. 9.50 8.01 14.30 39.52 25.71

Table F.18: Results for the approximation of the HP surface without cuts in Case R2 ar-
ranged with respect to carea and cnormal.

carea 0.0 0.2 0.2 0.4 0.4
cnormal 0.0 0.5 1.0 0.5 1.0

No. solutions 6 1 6 1 1
Min. DOF 1 21 1 21 21

max. 7.31 8.71 11.44 7.65 7.41
Fdist(X) min. 5.79 8.71 7.38 7.65 7.41

avg. 7.06 8.71 10.40 7.65 7.41
max. 4.17 0.00 0.74 0.00 0.00

Farea(X) min. 1.43 0.00 0.00 0.00 0.00
avg. 1.89 0.00 0.59 0.00 0.00
max. 5.33 2.34 2.69 2.41 2.13

Fnormal(X) min. 4.84 2.34 2.39 2.41 2.13
avg. 4.94 2.34 2.56 2.41 2.13
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Table F.19: Results for the approximation of the HP surface with cut pattern C in Case R2
arranged with respect to carea and cnormal.

carea 0.0 0.2 0.2 0.4 0.4
cnormal 0.0 0.5 1.0 0.5 1.0

No. solutions 9 8 8 8 9
Min. DOF 1 2 1 1 1

max. 78.00 33.34 15.07 72.00 78.34
Fdist(X) min. 4.40 8.73 7.00 5.55 7.59

avg. 28.67 14.29 9.75 39.40 25.32
max. 27.77 8.99 4.02 197.02 12.59

Farea(X) min. 1.58 0.00 0.00 2.01 0.00
avg. 8.91 1.77 0.89 77.81 3.31
max. 17.50 4.54 4.68 50.29 7.94

Fnormal(X) min. 3.31 2.30 2.20 2.64 2.20
avg. 7.08 2.71 3.31 27.53 3.28

Table F.20: Results for the approximation of the HP surface with cut pattern E in Case R2
arranged with respect to carea and cnormal.

carea 0.0 0.2 0.2 0.4 0.4
cnormal 0.0 0.5 1.0 0.5 1.0

No. solutions 10 1 1 1 1
Min. DOF 5 29 29 29 29

max. 8.58 1.97 2.20 1.77 1.82
Fdist(X) min. 2.35 1.97 2.20 1.77 1.82

avg. 3.99 1.97 2.20 1.77 1.82
max. 5.35 0.00 0.00 0.00 0.00

Farea(X) min. 2.89 0.00 0.00 0.00 0.00
avg. 4.05 0.00 0.00 0.00 0.00
max. 5.30 1.05 1.05 1.14 1.05

Fnormal(X) min. 3.04 1.05 1.05 1.14 1.05
avg. 4.39 1.05 1.05 1.14 1.05

Table F.21: Results for the approximation of the HP surface with cut pattern X in Case R2
arranged with respect to carea and cnormal.

carea 0.0 0.2 0.2 0.4 0.4
cnormal 0.0 0.5 1.0 0.5 1.0

No. solutions 8 9 8 9 8
Min. DOF 1 2 1 1 1

max. 5.30 97.50 13.59 17.47 13.48
Fdist(X) min. 4.38 5.81 4.32 5.59 5.39

avg. 4.63 21.69 7.22 8.63 8.50
max. 6.66 18.69 1.64 8.31 2.90

Farea(X) min. 1.57 0.00 0.13 0.43 0.00
avg. 2.93 4.77 0.98 2.87 1.05
max. 6.60 14.02 3.01 10.14 2.91

Fnormal(X) min. 3.57 1.84 2.37 2.61 2.14
avg. 4.37 4.63 2.56 3.56 2.60
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Table F.22: Results for the approximation of the HP surface without cuts in Case R3 ar-
ranged with respect to carea and cnormal.

carea 0.0 0.2 0.2 0.4 0.4
cnormal 0.0 0.5 1.0 0.5 1.0

No. solutions 8 9 6 7 8
Min. DOF 1 1 1 1 1

max. 15.66 21.65 17.37 25.45 43.49
Fdist(X) min. 7.56 17.85 8.85 16.27 21.29

avg. 9.38 20.05 11.69 23.07 24.42
max. 22.30 4.70 3.10 5.07 3.82

Farea(X) min. 4.52 2.61 2.88 2.36 2.56
avg. 7.28 2.86 3.03 2.88 2.73
max. 15.54 5.23 1.92 3.95 4.32

Fnormal(X) min. 4.59 1.96 1.85 2.60 1.97
avg. 6.44 2.34 1.88 2.89 2.28

Table F.23: Results for the approximation of the HP surface with cut pattern C in Case R3
arranged with respect to carea and cnormal.

carea 0.0 0.2 0.2 0.4 0.4
cnormal 0.0 0.5 1.0 0.5 1.0

No. solutions 10 8 8 8 8
Min. DOF 1 3 5 2 1

max. 24.56 87.83 22.61 51.79 34.20
Fdist(X) min. 7.25 6.79 5.61 7.29 14.69

avg. 12.82 22.39 9.88 15.21 18.07
max. 27.62 8.01 3.60 17.38 5.36

Farea(X) min. 4.58 2.67 2.88 2.77 2.68
avg. 14.83 3.66 3.09 4.66 3.12
max. 20.87 8.12 3.58 11.51 4.67

Fnormal(X) min. 4.18 1.91 2.22 2.73 2.12
avg. 11.33 3.05 2.55 3.86 2.51

Table F.24: Results for the approximation of the HP surface with cut pattern E in Case R3
arranged with respect to carea and cnormal.

carea 0.0 0.2 0.2 0.4 0.4
cnormal 0.0 0.5 1.0 0.5 1.0

No. solutions 11 9 11 10 8
Min. DOF 5 5 1 5 5

max. 2.98 24.64 28.27 36.43 13.67
Fdist(X) min. 2.26 0.82 0.85 2.95 0.93

avg. 2.68 9.02 11.37 13.83 7.17
max. 6.12 5.62 3.93 2.24 1.53

Farea(X) min. 3.84 1.25 1.45 1.28 1.25
avg. 4.82 1.96 2.50 1.54 1.43
max. 5.17 3.53 3.52 3.00 1.60

Fnormal(X) min. 3.11 0.98 1.12 1.10 0.98
avg. 3.94 1.61 2.24 1.71 1.30
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Table F.25: Results for the approximation of the HP surface with cut pattern X in Case R3
arranged with respect to carea and cnormal.

carea 0.0 0.2 0.2 0.4 0.4
cnormal 0.0 0.5 1.0 0.5 1.0

No. solutions 8 8 9 8 8
Min. DOF 1 3 1 1 1

max. 7.97 77.61 34.22 28.36 36.82
Fdist(X) min. 2.79 17.33 4.38 19.22 7.01

avg. 7.26 39.59 13.80 21.18 22.55
max. 8.16 141.10 27.79 4.57 7.70

Farea(X) min. 4.24 2.50 2.45 2.20 2.86
avg. 5.09 68.25 7.32 2.64 4.19
max. 5.98 45.66 12.89 4.58 6.20

Fnormal(X) min. 4.06 2.24 2.20 2.43 2.14
avg. 4.58 26.48 4.39 2.78 3.47

F.1.2 Tables comparing form generation results with respect to choice of
design variables

This section shows the tables arranged with respect to the design variables of the optimiza-
tion problems (3.50) and (3.51), which are the nodal coordinates of the frame model or the
pairs of (s, t) parameters of the target Bézier surface and the offsets. The results of the
approximation of the HP surface obtained by setting (carea, cnormal) to (0.0, 0.0), (0.2, 0.5),
(0.2, 1.0), (0.4, 0.5), and (0.4, 1.0) are summarized as follows:

• (carea, cnormal)= (0.0, 0.0): Tables F.26–F.29

• (carea, cnormal)= (0.2, 0.5): Tables F.30–F.33

• (carea, cnormal)= (0.2, 1.0): Tables F.34–F.37

• (carea, cnormal)= (0.4, 0.5): Tables F.38–F.41

• (carea, cnormal)= (0.4, 1.0): Tables F.42–F.45

Table F.26: Results for the approximation of the HP surface without cuts and with
(carea, cnormal) = (0.0, 0.0) arranged with respect to the choice of design vari-
ables.

Cases G1 G2 G3 R1 R2 R3
No. solutions 7 7 7 6 6 8

Min. DOF 3 1 1 1 1 1
max. 4.95 7.31 66.07 2.03 7.31 15.66

Fdist(X) min. 1.79 6.75 3.92 1.27 5.79 7.56
avg. 2.33 7.15 12.85 1.59 7.06 9.38
max. 6.73 16.41 6.78 10.65 4.17 22.30

Farea(X) min. 5.17 3.48 5.46 9.13 1.43 4.52
avg. 6.41 11.64 5.96 9.84 1.89 7.28
max. 4.38 7.02 5.52 7.26 5.33 15.54

Fnormal(X) min. 3.75 3.58 3.94 6.83 4.84 4.59
avg. 4.22 5.90 4.26 7.02 4.94 6.44
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Table F.27: Results for the approximation of the HP surface with cut pattern C and
(carea, cnormal) = (0.0, 0.0) arranged with respect to the choice of design vari-
ables.

Cases G1 G2 G3 R1 R2 R3
No. solutions 10 11 12 6 9 10

Min. DOF 9 5 6 12 1 1
max. 565.57 72.24 21.37 80.75 78.00 24.56

Fdist(X) min. 4.08 5.45 2.01 1.61 4.40 7.25
avg. 232.89 23.22 13.30 30.46 28.67 12.82
max. 1598.92 62.02 6.46 202.06 27.77 27.62

Farea(X) min. 13.69 2.07 4.54 8.19 1.58 4.58
avg. 663.91 19.42 5.82 100.63 8.91 14.83
max. 66.24 19.39 5.07 55.74 17.50 20.87

Fnormal(X) min. 11.88 4.52 2.93 6.35 3.31 4.18
avg. 40.42 8.13 4.25 30.44 7.08 11.33

Table F.28: Results for the approximation of the HP surface with cut pattern E and
(carea, cnormal) = (0.0, 0.0) arranged with respect to the choice of design vari-
ables.

Cases G1 G2 G3 R1 R2 R3
No. solutions 7 12 12 8 10 11

Min. DOF 7 5 4 1 5 5
max. 1.79 18.74 21.83 14.78 8.58 2.98

Fdist(X) min. 0.18 0.23 0.18 0.45 2.35 2.26
avg. 0.71 6.49 10.68 2.62 3.99 2.68
max. 5.16 5.63 6.91 36.48 5.35 6.12

Farea(X) min. 2.05 1.56 1.39 2.40 2.89 3.84
avg. 3.19 2.61 4.22 7.71 4.05 4.82
max. 4.10 5.61 4.91 29.37 5.30 5.17

Fnormal(X) min. 1.04 0.75 0.74 2.06 3.04 3.11
avg. 2.17 2.70 2.86 6.62 4.39 3.94

Table F.29: Results for the approximation of the HP surface with cut pattern X and
(carea, cnormal) = (0.0, 0.0) arranged with respect to the choice of design vari-
ables.

Cases G1 G2 G3 R1 R2 R3
No. solutions 11 10 10 8 8 8

Min. DOF 1 4 2 1 1 1
max. 12.08 6.51 9.54 9.64 5.30 7.97

Fdist(X) min. 1.10 2.14 1.97 1.03 4.38 2.79
avg. 4.37 3.82 3.34 3.26 4.63 7.26
max. 19.40 11.18 16.74 28.11 6.66 8.16

Farea(X) min. 5.61 6.22 8.59 6.35 1.57 4.24
avg. 10.89 9.66 11.11 12.37 2.93 5.09
max. 10.92 6.65 9.68 18.28 6.60 5.98

Fnormal(X) min. 4.95 3.49 5.99 5.39 3.57 4.06
avg. 6.48 5.37 7.09 9.50 4.37 4.58
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Table F.30: Results for the approximation of the HP surface without cuts and with
(carea, cnormal) = (0.2, 0.5) arranged with respect to the choice of design vari-
ables.

Cases G1 G2 G3 R1 R2 R3
No. solutions 7 1 10 6 1 9

Min. DOF 1 21 3 1 21 1
max. 3.80 5.80 46.56 2.00 8.71 21.65

Fdist(X) min. 1.51 5.80 3.53 1.62 8.71 17.85
avg. 2.44 5.80 22.46 1.71 8.71 20.05
max. 9.20 0.00 9.93 5.11 0.00 4.70

Farea(X) min. 2.94 0.00 2.83 4.01 0.00 2.61
avg. 4.72 0.00 4.76 4.36 0.00 2.86
max. 4.01 2.31 7.41 3.83 2.34 5.23

Fnormal(X) min. 2.19 2.31 2.03 3.37 2.34 1.96
avg. 2.88 2.31 3.52 3.45 2.34 2.34

Table F.31: Results for the approximation of the HP surface with cut pattern C and
(carea, cnormal) = (0.2, 0.5) arranged with respect to the choice of design vari-
ables.

Cases G1 G2 G3 R1 R2 R3
No. solutions 8 8 9 8 8 8

Min. DOF 5 8 5 4 2 3
max. 87.52 13.49 42.14 206.61 33.34 87.83

Fdist(X) min. 1.56 6.40 18.72 1.20 8.73 6.79
avg. 18.86 9.83 22.82 39.78 14.29 22.39
max. 111.47 4.25 6.22 80.02 8.99 8.01

Farea(X) min. 3.20 0.00 2.58 3.11 0.00 2.67
avg. 25.18 2.62 3.37 33.76 1.77 3.66
max. 40.23 2.89 5.32 41.20 4.54 8.12

Fnormal(X) min. 2.50 2.24 2.03 2.66 2.30 1.91
avg. 12.23 2.62 2.80 18.53 2.71 3.05

Table F.32: Results for the approximation of the HP surface with cut pattern E and
(carea, cnormal) = (0.2, 0.5) arranged with respect to the choice of design vari-
ables.

Cases G1 G2 G3 R1 R2 R3
No. solutions 8 1 8 10 1 9

Min. DOF 3 29 5 5 29 5
max. 2.91 0.67 33.20 100.39 1.97 24.64

Fdist(X) min. 0.20 0.67 0.31 0.66 1.97 0.82
avg. 1.01 0.67 7.73 11.82 1.97 9.02
max. 3.32 0.00 5.30 15.99 0.00 5.62

Farea(X) min. 0.98 0.00 1.22 1.72 0.00 1.25
avg. 2.00 0.00 2.68 4.03 0.00 1.96
max. 3.16 0.73 4.33 8.17 1.05 3.53

Fnormal(X) min. 0.66 0.73 0.78 1.22 1.05 0.98
avg. 1.73 0.73 2.02 2.68 1.05 1.61
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Table F.33: Results for the approximation of the HP surface with cut pattern X and
(carea, cnormal) = (0.2, 0.5) arranged with respect to the choice of design vari-
ables.

Cases G1 G2 G3 R1 R2 R3
No. solutions 8 10 11 8 9 8

Min. DOF 2 4 1 1 2 3
max. 8.28 14.43 37.17 16.87 97.50 77.61

Fdist(X) min. 1.27 4.07 3.30 1.77 5.81 17.33
avg. 3.49 7.05 18.98 5.98 21.69 39.59
max. 16.22 8.83 33.12 29.67 18.69 141.10

Farea(X) min. 3.48 0.00 2.54 3.56 0.00 2.50
avg. 8.21 3.27 6.60 12.08 4.77 68.25
max. 9.42 4.49 17.60 18.52 14.02 45.66

Fnormal(X) min. 2.62 1.81 1.80 2.33 1.84 2.24
avg. 5.29 2.76 4.07 8.01 4.63 26.48

Table F.34: Results for the approximation of the HP surface without cuts and with
(carea, cnormal) = (0.2, 1.0) arranged with respect to the choice of design vari-
ables.

Cases G1 G2 G3 R1 R2 R3
No. solutions 6 6 9 6 6 6

Min. DOF 5 1 1 1 1 1
max. 1.90 14.70 17.72 174.68 11.44 17.37

Fdist(X) min. 1.82 4.10 7.11 21.65 7.38 8.85
avg. 1.87 7.37 8.90 70.05 10.40 11.69
max. 3.43 4.61 4.51 82.03 0.74 3.10

Farea(X) min. 2.93 0.00 2.91 35.48 0.00 2.88
avg. 3.15 2.26 3.30 51.75 0.59 3.03
max. 2.28 5.36 3.63 33.40 2.69 1.92

Fnormal(X) min. 2.06 1.89 1.82 24.82 2.39 1.85
avg. 2.16 3.24 2.13 28.56 2.56 1.88

Table F.35: Results for the approximation of the HP surface with cut pattern C and
(carea, cnormal) = (0.2, 1.0) arranged with respect to the choice of design vari-
ables.

Cases G1 G2 G3 R1 R2 R3
No. solutions 6 7 9 8 8 8

Min. DOF 8 5 6 1 1 5
max. 5.09 13.27 20.46 115.56 15.07 22.61

Fdist(X) min. 1.39 8.00 7.06 2.56 7.00 5.61
avg. 3.01 10.48 9.86 17.71 9.75 9.88
max. 16.80 3.48 4.96 73.83 4.02 3.60

Farea(X) min. 2.51 1.33 2.93 3.40 0.00 2.88
avg. 5.45 2.49 3.24 14.36 0.89 3.09
max. 9.06 3.68 4.21 29.34 4.68 3.58

Fnormal(X) min. 2.26 2.09 1.77 3.04 2.20 2.22
avg. 4.02 2.36 2.17 7.24 3.31 2.55
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Table F.36: Results for the approximation of the HP surface with cut pattern E and
(carea, cnormal) = (0.2, 1.0) arranged with respect to the choice of design vari-
ables.

Cases G1 G2 G3 R1 R2 R3
No. solutions 10 1 8 10 1 11

Min. DOF 3 29 1 5 29 1
max. 8.77 0.73 5.87 1.67 2.20 28.27

Fdist(X) min. 0.35 0.73 0.40 0.59 2.20 0.85
avg. 2.38 0.73 1.63 1.27 2.20 11.37
max. 5.49 0.00 7.17 2.81 0.00 3.93

Farea(X) min. 2.36 0.00 1.21 1.37 0.00 1.45
avg. 3.45 0.00 2.69 2.00 0.00 2.50
max. 6.67 0.71 4.78 2.41 1.05 3.52

Fnormal(X) min. 1.14 0.71 0.83 0.99 1.05 1.12
avg. 2.75 0.71 1.76 1.66 1.05 2.24

Table F.37: Results for the approximation of the HP surface with cut pattern X and
(carea, cnormal) = (0.2, 1.0) arranged with respect to the choice of design vari-
ables.

Cases G1 G2 G3 R1 R2 R3
No. solutions 11 10 10 8 8 9

Min. DOF 3 2 3 1 1 1
max. 209.47 12.81 71.35 86.49 13.59 34.22

Fdist(X) min. 1.58 3.29 3.42 1.88 4.32 4.38
avg. 70.77 8.37 23.09 28.36 7.22 13.80
max. 188.61 6.41 20.02 89.11 1.64 27.79

Farea(X) min. 1.95 0.00 3.03 2.87 0.13 2.45
avg. 56.53 1.64 7.40 27.83 0.98 7.32
max. 64.36 3.84 14.75 34.58 3.01 12.89

Fnormal(X) min. 2.10 1.81 1.63 2.88 2.37 2.20
avg. 21.82 2.41 5.44 14.30 2.56 4.39

Table F.38: Results for the approximation of the HP surface without cuts and with
(carea, cnormal) = (0.4, 0.5) arranged with respect to the choice of design vari-
ables.

Cases G1 G2 G3 R1 R2 R3
No. solutions 7 1 9 6 1 7

Min. DOF 1 21 1 1 21 1
max. 2.23 5.25 73.57 2.64 7.65 25.45

Fdist(X) min. 1.87 5.25 2.48 2.50 7.65 16.27
avg. 2.03 5.25 22.53 2.54 7.65 23.07
max. 3.65 0.00 6.75 3.25 0.00 5.07

Farea(X) min. 2.37 0.00 2.67 2.95 0.00 2.36
avg. 2.96 0.00 3.60 3.02 0.00 2.88
max. 2.69 1.99 5.57 3.05 2.41 3.95

Fnormal(X) min. 2.11 1.99 2.11 2.98 2.41 2.60
avg. 2.38 1.99 2.65 3.01 2.41 2.89
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Table F.39: Results for the approximation of the HP surface with cut pattern C and
(carea, cnormal) = (0.4, 0.5) arranged with respect to the choice of design vari-
ables.

Cases G1 G2 G3 R1 R2 R3
No. solutions 7 1 7 8 8 8

Min. DOF 6 26 6 3 1 2
max. 411.36 4.93 19.36 100.51 72.00 51.79

Fdist(X) min. 1.41 4.93 18.10 1.32 5.55 7.29
avg. 133.13 4.93 18.67 17.56 39.40 15.21
max. 128.03 0.00 2.80 213.65 197.02 17.38

Farea(X) min. 2.30 0.00 2.52 2.19 2.01 2.77
avg. 44.39 0.00 2.67 31.37 77.81 4.66
max. 46.51 1.95 2.34 49.73 50.29 11.51

Fnormal(X) min. 2.18 1.95 1.93 2.46 2.64 2.73
avg. 17.79 1.95 2.04 9.96 27.53 3.86

Table F.40: Results for the approximation of the HP surface with cut pattern E and
(carea, cnormal) = (0.4, 0.5) arranged with respect to the choice of design vari-
ables.

Cases G1 G2 G3 R1 R2 R3
No. solutions 7 1 8 8 1 10

Min. DOF 7 29 9 5 29 5
max. 2.09 1.72 7.80 1.56 1.77 36.43

Fdist(X) min. 0.36 1.72 0.23 0.76 1.77 2.95
avg. 0.83 1.72 2.60 1.22 1.77 13.83
max. 6.91 0.00 2.93 2.65 0.00 2.24

Farea(X) min. 1.17 0.00 1.02 1.06 0.00 1.28
avg. 2.13 0.00 1.75 1.93 0.00 1.54
max. 4.05 1.03 2.27 2.30 1.14 3.00

Fnormal(X) min. 0.90 1.03 0.65 1.10 1.14 1.10
avg. 1.57 1.03 1.17 1.79 1.14 1.71

Table F.41: Results for the approximation of the HP surface with cut pattern X and
(carea, cnormal) = (0.4, 0.5) arranged with respect to the choice of design vari-
ables.

Cases G1 G2 G3 R1 R2 R3
No. solutions 10 7 9 8 9 8

Min. DOF 2 4 1 1 1 1
max. 34.56 31.25 52.51 331.27 17.47 28.36

Fdist(X) min. 1.89 3.64 3.28 1.41 5.59 19.22
avg. 8.95 10.71 23.30 117.13 8.63 21.18
max. 44.40 28.16 13.47 533.68 8.31 4.57

Farea(X) min. 1.96 0.00 2.54 2.79 0.43 2.20
avg. 10.71 6.66 4.65 246.50 2.87 2.64
max. 18.89 15.82 9.44 66.65 10.14 4.58

Fnormal(X) min. 2.44 1.96 1.93 2.56 2.61 2.43
avg. 5.91 5.95 3.35 39.52 3.56 2.78
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Table F.42: Results for the approximation of the HP surface without cuts and with
(carea, cnormal) = (0.4, 1.0) arranged with respect to the choice of design vari-
ables.

Cases G1 G2 G3 R1 R2 R3
No. solutions 8 8 7 7 1 8

Min. DOF 1 3 5 1 21 1
max. 4.64 10.39 14.41 31.59 7.41 43.49

Fdist(X) min. 1.98 2.72 3.98 3.09 7.41 21.29
avg. 2.49 5.69 12.79 7.20 7.41 24.42
max. 3.45 5.85 5.64 24.54 0.00 3.82

Farea(X) min. 2.31 0.00 2.83 2.60 0.00 2.56
avg. 2.76 2.54 3.28 5.80 0.00 2.73
max. 3.95 3.55 4.02 11.16 2.13 4.32

Fnormal(X) min. 2.02 1.85 2.03 2.82 2.13 1.97
avg. 2.39 2.57 2.32 4.14 2.13 2.28

Table F.43: Results for the approximation of the HP surface with cut pattern C and
(carea, cnormal) = (0.4, 1.0) arranged with respect to the choice of design vari-
ables.

Cases G1 G2 G3 R1 R2 R3
No. solutions 8 1 10 8 9 8

Min. DOF 5 26 5 1 1 1
max. 152.63 5.01 113.01 444.23 78.34 34.20

Fdist(X) min. 47.73 5.01 4.51 23.49 7.59 14.69
avg. 132.30 5.01 48.68 105.10 25.32 18.07
max. 439.98 0.00 7.12 215.32 12.59 5.36

Farea(X) min. 63.01 0.00 2.89 33.90 0.00 2.68
avg. 298.32 0.00 4.49 108.59 3.31 3.12
max. 51.84 1.91 4.87 50.14 7.94 4.67

Fnormal(X) min. 24.51 1.91 1.82 24.56 2.20 2.12
avg. 42.34 1.91 3.68 35.58 3.28 2.51

Table F.44: Results for the approximation of the HP surface with cut pattern E and
(carea, cnormal) = (0.4, 1.0) arranged with respect to the choice of design vari-
ables.

Cases G1 G2 G3 R1 R2 R3
No. solutions 7 1 9 7 1 8

Min. DOF 11 29 3 7 29 5
max. 0.67 4.76 23.17 1.45 1.82 13.67

Fdist(X) min. 0.28 4.76 0.65 0.63 1.82 0.93
avg. 0.48 4.76 8.40 0.86 1.82 7.17
max. 1.68 0.00 11.16 3.22 0.00 1.53

Farea(X) min. 0.61 0.00 1.26 1.34 0.00 1.25
avg. 1.16 0.00 3.60 1.79 0.00 1.43
max. 1.10 0.89 9.11 1.80 1.05 1.60

Fnormal(X) min. 0.67 0.89 0.78 1.12 1.05 0.98
avg. 0.89 0.89 2.66 1.31 1.05 1.30

149



Table F.45: Results for the approximation of the HP surface with cut pattern X and
(carea, cnormal) = (0.4, 1.0) arranged with respect to the choice of design vari-
ables.

Cases G1 G2 G3 R1 R2 R3
No. solutions 8 8 10 8 8 8

Min. DOF 3 1 2 1 1 1
max. 175.03 26.20 35.60 97.27 13.48 36.82

Fdist(X) min. 1.43 6.75 2.52 2.07 5.39 7.01
avg. 96.75 10.27 10.48 20.18 8.50 22.55
max. 469.95 6.98 41.56 128.06 2.90 7.70

Farea(X) min. 1.86 0.35 2.91 2.48 0.00 2.86
avg. 245.46 2.76 7.67 42.85 1.05 4.19
max. 51.20 6.22 19.43 46.62 2.91 6.20

Fnormal(X) min. 2.03 2.34 1.66 2.81 2.14 2.14
avg. 30.46 3.45 4.16 25.71 2.60 3.47

F.1.3 Graphs of solutions approximating HP surface

The graphs plotting the DOFs and values of approximation error functions with respect to
the number of fixed crease lines are shown for the examples of the approximation of the HP
surface. The correspondence between the cases of examples and the indices of graphs are
as follows:

• Case G1: Figs. F.1–F.4

• Case G2: Figs. F.5–F.8

• Case G3: Figs. F.9–F.12

• Case R1: Figs. F.13–F.16

• Case R2: Figs. F.17–F.20

• Case R3: Figs. F.21–F.24
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Figure F.1: DOFs in Case G1 with the HP surface.
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Figure F.2: Values of Fdist(X) in Case G1 with the HP surface.
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Figure F.3: Values of Farea(X) in Case G1 with the HP surface.
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Figure F.4: Values of Fnormal(X) in Case G1 with the HP surface.
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Figure F.5: DOFs in Case G2 with the HP surface.
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Figure F.6: Values of Fdist(X) in Case G2 with the HP surface.

� �� �� �� ��
	������
����

�
����
�

���
���
���
���

����

F a
re

a(X
)

(a) Cut pattern C

� �� �� �� ��
	������
����

�
����
�

���
���
���
���

����

F a
re

a(X
)

(b) Cut pattern E

� �� �� �� ��
	������
����

�
����
�

���
���
���
���

����

F a
re

a(X
)

(c) Cut pattern X

Figure F.7: Values of Farea(X) in Case G2 with the HP surface.
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Figure F.8: Values of Fnormal(X) in Case G2 with the HP surface.
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Figure F.9: DOFs in Case G3 with the HP surface.

152



� �� �� �� ��
�����
��
�	�������
���

�
��
��
��
��

F d
ist

(X
)

(a) Cut pattern C

� �� �� �� ��
�����
��
�	�������
���

�
��
��
��
��

F d
ist

(X
)

(b) Cut pattern E

� �� �� �� ��
�����
��
�	�������
���

�
��
��
��
��

F d
ist

(X
)

(c) Cut pattern X

Figure F.10: Values of Fdist(X) in Case G3 with the HP surface.
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Figure F.11: Values of Farea(X) in Case G3 with the HP surface.
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Figure F.12: Values of Fnormal(X) in Case G3 with the HP surface.

� �� �� �� ��
	�������
�������������

�
��
��
��
��

�


�

(a) Cut pattern C

� �� �� �� ��
	�������
�������������

�
��
��
��
��

�


�

(b) Cut pattern E

� �� �� �� ��
	�������
�������������

�
��
��
��
��

�


�

(c) Cut pattern X

Figure F.13: DOFs in Case R1 with the HP surface.
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Figure F.14: Values of Fdist(X) in Case R1 with the HP surface.
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Figure F.15: Values of Farea(X) in Case R1 with the HP surface.
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Figure F.16: Values of Fnormal(X) in Case R1 with the HP surface.
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Figure F.17: DOFs in Case R2 with the HP surface.
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Figure F.18: Values of Fdist(X) in Case R2 with the HP surface.
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Figure F.19: Values of Farea(X) in Case R2 with the HP surface.
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Figure F.20: Values of Fnormal(X) in Case R2 with the HP surface.
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Figure F.21: DOFs in Case R3 with the HP surface.
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Figure F.22: Values of Fdist(X) in Case R3 with the HP surface.
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Figure F.23: Values of Farea(X) in Case R3 with the HP surface.
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Figure F.24: Values of Fnormal(X) in Case R3 with the HP surface.

F.2 Approximation of dome surface

The tables and graphs are shown for the solutions considered in Section 4.3 of Chapter 4,
which approximate the dome surface in Fig. 4.6.

F.2.1 Tables comparing form generation results with respect to weight
coefficients of approximation error functions

This section shows the tables arranged with respect to the weight coefficients carea and
cnormal in the approximation error function. The results of the approximation of the HP
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surface obtained in cases G1–R3 are summarized as follows:

• Case G1: Tables F.46–F.49

• Case G2: Tables F.50–F.53

• Case G3: Tables F.54–F.57

• Case R1: Tables F.58–F.61

• Case R2: Tables F.62–F.65

• Case R3: Tables F.66–F.69

Table F.46: Results for the approximation of the dome surface without cuts in Case G1
arranged with respect to carea and cnormal.

carea 0.0 0.2 0.2 0.4 0.4
cnormal 0.0 0.5 1.0 0.5 1.0

No. solutions 7 7 7 7 1
Min. DOF 3 1 1 3 21

max. 2.50 33.22 5.93 18.33 2.32
Fdist(X) min. 2.06 2.24 2.61 2.18 2.32

avg. 2.30 11.40 4.17 9.82 2.32
max. 1.25 8.82 3.35 4.31 0.00

Farea(X) min. 0.00 0.00 0.00 0.00 0.00
avg. 0.56 2.25 0.56 0.62 0.00
max. 4.43 15.83 8.11 13.44 2.31

Fnormal(X) min. 4.12 3.21 2.70 3.35 2.31
avg. 4.21 8.43 4.14 8.58 2.31

Table F.47: Results for the approximation of the dime surface with cut pattern C in Case
G1 arranged with respect to carea and cnormal.

carea 0.0 0.2 0.2 0.4 0.4
cnormal 0.0 0.5 1.0 0.5 1.0

No. solutions 6 7 7 7 8
Min. DOF 15 9 6 10 3

max. 305.62 172.42 49.93 567.64 449.52
Fdist(X) min. 2.11 2.09 3.37 177.68 2.91

avg. 59.50 60.02 20.38 500.97 80.46
max. 173.35 127.53 35.83 1493.76 68.12

Farea(X) min. 2.07 0.00 0.00 621.89 0.00
avg. 49.97 51.45 12.91 1265.15 30.56
max. 37.06 40.39 24.80 58.19 44.10

Fnormal(X) min. 7.44 3.77 3.01 56.58 3.53
avg. 20.63 19.81 12.16 57.12 27.13
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Table F.48: Results for the approximation of the dome surface with cut pattern E in Case
G1 arranged with respect to carea and cnormal.

carea 0.0 0.2 0.2 0.4 0.4
cnormal 0.0 0.5 1.0 0.5 1.0

No. solutions 5 4 3 7 2
Min. DOF 13 17 21 9 25

max. 0.66 0.71 0.55 1.25 0.72
Fdist(X) min. 0.42 0.44 0.54 0.54 0.72

avg. 0.52 0.58 0.55 0.77 0.72
max. 0.34 0.00 0.00 0.03 0.00

Farea(X) min. 0.02 0.00 0.00 0.00 0.00
avg. 0.21 0.00 0.00 0.00 0.00
max. 1.39 1.34 1.56 1.78 1.66

Fnormal(X) min. 1.16 1.01 1.04 1.19 1.60
avg. 1.28 1.15 1.22 1.58 1.63

Table F.49: Results for the approximation of the dome surface with cut pattern X in Case
G1 arranged with respect to carea and cnormal.

carea 0.0 0.2 0.2 0.4 0.4
cnormal 0.0 0.5 1.0 0.5 1.0

No. solutions 7 7 9 8 8
Min. DOF 2 6 3 1 1

max. 151.42 311.04 196.32 36.12 560.27
Fdist(X) min. 1.94 2.07 2.63 2.53 3.68

avg. 27.28 95.87 147.06 16.21 305.95
max. 25.76 205.25 503.27 16.57 252.53

Farea(X) min. 0.45 0.00 0.00 0.00 0.00
avg. 7.45 66.51 372.35 4.53 133.27
max. 14.86 46.79 63.35 8.30 46.31

Fnormal(X) min. 3.70 2.52 2.71 3.06 3.58
avg. 6.56 26.99 49.65 6.06 30.76

Table F.50: Results for the approximation of the dome surface without cuts in Case G2
arranged with respect to carea and cnormal.

carea 0.0 0.2 0.2 0.4 0.4
cnormal 0.0 0.5 1.0 0.5 1.0

No. solutions 8 5 7 1 6
Min. DOF 1 5 1 21 3

max. 77.97 23.34 57.22 6.15 41.21
Fdist(X) min. 6.13 8.56 3.94 6.15 3.57

avg. 20.83 16.52 16.89 6.15 13.08
max. 37.36 0.00 1.02 0.00 0.00

Farea(X) min. 3.44 0.00 0.00 0.00 0.00
avg. 17.89 0.00 0.15 0.00 0.00
max. 13.04 3.60 5.17 3.03 6.53

Fnormal(X) min. 3.31 2.61 2.05 3.03 2.10
avg. 7.54 3.14 3.02 3.03 3.48
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Table F.51: Results for the approximation of the dime surface with cut pattern C in Case
G2 arranged with respect to carea and cnormal.

carea 0.0 0.2 0.2 0.4 0.4
cnormal 0.0 0.5 1.0 0.5 1.0

No. solutions 8 8 1 6 6
Min. DOF 6 1 26 10 7

max. 71.73 79.30 5.13 45.90 81.56
Fdist(X) min. 52.11 5.00 5.13 7.28 29.78

avg. 61.35 32.55 5.13 22.97 46.16
max. 103.57 0.00 0.00 0.00 0.43

Farea(X) min. 75.26 0.00 0.00 0.00 0.00
avg. 95.80 0.00 0.00 0.00 0.07
max. 35.08 7.35 2.01 7.78 12.06

Fnormal(X) min. 30.31 2.40 2.01 2.66 2.78
avg. 31.43 5.33 2.01 4.51 5.22

Table F.52: Results for the approximation of the dome surface with cut pattern E in Case
G2 arranged with respect to carea and cnormal.

carea 0.0 0.2 0.2 0.4 0.4
cnormal 0.0 0.5 1.0 0.5 1.0

No. solutions 8 1 1 1 1
Min. DOF 3 29 29 29 29

max. 4.39 0.57 0.81 0.54 1.45
Fdist(X) min. 0.83 0.57 0.81 0.54 1.45

avg. 1.51 0.57 0.81 0.54 1.45
max. 2.49 0.00 0.00 0.00 0.00

Farea(X) min. 0.97 0.00 0.00 0.00 0.00
avg. 1.60 0.00 0.00 0.00 0.00
max. 3.18 0.78 0.78 0.73 0.78

Fnormal(X) min. 1.69 0.78 0.78 0.73 0.78
avg. 2.03 0.78 0.78 0.73 0.78

Table F.53: Results for the approximation of the dome surface with cut pattern X in Case
G2 arranged with respect to carea and cnormal.

carea 0.0 0.2 0.2 0.4 0.4
cnormal 0.0 0.5 1.0 0.5 1.0

No. solutions 9 8 9 8 8
Min. DOF 1 1 3 1 2

max. 99.53 39.47 48.31 85.04 78.44
Fdist(X) min. 6.55 4.04 5.71 6.17 5.48

avg. 21.68 11.03 29.00 36.61 23.49
max. 16.52 0.07 4.29 0.00 0.00

Farea(X) min. 1.43 0.00 0.00 0.00 0.00
avg. 8.73 0.01 0.76 0.00 0.00
max. 13.22 6.74 8.31 8.87 9.79

Fnormal(X) min. 4.08 2.22 2.21 2.44 2.23
avg. 6.95 3.86 4.59 5.08 6.37
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Table F.54: Results for the approximation of the dome surface without cuts in Case G3
arranged with respect to carea and cnormal.

carea 0.0 0.2 0.2 0.4 0.4
cnormal 0.0 0.5 1.0 0.5 1.0

No. solutions 7 9 8 2 1
Min. DOF 1 1 1 17 21

max. 12.30 17.28 13.08 5.00 8.60
Fdist(X) min. 12.23 6.12 3.45 4.87 8.60

avg. 12.26 9.53 7.83 4.94 8.60
max. 1.64 0.03 25.24 0.00 0.00

Farea(X) min. 1.17 0.00 0.00 0.00 0.00
avg. 1.49 0.01 3.16 0.00 0.00
max. 6.27 11.10 12.85 4.04 4.52

Fnormal(X) min. 5.82 4.16 2.33 3.28 4.52
avg. 5.97 5.88 5.03 3.66 4.52

Table F.55: Results for the approximation of the dime surface with cut pattern C in Case
G3 arranged with respect to carea and cnormal.

carea 0.0 0.2 0.2 0.4 0.4
cnormal 0.0 0.5 1.0 0.5 1.0

No. solutions 8 9 5 9 8
Min. DOF 3 2 12 2 1

max. 82.40 21.80 7.12 11.33 23.64
Fdist(X) min. 9.46 3.60 5.14 4.69 7.36

avg. 42.29 10.97 6.37 6.73 13.72
max. 209.27 0.00 0.02 0.05 0.02

Farea(X) min. 8.12 0.00 0.00 0.00 0.00
avg. 96.07 0.00 0.00 0.01 0.00
max. 36.46 8.08 2.84 5.57 11.77

Fnormal(X) min. 5.65 2.00 1.88 2.23 2.38
avg. 19.01 4.72 2.60 3.81 5.79

Table F.56: Results for the approximation of the dome surface with cut pattern E in Case
G3 arranged with respect to carea and cnormal.

carea 0.0 0.2 0.2 0.4 0.4
cnormal 0.0 0.5 1.0 0.5 1.0

No. solutions 8 1 5 1 1
Min. DOF 1 29 13 29 29

max. 9.21 0.91 1.22 0.57 0.94
Fdist(X) min. 0.58 0.91 0.75 0.57 0.94

avg. 1.82 0.91 1.05 0.57 0.94
max. 1.87 0.00 0.00 0.00 0.00

Farea(X) min. 0.09 0.00 0.00 0.00 0.00
avg. 1.01 0.00 0.00 0.00 0.00
max. 4.95 1.45 1.60 0.78 1.46

Fnormal(X) min. 1.07 1.45 0.90 0.78 1.46
avg. 1.69 1.45 1.44 0.78 1.46
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Table F.57: Results for the approximation of the dome surface with cut pattern X in Case
G3 arranged with respect to carea and cnormal.

carea 0.0 0.2 0.2 0.4 0.4
cnormal 0.0 0.5 1.0 0.5 1.0

No. solutions 9 8 8 8 5
Min. DOF 1 1 2 1 10

max. 81.21 19.93 35.46 56.90 76.52
Fdist(X) min. 7.44 2.98 3.11 3.36 3.30

avg. 30.59 7.52 12.61 20.99 44.78
max. 72.29 3.14 4.57 0.14 203.02

Farea(X) min. 0.07 0.00 0.00 0.00 0.00
avg. 27.86 0.69 0.57 0.02 110.18
max. 24.26 8.46 6.95 18.38 40.93

Fnormal(X) min. 5.84 2.48 2.26 2.45 2.37
avg. 12.53 4.37 4.34 8.85 24.45

Table F.58: Results for the approximation of the dome surface without cuts in Case R1
arranged with respect to carea and cnormal.

carea 0.0 0.2 0.2 0.4 0.4
cnormal 0.0 0.5 1.0 0.5 1.0

No. solutions 8 2 3 3 5
Min. DOF 1 19 13 17 7

max. 5.62 2.95 2.69 4.17 3.42
Fdist(X) min. 1.84 2.25 2.45 2.22 2.43

avg. 3.25 2.60 2.57 3.04 2.90
max. 4.66 0.00 0.00 0.00 0.00

Farea(X) min. 0.08 0.00 0.00 0.00 0.00
avg. 2.88 0.00 0.00 0.00 0.00
max. 10.17 4.49 2.88 4.31 3.45

Fnormal(X) min. 3.82 2.75 2.62 2.89 2.65
avg. 5.93 3.62 2.74 3.55 3.23

Table F.59: Results for the approximation of the dime surface with cut pattern C in Case
R1 arranged with respect to carea and cnormal.

carea 0.0 0.2 0.2 0.4 0.4
cnormal 0.0 0.5 1.0 0.5 1.0

No. solutions 9 0 8 8 0
Min. DOF 5 - 2 5 -

max. 502.45 - 17.45 90.81 -
Fdist(X) min. 1.89 - 2.67 2.23 -

avg. 129.36 - 4.95 22.46 -
max. 78.91 - 4.44 54.44 -

Farea(X) min. 1.49 - 0.00 0.00 -
avg. 22.06 - 1.23 12.42 -
max. 53.05 - 7.93 36.70 -

Fnormal(X) min. 4.53 - 3.37 2.79 -
avg. 23.17 - 4.92 14.41 -
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Table F.60: Results for the approximation of the dome surface with cut pattern E in Case
R1 arranged with respect to carea and cnormal.

carea 0.0 0.2 0.2 0.4 0.4
cnormal 0.0 0.5 1.0 0.5 1.0

No. solutions 7 1 1 1 1
Min. DOF 7 29 29 29 29

max. 2.10 0.39 0.72 0.39 0.41
Fdist(X) min. 0.57 0.39 0.72 0.39 0.41

avg. 0.99 0.39 0.72 0.39 0.41
max. 3.64 0.00 0.00 0.00 0.00

Farea(X) min. 0.36 0.00 0.00 0.00 0.00
avg. 1.73 0.00 0.00 0.00 0.00
max. 3.15 0.92 1.46 0.92 0.93

Fnormal(X) min. 2.07 0.92 1.46 0.92 0.93
avg. 2.46 0.92 1.46 0.92 0.93

Table F.61: Results for the approximation of the dome surface with cut pattern X in Case
R1 arranged with respect to carea and cnormal.

carea 0.0 0.2 0.2 0.4 0.4
cnormal 0.0 0.5 1.0 0.5 1.0

No. solutions 9 8 8 8 10
Min. DOF 5 6 1 1 1

max. 530.93 156.08 68.35 52.46 73.42
Fdist(X) min. 1.64 3.22 7.78 4.15 3.05

avg. 204.30 64.69 43.99 16.10 29.23
max. 829.51 308.72 163.19 32.41 28.72

Farea(X) min. 1.38 0.00 27.17 0.00 0.00
avg. 318.11 156.37 107.91 11.46 8.46
max. 70.26 60.42 57.53 21.23 34.36

Fnormal(X) min. 7.15 4.37 17.95 5.30 3.86
avg. 46.02 45.00 45.51 11.46 11.53

Table F.62: Results for the approximation of the dome surface without cuts in Case R2
arranged with respect to carea and cnormal.

carea 0.0 0.2 0.2 0.4 0.4
cnormal 0.0 0.5 1.0 0.5 1.0

No. solutions 8 1 6 1 7
Min. DOF 1 21 1 21 1

max. 6.97 3.36 11.90 3.96 12.19
Fdist(X) min. 4.11 3.36 3.71 3.96 2.88

avg. 4.76 3.36 9.33 3.96 8.52
max. 8.17 0.00 0.14 0.00 0.00

Farea(X) min. 2.30 0.00 0.00 0.00 0.00
avg. 4.84 0.00 0.02 0.00 0.00
max. 5.75 2.85 3.15 2.80 5.30

Fnormal(X) min. 2.90 2.85 2.32 2.80 2.50
avg. 4.05 2.85 2.82 2.80 3.69
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Table F.63: Results for the approximation of the dime surface with cut pattern C in Case
R2 arranged with respect to carea and cnormal.

carea 0.0 0.2 0.2 0.4 0.4
cnormal 0.0 0.5 1.0 0.5 1.0

No. solutions 7 9 8 10 9
Min. DOF 2 3 1 2 2

max. 52.36 82.72 54.43 43.91 91.17
Fdist(X) min. 42.47 4.72 9.03 4.49 3.39

avg. 44.71 46.21 19.09 15.91 23.15
max. 95.23 12.09 13.42 8.29 0.04

Farea(X) min. 78.84 0.00 0.00 0.00 0.00
avg. 83.15 2.67 1.68 1.32 0.01
max. 43.21 18.99 18.57 9.30 9.24

Fnormal(X) min. 40.14 3.21 2.70 3.17 2.51
avg. 41.88 11.87 5.03 4.93 4.78

Table F.64: Results for the approximation of the dome surface with cut pattern E in Case
R2 arranged with respect to carea and cnormal.

carea 0.0 0.2 0.2 0.4 0.4
cnormal 0.0 0.5 1.0 0.5 1.0

No. solutions 11 1 7 1 1
Min. DOF 9 29 7 29 29

max. 10.90 0.56 11.06 0.45 0.50
Fdist(X) min. 1.73 0.56 0.49 0.45 0.50

avg. 4.50 0.56 3.86 0.45 0.50
max. 5.15 0.00 0.00 0.00 0.00

Farea(X) min. 3.15 0.00 0.00 0.00 0.00
avg. 3.81 0.00 0.00 0.00 0.00
max. 4.32 0.90 1.98 0.90 0.89

Fnormal(X) min. 1.58 0.90 0.89 0.90 0.89
avg. 2.58 0.90 1.46 0.90 0.89

Table F.65: Results for the approximation of the dome surface with cut pattern X in Case
R2 arranged with respect to carea and cnormal.

carea 0.0 0.2 0.2 0.4 0.4
cnormal 0.0 0.5 1.0 0.5 1.0

No. solutions 9 8 9 9 8
Min. DOF 1 2 2 2 7

max. 85.75 34.97 56.99 89.29 116.79
Fdist(X) min. 8.03 7.03 6.23 23.43 61.49

avg. 27.29 19.29 17.73 53.89 85.98
max. 44.86 0.00 15.43 16.14 367.36

Farea(X) min. 5.85 0.00 0.00 0.00 216.71
avg. 16.38 0.00 2.21 1.79 283.89
max. 22.29 6.00 11.27 12.93 49.83

Fnormal(X) min. 5.23 2.68 2.53 5.43 43.15
avg. 10.50 4.12 5.18 8.80 47.46
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Table F.66: Results for the approximation of the dome surface without cuts in Case R3
arranged with respect to carea and cnormal.

carea 0.0 0.2 0.2 0.4 0.4
cnormal 0.0 0.5 1.0 0.5 1.0

No. solutions 7 1 7 1 1
Min. DOF 1 21 1 21 21

max. 4.72 4.66 26.37 5.57 5.03
Fdist(X) min. 4.40 4.66 3.13 5.57 5.03

avg. 4.54 4.66 10.93 5.57 5.03
max. 4.49 0.00 0.01 0.00 0.00

Farea(X) min. 2.40 0.00 0.00 0.00 0.00
avg. 3.28 0.00 0.00 0.00 0.00
max. 4.63 2.89 5.54 3.06 2.99

Fnormal(X) min. 3.56 2.89 2.47 3.06 2.99
avg. 4.13 2.89 3.58 3.06 2.99

Table F.67: Results for the approximation of the dime surface with cut pattern C in Case
R3 arranged with respect to carea and cnormal.

carea 0.0 0.2 0.2 0.4 0.4
cnormal 0.0 0.5 1.0 0.5 1.0

No. solutions 8 8 8 6 9
Min. DOF 3 1 1 10 2

max. 64.85 20.52 20.24 75.23 62.47
Fdist(X) min. 59.17 3.03 6.18 9.83 5.46

avg. 62.56 8.86 8.89 61.07 16.33
max. 186.15 0.00 16.45 145.12 3.72

Farea(X) min. 50.12 0.00 0.00 0.00 0.00
avg. 137.67 0.00 2.06 30.32 0.42
max. 42.05 7.10 11.35 48.51 22.85

Fnormal(X) min. 40.23 2.81 3.40 5.80 2.72
avg. 40.87 4.54 5.28 28.66 8.31

Table F.68: Results for the approximation of the dome surface with cut pattern E in Case
R3 arranged with respect to carea and cnormal.

carea 0.0 0.2 0.2 0.4 0.4
cnormal 0.0 0.5 1.0 0.5 1.0

No. solutions 10 1 1 1 1
Min. DOF 11 29 29 29 29

max. 2.44 0.46 0.45 0.44 0.46
Fdist(X) min. 1.32 0.46 0.45 0.44 0.46

avg. 1.80 0.46 0.45 0.44 0.46
max. 2.61 0.00 0.00 0.00 0.00

Farea(X) min. 1.50 0.00 0.00 0.00 0.00
avg. 2.03 0.00 0.00 0.00 0.00
max. 3.81 0.87 0.87 0.87 0.87

Fnormal(X) min. 1.72 0.87 0.87 0.87 0.87
avg. 2.60 0.87 0.87 0.87 0.87
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Table F.69: Results for the approximation of the dome surface with cut pattern X in Case
R3 arranged with respect to carea and cnormal.

carea 0.0 0.2 0.2 0.4 0.4
cnormal 0.0 0.5 1.0 0.5 1.0

No. solutions 12 9 2 8 8
Min. DOF 1 1 24 2 3

max. 70.98 32.82 11.70 74.86 94.06
Fdist(X) min. 7.05 5.23 4.85 18.60 5.10

avg. 53.42 13.81 8.28 48.67 45.09
max. 87.18 0.00 0.00 160.34 115.09

Farea(X) min. 4.47 0.00 0.00 0.00 0.00
avg. 58.96 0.00 0.00 30.50 14.39
max. 17.14 9.23 3.85 48.12 42.64

Fnormal(X) min. 4.62 3.74 3.36 16.26 3.50
avg. 14.10 5.65 3.61 32.60 23.14

F.2.2 Tables comparing form generation results with respect to choice of
design variables

This section shows the tables arranged with respect to the design variables of the opti-
mization problems (3.50) and (3.51). The results of the approximation of the dome surface
obtained by setting (carea, cnormal) to (0.0, 0.0), (0.2, 0.5), (0.2, 1.0), (0.4, 0.5), and (0.4, 1.0)
are summarized as follows:

• (carea, cnormal)= (0.0, 0.0): Tables F.70–F.73

• (carea, cnormal)= (0.2, 0.5): Tables F.74–F.77

• (carea, cnormal)= (0.2, 1.0): Tables F.78–F.81

• (carea, cnormal)= (0.4, 0.5): Tables F.82–F.85

• (carea, cnormal)= (0.4, 1.0): Tables F.86–F.89

Table F.70: Results for the approximation of the dome surface without cuts and with
(carea, cnormal) = (0.0, 0.0) arranged with respect to the choice of design vari-
ables.

Cases G1 G2 G3 R1 R2 R3
No. solutions 7 8 7 8 8 7

Min. DOF 3 1 1 1 1 1
max. 2.50 77.97 12.30 5.62 6.97 4.72

Fdist(X) min. 2.06 6.13 12.23 1.84 4.11 4.40
avg. 2.30 20.83 12.26 3.25 4.76 4.54
max. 1.25 37.36 1.64 4.66 8.17 4.49

Farea(X) min. 0.00 3.44 1.17 0.08 2.30 2.40
avg. 0.56 17.89 1.49 2.88 4.84 3.28
max. 4.43 13.04 6.27 10.17 5.75 4.63

Fnormal(X) min. 4.12 3.31 5.82 3.82 2.90 3.56
avg. 4.21 7.54 5.97 5.93 4.05 4.13
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Table F.71: Results for the approximation of the dome surface with cut pattern C and
(carea, cnormal) = (0.0, 0.0) arranged with respect to the choice of design vari-
ables.

Cases G1 G2 G3 R1 R2 R3
No. solutions 6 8 8 9 7 8

Min. DOF 15 6 3 5 2 3
max. 305.62 71.73 82.40 502.45 52.36 64.85

Fdist(X) min. 2.11 52.11 9.46 1.89 42.47 59.17
avg. 59.50 61.35 42.29 129.36 44.71 62.56
max. 173.35 103.57 209.27 78.91 95.23 186.15

Farea(X) min. 2.07 75.26 8.12 1.49 78.84 50.12
avg. 49.97 95.80 96.07 22.06 83.15 137.67
max. 37.06 35.08 36.46 53.05 43.21 42.05

Fnormal(X) min. 7.44 30.31 5.65 4.53 40.14 40.23
avg. 20.63 31.43 19.01 23.17 41.88 40.87

Table F.72: Results for the approximation of the dome surface with cut pattern E and
(carea, cnormal) = (0.0, 0.0) arranged with respect to the choice of design vari-
ables.

Cases G1 G2 G3 R1 R2 R3
No. solutions 5 8 8 7 11 10

Min. DOF 13 3 1 7 9 11
max. 0.66 4.39 9.21 2.10 10.90 2.44

Fdist(X) min. 0.42 0.83 0.58 0.57 1.73 1.32
avg. 0.52 1.51 1.82 0.99 4.50 1.80
max. 0.34 2.49 1.87 3.64 5.15 2.61

Farea(X) min. 0.02 0.97 0.09 0.36 3.15 1.50
avg. 0.21 1.60 1.01 1.73 3.81 2.03
max. 1.39 3.18 4.95 3.15 4.32 3.81

Fnormal(X) min. 1.16 1.69 1.07 2.07 1.58 1.72
avg. 1.28 2.03 1.69 2.46 2.58 2.60

Table F.73: Results for the approximation of the dome surface with cut pattern X and
(carea, cnormal) = (0.0, 0.0) arranged with respect to the choice of design vari-
ables.

Cases G1 G2 G3 R1 R2 R3
No. solutions 7 9 9 9 9 12

Min. DOF 2 1 1 5 1 1
max. 151.42 99.53 81.21 530.93 85.75 70.98

Fdist(X) min. 1.94 6.55 7.44 1.64 8.03 7.05
avg. 27.28 21.68 30.59 204.30 27.29 53.42
max. 25.76 16.52 72.29 829.51 44.86 87.18

Farea(X) min. 0.45 1.43 0.07 1.38 5.85 4.47
avg. 7.45 8.73 27.86 318.11 16.38 58.96
max. 14.86 13.22 24.26 70.26 22.29 17.14

Fnormal(X) min. 3.70 4.08 5.84 7.15 5.23 4.62
avg. 6.56 6.95 12.53 46.02 10.50 14.10
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Table F.74: Results for the approximation of the dome surface without cuts and with
(carea, cnormal) = (0.2, 0.5) arranged with respect to the choice of design vari-
ables.

Cases G1 G2 G3 R1 R2 R3
No. solutions 7 5 9 2 1 1

Min. DOF 1 5 1 19 21 21
max. 33.22 23.34 17.28 2.95 3.36 4.66

Fdist(X) min. 2.24 8.56 6.12 2.25 3.36 4.66
avg. 11.40 16.52 9.53 2.60 3.36 4.66
max. 8.82 0.00 0.03 0.00 0.00 0.00

Farea(X) min. 0.00 0.00 0.00 0.00 0.00 0.00
avg. 2.25 0.00 0.01 0.00 0.00 0.00
max. 15.83 3.60 11.10 4.49 2.85 2.89

Fnormal(X) min. 3.21 2.61 4.16 2.75 2.85 2.89
avg. 8.43 3.14 5.88 3.62 2.85 2.89

Table F.75: Results for the approximation of the dome surface with cut pattern C and
(carea, cnormal) = (0.2, 0.5) arranged with respect to the choice of design vari-
ables.

Cases G1 G2 G3 R1 R2 R3
No. solutions 7 8 9 0 9 8

Min. DOF 9 1 2 - 3 1
max. 172.42 79.30 21.80 - 82.72 20.52

Fdist(X) min. 2.09 5.00 3.60 - 4.72 3.03
avg. 60.02 32.55 10.97 - 46.21 8.86
max. 127.53 0.00 0.00 - 12.09 0.00

Farea(X) min. 0.00 0.00 0.00 - 0.00 0.00
avg. 51.45 0.00 0.00 - 2.67 0.00
max. 40.39 7.35 8.08 - 18.99 7.10

Fnormal(X) min. 3.77 2.40 2.00 - 3.21 2.81
avg. 19.81 5.33 4.72 - 11.87 4.54

Table F.76: Results for the approximation of the dome surface with cut pattern E and
(carea, cnormal) = (0.2, 0.5) arranged with respect to the choice of design vari-
ables.

Cases G1 G2 G3 R1 R2 R3
No. solutions 4 1 1 1 1 1

Min. DOF 17 29 29 29 29 29
max. 0.71 0.57 0.91 0.39 0.56 0.46

Fdist(X) min. 0.44 0.57 0.91 0.39 0.56 0.46
avg. 0.58 0.57 0.91 0.39 0.56 0.46
max. 0.00 0.00 0.00 0.00 0.00 0.00

Farea(X) min. 0.00 0.00 0.00 0.00 0.00 0.00
avg. 0.00 0.00 0.00 0.00 0.00 0.00
max. 1.34 0.78 1.45 0.92 0.90 0.87

Fnormal(X) min. 1.01 0.78 1.45 0.92 0.90 0.87
avg. 1.15 0.78 1.45 0.92 0.90 0.87
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Table F.77: Results for the approximation of the dome surface with cut pattern X and
(carea, cnormal) = (0.2, 0.5) arranged with respect to the choice of design vari-
ables.

Cases G1 G2 G3 R1 R2 R3
No. solutions 7 8 8 8 8 9

Min. DOF 6 1 1 6 2 1
max. 311.04 39.47 19.93 156.08 34.97 32.82

Fdist(X) min. 2.07 4.04 2.98 3.22 7.03 5.23
avg. 95.87 11.03 7.52 64.69 19.29 13.81
max. 205.25 0.07 3.14 308.72 0.00 0.00

Farea(X) min. 0.00 0.00 0.00 0.00 0.00 0.00
avg. 66.51 0.01 0.69 156.37 0.00 0.00
max. 46.79 6.74 8.46 60.42 6.00 9.23

Fnormal(X) min. 2.52 2.22 2.48 4.37 2.68 3.74
avg. 26.99 3.86 4.37 45.00 4.12 5.65

Table F.78: Results for the approximation of the dome surface without cuts and with
(carea, cnormal) = (0.2, 1.0) arranged with respect to the choice of design vari-
ables.

Cases G1 G2 G3 R1 R2 R3
No. solutions 7 7 8 3 6 7

Min. DOF 1 1 1 13 1 1
max. 5.93 57.22 13.08 2.69 11.90 26.37

Fdist(X) min. 2.61 3.94 3.45 2.45 3.71 3.13
avg. 4.17 16.89 7.83 2.57 9.33 10.93
max. 3.35 1.02 25.24 0.00 0.14 0.01

Farea(X) min. 0.00 0.00 0.00 0.00 0.00 0.00
avg. 0.56 0.15 3.16 0.00 0.02 0.00
max. 8.11 5.17 12.85 2.88 3.15 5.54

Fnormal(X) min. 2.70 2.05 2.33 2.62 2.32 2.47
avg. 4.14 3.02 5.03 2.74 2.82 3.58

Table F.79: Results for the approximation of the dome surface with cut pattern C and
(carea, cnormal) = (0.2, 1.0) arranged with respect to the choice of design vari-
ables.

Cases G1 G2 G3 R1 R2 R3
No. solutions 7 1 5 8 8 8

Min. DOF 6 26 12 2 1 1
max. 49.93 5.13 7.12 17.45 54.43 20.24

Fdist(X) min. 3.37 5.13 5.14 2.67 9.03 6.18
avg. 20.38 5.13 6.37 4.95 19.09 8.89
max. 35.83 0.00 0.02 4.44 13.42 16.45

Farea(X) min. 0.00 0.00 0.00 0.00 0.00 0.00
avg. 12.91 0.00 0.00 1.23 1.68 2.06
max. 24.80 2.01 2.84 7.93 18.57 11.35

Fnormal(X) min. 3.01 2.01 1.88 3.37 2.70 3.40
avg. 12.16 2.01 2.60 4.92 5.03 5.28
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Table F.80: Results for the approximation of the dome surface with cut pattern E and
(carea, cnormal) = (0.2, 1.0) arranged with respect to the choice of design vari-
ables.

Cases G1 G2 G3 R1 R2 R3
No. solutions 3 1 5 1 7 1

Min. DOF 21 29 13 29 7 29
max. 0.55 0.81 1.22 0.72 11.06 0.45

Fdist(X) min. 0.54 0.81 0.75 0.72 0.49 0.45
avg. 0.55 0.81 1.05 0.72 3.86 0.45
max. 0.00 0.00 0.00 0.00 0.00 0.00

Farea(X) min. 0.00 0.00 0.00 0.00 0.00 0.00
avg. 0.00 0.00 0.00 0.00 0.00 0.00
max. 1.56 0.78 1.60 1.46 1.98 0.87

Fnormal(X) min. 1.04 0.78 0.90 1.46 0.89 0.87
avg. 1.22 0.78 1.44 1.46 1.46 0.87

Table F.81: Results for the approximation of the dome surface with cut pattern X and
(carea, cnormal) = (0.2, 1.0) arranged with respect to the choice of design vari-
ables.

Cases G1 G2 G3 R1 R2 R3
No. solutions 9 9 8 8 9 2

Min. DOF 3 3 2 1 2 24
max. 196.32 48.31 35.46 68.35 56.99 11.70

Fdist(X) min. 2.63 5.71 3.11 7.78 6.23 4.85
avg. 147.06 29.00 12.61 43.99 17.73 8.28
max. 503.27 4.29 4.57 163.19 15.43 0.00

Farea(X) min. 0.00 0.00 0.00 27.17 0.00 0.00
avg. 372.35 0.76 0.57 107.91 2.21 0.00
max. 63.35 8.31 6.95 57.53 11.27 3.85

Fnormal(X) min. 2.71 2.21 2.26 17.95 2.53 3.36
avg. 49.65 4.59 4.34 45.51 5.18 3.61

Table F.82: Results for the approximation of the dome surface without cuts and with
(carea, cnormal) = (0.4, 0.5) arranged with respect to the choice of design vari-
ables.

Cases G1 G2 G3 R1 R2 R3
No. solutions 7 1 2 3 1 1

Min. DOF 3 21 17 17 21 21
max. 18.33 6.15 5.00 4.17 3.96 5.57

Fdist(X) min. 2.18 6.15 4.87 2.22 3.96 5.57
avg. 9.82 6.15 4.94 3.04 3.96 5.57
max. 4.31 0.00 0.00 0.00 0.00 0.00

Farea(X) min. 0.00 0.00 0.00 0.00 0.00 0.00
avg. 0.62 0.00 0.00 0.00 0.00 0.00
max. 13.44 3.03 4.04 4.31 2.80 3.06

Fnormal(X) min. 3.35 3.03 3.28 2.89 2.80 3.06
avg. 8.58 3.03 3.66 3.55 2.80 3.06
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Table F.83: Results for the approximation of the dome surface with cut pattern C and
(carea, cnormal) = (0.4, 0.5) arranged with respect to the choice of design vari-
ables.

Cases G1 G2 G3 R1 R2 R3
No. solutions 7 6 9 8 10 6

Min. DOF 10 10 2 5 2 10
max. 567.64 45.90 11.33 90.81 43.91 75.23

Fdist(X) min. 177.68 7.28 4.69 2.23 4.49 9.83
avg. 500.97 22.97 6.73 22.46 15.91 61.07
max. 1493.76 0.00 0.05 54.44 8.29 145.12

Farea(X) min. 621.89 0.00 0.00 0.00 0.00 0.00
avg. 1265.15 0.00 0.01 12.42 1.32 30.32
max. 58.19 7.78 5.57 36.70 9.30 48.51

Fnormal(X) min. 56.58 2.66 2.23 2.79 3.17 5.80
avg. 57.12 4.51 3.81 14.41 4.93 28.66

Table F.84: Results for the approximation of the dome surface with cut pattern E and
(carea, cnormal) = (0.4, 0.5) arranged with respect to the choice of design vari-
ables.

Cases G1 G2 G3 R1 R2 R3
No. solutions 7 1 1 1 1 1

Min. DOF 9 29 29 29 29 29
max. 1.25 0.54 0.57 0.39 0.45 0.44

Fdist(X) min. 0.54 0.54 0.57 0.39 0.45 0.44
avg. 0.77 0.54 0.57 0.39 0.45 0.44
max. 0.03 0.00 0.00 0.00 0.00 0.00

Farea(X) min. 0.00 0.00 0.00 0.00 0.00 0.00
avg. 0.00 0.00 0.00 0.00 0.00 0.00
max. 1.78 0.73 0.78 0.92 0.90 0.87

Fnormal(X) min. 1.19 0.73 0.78 0.92 0.90 0.87
avg. 1.58 0.73 0.78 0.92 0.90 0.87

Table F.85: Results for the approximation of the dome surface with cut pattern X and
(carea, cnormal) = (0.4, 0.5) arranged with respect to the choice of design vari-
ables.

Cases G1 G2 G3 R1 R2 R3
No. solutions 8 8 8 8 9 8

Min. DOF 1 1 1 1 2 2
max. 36.12 85.04 56.90 52.46 89.29 74.86

Fdist(X) min. 2.53 6.17 3.36 4.15 23.43 18.60
avg. 16.21 36.61 20.99 16.10 53.89 48.67
max. 16.57 0.00 0.14 32.41 16.14 160.34

Farea(X) min. 0.00 0.00 0.00 0.00 0.00 0.00
avg. 4.53 0.00 0.02 11.46 1.79 30.50
max. 8.30 8.87 18.38 21.23 12.93 48.12

Fnormal(X) min. 3.06 2.44 2.45 5.30 5.43 16.26
avg. 6.06 5.08 8.85 11.46 8.80 32.60
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Table F.86: Results for the approximation of the dome surface without cuts and with
(carea, cnormal) = (0.4, 1.0) arranged with respect to the choice of design vari-
ables.

Cases G1 G2 G3 R1 R2 R3
No. solutions 1 6 1 5 7 1

Min. DOF 21 3 21 7 1 21
max. 2.32 41.21 8.60 3.42 12.19 5.03

Fdist(X) min. 2.32 3.57 8.60 2.43 2.88 5.03
avg. 2.32 13.08 8.60 2.90 8.52 5.03
max. 0.00 0.00 0.00 0.00 0.00 0.00

Farea(X) min. 0.00 0.00 0.00 0.00 0.00 0.00
avg. 0.00 0.00 0.00 0.00 0.00 0.00
max. 2.31 6.53 4.52 3.45 5.30 2.99

Fnormal(X) min. 2.31 2.10 4.52 2.65 2.50 2.99
avg. 2.31 3.48 4.52 3.23 3.69 2.99

Table F.87: Results for the approximation of the dome surface with cut pattern C and
(carea, cnormal) = (0.4, 1.0) arranged with respect to the choice of design vari-
ables.

Cases G1 G2 G3 R1 R2 R3
No. solutions 8 6 8 0 9 9

Min. DOF 3 7 1 - 2 2
max. 449.52 81.56 23.64 - 91.17 62.47

Fdist(X) min. 2.91 29.78 7.36 - 3.39 5.46
avg. 80.46 46.16 13.72 - 23.15 16.33
max. 68.12 0.43 0.02 - 0.04 3.72

Farea(X) min. 0.00 0.00 0.00 - 0.00 0.00
avg. 30.56 0.07 0.00 - 0.01 0.42
max. 44.10 12.06 11.77 - 9.24 22.85

Fnormal(X) min. 3.53 2.78 2.38 - 2.51 2.72
avg. 27.13 5.22 5.79 - 4.78 8.31

Table F.88: Results for the approximation of the dome surface with cut pattern E and
(carea, cnormal) = (0.4, 1.0) arranged with respect to the choice of design vari-
ables.

Cases G1 G2 G3 R1 R2 R3
No. solutions 2 1 1 1 1 1

Min. DOF 25 29 29 29 29 29
max. 0.72 1.45 0.94 0.41 0.50 0.46

Fdist(X) min. 0.72 1.45 0.94 0.41 0.50 0.46
avg. 0.72 1.45 0.94 0.41 0.50 0.46
max. 0.00 0.00 0.00 0.00 0.00 0.00

Farea(X) min. 0.00 0.00 0.00 0.00 0.00 0.00
avg. 0.00 0.00 0.00 0.00 0.00 0.00
max. 1.66 0.78 1.46 0.93 0.89 0.87

Fnormal(X) min. 1.60 0.78 1.46 0.93 0.89 0.87
avg. 1.63 0.78 1.46 0.93 0.89 0.87
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Table F.89: Results for the approximation of the dome surface with cut pattern X and
(carea, cnormal) = (0.4, 1.0) arranged with respect to the choice of design vari-
ables.

Cases G1 G2 G3 R1 R2 R3
No. solutions 8 8 5 10 8 8

Min. DOF 1 2 10 1 7 3
max. 560.27 78.44 76.52 73.42 116.79 94.06

Fdist(X) min. 3.68 5.48 3.30 3.05 61.49 5.10
avg. 305.95 23.49 44.78 29.23 85.98 45.09
max. 252.53 0.00 203.02 28.72 367.36 115.09

Farea(X) min. 0.00 0.00 0.00 0.00 216.71 0.00
avg. 133.27 0.00 110.18 8.46 283.89 14.39
max. 46.31 9.79 40.93 34.36 49.83 42.64

Fnormal(X) min. 3.58 2.23 2.37 3.86 43.15 3.50
avg. 30.76 6.37 24.45 11.53 47.46 23.14

F.2.3 Graphs of solutions approximating dome surface

The graphs plotting the DOFs and values of approximation error functions with respect to
the number of fixed crease lines are shown for the examples of the approximation of the
dome surface. The correspondence between the cases of examples and the indices of graphs
are as follows:

• Case G1: Figs. F.25–F.28

• Case G2: Figs. F.29–F.32

• Case G3: Figs. F.33–F.36

• Case R1: Figs. F.37–F.40

• Case R2: Figs. F.41–F.44

• Case R3: Figs. F.45–F.48
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Figure F.25: DOFs in Case G1 with the dome surface.
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Figure F.26: Values of Fdist(X) in Case G1 with the dome surface.
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Figure F.27: Values of Farea(X) in Case G1 with the dome surface.
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Figure F.28: Values of Fnormal(X) in Case G1 with the dome surface.
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Figure F.29: DOFs in Case G2 with the dome surface.
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Figure F.30: Values of Fdist(X) in Case G2 with the dome surface.
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Figure F.31: Values of Farea(X) in Case G2 with the dome surface.
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Figure F.32: Values of Fnormal(X) in Case G2 with the dome surface.
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Figure F.33: DOFs in Case G3 with the dome surface.
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Figure F.34: Values of Fdist(X) in Case G3 with the dome surface.
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Figure F.35: Values of Farea(X) in Case G3 with the dome surface.
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Figure F.36: Values of Fnormal(X) in Case G3 with the dome surface.
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Figure F.37: DOFs in Case R1 with the dome surface.
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Figure F.38: Values of Fdist(X) in Case R1 with the dome surface.
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Figure F.39: Values of Farea(X) in Case R1 with the dome surface.
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Figure F.40: Values of Fnormal(X) in Case R1 with the dome surface.
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Figure F.41: DOFs in Case R2 with the dome surface.
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Figure F.42: Values of Fdist(X) in Case R2 with the dome surface.
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Figure F.43: Values of Farea(X) in Case R2 with the dome surface.
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Figure F.44: Values of Fnormal(X) in Case R2 with the dome surface.
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Figure F.45: DOFs in Case R3 with the dome surface.
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Figure F.46: Values of Fdist(X) in Case R3 with the dome surface.
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Figure F.47: Values of Farea(X) in Case R3 with the dome surface.
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Figure F.48: Values of Fnormal(X) in Case R3 with the dome surface.

178



References

[1] T. Ida. An Introduction to Computational Origami. Springer, Gewerbestrasse, Switzer-
land, 2020.

[2] R. J. Lang. Origami Design Secrets: Mathematical Methods for an Ancient Art, Second
Edition. CRC Press, Boca Raton, FL, United States of America, 2011.

[3] E. D. Demaine and J. O’Rourke. Geometric folding algorithms: linkages, origami, poly-
hedra. Cambridge University Press, Cambridge, United Kingdom, 2007.

[4] R. Uehara. Introduction to Computational Origami. Springer, Gewerbestrasse,
Switzerland, 2020.

[5] T. Tachi. Introduction to structural origami. Journal of the International Association
for Shell and Spatial Structures, Vol. 60, No. 1, pp. 7–18, Mar. 2019.

[6] M. Meloni, J. Cai, Q. Zhang, D. S. Lee, M. Li, R. Ma, T. E. Parashkevov, and J. Feng.
Engineering origami: A comprehensive review of recent applications, design methods,
and tools. Advanced Science, Vol. 8, pp. 2000636, July 2021.

[7] K. Miura. Method of packaging and deployment of large membranes in space. The
Institute of Space and Astronautical Science report, Vol. 618, pp. 1–9, Dec. 1985.

[8] N. De Temmerman, M. Mollaert, T. Van Mele, and L. De Laet. Design and analysis of
a foldable mobile shelter system. International Journal of Space Structures, Vol. 22,
No. 3, pp. 161–168, Sep. 2007.

[9] T.-U. Lee and J. M. Gattas. Geometric design and construction of structurally stabilized
accordion shelters. Journal of Mechanisms and Robotics, Vol. 8, No. 3, pp. 031009–1–
031009–8, Mar. 2016.

[10] J. Ma and Z. You. Energy absorption of thin-walled square tubes with a prefolded
origami pattern-part I: Geometry and numerical simulation. Journal of Applied Me-
chanics, Vol. 81, No. 1, pp. 011003, Aug. 2013.

[11] C. Zhou, Y. Zhou, and B. Wang. Crashworthiness design for trapezoid origami crash
boxes. Thin-Walled Structures, Vol. 117, pp. 257–267, Aug. 2017.

179



[12] K. Kuribayashi, K. Tsuchiya, Z. You, D. Tomus, M. Umemoto, T. Ito, and M. Sasaki.
Self-deployable origami stent grafts as a biomedical application of ni-rich tini shape
memory alloy foil. Materials Science and Engineering: A, Vol. 419, No. 1, pp. 131–137,
Mar. 2006.

[13] J. L. Silverberg, A. A. Evans, L. McLeod, R. C. Hayward, T. Hull, C. D. Santangelo, and
I. Cohen. Applied origami. Using origami design principles to fold reprogrammable
mechanical metamaterials. Science, Vol. 345, No. 6197, pp. 647–650, Aug. 2014.

[14] P. P. Pratapa, K. Liu, and G. H. Paulino. Geometric mechanics of origami patterns ex-
hibiting poisson’s ratio switch by breaking mountain and valley assignment. Physical
Review Letters, Vol. 122, pp. 155501, Apr. 2019.

[15] S. A. Rogers. Origami-Inspired Architecture: 14 Geometric
Structures | Urbanist. https://weburbanist.com/2013/11/11/

origami-inspired-architecture-14-geometric-structures/, (Accessed Oct.
2022).

[16] International association for shell and spatial structures. IASS - International Associ-
ation for Shell and Spatial Structures - Working Groups. https://iass-structures.
org/Working-Groups, (Accessed Oct. 2022).

[17] J. Mitani. Curved-folding Origami Design. CRC Press, Boca Raton, FL, United States
of America, 2019.

[18] S. A. Zirbel, R. J. Lang, M. W. Thomson, D. A. Sigel, P. E. Walkemeyer, B. P. Trease,
S. P. Magleby, and L. L. Howell. Accommodating thickness in origami-based deployable
arrays. Journal of Mechanical Design, Vol. 135, No. 11, pp. 111005, Oct. 2013.

[19] C. H. Belke and J. Paik. Mori: A modular origami robot. IEEE/ASME Transactions
on Mechatronics, Vol. 22, No. 5, pp. 2153–2164, Oct. 2017.

[20] P. M. Reis, F. L. Jiménez, and J. Marthelot. Transforming architectures inspired by
origami. Proceedings of the National Academy of Sciences of the United States of Amer-
ica, Vol. 112, No. 40, pp. 12234–12235, Oct. 2015.

[21] M. Kawaguchi. Design problems of long span spatial structures. Engineering Struc-
tures, Vol. 13, No. 2, pp. 144–163, Apr. 1991.

[22] W. K. Schief, A. I. Bobenko, and T. Hoffmann. On the integrability of infinitesimal and
finite deformations of polyhedral surfaces. In A. I. Bobenko, J. M. Sullivan, P. Schröder,
and P. M. Ziegler, editors, Discrete Differential Geometry. Oberwolfach Seminars, vol-
ume 38, pp. 67–93. Birkhäuser Verlag, Basel, Switzerland, 2008.

[23] T. Tachi. Generalization of rigid foldable quadrilateral mesh origami. Journal of the
International Association for Shell and Spatial Structures, Vol. 50, No. 162, pp. 173–
179, Dec. 2009.

180

https://weburbanist.com/2013/11/11/origami-inspired-architecture-14-geometric-structures/
https://weburbanist.com/2013/11/11/origami-inspired-architecture-14-geometric-structures/
https://iass-structures.org/Working-Groups
https://iass-structures.org/Working-Groups


[24] T. Tachi. Simulation of rigid origami. In R. J. Lang, editor, Proceedings of the 4th
International Meeting of Origami Science, Mathematics, and Education (Origami4),
pp. 175–187. AK Peters, Natick, MA, United States of America, 2009.

[25] S. Shende, A. Gillman, D. Yoo, P. Buskoh, and K. Vemaganti. Bayesian topology opti-
mization for efficient design of origami folding structures. Structural and Multidisci-
plinary Optimization, Vol. 63, pp. 1907–1926, Jan. 2021.

[26] N. Katoh and S. Tanigawa. A proof of the molecular conjecture. Discrete and Compu-
tational Geometry, Vol. 45, pp. 647–700, Mar. 2011.

[27] Y. Chen, L. Fan, Y. Bai, J. Feng, and P. Sareh. Assigning mountain-valley fold lines
of flat-foldable origami patterns based on graph theory and mixed-integer linear pro-
gramming. Computers and Structures, Vol. 239, pp. 106328, Oct. 2020.

[28] K. Hayakawa and M. Ohsaki. Form generation of rigid-foldable origami structure
using frame model. Journal of Environmental Engineering (Transactions of AIJ), Vol.
84, No. 760, pp. 597–605, June 2019. (in Japanese).

[29] K. Hayakawa and M. Ohsaki. Frame model for analysis and form generation of rigid
origami for deployable roof structure. In Proceedings of the IASS Annual Symposium
2019, pp. 1080–1087, Barcelona, Spain, 2019.

[30] K. Hayakawa and M. Ohsaki. Form generation of rigid origami for approximation of
a curved surface based on mechanical property of partially rigid frames. International
Journal of Solids and Structures, Vol. 216, pp. 182–199, May 2021.

[31] K. Hayakawa and M. Ohsaki. Equilibrium path and stability analysis of rigid origami
using energy minimization of frame model. Frontiers in Built Environment, Vol. 8,
Aug. 2022.

[32] N. Watanabe. Foldable condition in a singular state of a rigid origami model. Transac-
tions of the Japan Society for Industrial and Applied Mathematics, Vol. 28, No. 1, pp.
54–71, Jan. 2018. (in Japanese).

[33] Z. He and S. D. Guest. On rigid origami III: local rigidity analysis. Proceedings of the
Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 478, No. 2258,
pp. 20210589, 2022.

[34] M. Schenk and S. D. Guest. Origami folding: A structural engineering approach. In
P. Wang-Iverson, R. J. Lang, and M. Yim, editors, Proceedings of the 5th International
Meeting of Origami Science, Mathematics, and Education (Origami5), pp. 291–303.
CRC Press, Boca Raton, FL, United States of America, 2011.

[35] E. T. Filipov, K. Liu, T. Tachi, M. Schenk, and G. H. Paulino. Bar and hinge models for
scalable analysis of origami. International Journal of Solids and Structures, Vol. 124,
pp. 26–45, 2017.

181



[36] K. Saito, A. Tsukahara, and Y. Okabe. New deployable structures based on an elastic
origami model. Journal of mechanical design, Vol. 137, No. 2, pp. 021402, Feb. 2015.

[37] T. Zhang, K. Kawaguchi, and M. Wu. A folding analysis method for origami based
on the frame with kinematic indeterminacy. International Journal of Mechanical Sci-
ences, Vol. 146-147, pp. 234–248, Oct. 2018.

[38] S. Tsuda, M. Ohsaki, S. Kikugawa, and Y. Kanno. Analysis of stability and mechanism
of frames with partially rigid connections. Journal of Structural and Construction En-
gineering (Transactions of AIJ), Vol. 78, No. 686, pp. 791–798, Apr. 2013. (in Japanese).

[39] M. Ohsaki, S. Tsuda, and Y. Miyazu. Design of linkage mechanisms of partially rigid
frames using limit analysis with quadratic yield functions. International Journal of
Solids and Structures, Vol. 88-89, pp. 68–78, June 2016.

[40] R. Watada and M. Ohsaki. Series expansion method for determination of order of 3-
dimensional bar-joint mechanism with arbitrarily inclined hinges. International Jour-
nal of Solids and Structures, Vol. 141-142, pp. 78–85, June 2018.

[41] L. H. Dudte, E. Vouga, T. Tachi, and L. Mahadevan. Programming curvature using
origami tessellations. Nature Materials, Vol. 15, pp. 583–588, Jan. 2016.

[42] K. Song, X. Zhou, S. Zang, H. Wang, and Z. You. Design of rigid-foldable doubly curved
origami tessellations based on trapezoidal crease patterns. Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sciences, Vol. 473, No. 2200, pp.
20170016, Apr. 2017.

[43] T. Tachi. Designing freeform origami tessellations by generalizing resch’s patterns.
Journal of Mechanical Design, Vol. 135, No. 11, pp. 111066–1–111006–10, Nov. 2013.

[44] Y. Zhao, Y. Endo, Y. Kanamori, and J. Mitani. Approximating 3d surfaces using gen-
eralized waterbomb tessellations. Journal of Computational Design and Engineering,
Vol. 5, pp. 442–448, Jan. 2018.

[45] J. Wu. Folding yoshimura pattern into large-scale art installation. In R. J. Lang,
M. Bolitho, and Z. You, editors, The proceedings from the 7th International Meeting
of Origami Science, Mathematics, and Education (Origami7), pp. 1–13. Tarquin, St
Albans, United Kingdom, 2018.

[46] T. Tachi. Geometric considerations for the design of rigid origami structures. In Pro-
ceedings of the IASS Annual Symposium 2010, pp. 8–12, Shanghai, China, 2010.

[47] Z. He and S. D. Guest. Design of novel origami shell structures. In Proceedings of the
IASS Annual Symposium 2019, pp. 1055–1062, Barcelona, Spain, 2019.

[48] Z. He and S. D. Guest. On rigid origami II: quadrilateral creased papers. Proceedings
of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 476, No.
2237, pp. 20200020, May 2020.

182



[49] K. Fuchi and A. R. Diaz. Origami design by topology optimization. Journal of Mechan-
ical Design, Vol. 135, No. 11, pp. 111003:1–111003:7, Nov. 2013.

[50] A. S. Gillman, K. Fuchi, and P. R. Buskohl. Discovering sequenced origami folding
through nonlinear mechanics and topology optimization. Journal of Mechanical De-
sign, Vol. 141, No. 4, pp. 041401:1–041401:11, Apr. 2019.

[51] G. Farin. Curves and Surfaces for CAGD: A Practical Guide. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, Unitesd State of America, 5th edition, 2001.

[52] K. Hayakawa, Y. Maruyama, A. Adachi, and M. Ohsaki. Approximation of curved sur-
face by rigid origami with cutting lines. Journal of Architecture and Planning (Trans-
actions of AIJ), Vol. 87, No. 801, pp. 2288–2297, Nov. 2022. (in Japanese).

[53] K. Liu and G. H. Paulino. Highly efficient nonlinear structural analysis of origami
assemblages using the merlin2 software. In R. J. Lang, M. Bolitho, and Z. You, editors,
Proceedings of the 7th International Meeting of Origami Science, Mathematics, and
Education (Origami7), pp. 1197–1182. Tarquin, St Albans, United Kingdom, 2018.

[54] A. Ghassaei, E. D. Demaine, and N. Gershenfeld. Fast, interactive origami simula-
tion using GPU computation. In R. J. Lang, M. Bolitho, and Z. You, editors, Proceed-
ings of the 7th International Meeting of Origami Science, Mathematics, and Education
(Origami7), pp. 1151–1156. Tarquin, St Albans, United Kingdom, 2018.

[55] T. Tachi and T. C. Hull. Self-foldability of rigid origami. Journal of Mechanisms and
Robotics, Vol. 9, No. 2, pp. 021008, Mar. 2017.

[56] J. Denavit and R. S. Hartenberg. A kinematic notation for lower-pair mechanisms
based on matrices. Journal of Applied Mechanics, Vol. 22, No. 2, pp. 215–221, June
1995.

[57] Y. Chen, Z. You, and T. Tarnai. Threefold-symmetric Bricard linkages for deployable
structures. International Journal of Solids and Structures, Vol. 42, No. 8, pp. 2287–
2301, Apr. 2005.

[58] T. Tachi. Rigid Origami Simulator. http://www.tsg.ne.jp/TT/software/, (Accessed
Oct. 2022).

[59] G. H. Paulino. MERLIN2. http://paulino.princeton.edu/software.html, (Ac-
cessed Oct. 2022).

[60] A. Ghassaei. Origami Simulator. https://origamisimulator.org/, (Accessed Oct.
2022).

[61] B. H. Hanna, J. M. Lund, R. J. Lang, S. P. Magleby, and L. L. Howell. Waterbomb
base: a symmetric single-vertex bistable origami mechanism. Smart Materials and
Structures, Vol. 23, No. 9, pp. 094009, Aug. 2014.

183

http://www.tsg.ne.jp/TT/software/
http://paulino.princeton.edu/software.html
https://origamisimulator.org/


[62] G. J. Borse. Numerical Methods with MATLAB: A Resource for Scientists and Engi-
neers. International Thomson Publishing, London, United Kingdom, 1996.

[63] C. D. Meyer. Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia, PA,
United States of America, 2000.

[64] M. Géradin and A. Cardona. Flexible Multibody Dynamics: A Finite Element Approach.
Wiley, London, United Kingdom, 2007.
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