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Chapter 1

Introduction

1.1 Background of research

1.1.1 Origami in academic field

Origami is a kind of art and pastime creating a two-dimensional or a three-dimensional
objects by folding a sheet of paper. Origami is originally a Japanese word but recently in-
ternationally used. A word "origami" is decomposed into two words "ori" meaning "folding"
and "kami" ("gami" is a conjugation of it) meaning "paper". In this study, "origami" is used
as both a countable and uncountable noun. When it is used as a countable noun, it denotes
the individual objects formed by folding a sheet of paper or a thin object. On the other
hand, when it is used as an uncountable noun, it refers to the concept of origami as the
art and the methodology. In Japan, origami has been widely practiced through the ages,
and a huge number of books have been published for introducing techniques of origami. It
should be noted that a book titled Secret Fold Techniques of Connected Cranes has been
published in 1797 which explains various methods of constructing a paper crane and con-
nected cranes [[]. There also exists English literature on the folding patterns and methods
of traditional and modern origami [Z].

Origami has also attracted attention of researchers and engineers because of its math-
ematical and physical properties. In the field of computational geometry, origami forms an
academic field referred to as computational origami, and the properties attributed to the
operation of folding are studied from the perspectives of geometry and computational the-
ory [1,8,4]. An origami in this field is often regarded as an abstract object which does not
have thickness. Although origami has been popular among people as the art and pastime
for a long time, there are many mathematical open problems, e.g., about foldability; an
origami can be folded or not by a specified operation. On the other hand, kinematics and
statics of origami have also widely been studied as structural origami [H] or engineering
origami [B] for engineering applications in the fields of mechanical, civil, and architectural
engineering. An origami is often treated as a mechanism which can be deformed without
external loads or a shell structure which has a corrugated shape. In this field, thickness

and material property of an origami may or may not be incorporated. Origami’s nonlinear
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Figure 1.1: Orizuru (paper crane, folded by Kentaro Hayakawa); (a) Three-dimensional

form, (b) Crease pattern.

continuous folding motions have wide potential for application to deployable and morph-
ing structures. Its mechanical properties of the whole structure, such as the load bearing
capacity and deformation characteristics resulting from folding, have also been studied to
realize high-performance structures. These origami’s properties have been applied to a va-
riety of purposes; e.g., solar panels mounted on artificial satellites [[4], foldable and portable
shelters [8, Y], crushable structures for energy absorption [0, 1T], medical devices used
in human bodies [1?], and metamaterials which have unique mechanical properties; e.g.,
bistability [13] and tunable Poisson’s ratio [14]. Origami can improve the efficiency of man-
ufacturing and assembly processes and also can realize the materials with novel physical
properties.

Origami’s properties are also actively studied for architectural design and engineering.
In practice, origami has been applied to the design of building envelopes to realize charac-
teristic shapes consisting of faces and edges [T5]. The kinematics of origami is also applied
to a retractable roof and a temporal shelter. However, the mechanical and kinematic prop-
erties of origami are still not fully understood, and there are few practical examples that
take full advantage of the characteristics of origami; the folding motion and unique mechan-
ical properties. In the academic field, the International Association for Shell and Spatial
structures (IASS) has organized a research group on origami in Working Group 15 [16], and
various research papers and presentations have been produced on the potential applications

of origami in architecture.

1.1.2 Nomenclature of origami

An origami is often regarded as a polyhedral surface in the two- or three-dimensional space,
and a surface formed by an origami is referred to as an origami surface in this study. It is
assumed that an origami basically consists of vertices, faces, and edges as shown in Fig. [T
after the structure of a mesh used in the field of geometry. A vertex is a point where two or

more edges joins. A face is a flat surface bounded by several edges. An edge is a line segment
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Figure 1.2: Mountain and Valley fold crease lines; (a) Mountain fold, (b) Valley fold.

classified into a crease line between two faces or a perimeter edge on the boundary. Further
classification of edges is provided in Chapters B and B for form generation and kinematic
analysis, however, it is not explained in this section. Only flat faces and straight edges are
considered in this study although there is a concept of curved-folding origami [17] where
faces and crease lines are curved.

A pair of adjacent faces can relatively rotate about a crease line between them. Accord-
ing to the relative position between a crease line and the faces adjacent to it, the crease line
is referred to as the mountain fold crease line represented by a red chain line in Fig. [.2(a)
or the valley fold crease line by a red dotted line in Fig. [.2Z(b). Viewing from the front
side of an origami, a mountain fold crease line is above the adjacent faces, and a valley fold
crease line is below the adjacent faces as shown in Fig. 2. Combination of the connectivity,
length, and direction of the crease lines of an origami is referred to as the crease pattern.
A folding angle of a crease line is defined as a supplementary angle of a dihedral angle
between the faces adjacent to the crease line. When the faces adjacent to a crease line are
on the same plane and do not overlap with each other, a folding angle of the crease line is
equal to 0, and when the faces are coplanar and overlap with each other, a folding angle
is equal to 7. If necessary, the sign of each folding angle is defined in accordance with the
arrangement of mountain and valley; folding angle of a mountain/valley fold crease line is
negative/positive. An origami is at an unfolded state and at a flat-folded state especially
when all the folding angles are equal to 0 and +7, respectively. Other states are referred
as partially folded state or simply folded state. The shape of origami or the diagram of the

crease lines in the unfolded state is referred to as the development diagram.

1.1.3 Rigid origami

Rigid origami, which is the main subject of this study, can be folded and unfolded without
in-plane or out-of-plane deformation of its faces. The folding mechanism of a rigid origami
is called a rigid-foldable mechanism and determined only by its crease pattern; i.e., its
deformation mechanism is independent of its material properties. Therefore, a rigid origami
is often regarded as a mechanism consisting of rigid panels connected by hinges. A rigid-
foldable mechanism is very suitable for engineering applications and has been applied to a
deployable structure consisting of stiff panels [18] and kinematics modeling of a robot [T9].

It also has been utilized in the fields of architecture and civil engineering; e.g., the movable
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Figure 1.3: Rigid-foldable crease patterns (folded by Kentaro Hayakawa); (a) Miura-ori, (b)

Yoshimura pattern, (¢) Waterbomb tessellation, (d) Resch’s pattern.

sunshade of Al Bahr Towers in the UAE and Rolling Bridge in the UK which can be rolled
up [20]. In addition, rigid origami can contribute to developing new construction methods of
building roofs and facades with distinctive shapes like the Panta-dome by Kawaguchi [Z1].

There are some known and well studied crease patterns such as Miura-ori, Yoshimura-
pattern, waterbomb tessellation, and Recsh’s pattern as shown in Fig. I3. However, the
rigid-foldability of a non-regular crease pattern is not trivial, and many studies have been
done for the investigation of the properties of a rigid-foldable mechanism and the form gen-
eration of rigid origami. Various techniques from mathematics and structural engineering
are utilized for research on rigid origami. The rigid-foldability of quadrilateral mesh has
been investigated with respect to the integrability theory in the field of mathematics [22]
and the infinitesimal mechanism in the field of structural engineering [23]. Tachi [24] has
proposed a method for simulating a folding process of an input crease pattern based on the
projection to the constraint space. A design method of rigid origami based on the Bayesian
topology optimization has been proposed by Shende et al. [25]. Graph theory of mathemat-
ics is utilized for rigidity analysis based on the theory of combinatorial rigidity [26]. The
method for assigning the mountain or valley fold to each crease line based on graph theory

and mixed-integer linear programming has been proposed by Chen et al. [27].
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Figure 1.4: Numerical models of rigid origami; (a) Rotational hinge model, (b) Truss model,

(¢) Frame model.

1.2 Objectives and methods

In this study, methods for design and analysis of a rigid origami are proposed mainly for
the architectural purposes. In order to apply rigid origami to the architectural design and
construction methods, it is important to be able to generate a crease pattern that realizes
a shape required by the designer and a deformation mechanism that takes into account
the efficiency and safety of construction. Therefore, a method is developed to approximate
a target curved surface using a rigid origami with a small number of crease lines and a
small deformation degrees of freedom, which contributes to the constructability. Proposed
method generates a crease pattern that can realize a curved surface from a flat state by a
rigid-folding motion for the application to roof structures and building envelopes. In addi-
tion, it is also necessary to sufficiently understand the complex deformation path to apply
the rigid-folding mechanism to the construction method. When applying a rigid origami
to building structures, it is important to consider the external loads and the stability of
equilibrium although the deformation mechanism of a rigid origami is determined by geo-
metrical conditions. Then, a method is proposed to analyze the deformation path of a rigid
origami determined by the equilibrium of forces under geometric conditions. A numerical
model referred to as the frame model [28-31] is developed as a model with properties suit-
able for the above purposes and is used throughout this study. The detailed objectives and
methods of this study are outlined below, and the further background and objectives are
given in the corresponding chapters.

To manipulate a rigid origami on a computer program, it is important to develop a
numerical model suitable for representing the configuration and the kinematics of a rigid
origami. Research that focuses on the mathematical properties of rigid origami requires
a simple and accurate model to represent the folding state. By contrast, for engineering
applications, it is preferable to use models that can easily adapt existing methods in me-
chanics and structural engineering and that can represent physical properties. For the
first purpose, a rotational hinge model (folding angle model) shown in Fig. is often

used, which represents a folding state of a rigid origami only by the folding angles of crease
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Figure 1.5: Image of the form generation of a rigid origami; (a) Target surface, (b) Gener-

ated origami surface.

lines [24),32,83]. This model is suitable for dealing with rigid origami in an abstract manner.
However, it is difficult to intuitively comprehend the shape of the origami since the positions
of the vertices are not explicitly expressed in the methods using the rotational hinge model.
Therefore, if the positions of vertices need to be referred to, updated, and constrained in the
study of a rigid origami such as form generation, the rotational hinge model has a disadvan-
tage. On the other hand, for the second purpose, a truss model (bar and hinge model) shown
in Fig. [.4(b) is often used. It represents a rigid origami by an assembly of pin-jointed bars
in a truss model, where the nodal coordinates are the variables [R4—37]. When this model is
used, the existing methods for the analysis of truss structures can be utilized for the analy-
sis of a rigid origami. However, if a rigid origami has a face with more than three edges, the
structure of the model tends to be complicated to constrain the in-plane and out of plane
deformation of the face.

To overcome the difficulty of the models described above, a numerical model referred
to as the frame model [28-31] shown in Fig. [.4(c] is developed and used, which is con-
structed based on the theory used in the partially rigid frames [38-40]. It consists of rigid
frame elements connected by hinges corresponding to crease lines of an origami and has
an advantage of being able to represent a rigid origami with a simpler configuration for
the purpose of this study than the existing numerical models such as the rotational hinge
models and the truss models. Further explanations of the models are provided in Chapter B.

In order for rigid origami to be applicable to the architectural design, the shape of a
rigid origami needs to be manipulated to fulfill the designer’s requirements while satisfy-
ing the strict geometric constraints for rigid-foldability, and only directly using well-known
crease patterns such as the Miura-ori pattern shown in Fig. I3 limits the range of designs
for structures utilizing a rigid origami. Therefore, the development of methods for gener-
ating rigid-foldable crease patterns is essential for the engineering applications of a rigid
origami. As explained in Chapter B, there are various methods which generalize and extend
the existing well-known crease patterns [41-45] and generate a new rigid-foldable crease
pattern [23,46-50].
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Figure 1.6: Image of the equilibrium path analysis of a rigid origami.

In this study, a form generation method of a rigid origami is proposed for further enhanc-
ing the flexibility of the design of a rigid origami. A curved surface defined as the Bézier
surface [h1] is approximated by a rigid origami with or without cuts which can be developed
to a plane [28-80,b52] as shown in Fig. TH. The crease pattern is generated from the tri-
angulated target surface; the proposed method does not rely on the typical crease pattern
such as Miura-ori. The optimization approach is utilized to minimize the approximation
error under the condition so that the origami surface is developable to a plane. Developabil-
ity conditions of the origami surface and approximation error functions between the target
surface and the origami surface are formulated by using the geometric properties of poly-
hedral surfaces such as Gaussian curvature. In the process of form generation, crease lines
of the origami surface are sequentially fixed (removed) to reduce the degrees of freedom of
the rigid-folding mechanism. The faces adjacent to a fixed crease line are combined into a
single flat face, and the face with more than three edges is generated. The crease lines to be
fixed are selected by the criteria reflecting the infinitesimal mechanism of the rigid origami,
which help to prevent the crease lines to be locked and to be unable to rotate during the de-
ployment process. The proposed method can approximate the target surface with a simple
rigid origami with few crease lines and small folding angles, which has not often been seen
in previous studies.

Analysis of the deformation path of a rigid origami is also important to realize a struc-
ture utilizing the concept of rigid origami which can be folded/unfolded safely and efficiently.
In the previous studies, mainly two types of deformation path analysis of a rigid origami are
preformed, which are the pure mechanism analysis [24,87] and the structural analysis with
respect to the equilibrium of the structure [34,53,64]. The former analysis can trace the ex-
act rigid-folding deformation path without deformation of the faces by using the rotational
hinge model while boundary conditions such as constraints on the positions of vertices are
not incorporated, and the physical implications of the deformation path, such as the equi-
librium of force, are not considered. The latter analysis mainly traces the equilibrium path
which is a sequence of equilibrium states under external loads or forced displacements as-
suming small rotational stiffness of crease lines and/or elastic deformation of the faces of a
rigid origami. The truss model is often used in this analysis by allowing the deformation
of bars, and the exact rigid-folding deformation path may not be obtained. At present, few
studies have been conducted to clarify the relationship between the results of the analysis
from a pure mechanism perspective and the results of the analysis from a equilibrium per-

spective while it is important to understand the foldability [65] of a crease pattern and for
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the prototyping of the deployable structure using a rigid-fold mechanism.

Therefore, in this study, methods of equilibrium path analysis and stability analysis
of an equilibrium state are developed for a rigid origami to be folded/unfolded in the exact
rigid-folding motion. The equilibrium state of a frame model with the external loads applied
to the nodes is investigated by assuming the small rotational stiffness proportional to the
length of each crease line. The total potential energy is defined with respect to the strain
energy of the springs introduced in the hinges and the external work by the nodal loads,
and it is minimized to obtain an equilibrium state under the compatibility conditions so that
the displacements of the nodes and the members are compatible. An equilibrium path is
traced by the incremental loading analysis as shown in Fig. LA, and the bifurcations of the
equilibrium path is investigated in the numerical examples. The relationship between the
deformation mechanism obtained from geometric constraints and the deformation modes
obtained in terms of the equilibrium of forces is also numerically investigated, which has

not often been investigated in previous studies.

1.3 Thesis structure

This thesis consists of six chapters including this chapter for the introduction. The follow-
ing chapters are organized as follows. Chapter B provides the explanations of the numerical
models used in the previous studies and this study. The structure of the frame model used
in this study is described and the method for the analysis of the infinitesimal mechanism is
provided based on the method for partially rigid frames [38-40]. By extending the formula-
tion of the geometric constraint equations in Ref. [40], variables are newly selected and the
constraint equations are reconstructed so that the calculation for the form generation and
the deformation path analysis proposed in this study to be simplified. A form generation
method of a rigid origami is proposed in Chapter B, and the case studies of the form gen-
eration is shown in Chapter @. The method proposed in Chapter B is the summary of the
methods proposed in Refs. [28-380,567]. The result of the infinitesimal mechanism analysis
described in Chapter B is utilized to define the selection criteria of the crease lines to be
fixed in the process of form generation. Effectiveness of the approximation error functions
and the selection criteria of the crease lines are numerically confirmed by the examples
shown in Chapter @. The proposed method improves design flexibility of a rigid origami by
approximating the target curved surface without depending on the well-known crease pat-
terns. In addition, by generating a rigid origami structure with a small degrees of freedom
of deformation mechanism, the proposed method contributes to realize structures which
can be efficiently and safely folded and developed. In Chapter B, equilibrium path and
stability analysis of a rigid origami is explained, which is proposed in Ref. [B1]. The total
potential energy is minimized under the compatibility conditions formulated in Chapter B.
Equilibrium paths of the waterbomb pattern are traced, and the several deformation paths
for different boundary conditions are obtained. The proposed method can be used to obtain

a deformation path that simultaneously achieves an exact rigid-folding motion and an equi-
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librium of forces. Chapter B concludes this thesis. It provides the summaries of the above
chapters and the remarks on the results of the numerical examples of the form generation

and the equilibrium path analysis.

1.4 Published works included in the thesis

This thesis is the collection of several published papers by the author and co-authors, and
detailed information and supplementary materials of these papers are provided. The corre-
spondence between the published papers and the chapters in this thesis is summarized as

follows:

Chapter

K. Hayakawa and M. Ohsaki, Form generation of rigid origami for approximation of a
curved surface based on mechanical property of partially rigid frames, International
Journal of Solids and Structures, Vol. 216, pp.182-199, May 2021.

K. Hayakawa and M. Ohsaki, Equilibrium path and stability analysis of rigid origami
using energy minimization of frame model, Frontiers in Built Environment, Vol. 8,
Aug. 2022.

Chapter 3

K. Hayakawa and M. Ohsaki, Form generation of rigid origami for approximation of a
curved surface based on mechanical property of partially rigid frames, International
Journal of Solids and Structures, Vol. 216, pp.182—-199, May 2021.

K. Hayakawa, Y. Maruyama, A. Adachi, and M. Ohsaki, Approximation of curved sur-
face by rigid origami with cutting lines, Journal of Architecture and Planning (Trans-
actions of AlJ), Vol. 87, No. 801, pp. 2288—-2297, Nov. 2022 (in Japanese).

Chapter &

K. Hayakawa and M. Ohsaki, Equilibrium path and stability analysis of rigid origami
using energy minimization of frame model, Frontiers in Built Environment, Vol. 8,
Aug. 2022.



Chapter 2

Frame model for kinematic
analysis and form generation of

rigid origami

In this chapter, several numerical models for the kinematic analysis and the form gener-
ation of the rigid origami proposed in the previous studies are briefly reviewed, and the
configuration of the frame model [Z8—3T] used in this study is introduced. The frame model
is a numerical model based on the theory used in the partially rigid frames [38-40]. The
analysis method is also presented for the infinitesimal mechanism of the frame model uti-

lizing the formulations of partially rigid frames.

2.1 Numerical models of rigid origami

While geometry plays an important role in the form generation of an origami, mechanics
and kinematics are also important for understanding folding properties and applying them
to engineering application. Even if each face is assumed to be rigid, the deformation prop-
erties of an origami are complicated, and it is important to use an appropriate numerical
model suitable for the form generation and the kinematic analysis.

In the study of a rigid origami, a rotational hinge model shown in Fig. E.1(aJ and a truss
model (bar and hinge model) shown in Fig. B.I(b] are often used. In the rotational hinge
model, a folding state of a rigid origami is represented only by the folding angles of the
crease lines, and this helps us to express the folding state in a simple form [24,82,83]. The
compatibility constraints on the folding angles which is used as variables are formulated
so that the loop around each inner vertex and each hole formed by the origami faces is
appropriately closed under the assumption of the rigidity of each face. This approach is
also used for the analysis of linkages [66,57]. Rigid Origami Simulator [68] developed by
Tachi [24] is a software that can trace an exact folded shape without deformation of faces by
successively solving the linearized constraints on the folding angles. Since only the angles

between the crease lines and the fold angles are considered in the rotational hinge model,
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Figure 2.1: Numerical models representing a Miura-ori pattern (Partly reshown, see Chap-
ter M); (a) Rotational hinge model, (b) Truss model, (c) FE model, (d) Frame

model and assignment of mountain and valley.

the positions of vertices should be computed from the complicated nonlinear equations of
these angles to obtain the actual shape of the rigid origami. Therefore, the rotational hinge
model has a disadvantage for the form generation and the kinematic analysis where the
positions of vertices are often referred to, updated, and constrained.

On the other hand, a rigid origami is represented by an assembly of pin-jointed bars in
a truss model, where the nodal coordinates are the variables [34—37]. Since the nodes of
the truss model are located at the vertices of the origami, it is easy to incorporate the con-
straints on the nodal positions and displacements. In addition, the equilibrium with nodal
loads are easily considered in the deformation path analysis. Therefore, it is often used for
the analysis of the equilibrium path under the external loads or the forced displacements;
e.g., MERLIN? [hY] by Liu and Paulino [63] and Origami Simulator [60] by Ghassaei et.
al. [64], and they are also used within the form generation process. The rigidity of each face
can be guaranteed by simply placing the rigid bars along the edges for the rigid origami
with only triangular faces. However, to constrain the in-plane and out of plane deforma-
tion of faces with more than three edges, it is necessary to constrain the relative nodal
displacements [34,35] or to introduce diagonal bars and construct a bar-joint structure in a
three-dimensional manner [36, 37], which tends to make the model complicated.

The conventional FE methods are also often used for the elastic and plastic deformation
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analysis of rigid origami [10,1]. Shell elements are usually used in a finite element (FE)
model of a rigid origami to model the origami faces, and the crease lines are represented by
hinge elements or narrow shell elements with small bending stiffness as shown in Fig. E.1(c]
They are suited to the analysis of detailed mechanical properties of rigid origami, such
as local deformation. However, their computational cost is often high and not suited to
the large scale analysis and the form generation where the analysis should be carried out
repeatedly.

To overcome the difficulty in a rotational hinge model, a truss model, and an FE model
as mentioned above, a frame model shown in Fig. E.I(d] has been proposed by Hayakawa
and Ohsaki [28—31] based on the concept of a partially rigid frame [38-40]. Frame members
are connected by hinges whose axes are parallel to the crease lines, and rigidly connected on
the faces. Details of the configuration of a frame model are explained in Section 2. A frame
model is used for the form generation and the kinematic analysis with the assumption that
the faces of a rigid origami is completely rigid, and the exact rigid-fold path can be obtained.
A frame model has an advantage of being able to represent a rigid origami with a simpler
configuration than a rotational hinge model and a truss model. Analysis with boundary
conditions can be easily performed compared to a rotational hinge model since the nodal
coordinates are variables in the frame model. In addition, there is no need to constrain
nodal displacements or arrange members three-dimensionally, as is the case with a truss
model, to constrain the deformation of faces with more than three edges since each face
is composed of multiple rigidly-joined frame elements. The structure of the frame model
can be represented directly using beam elements and hinges implemented in general FEA
software, and the kinematic analysis can be easily performed with FEA software without

using special software.

2.2 Structure of frame model

2.2.1 Components of frame model

A frame model is a kind of partially rigid frame [38—40] representing a rigid origami mech-
anism [2Z8-3T]. Figure £ shows an example of Miura-ori modeled by a frame model. A
frame model consists of nodes, members (frame elements), and hinges. The basic structure
of a frame model is shown by gray bold lines in Fig. £.2(a] which represents a shape of the
rigid origami. The face with more than three edges is divided into some triangles by the
dividing edges. The crease lines and the dividing edges are collectively referred to as the
inner edges. In addition, the inner edges and perimeter edges are collectively referred to
as the origami edges or simply the edges in this study. Although cuts along the edges are
also introduced in Chapter B, they are not considered in this chapter for simplicity. Note
that the edges constituting the cuts are treated the same as the inner edges in the formu-
lation of constraints considered in Section EZ274. Nodes are located at the center points of
origami edges and at the barycenters of triangular faces. As shown by gray in Fig. E.2(b),

two members are connected to the node on a crease line, and a member is connected to
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Figure 2.2: Configuration of a frame model representing a Miura-ori pattern; (a) Overall
view, (b) Enlarged view of the region surrounded by the dotted lines in the

overall view.

the node rigidly and another member is connected to the node via a hinge. In this study,
the member end connected to a node rigidly is called the rigid end, and the member end
connected via a hinge is called the hinged end. The axis of each hinge coincides with the
corresponding crease line. Note that a member axis is not necessarily perpendicular to the
origami edge where the node to which its end connects is located, and a hinge axis is not
necessarily perpendicular to the axis of the member connected to it.

The nodal coordinates are used to represent the coordinates of the origami vertices,
and they are treated as the design variables in the form generation method proposed in
Chapter B. The number of nodes in a frame model is generally larger than the number of
vertices of the corresponding origami surface, and if all nodal coordinates are given arbi-
trarily, the vertex coordinates cannot be determined consistently. Therefore, the constraint
equations satisfied by the nodal coordinates are formulated in Section 2222 on the basis
that the origami faces are divided into triangles and the nodes are located at the center
points of edges and at the barycenters of triangular faces. Furthermore, a method is shown
for extracting a sufficient number of independent nodal coordinates from the constraint
equations to represent the vertex coordinates. On the other hand, in the analysis of de-
formation mechanism of the frame model, the displacements of nodes and members and
the increments of the rotation angles of hinges are treated as independent variables. The
geometric constraint equations referred to as the compatibility equations are formulated
with respect to these variables based on the formulation by Watada and Ohsaki [40] which
considers the finite translational and rotational displacement. While the hinge rotation
angle increments are not included in the formulation in Ref. [40], they are included in the
independent variables to simplify the calculation of the stiffness matrix of the frame model
used in Chapters B and BH. Therefore, the compatibility equations for the hinge rotation

angle increments are added to the formulation in Ref. [40].
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Figure 2.3: Local indices of nodes on the triangular faces adjacent to the crease line or the

dividing edge where node 5 is located.

2.2.2 Independent nodal coordinates

In the form generation method, the nodal coordinates of a frame model are used as the de-
sign variables. However, the number of those variables is much larger than that required
to determine the positions of vertices of the corresponding origami surface. Therefore, in
the form generation of rigid origami, the number of variables are reduced by considering
the geometric constraints for a consistent representation of the origami shape, and only the
independent nodal coordinates are treated as variables. In the following, the constraint
equations which nodal coordinates satisfy are formulated assuming that the nodes are al-
ways located at the center points of edges and the barycenters of faces, and a method is
shown to identify the independent nodal coordinates using the constraint equations. The
consistency equations are first formulated locally, and extended to the global expression for
the entire origami surface.

Let {y,...,¢; € R? denote the position vectors of nodes 1-7 shown in Fig. 223 where the
indices of nodes are the local indices defined at the adjacent triangular faces. Since the
nodes on the edges are located at the center points of the edges, {; — {4 and {y — {3 should
be equal to the vector parallel to the edge where node 5 is located as shown in Fig. £33, and

G1,...,04 satisfy the following consistency equations

C1-84=03-03 (2.1)
Equation (E1) is rewritten by using a 3 x 21 matrix and a 21-dimestional vector as follows:

C1
Co
C3
Is -I3 Is -I3 O3 O3 Og G |=0 (2.2)
Cs
Cs
C7

where I, and O,, are the n x n identity matrix and the n x n zero matrix, respectively. Note
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that the edge where node 5 is located is a crease line or a dividing edge. The member con-
necting nodes 5 and 6 and the member connecting nodes 5 and 7 are connected via a hinge
if the edge where node 5 is located is a crease line and the members are rigidly connected
if the edge is a dividing edge. In addition, since the nodes on the faces are located at the

barycenters of the faces, the position vectors of the nodes satisfy the following consistency

equations:
CG = % (2.3)
C7 = % (2.4)

Equations (233) and (Z4) are rewritten for each face by using 3 x 21 matrices and a 21-

dimestional vector as follows:

C1
Co
113 03 O3 113 113 -I3 O3 Zi =0 (2.5)
3 3 3

Cs
Ce
C7

(6}
Co
s
1

03 -Is §I3 (0 2 §I3 03 -Is G, |=0 (2.6)

Cs
G
Cr

Here, let Ng, NEin, and Ny denote the number of edges, inner edges, and triangular faces
of the origami surface, respectively. Then, the number of nodes of the frame model is cal-
culated as Ny = Ng + Np. The position vectors of nodes are assembled into a vector for
all nodes as Z = (CT,...,I,]TVN)T € R3"N_ Then, the edge consistency matrix Cg € R3NEinx3NN g
defined by extending and assembling the coefficient matrix in the left-hand side of Eq. (£22)
for all the inner edges and all the nodes, and the consistency equation at the inner edges

for the entire origami surface is written as follows:

CgZ=0 (2.7)

In the same way, the face consistency matrix Cg € R3NF*3MN g defined by extending and

assembling the coefficient matrices in the left-hand sides of Eqs. (2H) and (28) for all the
faces and all the nodes, and the consistency equation at the faces for the entire origami
surface is written as follows:

CrZ=0 (2.8)
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Therefore, the linear constraints for the consistent representation of the origami surface by

the nodal coordinates of the frame model can be summarized as follows:

Cg

F

Z=CNZ=0 (2.9

In this study, Cy € R3Nen+Nr)>*3NN i5 referred to as the node consistency matrix.

The independent components of Z satisfying the consistency equation (9) are iden-
tified by a method utilizing the reduced row-echelon form (RREF) [6Z] of the node con-
sistency matrix Cy. Details of the method is explained in Appendix BA. The columns of
the RREF of a matrix can be classified into pivot and non-pivot columns, and let Z;,o €
RrankCN) and Zpee € RIVN-TaNKCN) donote the vectors whose components are those of Z
corresponding to the pivot and non-pivot columns of the RREF of Cy. Then, defining
Ciree € RTANKICN)x(BNx—1ank(Cx)) 44 the matrix which is the assemblage of the components
of the RREF of Cy in the non-zero rows and the non-pivot columns, Eq. (29) is equivalent
to the following equation:

Zpivot

Irank(CN) Cfree ] ( ) = Zpivot + Cfreezfree =0 (2.10)

free

Therefore, the vectors of independent and dependent nodal coordinates of the frame model
can be identified as Zy;yot and Zg.e, respectively. Note that the number of independent coor-
dinates is Ngee = 3NN —rank(Cy). The vector of the dependent nodal coordinates satisfying
Eq. (Z9) is calculated from the RREF of Cy as follows:

Zpivot = —CfreeLiree (2.11)

In addition, the vector of all the nodal coordinates Z can be written as the rearrangement

of the components of Z;yo; and Zg.c as follows:

Z .
Z-= CO( pivot ) (2.12)
Zfree

where, Cqo € R3M*3M g a matrix representing the rearrangement of the components from
(ZT ZT )T

pivot’ “free

the j-th component of (Z

to Z, whose (i,j) component is 1 if the i-th component of Z corresponds to
T Al )T; and otherwise 0. Substituting Eq. (211) to (212), Z

pivot’ “free
satisfying Eq. (29) can be calculated form the independent nodal coordinates as follows:

Z-= CAZfree (2.13)

Ca=Co| U | e

N; free

The example of a single inner vertex origami surface is shown in Appendix B.
The positions of the origami vertices are also determined by the independent nodal co-
ordinates Zg. if Eq. (229) is satisfied. First, the linear constraint equations are formulated

for the position vectors of a single inner vertex and the nodes around it. Let My denote the
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node on the edge inner vertex

local index
of node

Figure 2.4: Local indices of nodes around an origami vertex; (a) Inner vertex, (b) Perimeter

vertex.

number of faces around to an inner vertex to be considered. The local indices of 2My nodes
on the edges are arranged in counterclockwise as shown in Fig. E.4(a). The position vector §
of the center vertex in Fig. E.4(a] can be expressed in My different ways using the position

vectors of nodes ;,...,8gyy, as follows:

§=0;1 -0+ C3
: (2.14)

&=Comp—1—Comp +G1

where the subscripts of position vectors of nodes are the local indices of nodes on the edges.

Then, My equations in Eq. (214) can be combined into a vector equation as follows:

Gt
Co
Is I; -I; Iy ... O3 O .
N ? 2.15)
I3 I; O3 O3 ... Is -I3 '
Conre-1
Conty

where the coefficient matrix of § in the left-hand side of Eq. (21H) is a 3My x 3 matrix
consisting of My identity matrices stacked in the row direction and the coefficient matrix
of the assemblage of the position vectors of nodes in the right-hand side of Eq. (213) is a
3Mr x 6My matrix. Here, the Moore-Penrose inverse [63] of the coefficient matrix of € in
the left-hand side of Eq. (2215) can be calculated as the transpose of Ej, divided by M,

and the following equation holds:

1

— : =1 2.16
MF 13 I3 : 3 ( )

I3
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Therefore, Eq. (218) can be solved for § as follows:

C1
Co
1 Cs
E=—1| 2I3 -I3 2I3 ... 2I3 -Ij . (2.17)
Mg :
Comp-1
Comy

where coefficient matrix of the assemblage of the position vectors of nodes in the right-hand
side of Eq. (1Y) is a 3 x 6My matrix. Note that if the nodal coordinates satisfy Eq. (29),
My —1 of the My equations in Eq. (214) are equivalent to Eq. (227), and Eq. (217) is equiv-
alent to one of the My equations in Eq. (2214)). On the other hand, if the nodal coordinates
do not satisfy Eq. (29) and have some errors, the number of independent equations among
the 3MFp equations in Eq. (2-14) is not necessarily three, and Eq. (211) represents the aver-
age position of the considered vertex calculated from My different forms in Eq. (2214). This
situation arises other than for form generation; e.g., the large-deformation analysis of the
frame model carried out using general finite element analysis software where the members
are represented by the elastic beam elements and their deformation is allowed. Because of
the property of the Moore-Penrose inverse, § obtained from Eq. (£217) is the position vector
of the considered vertex with the minimum error.

In case of a single perimeter vertex shown in Fig E.4(b]), the position vector § of the
center vertex in Fig. E.4(b] can also be expressed in My different ways using the position

vectors of nodes y,...,8gps,+1 as follows:

§=0; -8+ 03
: (2.18)

& =Conrp—1— Comry + Comrpt1

The difference between Eqs. (214) and (2I8) is that {; in the last equation of Eq. (214)
is replaced with {yps, 41 in Eq. (BI8). In a similar manner as Eq. (217), Eq. (218) can be

solved for & as follows:

(€]
o

Cs
1

E=— |13 I3 2I3 ... 2I3 -I3 I3 (2.19)
My

Comp-1
Comty

Comp+1

where coefficient matrix of the assemblage of the position vectors of nodes in the right-hand
side of Eq. (B19) is a 3 x (6 Mp + 3) matrix.
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Let Ny and = € R3M denote the number of origami vertices and a vector which is an
assemblage of the position vectors of vertices for all the vertices. A 3Ny x 3NN matrix Cy
is defined by extending and assembling the coefficient matrices of the assemblages of the
position vectors of nodes in the right-hand side of Eqs. (211) and (219) for all the vertices
and nodes, and then, E can be calculated from the vector of the nodal coordinates Z as
follows:

E=CvZ (2.20)

For the calculation of Cy for a single inner vertex origami surface, see Appendix B. Further-
more, if Z satisfies Eq. (29), substitution of Z in Eq. (213) into Eq. (2220) leads to expression

of E by the vector of the independent nodal coordinates Zgee € RNt ag follows:
E =CyCaZsree (2.21)

In order for E to be uniquely determined from Zg., by Eq. (2221), the following equation
needs to hold:
rank(CyCa) = 3Ny (2.22)

Here, rank(CyCp) satisfies the following inequality:
rank(CyCa) < min(3Nvy, Npee) (2.23)
According to Egs. (2222) and (223), Ny and Nf..e should satisfy the following inequality:
Ngree = 3Ny (2.24)

On the other hand, Zs.. is always uniquely determined from Z by the construction of

the frame model. Therefore, there exists a row full-rank matrix Cyy € RNteex3NV. § o
rank(Cyy) = Nee, Wwhich satisfies the following equation:
Zgree = CyNE (2.25)
Since Cyy is row full-rank, the following inequality holds:
rank(Cyy) = Nfee < 3Ny (2.26)

According to Eqgs. (2224) and (228), it can be concluded that Ng..e = 3Nvy; i.e., the number of

independent nodal coordinates is equal to the number of coordinates of all the vertices.

2.3 Infinitesimal rigid-folding mechanism of frame model

In this section, formulation of the compatibility equations of a frame model in the finite
displacement are first presented for the analysis of the infinitesimal mechanism of a frame
model. The compatibility equations are formulated with respect to the generalized dis-
placements including translational and rotational displacements of nodes and members
and increments of rotation angles of hinges [B1, 40, 64]. Then the infinitesimal rigid-folding

mechanism is investigated based on the method presented in Ref. [40].
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deformed

initial

Figure 2.5: Displacements of member i and node £ and increment of the rotation angle of

hinge h of a frame model.

2.3.1 Compatibility condition at the rigid end

Let Ny, Nn, and Ny denote the number of members, nodes, and hinges, respectively. As
shown in Fig. L8, the translation vectors of the center point of member i (= 1,...,np)
and node k£ (= 1,...,ny) in the global coordinate system (x,y,z) are represented by V; =
(Vi(l),Vi(z),Vi(:”)T and Uy, = (U(l), U,(f), U,(f’))T € R3, respectively. The rotation vectors are also
represented by ¥; = (‘I’ED,‘I’EQ),‘P?))T and O, = (9(1),922),9533))T € R3, respectively. The di-
rection and the norm of a rotation vector represent the rotation axis and the rotation angle,
respectively. Here, the Rodrigues’ rotation matrix R(W¥;) with respect to the rotation vector

¥, is defined as follows [64]:

1 1
R(¥;)=cos(|¥; DI +—{1—cos(||‘l’-||)}‘P-‘I’-T+
‘ T w2 SN

sin([[W; ID[¥;]« (2.27)

where I3 € R? is the 3 x 3 identity matrix and [¥;]. represents the cross-product matrix with

respect to ¥;, which is defined as follows:

0 -v® 9®
(Wil.=| ¥® o -
~y? w g

The detailed calculation of Eq. (2227) is shown in Appendix . Let d;; € R denote the vector
directing from the center point of member i to the j-th end (j = 1, 2) of member i at the
initial undeformed state as shown in Fig. 8. Then, the vector obtained by rotating d;; with
member i is to be R(¥;)d;;. When j-th end of member i is connected to node %, the following
equation holds since the translation of the j-th end of member i and the translation of node

k are the same:
U, = —dij +V; +R(‘Pi)dij
U, -V, - {R(¥;)-1I3}d;; =0

(2.28)

In addition, if member i is rigidly connected to node %, the rotation of member i is equal to

the rotation of node %, and the following equation holds:
0,-¥;=0 (2.29)
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x hinge axis

initial deformed

Figure 2.6: Reference frame of hinge 2 and its rotation with member i and node %

2.3.2 Compatibility condition at the hinged end

As shown in Fig. P8, the reference frame of hinge A (=1,..., Ng) in the initial undeformed
state is defined by the three unit vectors 1';11) e R? (I =1,2,3). The unit vector ‘réLD is parallel

to the rotation axis of hinge A at the initial state in the global coordinate system (x,y,2),
(2) (3)

and T, and T,” are defined as the unit vectors satisfying the following equations:
(1 (2) _ (3
Th XTp =Ty

(2) (3 _ (1
T, XT, =T,

Consider the case where the j-th end of member i is connected to node % via hinge h. As
in the case of a rigid end, the translation between the center point of member i and node
k need to satisfy Eq. (2228). Since the relative rotation of member i and node % is allowed
only around the rotation axis of hinge 4, the vector obtained by rotating T;LD with member
i must be perpendicular to the vectors obtained by rotating 'l',<12> and T,f’) with node &, and
the rotation vectors of member i and node % need to satisfy the following equations:
(Rewor) (REOHTP) =0
(2.30)
(Rewor) (REODTP) =0
As shown in Fig. P8, the increment of the rotation angle of hinge A from the initial state
to the deformed state is denoted by ¢; € R. The direction of the rotation; i.e., the sign

of ¢y, obeys right-hand screw rule along vector T;LD

. Note that the hinge rotation angle
at the initial state is not necessarily equal to zero, and the residual angle ¢, € R at the
initial state may exist. In this study, ¢, is treated as an independent variable although it
is not in Ref. [40] and calculated from the displacements of the node and the center point
of the member. This simplifies the calculation presented in the following; e.g., prediction
of the existence of a locked crease line in the form generation process in Chapter B and
calculation of the total potential energy and its derivatives for the equilibrium path analysis
in Chapter B . Assuming that Eq. (2230) holds and R(‘I’i)-rzl) and R(G)k)'ré1> always coincide
during the deformation process, the ideal value of ¢; denoted by ¢; and shown in Fig. &

can be determined from the following equations:

sing;, = (RO)TY)- (ROpTY ) = - (R¥HTY ) (RO (2.31)
cos i = (R¥HTY ) (ROpTY) = (RO¥)T) - (RO (2.32)
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Therefore, assuming that ¢, satisfies |@p — @p| < 27 throughout the deformation process,

the compatibility equation for ¢, is written as follows [64]:
sin(pp —@p) =0
o {(Rwor?) (RODTY ) sings + {[ROETY)- (ROTY ) cospr =0 (2.33)
& (R¥)T) - {sings (RO)T) ) + cos gy (RODT |} =0

For the simple expression of the compatibility equations at a hinge end, the functions of ¥;,
0, and ¢, denote by CID(ilj)(‘I’i,@k,(ph) (I =1,2,3) are defined to represent the left-hand sides
of Egs. (230) and (2233) as follows:

OD(W;,04,01) = (ROP)TS" ) - (R@)T)
2 (W;,05,01) = (R(\Pi)ﬁﬁ) - (R(@k)rf”) (2.34)
(W, 04, 01) = (R(\yi)rf>) - {simph (R(@k)r;”) +cosqp, (R(@k)rf’})}

When the j-th end of member i is connected to node % via hinge h, the compatibility equa-
tions (2330) and (233) satisfied by the rotations of member i and node £ and the increment

of the rotation angle of hinge A can be combined into a vector form as follows [B1]:

(¥, 0, 91)
@;;(¥;,0p,0) = | P(¥;,0,,01) |=0 (2.35)
(¥, 0, 91)

2.3.3 Compatibility equations for the entire structure

The compatibility equations for the entire structure of the frame model are formulated by
summarizing the compatibility equations formulated in Sections 231 and 223, Let Ny
denote the number of fixed degrees of freedom of the nodal displacements. The assem-
blage of the nodal displacements Uy and O;, for all nodes that are not constrained and the
assemblage of the member displacements V; and ¥; for all members are represented by
U e RM—NB gnd Ve ROVM, respectively. In addition, the vector consisting of ¢j, which is
the increment of the rotation angle of the hinge, is denoted by ¢ € RVH, Then, the gen-
eralized displacement vector is defined as W= (U", V', q)T)T € RNV where the number of
components of W is calculated as Nw = 6NNy — N + 6Ny + Ng. Note again that although ¢
is not included in the generalized displacement vector in the formulation of [40], it is in-
cluded in this study to simplify the formulations described in Chapters B and B. When the
Jj-th end of member i is connected to node % rigidly or via hinge A, translational and rota-
tional incompatibility vectors represented by AU;; and A®;; € R3, respectively, are defined
as the violations of Egs. (2228), (2229), and (2238) as follows:

AU;; =0, =V - (R(Y) - I3)r;; (2.36)
0, -Y; (Rigidly connected)

n@;={ " sy (2.37)
®;;(¥;,0;,9,) (Connected by hinge )
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It is assumed that the components of fixed nodal displacements are equal to 0 in Eqs. (2236)
and (2337). The translational and rotational incompatibility vectors AU;; and A®;; are
combined into the incompatibility vector G(W) € RV¢ as the nonlinear function of the gener-
alized displacement vector W. Accordingly, the compatibility equations are represented as
follows:

GW)=0 (2.38)

Since the compatibility equations should be satisfied at all member ends, the number of
components of G(W) is Ng = 12Ny;.

2.3.4 Derivation of first-order infinitesimal mechanism

The series expansion of the incompatibility vector G(W) with respect to W is written as
follows:
dG(0)

where dG(W)/dW is a Ng x Nw matrix whose (i, ) component is the first-order derivative
of the i-th component of G(W) with respect to the j-th component of W. In the following,
the constant matrix dG(0)/dW is to be represented by IV € RN¢*Nw an(d referred as the
compatibility matrix. The superscript (1) indicates that IV is the first-order derivative of
the compatibility matrix. Since G(0) = 0, the first-order approximation of Eq. (2238) for the

moderately small W can be written as follows:
r’w=o0 (2.40)

If there is W satisfying Eq. (2240), the frame model has at least first-order infinitesimal

() is provided in Ap-

mechanism [40]. The detailed calculation of the components of T’
pendix 0. An arbitrary W satisfying Eq. (2240) can be represented by a linear combination
of the bases of ker(lV) [63]. The dimension of ker(I'") denoted by Np is the number of

kinematic indeterminacy and computed as:
Np = Ny —rank(I'?) (2.41)

When the nodal displacements are appropriately constrained so that the only rigid-body
motions of the entire model are constrained, the kinematic indeterminacy is equal to the
DOF of infinitesimal rigid-folding mechanism. Let ny,...,ny, € RMW denote the right singu-
lar vectors of IV corresponding to zero singular values, which are normalized as ;=1
(i=1,...,Np). They are the bases of ker(T'?) as explained in Appendix B and referred to
as the first-order infinitesimal mechanism modes [40]. An arbitrary W satisfying Eq. (2-21)

can be expressed as the linear combination of n; and written as follows:

ai

W:a1|]1+-..+aNDr|ND:[ nl “ND
aNp

e RVw*Np

23



where a = (ay,...,an, )T € RM is an arbitrary vector. The matrix H is divided into three

matrices as follows:

H=| Hy (2.43)

HU c R(GNN*NB)XND, HV € RGNMXND’ Htp € RNH XND

where Hy, Hy, and H,, correspond to the nodal displacements U, the member displace-
ments V, and the increments of hinge rotation angles ¢, respectively. Then, arbitrary vec-
tors U, V, and ¢ satisfying Eq. (£2400), which represent the first-order infinitesimal mecha-

nism, can be written as follows:

U=Hya (2.44)
V=Hya (2.45)
¢=H,a (2.46)

As described above, the deformation modes of rigid origami represented by the frame model
are obtained by using the mechanism analysis method of the partially rigid frames. The
displacement modes of the vertices and the folding angle variation modes of rigid origami
can be easily and simultaneously obtained from the nodal displacement modes of the frame
and the hinge rotation modes, respectively, whereas only one of them can be obtained using

the truss model or the rotational hinge model.

2.4 Conclusions

In this chapter, the review of the numerical models representing the shape and the kine-
matics of a rigid origami are first provided for a rotational hinge model, a truss model, a
FE model, and a frame model. The frame model is used in this study for the form genera-
tion and the deformation path analysis of the rigid origami. It consists of frame elements
and hinges and can represent a rigid origami in a simpler way than the other three models
mentioned above.

The equations reflecting the geometric constraints on the nodal coordinates of the frame
model are formulated based on the locations of the nodes on the origami surface so that the
frame model represents the corresponding rigid origami appropriately. From the formu-
lated constraint equations, the independent nodal coordinates are identified by utilizing
the properties of the RREF of a matrix. The equations to obtain the position of the origami
vertices from the nodal coordinates of the frame model are also formulated.

In addition, the infinitesimal mechanism of the frame model is investigated by the anal-
ysis method for partially rigid frames. The generalized displacement vector is defined as
the assemblage of the unconstrained translational and rotational displacements of nodes,
the translational and rotational displacements of center points of members, and the incre-

ments of the hinge rotation angles. The compatibility equations satisfied by the generalized
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displacement are formulated at each member end with respect to the compatibility between
the translational and rotational displacement of the member end and the node to which the
member end connects. The kinematic indeterminacy and the first-order infinitesimal mech-
anism modes are derived from the compatibility matrix which is the first-order derivative
of the incompatibility vector with respect to the generalized displacement. The geometric
properties and the method of the kinematic analysis of the frame model introduced in this

chapter is used in the following chapters.
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Chapter 3

Form generation of rigid origami

for approximating a curved surface

In this chapter, a method is presented for approximating a curved surface by a developable
rigid origami with and without cuts along edges. Geometric properties of polyhedral sur-
faces such as Gaussian curvature are utilized to formulate developability conditions of the
origami surface and approximation error functions between the target surface and the
origami surface. Variables are selected according to the definition of the approximation
error function so that the calculation of the error function is performed efficiently. The in-
dependent variables are identified to satisfy the linear constraint equations such as those
describing the symmetry of the origami surface. An optimization approach is utilized to
minimize the approximation error of the target surface under the developability conditions.
Form generation starts from a triangulated surface, and crease lines of the origami surface
are sequentially fixed to reduce the degrees of freedom of the rigid-folding mechanism. The
crease lines to be fixed are determined by the selection criteria introduced in this study re-
flecting the infinitesimal mechanism of the rigid origami, which help to prevent the crease
lines to be locked during the deployment process. The frame model introduced in Chapter &
is used for the infinitesimal and finite mechanism analysis of the obtained solutions. Only
the form generation method and examples of an origami surface with locked crease lines are

shown in this chapter, and case studies of the form generation are presented in Chapter 4.

3.1 Introduction

3.1.1 Background

Origami has the advantage that it can be folded from a flat or folded state to form com-
plex three-dimensional shapes, and various form generation methods have been proposed
to obtain a rigid origami which can realize a desired shape. Various approaches have been
proposed to generalize well-known crease patterns; e.g., Dudte et al. [41] and Song et al. [47]
used Miura-ori, Tachi [43] used Resch’s pattern, Zhao et al. [44] used waterbomb tessella-

tion, and Wu [45] used Yoshimura pattern. A rigid origami with non-regular quadrilateral
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crease pattern has also been generated by Tachi [23,46] and He and Guest [47, 48] based
on the necessary and sufficient condition for the rigid-foldability of a quadrilateral mesh
which is expressed with respect to the folding angles and the sector angles (angles between
the adjacent crease lines) and called the loop condition. Although a rigid origami that
approximates the desired shape can be obtained by the above methods through a trial-and-
error or optimization approach, those methods are not suitable for generating rigid origami
structures with various non-typical crease patterns and degrees of freedom (DOF's) of rigid-
folding mechanism because the topology of the crease lines is limited. On the other hand,
the methods which does not rely on the typical crease patterns have also been proposed
by utilizing the topology optimization approach [49,50], and various crease patterns can
be obtained by these methods. However, these methods focus on obtaining a crease pat-
tern which achieves the desired actuation and are not suitable for approximating a curved
shape. Therefore, a form generation method utilizing non-regular crease patterns for the
approximation of a target shape can improve the flexibility of the origami design.

The idea of kirigami [6H, 66] and papercraft [67,68] is also utilized to realize a curved
surface from a flat or folded state. Compared to origami without cuts or holes, the intro-
duction of cuts greatly increases the degree of freedom of curved surface shapes that can
be generated from a flat surface. However, papercrafts generally consist of multiple parts,
and it is difficult to join them in a complex manner for application to architectural-scale
structures. In addition, the size of the joints is often neglected in the existing methods of
approximating a curved surface using kirigami, and the faces are connected at very nar-
row widths or even points. There are also many examples of large degrees of freedom of
mechanism. From the viewpoint of construction and safety, a structure with large degrees
of freedom of mechanism is not suitable for application in the architectural scale such as a
roof, and it is desirable to obtain a structure with small degrees of freedom of mechanism.

In this chapter, a method for form generation of a rigid origami approximating an open
curved surface is proposed based on Refs. [28-80,52]. A rigid origami developable to a plane
can be obtained by using an optimization method that does not depend on the typical crease
patterns. Thus, flat panels are connected at ground level by hinges, and then folded up to
obtain a three-dimensional polyhedral shape. The three-dimensional polyhedral shape of
a rigid origami approximating the target surface obtained by the proposed method is espe-
cially referred to as the folded shape although the shape in the process of being developed
into a plane is also a folded three-dimensional shape. A rigid origami considered in this
chapter may have the cuts along with its edges which may generate holes in the develop-
ment diagram while there are no holes in the folded shape as explained in Sections BE1-2
and BZZ3. To obtain a shape of a developable origami, the developability conditions are for-
mulated in Section B2 with respect to the geometric properties of a polyhedral surface such
as discrete Gaussian curvature defined as the angle defect [69]. The developability condi-
tion here refers to the condition that the origami faces can be placed on a plane without any
deformation while the connectivity of the adjacent faces in the folded shape is maintained

except at the specified cuts. The approximation accuracy of the target surface is measured
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for several aspect such as the Euclidean distance, the surface area, and the normal vectors
as shown in Section B331l. The form generation procedure in Section B4 starts from the tri-
angulated surface, and the shape of origami is obtained by solving the optimization problem
formulated in Section BZ33 to minimize the error of the developability or the approximation
of the target surface. However, a rigid origami with only triangular faces has a very large
number of DOFs, which leads to the undesirable situation in view of engineering applica-
tion where the mechanism cannot be stabilized by simply supporting a part of the structure
and the rotation of the crease lines should be constrained to maintain the curved polyhe-
dral shape. Therefore, some crease lines are to be sequentially fixed (removed) to reduce the
DOFs. The adjacent facets connected to each fixed crease line are integrated into a flat face
with more than three edges by adding the squared norm of the cross product of their unit
normal vectors to the objective function of the optimization problem. By solving the opti-
mization problem multiple times while increasing the number of fixed crease lines, multiple
optimal shapes with the different DOFs can be obtained. The variables in the optimization
problem are selected in Section BZ32 for the efficient calculations of the errors of the devel-
opability and surface approximation. The crease lines to be fixed are selected taking into
account the shape and the deformation mechanism of the rigid origami to prevent crease
lines to be locked; i.e. some crease lines that are not fixed become unable to rotate by fixing
an inappropriate crease line. If there is a locked crease line, the faces adjacent to it can-
not rotate around it even though they are not coplanar, and consequently, the rigid origami
cannot be developed to a plane without deformation of its faces. Therefore, the transition
of the deformation mechanism of the rigid origami due to choosing and fixing some crease
lines is predicted based on the kinematic analysis of the frame model, and the selection
criteria of the crease lines to be fixed reflecting this prediction are proposed in Section BA.
To evaluate the transition of the deformation mechanism, the stiffness matrix assembled
using the rigid-folding modes and the fictitious stiffness of the hinges is introduced. The
criterion introduced in this study reduces the number of times to solve the optimization
problems and improves the computational efficiency compared to the case where the crease

lines to be fixed are selected only by considering the shape of the rigid origami.

3.1.2 Structure of origami surface

As introduced in Chapters [0 and B, a polyhedral origami surface is regarded as a mesh and
consists of vertices, edges, and faces as shown in Fig. B. In the following, unless otherwise
noted, an origami surface is considered to be a triangular mesh and all faces are assumed
to be triangle; every mention of faces is taken to mean triangular faces. An origami surface
may contain cuts which may generate holes and gaps in the development diagram while
there are no holes and gaps in the folded shape as shown in Fig. B2. A cut is defined as
the sets of edges which are connected each other and referred to as the cut lines. In the
three dimensional shape, it is assumed that the structure of a graph consists of cut lines of
a single cut and relating cut vertices is a tree; i.e., it is connected and does not have any

loops. In addition, a cut is assumed not to break the origami surface into multiple parts,
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Figure 3.2: Inner cut and perimeter cut; (a) folded shape, (b) development diagram.

and the origami faces are allowed to overlap each other around the cut in the development
diagram. Cuts are further classified according to the positions of the endpoints of its cut

lines into

e inner cut where no endpoints of its cut lines exist on the perimeter of the origami

surface, and

* perimeter cut where one of the endpoints of its cut lines exists on the perimeter of the

origami surface.
Then, the edges of an origami surface are classified into
® crease line which is the inner edge around which origami faces rotate,
* perimeter edge at the exterior boundary of the origami surface,
* dividing edge which divides a face with more than three edges into triangular faces,
* inner cut line consisting of an inner cut of the origami surface, and
* perimeter cut line consisting of a perimeter cut of the origami surface.
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vertex i

face k

Figure 3.3: Inner angle of triangular face % at inner vertex i.

A single cut line in the folded shape corresponds to two edges in the development diagram,
and the number of cut lines in the development diagram is twice as the number of cut lines

in the folded shape. In addition, the vertices are classified into
® cut vertex which is an endpoint of the inner or perimeter cut lines,

* perimeter vertex which is at the perimeter of the origami surface and not a cut vertex,

and

® inner vertex which is not a perimeter or cut vertex.

3.2 Developability conditions

In this section, the conditions for the developability of an origami surface are formulated
considering 1) developability around each inner vertex, 2) flatness of the faces with more
than three edges, and 3) developability around each inner cut [28-30,52]. Note that an
overlap of faces in the development diagram and a self-intersection of faces in the develop-
ment process are allowed and neglected in the formulation of the developability conditions,
and thus, an origami surface is always locally developable to a plane around a perimeter
cut. The developability conditions are first locally formulated in Sections B2 1 — B 23, and
they are assembled for an entire origami surface in Section B2Z4. The optimization problem

for generating a development diagram is also proposed in Section B=24.

3.2.1 Developability around an inner vertex

When an origami surface can be developed to a plane around its inner vertices, the Gaussian
curvature at each inner vertex must be equal to zero. The Gaussian curvature is defined
as the angle defect [69], which is equal to the difference between 27 and the sum of the
inner angles of the triangular faces around an inner vertex. Let Ny and ELV (i=1,...,Ny)
denote the number of origami vertices and the set of global indices of the triangular faces
adjacent to vertex i, where i is the global vertex index, respectively. In the following, unless
otherwise noted, the indices of the components of an origami surface such as vertices, edges,
and faces are global indices defined for the entire origami surface. Note that glV is defined
for all the vertices; vertex i is not necessarily an inner vertex and can be a cut vertex or a

perimeter vertex. As shown in Fig. B3, the inner angle of face & € ?lv at vertex i is denoted
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face k,

face k,
dividing edge j

Figure 3.4: Unit normal vectors of faces k1 and k9 adjacent to dividing edge j.

by a;, € R. When vertex i is not a perimeter vertex, the Gaussian curvature x; at vertex i

is defined as follows:
K; =2m— Z ain (3.1)
keFY

Then, the developability condition at inner vertex i € 7%, is formulated as
xk;=0 (3.2)

where 7, is the set of indices of inner vertices.

3.2.2 Flatness of a face with more than three edges

In order for the origami surface to be developable to a plane by the rigid-folding deformation,
its faces with more than three edges must be flat; i.e., the faces adjacent to each dividing
edge must be in the same plane. Let QJE denote the set of indices of faces adjacent to edge
Jj. As shown in Fig. B4, the unit normal vector of face % is denoted by n;, € R3. Defining &gy
as the set of global edge indices of the dividing edges, the condition for the flatness of the

face at dividing edge j € &4iy is formulated as

g, xng, I =0 (k1,kz € F}) (3.3)

3.2.3 Developability around cuts

The developability around a single inner cut is considered, and the global indices of cuts
are omitted for simplicity although it is necessary to identify the cut. The cut is assumed
to consist of M cut lines in the folded shape. As shown in Fig. BA, the local indices of
cut lines 1,...,2M¢ in the development diagram are assigned so that they are in ascending
order when the cut lines in the development diagram are traced such that the hole by the cut
exists on the left side and the face exists on the right side of each cut line when viewed from
the positive side of the z-axis. A pair cut lines in the development diagram correspond to
the same cut line in the folded shape; e.g., edge 2 and j+2 in Fig. BA are the same cut line in
the three-dimensional shape. The length and the direction vector of edge j (=1,...,2M¢) in
the development diagram are denoted by [ j€Rand e;e R2, respectively. & 7 is a unit vector
and directed from the vertex between edges j—1 and j to the vertex between edges j and
j+ 1. The local edge indices 0 and 2M¢ + 1 are regarded to be 2M¢ and 1, respectively. The

local vertex indices in the development diagram are also defined so that vertex j is located
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(b)

(a)

Figure 3.5: Configuration of an inner cut; (a) Local edge indices and angles around cut
lines in the three-dimensional shape, (b) Vectors along cut lines and angles

around cut lines in the development diagram shape.

between edge j and j+ 1. Let 91.0 denote the set of global indices of the faces connected to
vertex j in the development diagram. Note that ch is a subset of 9}7 when i is the global
index of vertex j, where j is the local index. As shown in Fig. BH, the sum of the inner
angles of the triangular faces at the vertex j in the development diagram is denoted by
9; € R and calculated as follows:

9= 3 aj (3.4)

ke?f

where aj; the inner angle of face k£ at vertex j. Then, the edge direction vector €;,1 in the

development diagram satisfies the following equation for j=1,...,2M¢:
éj+1 = R(l‘)j — ﬂ)éj
=R —n)---R(91 —m)ey

=R(i8m—jn)él

m=1

(3.5)

where R(6) € R?*2 represents the rotation matrix which rotate a vector counterclockwise on

a plane by the angle 6 and is defined as

cosf —sinf
R(9) =

sinf cos@

€2).+1 obtained from Eq. (BH) by assigning j = 2M¢ need to be identical to €;, and the

following equation holds:

2M¢
é1=0 (3.6)

J=1

2M¢
R( ﬁj—ZMcﬂ)é1=él =3 [R(
Jj=1

ﬁj—ZMcﬂ) —12

Since the choice of edge 1 on the cut and the placement of the development diagram on

the xy-plane are arbitrary, Eq. (88) holds for any &;. Therefore, the following equation is
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obtained for an arbitrary integer m:

ZMC 2MC
Y 9j-2Mcn=2mn & Y 9;j=2(Mc+m)n (3.7
j=1 j=1

According to Eq. (B8), m represents the number of counterclockwise 27 rotations of the
direction vector of the edge when the cut is passed around on the development diagram, and
is called the turning number used in the field such as geometric topology and differential
geometry. If the polygon on the development diagram formed by the cut lines does not
have any self-intersections and the faces do not overlap each other as shown in Fig. B8, the
turning number m is equal to 1. Conversely, if the faces are allowed to overlap each other,
it is not necessarily equal to 1. However, it is assumed that m =1 holds in this study, and
the case where m is more or less than 1 is neglected since the three-dimensional shape is
expected to be too complicated for an architectural purposes if m is not 1. On the other
hand, since the number of the cut vertices is M¢ + 1 in the folded shape and there is no loop
in the cut in the three-dimensional shape, the sum of the Gaussian curvature of the cut

vertices satisfies following equation:

ZKi:Z 27 — Z Aip

1€le 1€¥c keyiv

2Mc
=2(Mc+Dm—- )Y, Y aj (3.8)
J=1keF}

2M¢
=2(Mc+Dn— ) 9;
j=1
According to Egs. (B71) and (B8) and the assumption of m =1, the following equation needs
to be satisfied for the developability around the cut:

Y xi=2(1-m)r=0 (3.9)
1€¥0

Furthermore, in addition to the condition for the direction of the cut lines on the develop-
ment diagram represented by Eq. (39), there must be a condition for the inner cut lines to

form a loop on the development diagram, which can be written as follows:

oM¢
Z ljéjZO (3.10)
j=1

Substituting Eq. (B8) into the left-hand side of Eq. (B711), the following equation is obtained:

oM . 2Mg-1
Z ljéj=llél+ Z lj+1éj+1
j=1 j=1
) 2Mo-1 J
=lie1+ Z lj+1{R(Z ﬁm—jﬂ)él} (3.11)
Jj=1 m=1

. 2Mc-1 . J
= [1112 > (_1)Jlj+1R( Y 19m) e
-1

J m=1
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According to Eq. (B11), the conditions for the existence of €; satisfying Eq. (B210) can be

written as follows:

2Mc-1 J
det l112 Z ( l)JlJ+1R(Z ﬁm)
=1
’ ) ) (3.12)
2Mc-1 2Mc-1
{l1+ Z (- l)JlJ+1cos(Zq.‘) )} { Z (- l)JlJ+1sm(Zw9 )} =0
Jj= Jj=
Consequently, [ jand 9; (j=1,...,2M¢) need to satisfy the following equations:
2Mc-1
I1+ Z (- 1)JlJ+1cos(Za ) (3.13)
Jj=
2Mc-1
Z (-1y lj+1s1n(219 ) (3.14)

Conversely, if l_j and 9; for j=1,...,2M¢ satisfy Eqs. (E13) and (814), Eq. (810) holds for
an arbitrary €;. Therefore, the conditions for the cut lines to form a loop on the develop-
ment diagram are represented by Eqs. (313) and (B14). From the above, the developability
conditions around an inner cut are represented by the three equations (89), (B13), and
(B14).

3.2.4 Developability of entire origami surface

The developability conditions formulated in the previous sections are assembled for all the
inner vertices, dividing edges, and inner cuts to formulate the developability condition of
the entire origami surface. Let Nvin, Nrgiv, and Ngin, denote the number of inner vertices,
dividing edges, and inner cuts, respectively. Then, the total number of the developability
conditions is Nvin + Nrgiv + 3Ncin, and the left-hand sides of Egs. (B2), (B3), (E9), (B13),
and (B14) are assembled for all the inner vertices, dividing edges, and inner cuts into a
vector D € RVvintNeaw+3Ncin which represents the violation of the developability conditions.
The values of components of D can be determined only from the quantities defined in the
folded shape, and the development diagram is not necessary to calculate D. Then, the

developability condition for the entire origami surface is written in a vector form as follows:
D=0 (3.15)

The form generation of the rigid origami is performed so that the developability condition
formulated as Eq. (B718) is satisfied.

Since Eq. (B1H) is only the necessary condition for the developability of an origami sur-
face, the developability of an obtained solution in the form generation procedure should be
confirmed by generating a development diagram. The development diagram of an origami
surface is generated by minimizing the sum of the squared edge length errors between the
development diagram and the folded shape according to the surface flattening method pro-

posed by Wang et al. [[Z0]. The development diagram is to be generated on the xy-plane. The
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variables for the development diagram generation are selected according to the optimiza-
tion problem for generating the origami surface described in Section B33, which are the x-
and y- coordinates of vertices or the independent x- and y- coordinates of nodes of the frame
model determined in Chapter B. In both cases, let X denote the vector of the variables.
The length of edge j (j = 1,...,Ng) in the folded shape and in the development diagram are
represented by /; and [ j € R, respectively, where Ng is the number of origami edges in the
development diagram. Note that /; is constant while ! j is the function of X which can be
written as [ j(X). Ng can be different from the number of edges in the folded shape since
each cut line in the folded shape corresponds to two edges in the development diagram as
shown in Fig. B3. When the number of origami edges in the folded shape is Ng and the
number of inner and perimeter cut lines is Ngcut, Vg is calculated as Ng = Ng + Ngcut. Let
n;(X) e R? (¢ = 1,...,Ny) denote the unit normal vector of face % of the development dia-
gram where N7 is the number of triangular origami faces. The direction of n(X) is defined
so that the relation n;(X)-e, = 0 is satisfied where e, = (0,0, 1)T, if all the faces are not
flipped. Then, the development diagram is obtained by solving the following optimization

problem which minimizes the non-negative function Fge,(X):

Ne ,
Y L%~
min, Fae,(X) =1

Ng
3 >0 (3.16)
j=1

s.t. ﬁk(X)-eZEO (k=1,...,Np)

Xey

where y denotes the range of variables assigned so that the vertex positions of the develop-
ment diagram are determined uniquely and the optimization problem (B18) has the good
convergence. The initial guess of the problem (BI8) can be arbitrarily set under the con-
dition that it has the consistent connectivity of edges as the folded shape and satisfies the
constraints of the optimization problem. In this study, the projected shape of the folded

shape onto xy-plane is used as the initial guess.

3.3 Optimization problems for form generation of a devel-

opable origami surface

In this section, optimization problems for generating a single origami shape developable to
a plane are formulated. The approximation error functions are formulated with respect to
the distance between the origami surface and the target surface, the error of the surface
area, and the difference between the unit normal vectors of the origami surface and the tar-
get surface defined in Section B30l There are some candidates for the design variables in
the optimization problem; e.g., the vertex coordinates of the origami surface, the nodal coor-
dinates of the frame model, and other parameters representing the position of the vertices

measured from the points on the target surface. They are selected in view of the efficiency
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of the calculation of the approximation error, and the discussion about the selection of the
design variables is provided in Sections B3 and BZ32. The optimization problems for the

form generation are proposed in several patterns in Section BZ33.

3.3.1 Definition of approximation error functions
(1) Target surface

A target surface is defined by the tensor product Bézier surface [61] of order Mg x M;. Let

ij= (ﬁ’i‘j,ﬁ‘?j,ﬁfj)T eR®(i=0,...,Mg; j=0,...,M;) denote the position vector of a control
point of the Bézier surface. The surface is parametrized by s and ¢ (0 < s,¢ < 1), and the
position vector of the point on the surface corresponding to the parameter (s,#) which is

denoted by ¥(s,#) € R3 is determined as follows:

#s,0) = Z Z DB (s)B}(1) (3.17)
1=0,=0

where B?/"S(s) and Bg/lt(t) are the Bernstein basis polynomials defined as follows:

M . . M . .
BYs(s) = ( ® )s‘(l—s)Ms_l, Bj”t(t) - ( t )tJ(l—t)Mt‘J
l J
In particular, when the control points are uniformly spaced in the x-direction with interval
Apx and in the y-direction with interval Apy as p;; = (53, + iAPx, ﬁgo +JApy, ﬁ?l.)T, the z-

coordinate of the Bézier surface can be represented as a function of the (x,y) coordinates as

follows:
M, M, x—p ¥ =By
-z pM 00 | pM. 00
2= 52.B’ ( 0 ) o200 (3.18)
ZOJZO GE\Maps) T\ Mibpy

Doo S % <Pyo+MsApx
Boo =¥ = By + MeAby
In addition, the unit normal vector of the Bézier surface at the point ¥(s,¢) which is denoted

by fi(s,t) can be calculated as follows [[ZT]:

OM,—12M,~1
=0
n(s,t) = oM 12Mt (3.19)
Z Z ~ B2M 1(S)B?Mt_1(t)
~ MM

> >

( oM, -1 )( 2M -1 ) mitma=i  nitma=j

0smi<Ms-1 0<n <M,
0<mgo<Ms 0<no<M;-1

My-1 My M, M-1\,. . . .
(p(n1+l)m1 _pnlml) X (pn2+(m2+1) _pngn‘L2)
m1 my ni no
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target surface

area = A4

Figure 3.6: Quantities for defining approximation error function.

(2) Approximation error function for Euclidean distance

It is necessary to associate the point on the target surface with an origami vertex to measure
the approximation error with respect to the Euclidean distance between the origami surface
and the target surface. As shown in Fig. B8, the associated point on the target surface with
an origami vertex is referred to as the projected point, and the distance between vertex i
and its projected point is denoted by §; € R. Note that §; is signed according to which side of
the target surface vertex i is located. In Ref. [30], a projected point is defined as the point
on the target surface which have the same (x,y) coordinates with the associated vertex.
In this case, it is assumed that the control points of the target surface are aligned with
the constant intervals in the x- and y-directions, and the position of the projected point is
determined by the z-coordinates in Eq. (B18). Therefore, it is straightforward to select the
vertex coordinates of the origami surface or the nodal coordinates of the frame model as the
variables of the optimization problem for the form generation. When the nodal coordinates
are used as the variables, the coordinates of the vertices are obtained by Eqs. (2219) or (2-21)
formulated in Chapter B.

On the other hand, a projected point is defined as the orthogonal projection of the vertex
onto the target surface in Ref. [6Z]. In this case, the recursive calculation is necessary to
determine the position of a projected point from the given vertex position [[/Z], and this is
computationally inefficient. Therefore, the opposite approach is adopted in Ref. [67]; i.e., the
position of a origami vertex is determined from the given position of the associated projected
point as the sum of the position vector of the projected point represented by Eq. (B17) and
the vector representing the amount and the direction of the offset from the target surface.
For example, if §; is measured in the direction of the normal vector of the target surface, the

position vector of vertex i denoted by &; € R? on the origami surface is written as follows:
& =1(s;,t;)+0;0(s;,¢t;) (3.20)

where s; and ¢; are the parameters associated with vertex i which determine the position
vector of the point on the target Bézier surface. In the following, the amount of offset §;
is simply referred to as the offset. The parameters s; and ¢; and the offset §; for all the

vertices are used as the variables in the optimization problem. The direction of the offset is
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Table 3.1: Combinations of the suitable variables and the conditions to measure the ap-

proximation error with respect to the distance.

Ref. [30] Ref. [62]
. Coordinates of Parameters of Bézier surface
Variables . .
vertices or nodes and offset distances
Arrangement of . . . .
control points Regularly aligned Arbitrarily aligned
Dlrecthn to z-direction Arbitrary
measure distance
LT < target
- - . surface
vertex origami
surface
(a) (b)

Figure 3.7: Comparison of the appearance of two origami surfaces whose all vertices are
on the target surface but which have different surface areas; (a) Large approx-

imation error for surface area, (b) Small approximation error for surface area.

not limited to the normal of the target surface and can be arbitrary; e.g., in the z-direction
as in Ref. [30] where f(s;, ¢;) in Eq. (3720) is replaced with e, = (0, 0, 1)T. This approach also
can be used when the control points of the target Bézier surface are not aligned regularly
and the z-coordinate of the point on the Bézier surface cannot be determined from its x-
and y-coordinates. Combinations of the selection of variables, the arrangement of control
points of the target Bézier surface, and the direction in which the distance between each
origami vertex and the target surface are summarized in Table. B7l. In both cases, the ap-
proximation error function F;st for the distance between the origami and the target surface

is defined as follows:

1%,
Faist = 5 ). 5 (3.21)
i=1

(3) Approximation error function for surface area

As shown in Fig. B.7(a), the appearance of the origami surface may not be similar to that of
the target surface even when all the origami vertices are on the target surface. Therefore,
the approximation accuracy with respect to the surface area is considered to obtain the
origami surface like Fig. B.'7(b] which has a similar appearance to the target surface. Let A
and A € R denote the area of the origami surface and the target surface. The approximation
error function F,.e, for the error of the surface area between the origami and the target
surface is defined as

Farea = A - A| (3.22)
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target
8 / surface

surface

(a) (b)

Figure 3.8: Comparison of the appearance of two origami surfaces whose each vertex has
equal distance but face normal vectors are in the different directions from the
target surface; (a) Large approximation error for face normal vectors, (b) Small

approximation error for face normal vectors.

where A is calculated as the sum of the areas of all the triangular faces of the origami
surface, and A is approximated by triangulating the target surface into a fine mesh and

summing up the area of all the triangular faces.

(4) Approximation error function for face normal vector

Approximation accuracy with respect to the direction of the normal vectors of the origami
faces is considered since the angles of the faces are important factors for the appearance of
the polyhedral surface as shown in Fig. B8. The two origami surfaces in Fig. BR have the
same value of Fgist; however, the surface in Fig. has more similar appearance to the
target surface than the surface in Fig. since the directions of the normal vectors of the
faces of the former surface approximate those of the target surface while those of the latter
surface do not. As shown in Fig. B8, let 1”12,/1> , ﬁ,<62>, and ﬁ,i3> € R3 denote the unit normal
vectors of the target surface evaluated at the projected points of the three vertices of face %.
Then the unit reference normal vector of face % is defined as follows:
(1) | =(2) | =(3)
ny = nI<61> - nlz2> - nf3> (3.23)
|8+ +a |

The approximation error function Fyo.ma1 for the error of the direction of the normal vectors

between the origami faces and the reference normal vectors of the target surface is defined

as follows:
1 i ~ ref 2
Frormal = 5 Z n,—n, (3.24)
2 k=1

Note that the initial direction of n; is defined so that n; -ﬁzef =0 holds for k=1,...,Nfg in

the initial shape of the form generation.

3.3.2 Independent variables for form generation

As discussed in Section B3], design variables of the optimization problem for generating a
developable origami surface are the coordinates of origami vertices, the nodal coordinates of
the frame model, or the pairs of the parameters and the offset which determine the points on

the target Bézier surface and the distances from these points to the origami vertices. When
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the nodal coordinates of a frame model are used, the independent coordinates are identified
from the linear constraints on the nodal coordinates for the consistent representation of
the origami surface by the frame model as shown in Chapter B. The variables are selected
according to the computational efficiency of the approximation errors as shown in Table. Bl
In this section, further reduction of the number of design variables is considered by taking
into account the linear constraints on the boundary shape and the symmetry of the origami

surface [B0].

(1) Linear constraints on coordinates of vertices of origami surface or nodes of

frame model

Consider the case where the coordinates of origami vertices or the nodes of frame model
are used as the variables. To prevent the perimeter shape of the origami surface from
being drastically different from that of the target surface, the boundary planes where the
perimeter vertices exist are introduced. Here, it is assumed that a perimeter curve of the
élrfdx+ﬁ]([’2rfdy+ﬁgdz+ 1=0 for
the coefficients ﬁéﬁ 1 €R(j=1,2,3). Note that the Bézier surface has four perimeter curves
obtained by setting the parameters as (s,0), (s,1), (0,%), (1,¢) (0 <s,t < 1) in Eq. (B3T7). When

the vertex i is on the boundary plane, its position vector §; needs to satisfy the following

target Bézier surface is on the boundary plane defined as

equation:
[ Bona 1 ]( zli )=0 (3.25)

where Byq = (ﬁl(oln) & ﬁg O ﬁ]([il) d)T € R3. Let = € R*MV denote the assemblage of the position
vectors of all the vertices. Then, Eq. (B3228) for all the vertices on the boundary planes are
combined into the following equation:

and( j )=0 (3.26)

where Npnq is the number of constraint equations for the perimeter vertices and By,q €
RNenaxBNv+D g 9 constant matrix whose components are 0, 1, or the coefficients of the
equations of the boundary planes. In addition, the vertices at the corners of the origami
surface are fixed at their original position. When the initial position vector of the vertex i

at the corner of the origami surface is ;, this condition is formulated as

G-4=| 1 -§ ]( F’l" )=0 (3.27)

Equation (BZZ7) for all the corner vertices are combined into the following equation:

Bm( = ):0 (3.28)
1

[R12 x(3Ny+1)

where By € is a constant matrix whose components are 0, 1, or the initial

coordinates of the corner vertices.
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If the target surface and the crease pattern of the origami surface have the symmetry
property, the form generation is carried out so that the symmetry is preserved. In this
study, at most two planes of symmetry are considered, and if two planes of symmetry are
considered, they are assumed to be perpendicular to each other. Suppose the vertices i and
i’ are located symmetrically with respect to a plane of symmetry while they are assumed
not to be on the plane. When a plane of symmetry is defined as ,Bg,)mx + ﬁg,)m y+ ﬁ(s‘z’,)mz +1=0
for the coefficients ﬁ(sé,)m €R (j = 1,2,3), the position vectors of vertices i and i’ denoted by
§; and &; € R3, respectively, need to satisfy the following equation throughout the process of

the form generation:

D 22 g3 &i
B B Bl 1]( " ) pY.

s p2

) (o) ) 29
" (ﬁ )T 2 &i
- — gy e g
o [ ] 1

where Bg,r, = (,B(S%,)m, ﬁ(szy)m, ﬁg)m)T € R3. When the number of constraint equations for the
symmetry in Eq. (B229) for all the pairs of vertices and for all the planes of symmetry is
Ngym, all the equations are combined into a vector form using a constant matrix Bgym €

RNoym*BNv+1D g9 follows:

Bsyrn( ? ) =0 (3.30)

The components of Bgyr, are determined by the coefficient matrix of ({2—, ﬁ;.':, 1)T in the left-
hand side of the second equation of Eq. (B29). If vertex i is on the plane of symmetry
represented as ﬁg,)mx+ ,Bg,)m y+ ,B(S?,)mz +1 =0, vertex i needs to stay on the plane of symmetry
and its position vector §; should satisfy the following equation throughout the process of the

form generation:
&
| Bl 1]( | )=0 (3.31)

Equation (B331) for all the vertices on the planes of symmetry and for all the planes of

symmetry are combined into the following equation:
Bm(?)=0 (3.32)

where N, is the number of constraint equations for the vertices on the planes of symmetry
and Bop € RNVon*GNv+D g 5 constant matrix whose components are 0, 1, or the coefficients of
the equations of the planes of symmetry.

When the number of linear constraint equations on the vertex coordinates represented
by Egs. (B28), (B28), (830), and (B32) is denoted by Ncon = Npng + 12 + Ngym + Non, these
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constraint equations are combined into a vector equation as follows:

By =0 (3.33)
1
Bina
By= | 2o | ¢ gonx@NveD
Bsym
Bon

Note that in the case where the symmetry of the origami surface is not considered, Bgsym
and B,, are omitted from By, and the number of the constraint equations is reduced to
Ncon = Nppg +12.

Next, consider the case where the nodal coordinates of the frame models are used as
the design variable. As shown in Chapter B, the independent coordinates of nodes are
identified by utilizing the properties of the RREF of the matrix representing the equations
for the consistent representation of the origami surface by the frame model. Let Zgeo € R3NY
denote the vector of assemblage of the independent nodal coordinates. Note that the number
of components of Zg., is equal to that of the vertex coordinates E as explained in Chapter E.

According to Eq. (B2Z1)) in Chapter B, E and Zs... have the following relation:
2 = CnvZiree (3.34)

where Cyv is a 3Ny x 3Ny constant matrix. Substituting Eq. (8334) into Eq. (8333), the

following equation is obtained:

CnvZ
BV( NV1 free ) _ BV

Cxv O
0 1

( Zivee ):0 (3.35)
1

Here, define a matrix By as follows:

Cy O
BN — BNV v € RNconX(3NV+1)

Then the linear constraint equations which the independent nodal coordinates vector Zg.ce

needs to satisfy can be written as follows:

Z
BN( fie" -0 (3.36)

(2) Linear constraints on the parameters of Bézier surface and the offsets

Consider the case where the design variables of the optimization problem for the form gen-
eration are the pairs of (s,¢) parameters and the offset which determine the points on the
target Bézier surface and the distances from these points to the origami vertices. In this
case, the perimeter shape of the origami surface is constrained by simply fixing the values

of (s,t) parameters of the of target Bézier surface if their initial values are 0 or 1. Here,
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w; € R3 is defined as w; = (s;, t;, 5;)7 where s; and ¢; are the parameters of the target Bézier
surface corresponding to vertex i and §; is the offset value of vertex i from the target Bézier
surface, respectively. If the initial value of s; which is denoted by $; is equal to 0 or 1, w;

needs to satisfy the following equation:
w;
100 —s"i]( ) ):0 (3.37)

On the other hand, if the initial value of ¢; which is denoted by #; is equal to 0 or 1, w; needs

to satisfy the following equation:
_ w;
010 - ]( ) ):0 (3.38)

Let Q € R3NV denote the assemblage of w; for all the vertices. When the number of con-
straints represented by Eqgs. (8237) and (B338) is Ny,nq, these constraints for all the perimeter

vertices are combined into the following equation:
. Q
Byna ( 1 ) =0 (3.39)

where andRNb"dx(3NV+D is a constant matrix whose components are 0 or 1. Note that the
number of constraints Nppq and Nppq may be different. The constraints for the positions of
corner vertices are also easily satisfied by fixing their offset values §; to 0 for all the corner
vertices under the assumption that the constraint equation (8239) is satisfied. In a similar

manner as the derivation of Eq. (B228), this condition can be written as follows:

BCIH‘

Q
) =0 (3.40)
1

R**GNv+D) ig 3 constant matrix which has only one non-zero component in each

where B¢y, €
row that is 1 and corresponds to the offset value of a corner vertex.

If the target surface and the crease pattern of the origami surface have the symmetry
property, the constraints for the symmetry is considered in the parameter space (s,¢). When
a plane of symmetry in the parameter space is defined as ,Bg,)ms + Bg,)mt +1 =0 for the coef-
ficients ,Bg,)m and 5;2y)m € R, the parameters and the offset values of vertices i and i’ which
are located symmetrically with respect to the plane need to satisfy the following equation

throughout the process of the form generation:

I _w I _% ::ii, =0 (3.41)
[Besn] [Bom]” 11

where w; = (s;, t;,6;)" €R3 and ﬁsym = (Bg,)m, ﬁ(sg,)m, 0)" e R3. Let Q € R3MV denote the assem-
blage of the parameters s; and ¢;, and the offset value §; for all the vertices. Then, all the

constraint equations for the symmetry are combined into a following equation:

_ Q
Boym ( ) =0 (3.42)
1
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where ﬁsym is a Ngym x (3Ny + 1) constant matrix whose components are determined by the
coefficient matrix in the left-hand side of Eq. (B241). If vertex i is on the plane of symmetry
represented as Bg,)ms + ﬁ(s?y)mt +1 =0, its parameters s; and ¢; need to satisfy the following

equation throughout the process of the form generation:

[ Bim 1 ]( ";i ):0 (3.43)

Equation (B43) for all the vertices on the planes of symmetry and for all the planes of

symmetry are combined into the following equation:

Q
) =0 (3.44)

where By,RVen*GNv+D g 3 constant matrix whose components are 0, 1, or the coefficients
of the equations of the planes of symmetry. Note that the number of constraints for the ver-
tices located at the symmetric positions and the constraints for the vertices on the planes of
symmetry are equal to the above two cases of design variables. When the number of linear
constraint equations on the parameters and the offset values represented by Eqs. (8239),
(B20), (B22), and (824) is denoted by Neon = Npng +4 + N, sym + Non, these constraint equa-

tions are combined into a vector equation as follows:

Bp =0 (3.45)

Bp= | Do | ¢ plenx@Ny+D)

[os]3

on

Note that in the case where the symmetry of the origami surface is not considered, ﬁsym
and B, are omitted from Bp, and the number of the constraint equations is reduced to

Neon = Npng +4 as in the previous section.

(3) Variable reduction reflecting the linear constraints

Let a matrix B represent By € RNen*@Nv+D iy Bq. (8333), By € RWeont3NEin +3Np)x@BNyv+1) jyy
Eq. (B38), or Bp € RVeon *BNv+1) jpy Eq. (347). In addition, let a vector X represent = € R3NV
in Eq. B33), Zfce € R3NV in Eq. (B328), or Q € R3MNV in Eq. (345). B and X are determined
in accordance with the selection of the design variables. Then, the linear constraint equa-

tions (B333), (B336), and (B2H) are written in a common form as follows:

X
) =0 (3.46)
1

According to the identification method of the independent variables introduced in Appendix A,
X satisfying Eq. (848) is divided into the vectors of the independent and dependent com-

ponents X and X, respectively. Defining B as the matrix which is an assemblage of the
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components of the RREF of B in the non-zero rows and the non-pivot columns, Eq. (848) is

rewritten as the following form:
X
N X
L..xs B X |=X+B ( ) =0 (3.47)
1

Therefore, the vector of the dependent components of X satisfying Eq. (848) is calculated
as

. X
X:—B( 1 ) (3.48)

Here, the size of B and the number of independent variables are rank(B) x (3Ny—-rank(B)+1)
and 3Ny — rank(B), respectively, regardless of the choice of variables. Consequently, X is
used as the independent variables in the optimization problem for the form generation of a

developable origami surface.

3.3.3 Formulation of optimization problems

Optimization problems are formulated to obtain an origami surface which can be devel-
oped to a plane. The design variables used for optimization are identified as shown in Sec-
tions B31 and B:32. A vector of the design variables is denoted by X € R3V v-rank(®) where
B is the matrix representing linear constraints reflecting the perimeter shape and the sym-
metry of the origami surface. Then, the vector representing the errors of the developability
conditions in Eq. (318) is regarded as a function of X written as D(X) € RNvin*Neaiv+3Ncin
The non-negative approximation error functions defined as Eqs. (B21), (822), and (B224)
are also regarded as functions of X and written as Fgist(X), Farea(X), and Forma(X) € R,
respectively. To generate a developable origami surface which approximates the target sur-

face, the weighted sum of the approximation error functions is defined as
F app(x) = Fist(X) + careaF area(X) + CnormalFnormal (X) (3.49)

The non-negative function F,p,(X) is minimized under the developability conditions D(X) =
0 where carea and cpormal € R are the non-negative weight coefficients. To avoid an exces-
sively acute triangular faces, the upper bound a,x and lower bound an,i, are assigned for
a;(X), which is the inner angle of face & at vertexi (i =1,...,Ny; k=1,...,Np). In addition,
the lower bound /i, is assigned for the length of each edge /;(X) (j = 1,...,Ng) to prevent
the faces from degenerating into lines or points, and the angle between each face normal
vector n;(X) (£ =1,...,N) and its reference unit normal vector ﬁzef(X) is restricted to less
than or equal to 7/2 to avoid a flipped face. The ranges of the design variables denoted as
X € y are also incorporated so that if the design variables are the parameters of the tar-
get Bézeir surface, they are in the range between 0 and 1. The ranges of the offset may
also be incorporated to assign the upper bound of the approximation error for the distance

between the origami surface and the target surface. If the design variables are the vertex

45



coordinates or the nodal coordinates, the ranges of the design variables are assigned for
improving convergence of the optimization process.
The optimization problem to obtain a developable origami surface approximating the

target surface is formulated as follows as a nonlinear programming (NLP) problem [56Z]:

m}i{n. Fapp(X)

st. DX)=0
< Umin < ipX) < @max (G =1,...,Ny; k=1,...,Np) (3.50)
1i(X) = Lyin (G=1,..,Ng)

n,(X) -2 X) =0  (k=1,...,Np)

Xey

Since the form generation starts from the triangulated target surface as explained in Sec-
tion B4, the initial shape of the form generation does not satisfy the developability condi-
tions D(X) = 0. When the target surface has the large Gaussian curvature and the errors of
D(X) = 0 are too large in the initial triangulated shape, a feasible solution of Problem (B50)
with sufficiently small errors of the developability conditions may not be found. There-
fore, if an initial solution without fixed crease lines is not found, the following optimization
problem is solved to find an initial guess of Problem (BA0) satisfying the developability
conditions with small errors [30]:

min.  Faev(X) = [DX)|*

st amin<@ipX)<amax (=1,...,Ny; k=1,...,Np)

| 1;(X) = Imin (G=1,...,Ng) (3.51)
n,(X) - X)=0  (k=1,...,Np)

Xey

Developability and rigid-foldability of the obtained origami surface are also confirmed by
generation of the development diagram and large-deformation analysis to simulate the de-

ployment process, respectively.

3.4 Overall procedure of form generation to obtain the mul-

tiple solutions

In this section, an overall form generation procedure is explained to obtain several devel-
opable and rigid-foldable origami shapes approximating the target surface with different
number of fixed crease lines and the DOF's of mechanism. The form generation starts from
the triangulated target surface whose edge topology defines the basic crease pattern of the
rigid origami to be generated. The optimization problem (Bh0) is repeatedly solved to ob-
tain the shape of the developable rigid origami while the crease lines are sequentially fixed

and converted to the dividing edges to reduce the DOF of the rigid-folding mechanism. The

46



variables of the optimization problem are selected from the vertex coordinates, the nodal
coordinates, and the pair of (s,?) parameters of the target Bézier surface and the offsets
from the target surface in accordance with the arrangement of the control points of the
target surface and the direction to measure the distance between the origami vertices and
the target surface as described in Section BZ331. The number of independent variables is
reduced by the method introduced in Section B32. If a solution process of Problem (B-50)
is not converged with sufficiently small errors of the developability conditions when Prob-
lem (BA0) is first solved in Step @ of the form generation procedure, Problem (B&1) is solved
to obtain a shape satisfying the developability conditions with small errors. The tolerances
of the errors of the developability conditions are set empirically in this study. In the second
and subsequent iteration of Step B, the solution obtained in the last iteration is used for the
initial shape of the optimization. This may help to find a feasible solution by directly solving
Problem (B510) from the second optimization process. If some crease lines that are not fixed
are locked in the solution of the problem (BA0), alternative crease lines are to be selected.
The method for finding the locked crease lines and the criteria for selecting the crease line
to be fixed are proposed in Section BH. The procedure of form generation of developable
rigid origamis that have faces with more than three edges and small DOF's is summarized
as follows [28-30]:

Step 1. Define the target surface as the Bézier surface and triangulate it to define the basic

crease line topology.

Step 2. Select the design variables used in Step @ and identify the independent variables
by the method shown in Section BZ34.

Step 3. Initialize the index set of fixed crease lines and the solution set as &3iv = ¢ and

F%ol = O, respectively.

Step 4. Solve Problem (B50) to obtain a developable origami shape using the initial trian-

gulated target surface or the solution of the previous step as the initial guess.

Step 5. If the optimization is not converged with sufficiently small errors, go to Step B;

otherwise, go to Step B.

Step 6. If the last optimization process in Step @ is the first one, go to Step [@; otherwise, go
to Step M.

Step 7. Solve Problem (B-AT]), and return to Step @ if a feasible solution is obtained; other-
wise, no developable origami surface is obtained and try a different triangulation

pattern.

Step 8. Evaluate the infinitesimal mechanism using the method for partially rigid frames [38—
400] summarized in Chapter B. If DOF = 1 and there is no locked crease line, add
the solution to %4, and go to Step 8; if DOF = 1 and the locked crease line exists, go
to Step I0; otherwise, go to Step M.
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Step 9. Add the specified number of indices of the crease lines to be fixed to &4iv in accor-

dance with the criterion presented in Section BH, and return to Step .

Step 10. If &4y = ¢, no developable polyhedron is obtained and try a different triangulation
pattern; otherwise, replace the indices of the last fixed crease lines in &4iy with

indices of the other crease lines.

Step 11. Generate the development diagram of each obtained origami shape in %, by solv-
ing the optimization problem (B1H), and evaluate the errors between the lengths of

corresponding edges in the folded shape and the development diagram.

Step 12. Carry out large-deformation analysis of each origami shape in % to simulate the

deployment process, and evaluate its finite rigid-foldability.

The optimal shapes obtained in Step @ satisfy the developability conditions with small er-
rors. However, the conditions introduced in Section B2 are only the necessary conditions
for developability, and we should confirm in Step I that the development diagram of the
obtained solutions can be generated with good accuracy instead of simply confirming that
the values of components of D(X) are approximately zero. The global finite rigid-foldability
of each solution also need to be confirmed by the large-deformation analysis since the devel-
opability conditions only guarantee the local rigid-foldability in the neighborhood of each
inner vertex. The case studies of the form generation with various target surfaces are de-

scribed in Chapter @.

3.5 Selection criteria of crease lines to be fixed

In this section, the selection criteria of the crease lines to be fixed are proposed reflecting
the infinitesimal mechanism of the frame model. The infinitesimal mechanism of the frame
model is evaluated by the method for partially rigid frames [B8-40]. To predict the exis-
tence of locked crease lines and to define the selection criteria, a pseudo stiffness matrix of
the frame model is introduced using the total potential energy of the frame model defined
under the assumption that the members are rigid and the hinges have fictitious rotational
stiffness. The selection criteria are defined as the scores of the hinges obtained from eigen-

value analysis of the pseudo stiffness matrix.

3.5.1 Infinitesimal displacement modes of the frame model

The number of nodes, members, and hinges of the frame model are denoted by Ny, Ny, and
Ny, respectively. The total number of fixed nodal displacement degrees of freedom including
both the translation and rotation is denoted by Ng. Let U € R6NN~Ne v e 6N and Qe RNH
denote vectors of the assemblages of the free nodal displacements, the displacements of
center points of members, and the increments of hinge rotation angles from the initial state
to the deformed state, respectively. Note that the nodal displacements and the member

displacements consist of translations and rotations of the nodes and the center points of
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members. A generalized displacement vector is defined as W= (UT, VT, ¢")T € R’V where
the number of components of W is calculated as Nw = 6NN — Ng + 6Ny + Ng. Then, the
incompatibility vector G(W) € RN¢ is defined as the function of W so that its components
represents the errors of the relative displacements between the nodes and the member
ends of the frame model as shown in in Chapter B. The number of components of G(W) is
N¢g = 12Ny, and the gradient of G(W) with respect to W evaluated at W = 0 is denoted in
a matrix form by the compatibility matrix I'V € RV¢*Mw - Ag shown in Chapter B, a gener-
alized displacement vector W satisfying the following equation is a first-order infinitesimal

mechanism:

r'w=o0 (3.52)

Assuming that the nodal displacements are constrained so that the only rigid-body motions
of the entire model are constrained, the DOF of an infinitesimal rigid-folding mechanism is

calculated as follows:

Np = Ny — rank(I'?) (3.53)

An arbitrary first-order infinitesimal mechanism W, which satisfies Eq. (852), can be ex-
pressed as a linear combination of the first-order infinitesimal mechanism modes which are
the bases of ker(T'V) [411]. Defining H € RNW*ND a5 a matrix whose columns are the first-
order infinitesimal mechanism modes, a vector W satisfying Eq. (B252) can be written for a

coefficient vector a € RN? as follows:

W=Ha (3.54)

The first-order infinitesimal mechanism modes are assumed to be orthonormal bases of an

Nw-dimensional vector space; i.e., H satisfies the following equation:
H'H=Iy, (3.55)

Vectors U, V, and ¢ satisfying Eq. (B252), which represent the first-order infinitesimal mech-

anism, can be written as follows:

U=Hya (3.56)
V=Hya (3.57)
@=H,a (3.58)

where Hy € RONN-No)xNo g, € RSNM*Np gnd H,e€ RNE*ND gre the submatrices of H. In the
following, U, V, and ¢ represented as Eqs. (858), (B227), and (Bh8), respectively, are also
referred to as first-order infinitesimal mechanisms or simply infinitesimal mechanisms. The
details of the derivation of the infinitesimal mechanism are presented in Chapter .

When the displacement is restricted to the infinitesimal mechanism, an equilibrium
equation of the frame model is derived by assigning fictitious rotational stiffness Kj (= 0)
at hinge & (= 1,...,Ng). An external load P € R®¥N~NB ig applied to the unconstrained

degrees of freedom of nodal displacement. A total potential energy II of the frame model is
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formulated for a diagonal matrix of hinge stiffness Ky = diag(K}) € RV#*Nu g5 follows:
1
= §¢TKH¢ -P'U

1 1(uT T
= 28" (H{KnH,)a - (HyP)'a

(3.59)

Here, the pseudo stiffness matrix K € RM>*No and the pseudo external load P € RND are
defined as follows [B0]:

K=H KgH, (3.60)
P =HyP (3.61)

The pseudo displacement is also defined as a vector a € RV? in Eq. (359). Substituting
Eqgs. (B60) and (B&1) into Eq. (B28Y), the total potential energy is rewritten as follows:

1+ .
M= §aTKa -PTa (3.62)

According to the stationary condition of the total potential energy II with respect to a, the
equilibrium equation is derived as
P=Ka (3.63)

The i-th eigenvalue A; € R and the corresponding eigenvector ; € RV? (i =1,...,Np) of
K satisfy the following equation:
Ka; = 1 (3.64)

Because the eigenvectors form the orthonormal bases of a Np-dimensional vector space,
they are normalized as ||a;|| =1 for i = 1,...,Np and are orthogonal to each other. Since
«; satisfies T'VHa; = 0 for each i = 1,...,Np, Ha; can also be used as an infinitesimal
mechanism mode of the frame model. According to Eq. (B64), A; can be regarded as the
stiffness of the frame model in the direction of Ha;. The eigenvector «; is combined into a
matrix A € RVM*Np which is a matrix whose i-th column is «; (i = 1,...,Np), and according
to Eq. (BhA), the following equation holds:

(HA)"(HA) =ATH HA =1, (3.65)

Therefore, Ha;, which is the i-th column of HA, is orthogonal to each other. As in Eq. (B58),
a vector ¢ representing the infinitesimal mechanism for the hinge rotation angles can be
expressed as a linear combination of ¢; = Hya; for i = 1,...,Np. On the other hand, «;
satisfies the following relationship derived from Eq. (864):

. 0 G#))
aJTKai = /Ii(xJT-(xi = J (3.66)
Ai G=))
Substituting K = H$KHHLp and ¢; = Hya; into Eq. (B868), the following equation is ob-
tained:
0 G#))
& K, = o (3.67)
Ai (@=))
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3.5.2 Prediction of the existence of locked crease lines

In this section, transition of the deformation mechanism by fixing the crease lines is pre-
dicted based on the result of the analysis of infinitesimal mechanism presented in Sec-
tion BZA1 and Ref. [30]. The infinitesimal mechanism modes before fixing the crease lines
are used for estimation of an infinitesimal mechanism after fixing the crease lines. To en-
sure validity of the estimation of the transition of an infinitesimal mechanism, it should be
assumed that the difference is small between the shapes of the origami surface before and
after fixing the crease lines. The process of fixing a crease line and reducing the DOF of
the mechanism is modeled as a process of reducing the size of the pseudo stiffness matrix;
however, this is also approximately simulated as a process of increasing one eigenvalue of
the pseudo stiffness matrix to infinity as the stiffness of a hinge is increased to infinity.
Suppose the rotational stiffness of hinge & (=1,...,Ng) of the frame model is increased to
a moderately large value by AK}, (> 0) to simulate the process of fixing the corresponding
crease line. It is assumed that there is no locked hinge (crease line) before fixing hinge A.
Let AKj, € RN#*NE denote a matrix whose (h,4) element is AK}, and the other elements are
0. Then, the diagonal matrix of the hinge rotational stiffness after increasing the stiffness
of hinge & is represented as Ki{ = Ky + AKj, € RN#*Nu - Agsuming that the infinitesimal
mechanism modes for the hinge rotation angles are invariant under the process of fixing
hinge A, the pseudo stiffness matrix after increasing the stiffness of hinge 4 is calculated as
K = HgKhH@ = H$(KH +AKp)H, where H,, is invariant. The i-th eigenvalue and the cor-
responding eigenvector of the pseudo stiffness matrix K’ are denoted by /12 eRand (xg € RND
(i =1,...,Np), respectively. In addition, the infinitesimal mechanism mode q); € RV for the
hinge rotation angles is defined as ¢, = Hya, and its j-th component is denoted by (p;j.
When AKj, is sufficiently large, the following approximation holds:

1 1Txz! ] _ 1 T i
A_I{h(xj K(Xi = A_I{h(bj (KH+AKh)(!)l

Nu
=——|Y Ky, &, + AKy ¢, ¢ (3.68)

A
=hindin

According to Eq. (B68), the following approximations are obtained:

G ® =0 G #))
(3.69)

Al
2 ~ 1 .
(P; n= A_I{h (l =J )
The first approximation in Eq. (869) implies that at least one of (,b; 5 and (,b;.h (i #j) which
are in the different infinitesimal mechanism modes is approximately zero after increas-
ing the rotational stiffness of hinge 2. On the other hand, the second approximation in
Eq. (B69) implies that if ¢}, =0, A} has a finite value; and if ¢}, is not close to zero, an ab-

solute value of /l’i is extremely large. When the rotational stiffness of hinge 4 is increased,
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the case where ¢;h =0 holds for all i = 1,...,Np does not likely occur since /l;. has a finite
value for all i =1,...,Np in this case and the DOF of the mechanism is not reduced unless
(,b;k is approximately zero for all £ = 1,...,Nyg. Therefore, the number of (,b; n which is not
close to zero can be assumed to be one, and hinge A can rotate only in this infinitesimal

mechanism mode. Consequently, the following property holds:

Property 3.1. The increment of the rotation angle of hinge A in the infinitesimal mech-
anism mode i (i = 1,...,Np) after increasing the rotational stiffness of hinge A, which is
denoted by (,b’i »» 18 approximately equal to zero except for one mode, say mode i’. The eigen-
value A;, of the pseudo stiffness matrix corresponding to mode i’ has a extremely large
value, and this lead to a extremely high stiffness of the frame in the direction corresponding
to the infinitesimal mechanism mode i’. Therefore, hinge A becomes fixed as its rotational

stiffness is increased to a moderately large value.

The transition of eigenvalues and eigenvectors of the pseudo stiffness matrix K under
the process of increasing the rotational stiffness of a hinge can be estimated by the deriva-
tives of eigenvalues and eigenvectors of K for the rotational stiffness. In this study, the dis-
tinct eigenvalues A; (i = 1,...,Np) of K are assumed. Differentiating Eq. (364) with respect
to K;, (h=1,...,Nyg) and rearranging its terms, the following equation is obtained [[73]:

(K- 2Iny)

da; ( oK oA

- -1 ; (G=1,...,N, 3.70
oK, 3K, oK, ND)‘XL @ D) (3.70)

According to Eq. (854) and K" = K, the left-hand side of Eq. (3770) is to be equal to zero by
pre-multiplying a;r. Therefore, the following equation is obtained by pre-multiplying (x;r to
the both sides of Eq. (B770):

oK 04, oK oA .
"T(E_ﬁ ND)ai:aT—ai——lzo (i=1,...,Np) (3.71)

' 0K}, 0K},

Hence, the derivative of eigenvalue A; with respect to K can be derived as follows:

oA 1 0K T4.7OKg

_— . —; = H _— -

oKy ok, TN ek, (3.72
_ TaKH _ 92
=, E‘bi =din

where ¢}, is the h-th element of ¢;.

Remark 3.2. Since the rotational stiffness at each hinge is fictitious and can be assigned
arbitrarily, assumption of distinct eigenvalues is generally satisfied by appropriately assign
the stiffness of hinges to avoid repeated eigenvalues. If there are repeated eigenvalues due
to symmetry properties of the origami surface, small random variations may be given for

the hinge stiffnesses without any effect on the criteria introduced below.

Since an eigenvalue of the pseudo stiffness matrix represents the stiffness of the frame and
the increase of the stiffness to a moderately large value leads to a fixed crease line, it is

natural to select the hinge with the maximum sensitivity coefficient of eigenvalue 01;/0K}p,
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to efficiently reduce the DOF of the mechanism. However, for more detailed investigation
and the prediction of the existence of locked crease lines, we need to consider the variation
of eigenvectors.

The derivative of the i-th eigenvector a; with respect to K corresponding to the distinct
eigenvalue is determined by Eq. (B70). Since the rank of (f{— AiIn,) in the left-hand-side
of Eq. (B10) is less than Np — 1, da;/0K} cannot be determined uniquely from Eq. (B770).
)T

However, using a coefficient vector b = (b1,...,bn,) " € RND it can be expressed as a linear

combination of Np orthonormal eigenvectors «; (i =1,...,Np) as follows [[Z3]:
b1
ox;

Ab 3.73
3K, (3.73)

=b1(x1+~~-+bND(xND = [(Xl (XND]
by

Substituting Eq. (8773) into Eq. (B70) and pre-multiplying AT to both sides of the equation,

the following equation is obtained:

AT (K- 2;Iy,)Ab=(ATKA - 1;Iy,)b=-A (0‘2 g;; Iy )(xi (3.74)
Here, according to Eq. (368), ATKA can be calculated as follows:
(fo{(xl (fo{(xND Ai 0
ATRA = : : = (8.75)
O‘I;DK“l “JEDK“ND 0 ANy
Defining A = diag(Aq,...,ANng) € RNo*Np Eq. (8774) can be rewritten as follows:
(A= 2;In,)b=—-AT (aii ;;{Lh )(xi (3.76)

Since dK/0K}, = H$(6KH/ 0Kp,)H,, the j-th component of the right-hand side of Eq. (B778)
(j=1,...,Np) can be calculated as follows:

T aKH
7 0Ky,

~pT g, +

_aT(aK oA, )

0K oA 0 =7 (3.77)
0K, 0K, - ‘

aKh —binpjn C#J)
Therefore, assuming A; # A; for j # i, b; can be determined from Eq. (878) for j=1,...,Np
(j #1) as follows:

bj=————dindn (3.78)

/1 -A;

In addition, b; can be determined by differentiating (x;r(xi =1 with respect to K3 and divid-
ing it by 2 as follows:

22 val =V —alAb =0 =0 3.79
2 {(aKh) % ok, [T ‘ (8.79)
Consequently, da;/0K}, can be expressed as follows:
aai Np 1
-y Ginbina; (3.80)
OKp S A=A T
J#i
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Using the relation ¢; = Hya;, the first-order derivative of ¢; with respect to K; can be
written as follows:

o0d; B o ~
K, oK, Z 2, Pindin®; (3.81)

J?fl

Let w; = (yj1,....,¥)ny )T represent a normalized vector whose i-th element ji is defined

as follows:

bij

Np 9
> i
=1

wii = (3.82)

Suppose that there are hinge h and 2’ (k' # h) approximately satisfying ¥, - w; = +1. In
other words, ¢;p = yp;p is satisfied for all modes i = 1,...,Np with a constant y € R. Then,
according to Eq. (B81), 0¢;1,/ 0K}y, = yo¢;5 /0Ky, is satisfied. This implies that y;, -y, =1
or ¢ = y¢;y is always satisfied, and according to Property B, both ¢;; and ¢ (h #h')
converge to 0 as K ; is increased to a moderately large value except for mode i’ corresponding

to a large increment of the eigenvalue. Therefore, the following property holds:

Property 3.3. If hinge & is fixed and there exists hinge A’ (b’ # h) approximately satisfying
W), Wy =+1or ¢, =y for all i =1,...,Np, then hinge A’ is likely to be locked.

Furthermore, substituting ¢;, = sgn(¢;;)/01;/0K}, obtained from Eq. (B772) into Eq. (B281)
where sgn(x) is a sign function whose value is 1 if x = 0 and -1 if x < 0, the derivatives of

the distinct eigenvalue and the corresponding eigenvector satisfy the following equation:

b, Np sgn(¢;p)s ) [ 0A; 0A;
0Kp = A=A 0K}, 0K, '/

J#

According to Egs. (B772) and (BE3), if 0A;/0K} has a large value compared to the other
hinges, the absolute value of d¢;;/0K} for each i =1,...,Np is also large, and the value
of ¢;p, for each i =1,...,Np rapidly converges to 0 except mode i’ as K, is increased to fix
hinge 2 while the values of ¢;;,' (k' # h) corresponding to the other hinges are not drastically
changed as demonstrated in the numerical examples in Section BE54. Therefore, in this
case, hinge A can be fixed independently without locking other hinges. Consequently, the
following properties hold:

Property 3.4. When hinge A with large eigenvalue derivatives is fixed, it is unlikely that
there exists a locked hinge among the unfixed hinges when the rotation of hinge A in the

infinitesimal mechanism is modified to 0 to reduce the DOF of the mechanism.

In particular, since the largest eigenvalue derivative has the most influence on the value of
0¢;n/ 0K}, the largest eigenvalue is focused on in this study to define the selection criteria

of the crease lines to be fixed.
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3.5.3 Selection criteria of a crease line to be fixed

In this section, selection criteria of the crease lines be fixed is presented. The definitions of
the crease line scores are in accordance with Ref. [30]. It is important to fix an appropriate
crease line so that the objective function of the optimization problem (B-A0) easily converges
to zero and unfixed crease lines are not locked after fixing the crease line. Therefore, it
is necessary to determine the crease lines to be fixed in consideration of both the shape of
the polyhedron approximating the target surface and the possibility of existence of a locked
crease line as discussed in Section B252.

The absolute value of folding angle pj = 0 of hinge & (=1,...,Ny) is defined as follows:
py = arccos {ny, -ng,}  (k1,kz€ F) (3.84)

where 9,? is a set of indices of the origami faces adjacent to the crease line corresponding
to hinge A and ng, and n;, € R3 are the unit normal vectors of faces 21 and k9. Then, the
score of hinge A in terms of the shape of the origami surface is denoted by 02 and is defined

as follows:
Oh

Ny
Y .0j
i=1

A small value of 02 implies that the faces adjacent to the crease line corresponding to hinge

oy = (3.85)

h are nearly parallel, and consequently, the shape change of the origami surface after fixing
the crease line corresponding to hinge A is expected to be small. Thus, the developabil-
ity conditions for the flatness of the faces with more than three edges considered in Prob-
lem (BZA0) are likely to be satisfied with small errors when the crease line corresponding to
the smallest score 02 is fixed.

On the other hand, the score ag of hinge h which reflects the prediction of the existence
of locked crease lines is defined by the eigenvalue derivatives of the pseudo stiffness matrix

K with respect to the rotational stiffness K}, of hinge h as follows:

of =L 1] (3.86)

According to the properties of the eigenmodes of the pseudo stiffness matrix described in
Section B2, a larger value of 05 leads to a smaller possibility of locking a crease line that
is not fixed. Furthermore, if all the eigenvalues of K are distinct, 05 can be expressed by
substituting Eq. (B772) into Eq. (B88) as

max ((/)?h)
op = — (3.87)

Zfim?x (gb?j)

The numerator of 01;: indicates how dominant the rotation of hinge 4 is among the rotations

in all the deformation modes. Because ¢;}, is the A-th component of ¢;, a large value of 05
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suggests that hinge A can rotate independently, and there is a small possibility of locking
an unfixed crease line. Therefore, a}': can be used to define the score of hinge A in terms
of the deformation mechanism. However, since the vector ¢; is not normalized for each
i=1,...,Np, simply comparing the values of qb?h may be insufficient to determine the crease
line to be fixed. Here, assuming that A; >0 (i =1,...,Np), a vector (i)i € RNH ig defined so
that its j-th component ¢;; (j =1,...,Nu) is ¢;; = /K;/A;i¢;j. Then, according to Eq. (B51D),

(i)i satisfies the following equation:

AT A~ NH ~9
b; ;=) ¢;;
j=1
1N
T A jlej(Pif (3.88)
1 7
= /l_i‘bi Kuo,
=1

Furthermore, when i’ # i, the following equation holds:

AT A Nu
G; by =) dijdirj
Jj=1

Ny
Kid: i
XA J; iPisbis (3.89)
1
= ¢iTKH¢i/

VA A

=0

Consequently, ¢; can be used as the normalized infinitesimal displacement mode for the
hinge rotation angle. Instead of O'P}: in Eq. (B388), another score 65 of hinge & can be defined
by the j-th element ¢; jof ®, as follows:

oF= (3.90)

To incorporate both of the change of the shape and the change of the deformation mech-
anism of the origami surface after fixing a crease line, the following two different scores o,
and G, of hinge A (= 1,...,Ny) are used as the criteria to determine the crease line to be

fixed in the process of form generation described in Section B4

7}
oh=—2 (3.91)
g
h
.o
o =2 (3.92)
O
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Figure 3.9: Target surface and its control points; (a) Isometric view, (b) Plan view and
coordinates of control points (numbers in the parentheses are the z-coordinates

of control points).

The crease line corresponding to the hinge that has the lowest score is fixed sequentially.
Multiple crease lines can also be fixed simultaneously if the origami surface has a symme-
try property. The normalized score 65 should basically be used for the form generation,

however, the results of the form generation using o5 and G are compared in Chapter .

3.5.4 Example including locked crease lines

An example of optimization process is shown where some crease lines that are not fixed
will be locked after fixing another crease line. In this section, only the results of the form
generation and the infinitesimal mechanism analysis are shown while the development
diagrams and the results of large deformation analysis are not shown. Each analysis is
carried out by using a Python 3.9 program. The optimization problems (850) and (B21) are
solved using sequential quadratic programming library SNOPT Ver. 7 [[74] with the Python
interface of pyOpt [[/A,76]. First-order infinitesimal modes are obtained by the method
explained in Appendix E, and the singular value decomposition of the compatibility matrix
is carried out by the function linalg.svd [[774] in Python library Numpy.

The target surface of the form generation is an HP surface shown in Fig B9 and it is
triangulated as shown in Fig. B10. The initial triangulated surface has 25 vertices and 40

crease lines. The conditions of the form generation are assigned as follows:

¢ The design variables in the optimization are the independent nodal coordinates of the

frame model.

¢ Offset distances between origami vertices and the target surface are measured in z-
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Figure 3.10: Initial triangulation pattern with 25 vertices and 40 crease lines; (a) Isometric

(b)

view, (b) Plan view.

direction.
¢ A cut is not included.

¢ Symmetry of an origami surface is not considered, and the crease lines are fixed one

by one.
* Boundary planes of the surface are perpendicular to the xy-plane.

* Weight coefficients in the approximation error function Fyapp(X) are set to carea = 0.3

and ¢pormal = 0.6.

¢ Upper and lower bounds of the inner angles of faces in Problems (8220) and (BA1) are

assigned as @min, = 7/6 and amax = 571/6.
¢ Lower bound of the edge lengths in Problems (B50) and (B-51) is assigned as I, = 1.

* The x- and y-coordinates of the nodes are constrained to be in the range 0 to 10 and

the z-coordinate in the range —3 to 9.

* Crease lines are randomly fixed instead of using the scores defined in Section B253 to

obtain the origami surface with locked crease lines.

The 2 DOF optimal shape with eleven fixed crease lines and without locked crease lines
is obtained as shown in Fig. BT1. If crease line 6 in Fig. B11 is fixed in the following
iteration of the form generation, the 1 DOF origami surface with twenty-four locked crease
lines is obtained as shown in Fig. BT2. Only crease lines 20, 32, 33, 34 can rotate in the
origami surface in Fig. BTA. On the other hand, if crease line 32 is fixed for the solution
in Fig. BT, the 1 DOF origami surface without locked crease lines is obtained as shown

in Fig. B13. The values of 02, 1/ Uf‘w and, 1/ 65 are shown in Table B2 for the crease lines
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Figure 3.11: 2 DOF optimal shape with eleven fixed crease lines and no locked crease lines;
(a) Isometric view, (b) Plan view and edge indices of crease lines (gray: fixed,

green: to be locked if crease line 6 is fixed).
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Figure 3.12: 1 DOF optimal shape with twelve fixed crease lines and twenty-four locked
crease lines; (a) Isometric view, (b) Plan view and edge indices of crease lines

(gray: fixed; green: locked).
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Figure 3.13: 1 DOF optimal shape with twelve fixed crease lines and no locked crease lines;

(a) Isometric view, (b) Plan view and edge indices of crease lines (gray: fixed).

which are the candidates for the crease lines to be fixed in the origami surface in Fig. B11I.
As shown in Table B2, crease lines 3—-16 have the large values of 1/ ag, and, 1/ 6}:, and this
indicates that the crease lines are likely to be locked if one of crease lines 3-16 is fixed.
Next, the transition of the deformation mechanism is investigated for the origami sur-
face in Fig. B11 by increasing the rotational stiffness of the hinges of the frame model
corresponding to the crease lines. The size of the pseudo stiffness matrix is 2 x 2 since
the DOF is 2, and two eigenvalues of the pseudo stiffness matrix are A; = 7.24 x 1073 and
Ao = 1.86 x 10! when the rotational stiffness of all the hinges are 1. Table B33 shows the
values of the components of the hinge rotation angle modes ¢, in the second column, the
components of ¢, in the third column, the inner products W -\, of the vectors correspond-
ing to crease line 6 and the other crease lines in the forth column, and the inner products
of the vectors corresponding to crease line 32 and the other crease lines in the fifth column.
According to Property B3 and Table B3, it can be predicted that crease lines 3-16 are likely
to be locked if crease line 6 is fixed. Conversely, it is unlikely that they are not locked if
crease line 32 is fixed. Then, the rotational stiffness of the hinges corresponding to crease
lines 6 and 32 are increased by 102 and 104 times, respectively, so that the crease lines 6
and 32 are fixed. The values of the components of ¢, abd ¢, after the rotational stiffness of
the hinges corresponding to crease lines 6 and 32 are increased are shown in Tables B4 and
BH. When the rotational stiffness corresponding to crease lines 6 is increased, the eigen-
values of the pseudo stiffness matrix becomes 11 = 1.00 and A9 = 6.92 x 10'%. Therefore, the
second mode can be regarded to be fixed by increasing the rotational stiffness the to mod-
erately large value. As shown in Table B4, the components of ¢; corresponding to crease
lines 3—-16 are approximately zero, and thus, crease lines 3—-16 are locked if crease lines 6

is fixed. On the other hand, when the rotational stiffness corresponding to crease lines 32
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Table 3.2: Values of scores of the crease lines of the origami surface in Fig. BT1.

Edge index 02 1/ 0{ 1/ 65
3 8.78x1072  1.46x10% 1.10x10%
6 8.30x1072  2.71x10% 2.03x102
7 2.53x1072  2.17x10* 1.61x10°
10 7.70x1072  1.83x10% 1.37x102
12 1.82x1072  3.73x10* 2.77x103
15 9.57x1072  1.89x10% 1.41x102
16 2.27x1072  2.34x10* 1.75x10°
20 1.07x107! 504 4.29
32 9.11x1075  1.90 3.65
33 5.50x107°  2.50 4.78
34 8.94x1072 20.2 4.28

Table 3.3: Components of the hinge rotation angle modes ¢; and the values of inner prod-
ucts Wy, -, of crease line 6 and the other crease lines and of crease line 32 and

the other crease lines.

Edge Componentsof ¢; Componentsof ¢,  Values of Values of
Index (A1;=7.24x1073) (12=1.86x1071) Ve, Wao Wy
3 ~1.13x1072 7.56x107% -1.00 5.27x1072
6 8.30x1073 -5.56x1074 1.00 ~-5.27x1072
7 -2.93x1073 1.96x1074 -1.00 5.27x1072
10 -1.01x1072 6.77x107* -1.00 5.27x1072
12 -2.24x1073 1.50x1074 -1.00 5.27x1072
15 -9.95x1073 6.66x107* -1.00 5.27x1072
16 2.82x1073 -1.89x1074 1.00 ~-5.27x1072
20 —-5.70x1072 —-6.08x1072 -6.33x1071  -7.39x107!
32 4.43x1073 3.13x1071 -5.27x1072  1.00
33  -2.50x1073 -2.73x1071 5.77x1072  —1.00
34  —5.72x1072 9.61x1072 -5.68x1071  8.52x107!

is increased, the eigenvalues of the pseudo stiffness matrix becomes 1; = 7.28 x 1072 and
A2 =9.83x 102, According to Table B, it can be concluded that crease line 32 is fixed while
the other crease lines can rotate. From the above, Properties B, B3, and B4 have been

illustrated for the origami surface shown in Fig. BT1.

3.6 Conclusions

This chapter has presented a form generation method of a developable rigid origami struc-

ture based on the mechanical property of partially rigid frames. A generated polyhedral sur-

61



Table 3.4: Components of the hinge rotation angle modes ¢; and ¢, after the rotational

stiffness of the hinge corresponding to crease line 6 is increased by 102 times.

Edge Componentsof ¢; Components of ¢, State of
Index (A1 =1.00) (A9 =6.92x10%)  crease line

3 ~1.35x10"14 1.13x1072 locked

6 —4.34x10719 -8.32x1073 fixed

7 8.45x10716 2.94x1073 locked

10  -1.58x10714 1.01x1072 locked

12 -2.66x1071° 2.24x1073 locked

15 -1.07x1071° 9.97x1073 locked

16 2.81x1071° —-2.83x1073 locked

20 6.45%x1072 5.28x1072

32  -3.13x107! 1.65x1072

33 2.73x1071 ~1.58x1072

34  -9.20x1072 6.35x1072

Table 3.5: Components of the hinge rotation angle modes ¢; and ¢, after the rotational

stiffness of the hinge corresponding to crease line 32 is increased by 10 times.

Edge Componentsof ¢; Components of ¢ State of

Index (1;=728x1073) (13=9.83x10'2) crease line
3 ~1.13x1072 5.96x1073
6 8.31x1073 -4.38x1073
7 ~-2.94x1073 1.55x1073
10 -1.01x1072 5.34x1073
12 -2.24x1073 1.18x1073
15 -9.95x1073 5.25x1073
16 2.83x1073 ~1.49x1073
20 -5.61x1072 -6.16x1072
32 9.71x10717 3.14x1071 fixed
33 1.36x1073 —-2.73x1071
34 -5.85x1072 9.53x1072

face approximates a target curved surface based on Refs. [28-380]. Form generation starts
from a triangulated target surface and its crease lines are sequentially fixed to reduce the
DOF of the deformation mechanism. The transition of the deformation mechanism due to
fixing the crease lines is predicted, and selection criteria of the crease lines to be fixed are
proposed to prevent the unfixed crease lines from being locked. The deformation mecha-
nism of rigid origami is investigated by using the frame model, and the deformation modes
are derived by the method for stability and mechanism analysis of a partially rigid frame

with arbitrary inclined hinges.
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An optimization problem for generating a developable origami surface has been formu-
lated to minimize an approximation error function under developability conditions. De-
velopability conditions are considered around each inner vertex, dividing edge, and inner
cuts, and they are formulated with respect to the geometric properties of the origami sur-
face such as the discrete Gaussian curvatures, normal vectors of the faces, and the sets
of the inner angles of the faces and the length of edges constituting a cut. The approxi-
mation error function is defined as the weighted sum of the three functions reflecting the
distance between the origami vertices and the target surface, the difference of the surface
area, and the difference of the face normal vectors, respectively. The design variables of the
optimization are selected from vertex coordinates of the origami surface, nodal coordinates
of the frame model, or the pairs of the parameters to determine the points on the target
Bézier surface and the offsets from the target surface. When the vertex coordinates or the
nodal coordinates are used, the shape of the origami surface can be restricted directly by
assigning the constraints on the range of the design variable while the arrangement of the
control points of the target surface is limited. Om the other hand, when the pairs of the pa-
rameters of the target Bézier surface and the offsets from the target surface are the design
variables, an arbitrary arrangement of the control points can be used while the positions of
the origami vertices are represented by non-linear functions. The number of design vari-
ables are reduced by taking into account the linear constraints on the boundary shape and
the symmetry of the origami surface.

A method has also been proposed for predicting the existence of a locked crease line in
the optimal shape after fixing a crease line based on the eigenvalue and eigenvector deriva-
tives of the pseudo stiffness matrix of the frame model. The fictious rotational stiffness
of the hinges of the frame model is assumed, and the pseudo stiffness matrix is defined
by the first-order infinitesimal mechanism of the frame and the rotational stiffness of the
hinges. The relationship between the first-order derivatives of the distinct eigenvalues and
eigenvectors of the pseudo stiffness matrix has been derived in to show that a locked crease
line likely exists if a crease line with the relatively small maximum eigenvalue derivative is
fixed. The properties related to the prediction method are illustrated for the origami surface
approximating an HP surface.

Based on the shape of the origami surface and the prediction of the existence of a locked
crease line, selection criteria of the crease line to be fixed have been defined to efficiently
carry out the form generation. The folding angle of each crease line is utilized to define a
score of a crease line with respect to the shape of the origami surface, and a crease line or
more crease lines are fixed so that the shape change of the origami surface before and after
fixing a crease line (crease lines) is reasonably small. Scores with respect to the infinitesi-
mal mechanism are defined by using the maximum eigenvalue derivatives or the maximum
squared elements of the orthonormalized rotation modes of the crease lines to prevent the
crease lines from being locked. Although two scores before and after normalized are pro-
posed, the normalized score is expected to have the better performance and should be used

basically for the form generation as demonstrated in Chapter .
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In Chapter @, the performances of the introduced criteria will be confirmed in numerical
examples. In addition, to establish a guideline for setting the values of weight coefficients,
the effect of the weight coefficients on the shape generation results will be examined. The
selection of the design variables, the initial triangulation patterns, and the arrangement of

the cuts will be also investigated.
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Chapter 4

Case studies of form generation of

rigid origami

In this chapter, case studies of the form generation method proposed in Chapter B are pre-
sented. Randomly generated surfaces, HP surfaces with two different heights, and dome
surfaces with two different heights are approximated. Form generation with the randomly
generated surfaces is carried out to confirm effectiveness of the selection criteria of the
crease lines to be fixed introduced in Chapter B. The investigation on the weight coeffi-
cients in the approximation error function and the arrangements of cuts are made for the

examples of HP and dome surfaces.

4.1 General settings for form generation

As stated in Section B-h4 of Chapter B, each analysis is carried out by using a Python 3.9
program. The optimization problems (B18), (8220), and (B-ATl) are solved using sequential
quadratic programming library SNOPT Ver. 7 [[/4] with the Python interface of pyOpt [[Z5,

— <
— <

10 10
5 5
0 — X 0 — X
0 5 10 0 5 10
(a) (b)

Figure 4.1: Initial triangulation patterns of a target surface; (a) Pattern G, (b) Pattern R.
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Table 4.1: Cases of form generation; combinations of the initial triangulation patterns of
the target surface, design variables in the optimization, and the directions in

which the offsets are measured.

Case index Triangulation Design variables Offset direction
Case G1 Pattern G Nodal coordinates Global z-direction

P t f the Bézi
Case G2 Pattern G arameters of the bezier Global z-direction
surface and the offsets

Parameters of the Bézier Normal direction
Case G3 Pattern G
surface and the offsets of the target surface
Case R1 Pattern R Nodal coordinates Global z-direction

Parameters of the Bézier . .
Case R2 Pattern R Global z-direction
surface and the offsets

Parameters of the Bézier Normal direction
Case R3 Pattern R
surface and the offsets of the target surface

76]. The singular value decomposition of the compatibility matrix is carried out by the
function linalg.svd [[77] in Python library Numpy. As shown in Fig. B, two patterns of
initial triangulation referred to as Patterns G and R are used in this study. Pattern G
has 49 vertices and 96 inner edges, and Pattern R has 53 vertices and 108 inner edges.
The projected shape of a target surface onto the xy-plane is a 10 x 10 m square in all the
examples. Since the unit of length does not affect the result of form generation, it is omitted
hereafter unless necessary. Note that the unit of angle is radian while it is omitted. Two
types of design variables of the optimization problems (BA0) and (B51) are considered in
this chapter; the nodal coordinates of the frame model and the pairs of the (s,#) parameters
of the target Bézier surface and the offsets. The direction in which the offset is measured is
considered along the z-direction or the normal direction of the target surface. Consequently,
three combinations of the design variables and the direction of the offset are considered for
each initial triangulation pattern as summarized in Table B, and the six combinations
are referred to as Cases G1-G3 and R1-R3. The weight coefficients carea and cnormal in
the approximation error function Fap,(X) are assigned in each examples. The following
conditions of the optimization problems (8-50) and (B21) for form generation are commonly

used in this chapter:

* Boundary planes of the surface are perpendicular to the xy-plane when the design

variables are the nodal coordinates.

¢ Upper and lower bounds of the inner angles of faces in Problems (8220) and (BA1) are

assigned as amin, = 7/6 and amax = 571/6.
¢ Lower bound of the edge lengths in Problems (B50) and (B-51) is assigned as Iy, = 1.
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¢ The x- and y-coordinates of the nodes are constrained to be in the range 0 to 10 and the

z-coordinate in the range -3 to 9 when the design variables are the nodal coordinates.

* The upper and lower bounds of the offsets are assigned to +3 when the design vari-

ables are the parameters of the target Bézier surface and the offsets.

¢ The tolerance of the violation of the developability condition (upper bound of the ab-
solute value of each component of D(X) in Problem (B50) is 1074.

¢ A crease line is regarded to be locked if the increments of its rotation angle in all the
first-order infinitesimal mechanism modes are less than 1072, However, if the folding
angles of all the locked crease lines are less than 1078, the existence of the locked
crease lines are neglected because an origami surface is developable to a plane even

when there are locked crease lines if all the locked crease lines are unfolded.

* The rotation stiffness of the hinges to compute the pseudo stiffness matrix are ran-
domly set in the range between 0.995 and 1.005 (Nm) to avoid the existence of re-

peated eigenvalues.

The large deformation analysis is carried out using Abaqus 2020 [[78] to confirm the
rigid foldability of each solution. To simulate the deployment process, the forced displace-
ments along the z-direction to the xy-plane are applied to the nodes of the frame model
which are on the faces of an origami surface. The frame model is constructed with three-
dimensional beam elements which have cylindrical cross sections of 20 mm diameter and
1 mm wall thickness. Their Young’s modulus and Poisson’s ratio are 200 GPa and 0.3,
respectively. Hinge connectors representing the revolute joints are used for modeling the
crease lines. Although the rotation stiffness of the hinge connector is not necessary to the
large-deformation analysis, the small rotation stiffness 1.0x 10~2 (Nm) is introduced to each
hinge connector to stabilize the analysis. The elongation of edges and the error of the dihe-
dral angles between the pairs of faces connected to fixed crease lines are calculated from the
coordinates of origami vertices which are obtained by solving Eq. (2220) using the nodal dis-
placements of the frame model in the analysis. If these edge length error and face flatness
error are sufficiently small, the obtained surface is regarded to be rigid-foldable. Note that
these parameters of the large deformation analysis have little impact on the evaluation of

the rigid-foldability of the solutions obtained by solving the optimization problem.

4.2 Randomly generated surface

In this section, 100 randomly generated Bézier surfaces are used as the target surfaces to
confirm the effectiveness of the selection criteria of the crease lines to be fixed introduced in
Chapter B. The example of an target surface is shown in Fig. £2. The (x,y) coordinates of
the 5x5 control points are uniformly arranged as shown in Fig. B.2(b), and the z-coordinates
of the control points are randomly distributed in the range from —4 to 4. Form generation is
carried out for Cases G1, G2, R1, and R2 in Table BE1l. The weight coefficients in Fy,,(X) are
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Figure 4.2: Randomly generated target surface; (a) Isometric view, (b) Plan view and ar-

rangement of control points.

assigned as (Carea, Cnormal) = (0.3, 0.6) to approximately unify the order of Fg;s(X), Farea(X),
and Formal(X).

Five selection criteria of crease lines to be fixed are used in the form generation; the
crease line with smallest value of g, 64, O'}Sl, 1/ O'z, or 1/ 65 is fixed in each iteration of the
form generation process. In addition, the case where crease lines are randomly fixed is also
considered. Therefore, form generation is carried out six times for each target surface with
the different selection criterion of crease lines to be fixed, and 600 trials of form generation
are made in total in Case G1, G2, R1, and R2. The number of times when the optimization
problem (B2A0) is successfully converged without locked crease lines (No. of solutions), when
the problem (B-A0) is not converged in good accuracy (No. of failures), and when the opti-
mization problem (BA0) is converged with locked crease lines (No. of locking) are counted
and compared to evaluate the performance of each selection criterion.

The results of form generation in Case G1, G2, R1, and R2 are summarized in Ta-
bles E2-4H. The maximum, minimum, and average values among the 100 trials for each
item in the first columns of Tables E2-AH are shown. As shown in Tables E2-AH, the over-
all trend is that the number of locking is reduced when the criteria g, or 6} is used, which
reflects the shape and the deformation mechanism of an origami surface. The number of
solutions and failures tends to be larger and smaller, respectively, than when 02 is used,
while this tendency is opposite when 1/ Ug or 1/ 65 is used or the crease lines are randomly
fixed. In addition, when o, or 6, is used, the values of approximation error function Fyp,(X)
of the solutions tend to be smaller than especially when 1/ UI;: or 1/ 65 is used or the crease
lines are randomly fixed. Therefore, considering the overall trend, o5 and 6 can improve
the performance of form generation by reducing the times to solve the optimization problem
and improving the approximation accuracy compared to the other criteria. Especially when
0p, is used, the values of approximation error function F,p,(X) of the solutions can be effec-

tively reduced. Note that the minimum values of Fy,,(X) are the same for all the selection
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criteria since these values are the solutions without fixed crease lines; i.e., the solutions are
the same for all the selection criteria.

The 1 DOF optimal shapes obtained in Cases G1 and R1 by using 65 are shown in
Figs. B3 and B4 which approximate the target surface shown in Fig. £.2(a). The length
errors of edges are both less than 107 % in the development diagrams of the 1 DOF solu-
tions, and it has been confirmed that the solutions can be developed to a plane with good
accuracy. In the large deformation analysis, the solution in Fig. B3 has been developed to
a plane with the edge length error of up to 0.60 % and the angular error between the pairs
of faces adjacent to the dividing edges of up to 5.5 x 1072 radians, which are calculated from
the nodal displacement of the frame model. The average values of the edge length error and
the angular error are much smaller than the maximum values, and they are about 0.031
% and 6.5 x 104 radians, respectively. Therefore, the solution in Fig. B3 can be regarded
as rigid-foldable. On the other hand, the edge length error and the angular error of the
solution in Fig. B4 in the large deformation analysis are larger than those of the solution in
Fig. B3, and the maximum and average values of them are about 29 %, 1.0 %, 1.0 radians,
and 0.096 radians, respectively. Even if the error in the development diagram is small, the
error in the large deformation analysis may be large. This is considered to be due to the fact
that the solution has the crease lines with the large folding angles near the center. From the
above, a rigid-folding development path to the xy-plane was not obtained for the solution
shown in Fig. B4 at least for the forced displacement setting considered in this section.

When the results are compared with respect to the choice of the design variables, it can
be seen from Tables EE2-A A that the form generation process has better performance for
the convergence of the optimization and for the approximation accuracy when the nodal
coordinates are used in Cases G1 and R1. When the design variables are nodal coordinates,
the number of solutions tends to be larger, and the values of the approximation error func-
tion tends to be smaller. Since the offset directions are the same among Cases G1, G2, R1,
and R2, this tendency is attributed to the nonlinear representations of the coordinates of
vertices in Cases G2 and R2, which may affect the performance of the optimization. The
topology of the initial triangulation is also affect the performance of form generation. Al-
though the difference of the values of F,,(X) is small, the number of failures is much larger
in Cases R1 and R2.
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Table 4.2: Results among 100 trials of form generation in Case G1 with five selection crite-

ria of the crease lines to be fixed.

Selection criterion oy, Gy, 02 1/ 01'}: 1/ 65 Random
max. 25 22 27 24 21 29
No. of solutions min. 1 1 1 1 1 1

avg. 442 434 408 412 4.65 5.40
max. 196 148 255 126 118 178

No. of failures  min. 23 22 41 47 46 31
avg. 65.04 6335 7129 59.07 5747 64.12

max. 8 3 19 8 0 13

No. of locking  min. 0 0 0 0 0 0
avg. 0.18 0.03 1.15 0.22 0.00 0.66

max. 21 21 21 21 21 21

Min. DOF min. 1 1 1 1 1 1

avg. 17.67 17.68 1827 1798 17.35 16.86
max. 23.99 13.33 11.26 24.16 44.73 17.43
Avg. Fopp(X) min. 0.58 058 058 0.58 0.58 0.58
avg. 281 261 242 279 393 3.29

Table 4.3: Results among 100 trials of form generation in Case G2 with five selection crite-

ria of the crease lines to be fixed.

Selection criterion op Gp 02 1/ 01;: 1/ 65 Random
max. 22 21 28 21 21 21
No. of solutions min. 1 1 1 1 1 1

avg. 284 266 260 251 247 2.52
max. 229 217 358 194 152 199

No. of failures  min. 13 47 47 46 30 47
avg. 6453 61.38 6799 62.00 54.31 56.12

max. 2 0 16 1 0 9

No. of locking  min. 0 0 0 0 0 0
avg. 0.03 0.00 046 0.01 0.00 0.11

max. 21 21 21 21 21 21

Min. DOF min. 1 1 1 1 1 1

avg. 19.17 19.34 19.52 1949 19.53 19.49
max. 34.48 26.72 27.68 35.44 43.95 39.22
Avg. Fopp(X) min. 046 046 046 046 046 0.46
avg. 425 377 389 418 4.1 4.42
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Table 4.4: Results among 100 trials of form generation in Case R1 with five selection crite-

ria of the crease lines to be fixed.

Selection criterion o Gy, (72 1/ U}: 1/ 65 Random
max. 21 21 26 22 22 28
No. of solutions min. 0 0 0 0 0 0

avg. 4.68 4.51 487 550 5.69 5.07
max. 442 360 650 295 222 391

No. of failures  min. 2 2 2 2 2 2
avg. 109.78 113.81 131.86 98.92 93.27 105.37

max. 0 0 30 6 1 14

No. of locking  min. 0 0 0 0 0 0
avg. 0.00 0.00 1.03 0.13 0.02 0.57

max. 21 21 21 21 21 21

Min. DOF min. 1 1 1 1 1 1

avg. 17.27 1744 17.31 16.47 16.28 17.12
max. 9.77 12.16 2235 17.71 34.06  29.73
Avg. Fapp(X) min. 0.55 0.55 0.55 0.55 0.55 0.55
avg. 2.61 2.51 272 345 424 3.19

Table 4.5: Results among 100 trials of form generation in Case R2 with five selection crite-

ria of the crease lines to be fixed.

Selection criterion op Gp 02 1/ Jg 1/ 65 Random
max. 21 21 32 23 21 29
No. of solutions min. 1 1 1 1 1 1

avg. 4.23 4.20 4.56 4.44 4.42 4.78
max. 504 486 694 359 218 331

No. of failures  min. 91 40 91 92 39 41
avg. 155.37 147.28 181.45 126.76 106.78 126.66

max. 0 0 59 1 0 11

No. of locking  min. 0 0 0 0 0 0
avg. 0.00 0.00 1.09 0.01 0.00 0.29

max. 21 21 21 21 21 21

Min. DOF min. 1 1 1 1 1 1

avg. 17.77 178 1775 17.69  17.58 17.45
max. 41.78 74.01 58.56 45.12  40.19 50.84
Avg. Fapp(X) min. 0.54 0.54 0.54 0.54 0.54 0.54
avg. 5.93 5.96 7.04 6.33 6.52 6.87
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(a) (b)
(c)
Figure 4.3: 1 DOF origami surface in Case G1 approximating the target surface in
Fig. generated by using the score 6; (a) Isometric view, (b) Plan view, (c)

Development diagram.

(a) (b)
(c)

Figure 4.4: 1 DOF origami surface in Case R1 approximating the target surface in
Fig. generated by using the score 6;,; (a) Isometric view, (b) Plan view, (c)

Development diagram.

4.3 Regular surfaces

In this section, an HP surface in Fig. BH and a dome surface in Fig. L8 are used as the
target surfaces to demonstrate applicability of the proposed method to the curved surface
with negative and positive Gaussian curvatures, respectively. The coordinates of the control
points are shown in Figs. and E.6(b]. The initial shapes and the planes of symmetry
are shown in Figs. EH and BH. As in Section B2, two patterns of initial triangulation of
the target surfaces are considered, which are shown in Fig. B0 and referred to as Pat-
terns G and R. Three cut patterns referred to as Cut patterns C, E, and X are introduced
in this study for each initial triangulation pattern as shown in Fig. E7. Form generation
is performed in Cases G1-R3 in Table El. Crease lines to be fixed are selected by using
Gp, and the crease lines in the symmetric positions are simultaneously fixed. Since the

origami surface is symmetrical, the scores are also expected to be approximately symmet-

72



N CRCIRCINC
212) @ _____ (?j )
3 ; |
a5 0 o
3 ]
O I G U
(a’ R
3
(b)

planes of

planes of
7 symmetry 7 symmetry

< <

X X

(e) (d)

Figure 4.5: HP surface; (a) Isometrix view of the target HP surface, (b) Plan view and the
coordinates of the control points, (c) Isometric view of Pattern G, (d) Isometric

view of Pattern R.

rically distributed. Therefore, the crease line with the smallest score is selected, and one
or three other crease lines symmetrically located with that crease line are also selected at
the same time. The weight coefficients in Fyp,(X) are set to (carea, Cnormat) = (0, 0), (0.2, 0.5),
(0.2,1.0), (0.4, 0.5), or (0.4, 1.0), and the results of form generation with each pair of weight
coefficients are compared to each other in Section BZ31 to investigate how carea and cnormal
influence the values of F;s(X), Farea(X), and Fporma(X). The results are also compared be-
tween Case G1-R3 without cuts and with (carea, Cnormal) = (0.2, 1.0) in Section E-32. Then,
the optimal shapes are shown in Sections BZ33 and B34, and the effects of cut patterns on

the approximation accuracy are examined.

4.3.1 Comparison between values of weight coefficients

The influence of carea and cpormal 0N the values of Fgit(X), Farea(X), and Formal(X) is in-

vestigated for Case G1 without cuts, where the nodal coordinates are used as the design
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Figure 4.6: Dome surface; (a) Isometrix view of the target dome surface, (b) Plan view
and the coordinates of the control points, (¢) Isometric view of Pattern G, (d)

Isometric view of Pattern R.

variables and the offsets are measured along the z-direction. The maximum, minimum,
and average values of Fist(X), Farea(X), and Fiormal(X) among the solutions obtained in
each form generation process are shown in Table Z&. The number of solutions without
locked crease lines and the minimum DOF among the solutions are also shown in the table.
The DOF's and the values of F;st(X), Farea(X), and Fporma1(X) of each solutions are plotted
in Fig. £8. The results for the approximation of the HP and dome surfaces are shown in
Figs. E.8(a}-4.8(d] and E.8(e) A.8(h), respectively. The results in the other cases are sum-
marized in Appendix E. Appendix [ also shows graphs of the values of the approximation
error functions versus the number of fixed crease lines for each cases.

It is confirmed from Table B8 and Fig. B8 that the values of F105(X) and Fi,orma1(X) tend
to be reduced by assigning values greater than 0 to carea and cnormal. It is reasonable to
observe that as the value of the weight coefficient increases, the value of the corresponding

approximation error function decreases, as seen in the table and graphs. However, the
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Figure 4.7: Cut patterns for initial triangulation patterns G and R; (a) and (d) Cut pattern
C, (b) and (e) Cut pattern E, (¢) and (f) Cut pattern X.

value of Fgist(X) does not necessarily increase when carea and cnormal are greater than 0,
and there is no clear trade-off relationship between the values of Fyist(X), Farea(X), and
Florma1(X). This trend can also be seen in the other cases as shown in Appendix [B. Therefore,
it is appropriate to use the weight coefficients carea and cpormal to balance the order of
magnitude of each approximation error function, and the detailed adjustment of the values

of carea and cpormal Should be done by referring to the results of the form generation to

Table 4.6: Form generation results without cuts in Case G1.

HP surface dome surface
Carea 00 02 02 04 04] 0.0 02 0.2 04 04
Cnormal 00 05 10 05 10| 0.0 0.5 1.0 05 1.0
No. solutions 7 7 6 7 8 7 7 7 7 1
Min. DOF 3 1 5 1 1 3 1 1 3 21

max. 4.95 3.80 190 223 4.64 | 250 3322 593 1833 232

FgistX) min. 179 151 1.82 187 198 |2.06 224 261 218 2.32
avg. 233 244 187 203 249|230 1140 4.17 9.82 2.32

max. 6.73 920 343 3.65 345|125 882 335 431 0.00

FareaX) min. 517 294 293 237 231|0.00 0.00 0.00 0.00 0.00
avg. 6.41 4.72 315 296 2.76| 056 225 0.56 0.62 0.00

max. 4.38 4.01 228 2.69 395|443 1583 8.11 1344 231

FrormaX) min. 3.756 219 2.06 211 202 |4.12 321 270 335 231
avg. 4.22 2.88 216 238 239|421 843 4.14 858 231
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Table 4.7: Results for the approximation of the HP surface without cuts and with
(carea, Cnormal) = (0.2, 0.5).

Cases G1 G2 G3 R1 R2 R3
No. solutions 7 1 10 6 1 9
Min. DOF 1 21 3 1 21 1

max. 3.80 580 46.56 2.00 8.71 21.65

Fgist(X) min. 151 580 353 1.62 8.71 17.85
avg. 244 5.80 2246 171 8.71 20.05

max. 9.20 0.00 993 5.11 0.00 4.70

FareaX) min. 294 000 283 4.01 0.00 261
avg. 4.72 0.00 476 436 0.00 2.86

max. 4.01 231 741 3.83 234 523

FromaX) min. 219 231 203 337 234 1.96
avg. 2.88 231 352 345 234 234

Table 4.8: Results for the approximation of the dome surface without cuts and with
(carea, Cnormal) = (0.2, 0.5).

Cases G1 G2 G3 R1 R2 R3
No. solutions 7 5 9 2 1 1
Min. DOF 1 5 1 19 21 21

max. 33.22 23.34 1728 295 3.36 4.66

Fgist(X)  min. 224 856 612 225 3.36 4.66
avg. 1140 1652 953 2.60 3.36 4.66

max. 882 0.00 0.03 0.00 0.00 0.00

Farea(X)  min. 0.00 0.00 0.00 0.00 0.00 0.00
avg. 225 000 001 0.00 0.00 0.00

max. 1583 3.60 11.10 4.49 285 2.89

Frormal(X)  min. 3.21 261 416 275 2.85 2.89
avg. 843 3.14 588 3.62 2.85 2.89

improve the appearances of the obtained shapes. As a method for the initial setting of the
weight coefficients, the values of carea and cpormal can be determined approximately from
the values of F;ist(X)/ Farea(X) and Fgist(X)/ Frormal(X) after the order of the approximation

error functions is checked by applying imperfections to the initial triangulated shape.

4.3.2 Comparison between choices of design variables and initial trian-
gulation patterns

The results in Case G1-R3 are compared to each other for the HP surface and the dome

surface. In this section, cuts are not considered and the weight coefficients in the approxi-
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mation error function are set to (Carea, Cnormal) = (0.2, 0.5). For the results in the other con-
ditions, see Appendix [H. The maximum, minimum, and average values of Fist(X), Farea(X),
and Forma1(X) among the solutions obtained in each condition are shown in Tables B and
AR. The number of solutions without locked crease lines and the minimum DOF among the
solutions are also shown in those tables.

As shown in Tables B4 and B8, few solutions are obtained especially in Cases G2 and
R2. This trend is common to the results for the examples with the random target surfaces.
As mentioned in Section A2, this may attributed to the nonlinear representations of the
coordinates of vertices in Cases G2 and R2. On the other hand, more solutions are obtained
in Cases G3 and R3, which are not considered in Section B2, while the values of the ap-
proximation error functions are larger than those in Cases G1 and R1. This is because the
boundary planes are not considered in Cases G3 and R3, and the vertices can be located
more widely than in Cases G1 and R1. This reason also can explain why the values of the
approximation error functions are larger in Cases G2 and R2 especially for Fg;s(X).

When the dome surface is approximated, the values of the approximation error functions
tend to be larger than those of the HP surface except for Fiarea(X) although the height of the
target dome surface is lower than the HP surface. The results obtained by assigning the
other conditions shown in Appendix E have the approximately same trend. In addition, the
number of the solutions drastically changes according to the conditions of form generation
as shown in Table E8 and Appendix [H when the proposed method is applied to the dome
surface. This implies that the approximation of the dome surface is more difficult than the

approximation of the HP surface.

4.3.3 Approximation of HP surface in Case G3

In this section, the effects of cut patterns on the approximation accuracy are examined in
Case G3 for the HP surface in Fig. EA. The weight coefficients in the approximation error
function are set to (carea, Cnormal) = (0.2, 1.0). The DOF's and the values of the approximation
error functions Fgist(X), Farea(X), and Fporma1(X) at each number of fixed crease lines are
plotted in Fig. 9.

As shown in Fig. B9, the values of the approximation error functions are reduced by
introducing the cut of pattern E. However, they are not improved when the cuts of pat-
terns C and X are introduced. A possible reason for this is that the inner cuts only change
the distribution of the Gaussian curvature at the interior vertices without changing the
sum, whereas the exterior cuts can directly relax the conditions of the Gaussian curvature.
Therefore, an inner cut is expected to have an effect on improving the approximation accu-
racy when it is placed across parts of the surface with different signs of Gaussian curvature.

The maximum DOFs among the solutions without cuts and with Cut pattern C, E, and X
are 21, 26, 26, and 29, respectively, and the minimum DOF's are 1, 6, 1, and 2, respectively.
Comparing solutions with the same number of fixed crease lines, the approximation error
tends to be smaller when a cut is introduced than when no cut is introduced, whereas the

DOF tend to be larger. On the other hand, when compared for solutions with the same
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Figure 4.9: DOFs and the values of Fist(X), Farea(X), and Fpormai(X) of the solutions for

the HP surface in Case G3.

DOF, the approximation accuracy may be worse when a cut is introduced than when no cut

is introduced because the number of fixed crease lines becomes larger. Although the DOF of

the mechanism is preferred to be small in view of the stability of the deployment motion of

the origami surface, the above results show an approximate trade-off relationship between

approximation accuracy and deformation degree of freedom.

Here, the optimal solutions with the similar number of fixed crease lines are shown

(a)

Figure 4.10: Optimal shape approximating the HP surface without cuts in Case G3; (a)

Isometric view, (b) Plan view, (c¢) Development diagram.



(c)

Figure 4.11: Optimal shape approximating the HP surface with Cut pattern C in Case G3;
(a) Isometric view, (b) Plan view, (c) Development diagram.

(a)
(b) ©

Figure 4.12: Optimal shape approximating the HP surface with Cut pattern E in Case G3;
(a) Isometric view, (b) Plan view, (c) Development diagram.

(©

: Optimal shape approximating the HP surface with Cut pattern C in Case G3;

Figure 4.13
(a) Isometric view, (b) Plan view, (c) Development diagram.
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Table 4.9: Values of the optimal shapes in Figs. ET0-Z T3 approximating the HP surface
with (Carea, Cnormal) = (0.2, 1.0) in Case G3.

without cuts Cut pattern C Cut pattern E  Cut pattern X

No. of fixed crease lines 16 16 16 16
DOFs of mechanism 5 10 13 10
FaisX) 7.11 7.72 0.67 11.50
FareaX) 3.10 2.93 1.59 3.16
FrormaX) 1.92 1.83 0.98 1.86
Avg. dzjeV [m] 1.31x1078 1.49x10°6 2.81x107¢ 1.52x1076
Max. |dl‘}e" [m] 8.47x107%  7.94x1076 8.31x1076 8.89x1076
Avg. |d1%V/L;| %] 6.34x107  7.17x107  1.30x10%  7.27x107"
Max. [d1%V/1;| (%] 2.74x10°  351x10°  3.68x10°  2.77x107°
Avg. |dl}da [m] 1.89x107* 1.12x107% 2.65x1075 8.79x1075
Max. ’dz;da [m] 2.38x1073 1.63x1073 2.98x107* 8.30x10~*
Avg. )dz;da/z ,-| [%] 7.86x1073  4.64x1073 1.29x1072 3.80x1073
Max. |dr!d/1;| %] 1.01x10"1  558x1072  1.36x102  3.69x10°2
Avg. d p}da [rad] 2.31x107*  8.45x107® 4.14x1078 2.84x107°
Max. d p;da [rad] 2.90x1073  3.60x107* 1.85x107° 1.41x107%

in Figs. ET0-AT3. Table B9 summarizes the number of fixed crease lines, the number of
DOFs, the values of the approximation error functions, and the shape errors in the devel-
opment diagrams and the large deformation analyses of the solutions in Figs. ET0-Z13.

In Table B9, /; represents the length of edge j, and dl?ev and dlb.da are the elongation of
1da
J

the dihedral angle between the faces connected to dividing edge j from 7; i.e., the error of

edge j in the development diagram and the large deformation analysis. dp'*? is the error of
the flatness of a face with more than three edges. The maximum value of ’dl}da/l j|, which
represents the absolute strain of an edge in the process of deployment, is about 10 times
larger than the average, and the local deformation may occur. However, the average error
of the edge length is less than 1 mm, and the maximum value is also small compared to the
span of the surface. In addition, the errors of face flatness is quite small. Therefore, the
solutions in Figs. —T0-Z T3 can be regarded to be approximately rigid-foldable.

As shown Figs. 10213, when a cut is not introduced or the inner cuts are introduced,
the solutions are almost flat near the center and the corners are intensively folded. On
the other hand, this tendency is alleviated in the solution with Cut pattern E shown in
Fig. ET2, which looks more similar to the target surface. In the solutions for Cut patterns C
and X shown in Figs. 11 and 13, the cuts are hardly open in the development diagrams,

and this also indicates that the effect on improving the approximation accuracy is small for
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Figure 4.14: DOFs and the values of Fyist(X), Farea(X), and Fiormal(X) of the solutions for
the dome surface in Case G3.

the inner cuts. Note that when the Cut pattern E is introduced, faces are overlapped each

other at the cuts in the development diagram as shown in Fig. E.12(c].

4.3.4 Approximation of dome surface

In this section, the effects of cut patterns on the approximation accuracy are examined in
Case G3 with (carea, Cnormal) = (0.2, 1.0) for the dome surface in Fig. £6. The DOFs and

(b) (©

Figure 4.15: Optimal shape approximating the dome surface without cuts in Case G3; (a)

Isometric view, (b) Plan view, (c¢) Development diagram.
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(a)

(b) (c)

Figure 4.16: Optimal shape approximating the dome surface with Cut pattern C in Case
G3; (a) Isometric view, (b) Plan view, (c) Development diagram.

(a)

(b) ©

Figure 4.17: Optimal shape approximating the dome surface with Cut pattern E in Case

G3; (a) Isometric view, (b) Plan view, (c) Development diagram.

(a)

Figure 4.18: Optimal shape approximating the dome surface with Cut pattern C in Case

G3; (a) Isometric view, (b) Plan view, (c) Development diagram.
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Table 4.10: Values of the optimal shapes in Figs. ET8-Z T8 approximating the dome sur-
face with (carea, Cnormal) = (0.2, 1.0) in Case G3.

without cuts Cut pattern C Cut pattern E  Cut pattern X

No. of fixed crease lines 14 14 16 16
DOF's of mechanism 7 12 13 10
Fist(X) 10.30 6.54 0.75 12.50
FareaX) 1.32x1076 1.54x1077 2.08x1077 1.26x1072
FrormaX) 4.97 2.73 0.90 5.86
Avg. dzjeV [m] 1.24x1078 1.23x10°6 3.47x1076 2.11x1076
Max. |dl‘}e" [m] 5.80x107%  6.40x1076 2.11x107° 1.46x107°
Avg. |dl<}eV/l j) [%] 5.28x1077  5.53x1077 1.53x1076 8.92x1077
Max. [d1%V/1;| (%] 1.72x10°®  1.66x10°®  6.03x1076  3.34x107
Avg. |dl§da [m] 1.29x1073  3.71x1074 2.58x107° 5.61x1073
Max. ’dz;da [m] 1.17x1072  5.65x1073 1.69x10~* 6.61x1072
Avg. |dise1;] (9] 659x102  1.84x102  1.39x103  2.71x10"!
Max. |dr!d/1;| %] 659x10"1  2.16x101  1.27x102  3.33
Avg. d p}da [rad] 2.64x107*  9.31x107° 2.51x107° 1.25x1072
Max. d p;da [rad] 1.49x107%  4.81x107* 1.94x107% 7.53x1072

the values of the approximation error functions Fgist(X), Farea(X), and Fiormal(X) at each
number of fixed crease lines are plotted in Fig. BT4.

As shown in Fig. B14, the values of the approximation error functions F;s(X) and
Florma1(X) are reduced by introducing the cut of pattern E, while Fy..5(X) is approximately
equal to zero in almost solutions. The maximum DOFs among the solutions without cuts
and with Cut pattern C, E, and X are 21, 26, 26, and 29, respectively, and the minimum
DOFs are 1, 12, 13, and 2, respectively. The trend of the values of the approximation error
functions are similar to that of the HP surface.

The optimal solutions with 14 or 16 fixed crease lines are shown in Figs. ET8-ZT8. The
number of fixed crease lines, the number of DOFs, the values of the approximation error

functions, and the shape errors in the development diagrams and the large deformation
1da
J

are about 10 times larger than those of the HP surface.

and dp? are suffi-

analyses are summarized in Table E10. Although the values of )dlge"

ciently small, the values of |all}da
However, they are still small compared to the span of the surface. Therefore, the solutions
in Figs. ETA-A T8 can be regarded to be approximately rigid-foldable.

As shown Figs. T8-A TR, the approximation error tends to concentrate at the boundary
edges of the surface when the dome surface is approximated. For the examples in Figs. 18,

A 16, and BT8R, the entire surfaces appears to approach cylindrical shapes which have curva-
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ture in only one direction rather than dome shapes which have curvature in two directions.
Then, the approximation accuracy is significantly improved when the exterior cuts are in-
troduced. In the development diagrams in Figs. and E.I8(c), the faces are locally
overlapped each other around the cuts. However, the cuts are mostly closed, and it can be

inferred that the effects of the cuts are minor.

4.4 Conclusions

Case studies of the approximation of curved surfaces by the method proposed in Chapter B
have been provided. As demonstrated in this chapter, curved surfaces with positive and
negative Gaussian curvature have been approximated by a developable rigid origami struc-
ture. First, the form generation procedure has been carried out for 100 randomly generated
target surfaces with two types of crease patterns and two combinations of design variables
and direction of offsets. It is confirmed from the 400 trials of form generation that the two
selection criteria of crease lines to be fixed which reflect the shape and the deformation
mechanism of an origami surface can improve the efficiency of form generation by prevent-
ing the crease lines from being locked and reducing the times of solving the optimization
problems compared to the other selection criteria which only reflect the shape or the mech-
anism. Furthermore, comparing the two proposed criteria, the performance of the criterion
defined by the orthonormalized hinge rotation modes is better than the other criterion de-
fined by the eigenvalue derivatives of the pseudo stiffness matrix of the frame model. The
approximation accuracy is also better when these two criteria are used. Therefore, the
normalized score should basically be used for the form generation.

Form generation has also been carried out for an HP and a dome surfaces to demon-
strate the impacts of the weight coefficients in the approximation error function, the choice
of the design variables, and the introduction of cuts. In these examples, five combinations
of the weight coefficients and three combinations of the design variables and the direction
of offsets are considered. Although the values of the approximation error functions are
reduced by increasing the corresponding weight coefficients, there is no clear trade-off re-
lation between the three approximation error functions, and the weight coefficients should
basically be used to balance the order of magnitude of each approximation error function.
For further improvement of the surface appearance, the values of the weight coefficients are
adjusted manually by referring to the results of the form generation. On the other hand,
the choice of the design variables may affect the stability of the process of form generation.
When the design variables are the pairs of parameters of the Bézier surface and offsets,
and the directions of the offsets are the z-direction, the number of solutions without locked
crease lines tend to be smaller because of the nonlinear representations of the coordinates
of vertices. However, when the directions of the offsets are the normal directions of the tar-
get surface, more solutions are obtained since the boundary planes of the origami surface is
not considered while the approximation error becomes larger. Therefore, it is preferable to

use the coordinates of the origami vertices or the nodal coordinates of the frame model as
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variables when the arrangement of the control points of the target Bézier surface is uniform
in x- and y-coordinates.

The form generation for the HP and the dome surfaces is performed with two types
of inner cuts and one type of exterior cut. As shown in the examples, exterior cuts can
significantly improve the approximation accuracy while the inner cuts does not. This is
because the inner cuts only change the distribution of the Gaussian curvature at the interior
vertices without changing the sum of it, whereas the exterior cuts can directly relax the
conditions of the Gaussian curvature.

This study only considered a limited number of types of crease and cut patterns, and
the optimization of these patterns are not studied. Therefore, design of origami surfaces
using the proposed method may require trial and error with respect to the crease and cut
patterns, and it is not always possible to select the best crease and cut patterns for surface
approximation. In future research, it is important to investigate methods for finding good

crease and cut patterns.
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Chapter 5
Equilibrium path analysis

In this chapter, methods of equilibrium path analysis and stability analysis of an equilib-
rium state are proposed for a rigid origami represented by the frame model. The equilib-
rium state of a frame model with the external loads applied to the nodes is investigated. It is
uniquely determined by assuming a small rotational stiffness proportional to the length of a
crease line and by minimizing the total potential energy under the compatibility conditions
so that the displacements of the nodes and the members are compatible. The augmented
Lagrangian method is utilized to solve the minimization problem, and the stability of the
equilibrium state is evaluated with respect to the positive definiteness of the Hessian of the
augmented Lagrangian. When an eigenvalue of the Hessian of the augmented Lagrangian
is equal to zero, the equilibrium state is unstable, and a critical eigenmode corresponding
to the zero eigenvalue is numerically compared to the infinitesimal mechanism of a frame
model to investigate the relationship between them. An equilibrium path is traced by the
incremental loading analysis, and bifurcation of the equilibrium path is investigated in the

numerical examples.

5.1 Introduction

It is important to understand the properties of rigid-folding motions for engineering appli-
cations utilizing the kinematics of rigid origami that can be efficiently and safely deployed.
However, the folding/unfolding process of rigid origami is quite complicated and nonlinear,
and generally exhibits a multi-degree-of-freedom mechanism except for some special crease
patterns such as Miura-ori [[[9]. Therefore, it is difficult to obtain an analytical solution
of the deformation path (folding path) of a rigid origami, and a numerical solution such as
Newton’s method is generally used to iteratively obtain the folding states of rigid origami
to trace the path. In general, a numerical path tracing can be regarded as the process of
iteratively finding a solution to the nonlinear equations f(x) = 0 representing the compati-
bility equations and the equilibrium equations [80]. Here, x is the vector of variables such
as folding angles and nodal displacements (possibly including a load factor and Lagrange

multipliers), and f(x) is a vector-valued function. The process of path tracing often starts
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from a known solution of f(x) = 0, and this equation is iteratively solved while x is updated
as x — x+ Ax. The increment Ax along the path is determined as a vector satisfying the

following equation:
df(x)

ax Ax+e=0
where d f(x)/dx is a matrix form of the gradient of f(x) and e is a residual vector.

The existing path tracing methods that follow the above directions can mainly be cate-
gorized into two types. One is the pure mechanism analysis that considers only geometric
constraints based on the assumption that faces are completely rigid, and f(x) = 0 represents
the compatibility equations. A rotational hinge model introduced in Chapter B is often used
for this pure mechanism analysis; e.g. Refs. [24,82]. The other is the structural analy-
sis to trace an equilibrium path; a sequence of equilibrium states under external loads or
forced displacements assuming rotational stiffness of crease lines and/or elastic deforma-
tion of the faces of a rigid origami, and f(x) = 0 represents the equilibrium equations. A
truss model introduced in Chapter B is often used for this equilibrium path analysis by al-
lowing the deformation of bars; e.g. Refs. [B4,53,54]. In both analysis types, there may
exist a singular point where the rank of df(x)/dx changes in the process of tracing the de-
formation path, and the increment Ax cannot be determined uniquely. Since the singular
point can be a bifurcation point where one or more branching paths exist or a limit point
where a snap-through behavior can be observed, special consideration should be given to
path tracing analysis including singularity. In the analysis of pure mechanisms, it has been
shown that it is necessary to consider the second-order or higher-order derivative of f(x)
with respect to x at the singular point for tracing the path satisfying the nonlinear com-
patibility conditions [B1-83]. Besides, in the analysis of equilibrium path, the bifurcation
or the snap-through may occur at the singular point, and various studies exist based on
the general theory of elastic stability [84]. For rigid origami, Gillman et al. [85] proposed a
method for the analysis of equilibrium paths including bifurcation and limit points.

Many studies have been done for the pure mechanism analysis and the equilibrium
path analysis including singular points as mentioned above, however, there are few studies
on the method for investigating the equilibrium path of a rigid origami with strictly rigid
faces; i.e. the hybrid analysis of the pure mechanism and the structural analysis. This type
of analysis is also important to understand the foldability [B5] of a crease pattern and for
the prototyping of the deployable structure using a rigid-fold mechanism. The study on the
equilibrium of a rotational hinge model is provided by He and Guest [33]. However, the
physical interpretation of the loads and the internal forces considered in their study is dif-
ficult to grasp intuitively since they are torques applied at crease lines. On the other hand,
an exact rigid-folding path reflecting the equilibrium obtained by using the truss model has
been studied by Li [B6], although the equilibrium condition is not strictly satisfied.

In this chapter, the frame model described in Chapter 2 and shown in Fig. Bl is utilized
to perform an equilibrium path analysis and a stability analysis of an equilibrium state of
a rigid origami. An equilibrium state is considered between a nodal load and moments of

springs introduced at the hinges of a frame model as in most equilibrium path analyses
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Figure 5.1: Configuration of a frame model for the equilibrium path analysis.

using truss models. To incorporate a nodal load and a support constraining the displace-

ment of a rigid origami, the members indicated by blue bold lines in Fig. Bl are added to

the basic structure of the frame model whose members are indicated by gray bold lines in

Fig. B. One end of each additional member is rigidly connected to the basic structure,

while the other end is loaded or supported. In this study, an energy minimization approach

is adopted to the equilibrium analysis, and the total potential energy minimization problem

is solved under the compatibility conditions of the displacement to obtain an equilibrium

path with the exact rigid-folding motion. The proposed method in this chapter has the

following features [BT].

The springs are introduced at the hinges of a frame model to stabilize the equilibrium
and to determine the deformation path uniquely except for the possible existence of
singular points. This enables us to avoid the difficulty of determining the direction of
the path exploration in tracing a deformation path caused by the possible existence of
many multiple bifurcation points [R, B8] on the deformation path which may exist if

the rotation stiffnesses of the hinges are not incorporated.

The process of directly solving the equilibrium equations with the compatibility equa-
tions often fails to converge due to its nonlinearity. Therefore, the equilibrium state is
obtained by minimizing the total potential energy to use the stability theories based
on the energy principle and to obtain the equilibrium state by utilizing sophisticated

optimization techniques.

The total potential energy minimization problem under the compatibility conditions
of the displacement is solved by the augmented Lagrangian method [89,90], which

often has better convergence than the conventional Lagrangian and penalty methods.

Positive definiteness of the Hessian matrix of the augmented Lagrangian is evaluated

to determine the stability of the equilibrium state of a rigid origami.

The eigenvector of the Hessian matrix of the augmented Lagrangian corresponding
to a zero eigenvalue can be regarded as the unstable displacement mode, and it is
numerically compared to the infinitesimal mechanism of a frame model to investi-
gate the relationship between the eigenvector and the first-order and second-order

infinitesimal mechanism.
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The structure of this chapter is as follows. A brief review is provided in Section B2
about the formulations of the compatibility equations of a frame model presented in Chap-
ter B. Section B3 presents the definition of the total potential energy to be minimized and
the method of equilibrium path analysis of a rigid origami using the frame model. The
compatibility equations formulated in Chapter B, which guarantees the rigid-folding mo-
tion, are used as equality constraints for the minimization problem of the total potential
energy. An equilibrium path analysis is carried out by the incremental loading analysis
where a load factor increases from zero to a finite value. In Section 54, a method is pre-
sented for investigating the stability of an equilibrium state by using the Hessian matrix
of the augmented Lagrangian. Section b-A provides a method for numerically investigating
the relationship between the first-order and second-order infinitesimal mechanism and the
eigenvector of the Hessian matrix of the augmented Lagrangian corresponding to a zero
eigenvalue which can be regarded as the unstable displacement mode. Examples of equi-
librium path and stability analyses using the proposed method are shown in Section bd. It
is confirmed that the proposed method can accurately detect the singularity phenomenon
by the analysis of a two-dimensional two-member model which can analytically determine
the singularity on the equilibrium path. The analysis of a rigid origami is performed for a
unit cell of waterbomb tessellation which has a single inner vertex and multiple degrees of
freedom of rigid-folding mechanism. A unit cell of waterbomb tessellation is referred to as
the waterbomb cell, and there are some examples of the deformation path analyses includ-
ing a bifurcation and a limit point; e.g., Gillman et al. [R5]. A fully developed flat state that
is a singular point on the deformation path of a rigid origami as pointed out in Ref. [91]
is especially investigated, and it is shown that the degrees of freedom of the mechanism
decreases when the out-of-plane deformation occurs. Although a waterbomb cell has often
been studied, the stability of a flat state and a bifurcation path from the flat state have not
been investigated well. In this study, the stabilities and the equilibrium paths of the flat
states with two types of boundary and load conditions are investigated. Note again that the
springs at the hinges of a frame model enable us to uniquely determine the equilibrium path
although the waterbomb cell has the multiple degrees of freedom mechanism. By assigning
the initial imperfection in addition to the rotational springs, the multiple bifurcation at the
flat state, which is investigated in Ref. [92], can be avoided. In Section b7, the conclusions
of this chapter are given. Methods and examples to be described in this chapter is based on
Ref. [BT].

5.2 Preliminaries on compatibility equations of frame model

In this section, a brief review of the formulations of the compatibility equations of a frame
model presented in Chapter B is provided. Let Ny, Ny, and Ny denote the number of
nodes, members, and hinges, respectively. The vectors Uy, 0, V;, and ¥; € R? are defined
as the translation and rotation vectors of node & (= 1,...,Ny) and member i (= 1,...,Ny),

respectively. The increment of the rotation angle of hinge A (= 1,...,Ng) from the unde-

90



formed state to the deformed state is denoted by ¢, € R. According to Eqs. (2228) and (2-386)
in Chapter B, when the j-th end (j = 1, 2) of member i is connected to node %, the compati-
bility equation for the translational displacement at the j-th end of member i is written as

follows:
AU;; =0, -V; - {R(¥;)-1I3}d;; =0 (5.1)

where R(¥;) € R®*3 and d; j € R? are the Rodrigues’ rotation matrix with respect to ¥; [64]
and the vector directing from the center point of member i to the j-th end of member i at
the undeformed state, respectively. AU;; € R? is the translational incompatibility vector at
the j-th end of member i. According to Eqs. (2229) and (2237) in Chapter B, the compatibil-
ity equation for the rotational displacement at the j-th end of member i is written as the

following equation when the j-th end of member i is rigidly connected to node k:
AB®;;=0,-¥;=0 (5.2)

where AQ;; € R? is the rotational incompatibility vector at the j-th end of member i. On
the other hand, when the j-th end of member i is connected to node % via hinge A, the
compatibility equation for the rotational displacement at the j-th end of member i is written
as

AO;; =D;;(¥;,0,9,)=0 (5.3)

where @, ;(¥;,0,¢p) € R? is defined by Egs. (2234) and (2235) in Chapter P as follows:

‘Pg-)(‘l’i O, ¢n)
@, (Wi, 0, 01) = | OP(¥;,0p,01)
(Dg)(‘l'i, Or,pn)

(5.4)

CD(i?(‘I’i,@k,wh) = R(‘I’i)T§11>) : (R(@k)'rf))

(
O (¥;, 0}, 0) = (R(\Pi)r;l”) : (R(@k)rf))
®§§)(‘Pi,®k’¢h) = (R(‘I’i)‘rf)) . {sin(ph (R(G)k)'rém) +cos gy, (R(@k)r§l3>)}

Here, 'r;lb € R3 (I =1,2,3) are the unit vectors representing a reference frame of hinge 4 (=
1,...,Ny) in the initial state.

The unconstrained components of U, and @}, for all nodes, the components of V; and ¥;
for all members, and ¢; for all hinges are assembled into vectors U € R6NN-Ne v ¢ RENM
and ¢ € RNVE, respectively. These vectors are combined into a generalized displacement
vector W € RM defined as W = (UT, VT, t.pT)T whose number of components is calculated
as Nw = 6NN — N + 6Ny + Ng. The translational and rotational incompatibility vectors
AU;; and A@®;; in Eqgs. (6, (622), and (B=33) for all the member ends are combined into
an incompatibility vector G(W) € RN¢ which is regarded as the nonlinear function of W
and whose number of components is Ng = 12Ny. Then the compatibility equations are

represented in a vector form as follows:
GW)=0 (5.5)

Note that Eq. (25) is the same as Eq. (2238) in Chapter B.
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5.3 Energy minimization for equilibrium path analysis

This section presents an energy minimization problem and a method to solve it for the anal-
ysis of the equilibrium path and stability of the equilibrium state. The analysis is carried
out in the case where nodal loads are applied to a frame model with rotational springs in-
troduced at the hinges. The members of a frame model are assumed to be rigid, and the
total potential energy of a frame model is considered with respect to the strain energy of the
springs and the work by the nodal loads. The variables of the energy minimization problem
are the generalized displacements defined in Chapter B and Section B2. A load factor is de-
noted by A, and the pair (W, A) is referred to as the equilibrium point when the generalized
displacement vector W minimizes the total potential energy. An equilibrium path is defined
as a curve in the space of the load factor and the generalized displacements which is the
trajectory drawn by the equilibrium points. In the following, the total potential energy is
regarded to be zero at W = 0 while the initial displacement for the equilibrium analysis is
assigned as W =W, = (UT,VOT, (pOT)T; i.e., the initial displacement vector for the analysis
is not necessarily equal to zero. This initial displacement is intended to assign the initial

imperfection to avoid the multiple bifurcation at the flat state.

5.3.1 Formulation of energy minimization problem

Let APy € RSM~Ne denote the nodal load vector applied to the unconstrained degrees of
freedom of the nodal displacement where Py € RSM~NB i5 g constant vector. In this study,
the increments of the rotation angles of the hinges, which are assembled into ¢, may be
different from the rotation angles of the springs, and the assemblage of the residual rotation
angles of the springs at the initial state W = Wy is represented by @ € RNE. Therefore, the
rotation angles of the springs at W can be denoted by ¢ — @. If they are set to zero at
the initial state W = Wy, @ is assigned as @ = ¢,. Here, Ky € RNu*Nu ig defined as the
diagonal matrix whose (h,h) component is the rotational stiffness K} of the spring at hinge
h (=1,...,Ng). In a similar manner as Eq. (8389) in Chapter B, the total potential energy
with the constant load factor A is defined as l'[‘X((p,U) which is the function of ¢ and U as

follows:

1
% (e, U) = §(¢—®)TKH(<p—¢)—UT<APU> (5.6)

To write the total potential energy as the function of a generalized displacement vector W,

the following constant vectors and matrix are defined:

W= OND:NH e RN
[0
P
P= v e RMW
06N+ Ny
K- OWyw—Nw)x(Nw-Nw)  Oyy—Nw)x N RNV N
Oy x(Nyw—Nip) Ku
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Then, incorporating W = (U7, VT, @T)T, the total potential energy can be reformulated as
the function of the generalized displacement vector W as follows:
)T

TIA(W) = % (W-W) K(W-W)-WT(AP) (5.7)

When the load factor A is constant, the equilibrium point is determined as the station-
ary point of the total potential energy I15(W) with respect to the generalized displacement
W. Therefore, the equilibrium state which obeys the exact rigid-folding motion under the
constant nodal load APy is obtained as the solution (stationary point) of the following opti-

mization problem whose variables are the components of W:
{min. A (W)
w

st. GW)=0

(5.8)

In this study, general contact between nodes and members is neglected, however, it is con-
firmed that no contact occurs along the equilibrium path of the examples shown in Sec-
tion BA.

5.3.2 Augmented Lagrangian method

First, the stationary conditions of Problem (E8) are formulated with respect to the con-
ventional Lagrangian. The (conventional) Lagrangian of Problem (AR) is defined with the
Lagrange multiplier A € RV as

L(W,A) = TTA(W) + G(W)TA (5.9)

As in the similar manner to Chapter B, the compatibility matrix is defined as the function
of W and denoted by T'V(W) € RV¢*NW whose (i, /) component is 0G;(W)/ 0W; where G;(W)
and W; are the i-th component of G(W) and the j-th component of W, respectively. Then,
the gradient of the Lagrangian L(W,A) with respect to W is written as follows:
OL(W,\) _ dITA(W) A TOW)TA
oW dW (5.10)
=K(W-W)-AP+TPW)"A

The detailed calculation of I'"(W) is shown in Appendix D. When W* and A* are the solu-
tion and the corresponding Lagrange multiplier of Problem (B-8), respectively, they satisfy

the following stationary conditions:

OL(W*,\* -

% =KW -W)-AP+TPW*)TA* =0 (5.11)
OL(W*,\*

OL(W",A%) 0)\’ ) _ GW"=0 (5.12)

Next, the process of solving the optimization problem (5:8) by the augmented Lagrangian
method (ALM) [89, 80] is presented. Let ¢, € R denote the positive penalty parameter, and
the augmented Lagrangian L. (W) is defined as follows:

c
L (W) =TI\ (W) + G(W)TA + EPG(W)TG(W)

(5.13)
= % (W-W) K(W-W)-WT(AP)+ GW)" ()\ + 02—pG(W))
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In the ALM, the Lagrange multiplier A is regarded to be constant, and the augmented
Lagrangian L. (W) is the function of only W. The augmented Lagrangian L.(W) has an ad-
ditional penalty term (cp/ 2)G(W) " G(W) compared to the conventional Lagrangian L(W,A)
defined as Eq. (B9). This penalty term contributes to the convergence of the method. Ac-
cording to Eq. (B13), the gradient of L.(W) with respect to W can be calculated as follows:

d’z;‘;,W) — K (W-W) - AP +TDW)T (A +c,GW)) (5.14)

Therefore, W* and A* satisfying Eqgs. (511) and (612), which are the solution and the corre-
sponding Lagrange multiplier of Problem (B_8), respectively, satisfy the following equation:

% =KW -W) - AP+TPW")T (A* +¢,G(W*)) =0 (5.15)

Hence, W* is the solution to the following optimization problem with the Lagrange multi-

plier A* which corresponds to a solution of Problem (BR):

min. L.(W) (5.16)
w

Conversely, if W is the solution of Problem (5I6) and satisfies the compatibility equa-
tion (BH), it satisfies both the stationary condition of Problem (B-1H) represented by Eq. (E218)
and the stationary conditions of Problem (B8) represented by Eqgs. (611) and (E12) where
A* is the Lagrange multiplier corresponding to a solution of Problem (58). Therefore, W is
also the solution of Problem (B8), and the equilibrium point can be obtained by solving the
optimization problem (A186) and checking that the solution satisfies the compatibility equa-
tions instead of solving the optimization problem (A8) directly. Note that the load factor A
is given and constant in the process of obtaining an equilibrium point by the ALM.

Although the appropriate Lagrange multiplier A* corresponding to the solution to Prob-
lem (B28) is unknown, it can be estimated by solving problem (A18) successively while up-
dating A as follows [89,90]:

A —=A+cpGW)

The magnitude of the penalty parameter cj, affects the convergence of the above update
process, and it is preferable to be adjusted automatically in the process of the ALM. In this
study, cp is updated by the following method proposed by Birgin and Martinez [90]. In
the k-th iteration of the process of the augmented Lagrangian method, the values of the
generalized displacement W, the Lagrange multiplier A, and the penalty parameter c, are
denoted by W®, A®) and cg,k ) respectively. The function C(W®) is defined as

1
CW™) = - GW™)TGW®)

In addition, the binary function O(W® A®)) that indicates convergence of the optimization
problem (A16) with sufficient small error in Eq. (B18) is defined as

1 (Optimization process is converged)

O(W(k),A(k)) -
0 (Otherwise)
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Algorithm 5.1 Augmented Lagrangian method

Input: WO AD ¢>0,6,>0,0<cmin < Cmax, ¥>1,0<a<1
Output: W* =W® A* = A®

1: k<1, B <0,

) _ max{1,TIW?)}
Cp Cmin, Cpm}acmax}

2: while O(W®) A®) = 0 and max|G;(W®)| > ¢, do
3:  Solve Problem(516) with Al: A% and let the solution be W),
g AED A® D GWE)

5. ifk =1 then

6 Br+1 < Br>

cplk+1) — min{max{cmin,

— min {max {

_ max{1,[I(W®)}
P max{1, C(W®)} } ’ Cmax}

7. elseif maxIGi(W(k))I < €t0] then
13
8: if £ > 3 and max|G;(W®)| < ey,; and O(W#=D AE=D) = o(W® A*)) =0 then
13

9: Br+1— Pr+1,
¢q —min{yPepmin, 1, cp — max{y P cpax, 1},

i oy A )
10: else

1 Bre1 — P, ci)kﬂ) _ c;,k)

12: end if

13: else

14: Br+1 < Pr

15: if |[GOW®)|| < a|G(W®-D)| then

. (k+1) (k)
16: ey —cp
17: else

k+1 k

18: c% 1~ max{yci, ), yﬁk Cmin}
19: end if
20: end if
21: k<—k+1

22: end while

The update process of the Lagrange multiplier A and the penalty parameter cj is repeated
until the maximum absolute value among the components of the incompatibility vector
G(W) is less than or equal to the tolerance ¢, > 0. The process of obtaining the solution W*
and the corresponding Lagrange multiplier A* of Problem (58) using the ALM is presented
in Algorithm Bl As stated in Ref. [93], there is some flexibility in the choice of the initial
value of A since the ALM has good global convergence property and robustness under the

degenerate constraints.
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5.3.3 Equilibrium path tracing by the incremental loading analysis

The equilibrium path is traced by iteratively obtaining the equilibrium points by solving
Problem (B8) while updating the load factor as A — A+dA (dA > 0), i.e., the equilib-
rium path is traced by the incremental loading analysis. The initial value of the load
factor increment is denoted by dAg, and if the ALM does not terminate with the suf-
ficient accuracy, d A decreases to find an equilibrium point. Defining a and b (0 < a <
1,5 > 1) as the user-specified update ratios of the load factor increment, d A is updated
as dA — max{b(dA), dAg}, if the ALM terminates successfully; otherwise, d A is reduced as
dA — a(dA). The equilibrium path analysis starts from A = 0 and continues until one of

the following termination conditions is satisfied:

* The specified component W; of W reaches the target value WiInax or WiInin (WiInin <
WmaX)
).

* The load factor A is greater than the specified maximum value Apax > 0.
¢ The load factor increment d A is less than the specified minimum value d Ap, > 0.

The first two conditions indicate that the equilibrium path analysis has progressed to the
user-specified degree. On the other hand, third condition implies that the equilibrium point
cannot be found with a load factor greater than that of the last step. In this study, the con-
straints for avoiding general contact between nodes and members are not incorporated in
Problem (68), and therefore, the presence of contact is checked manually after the process

presented above is terminated.

5.4 Stability of equilibrium state

In this section, the stability of an equilibrium point is investigated. According to the stabil-
ity theories based on the energy principle [94], the equilibrium point at a given load factor
A is stable if the solution to the energy minimization problem (B-8) is an isolated local min-
imum. Assume that W and A are the local minimum solution of Problem (5I18) and the
corresponding Lagrange multiplier, respectively, with a given load factor A, and G(W) =0
is satisfied with the specified tolerance €. When a neighborhood of W is represented by
W+6W (6W € RMW), the inequality L.(W) < L.(W+6W) holds for any §W. Furthermore, if a
neighborhood is restricted to the range satisfying G(W+0W) = 0, the equation ITy(W+6W) =
L.(W +6W) holds for any 6W from Eq. (513). Accordingly, ITx(W) < ITy(W + 6W) always
holds, and the isolated local minimum solution of Problem (B18) satisfying the compati-
bility equation (BAH) is also the isolated local minimum solution of Problem (B38) [RY]; i.e.,
(W, A) is a stable equilibrium point. When W satisfies G(W) = 0, it is an isolated local min-
imum solution of Problem (EI8), if and only if the stationary condition dL.(W)/dW = 0 is
satisfied and the Hessian matrix of the augmented Lagrangian d2L.(W)/dW? € RNw*Nw jg

positive definite [95]. The Hessian matrix of L.(W) is a matrix whose (j,k) component is

96



%L .(W)/ 0W;0W}, and can be written as follows if G(W) = 0 is satisfied:

d2L (W)

Tz = K AT W)+ ¢, TOW) T W) (5.17)

Here, I'®(W) is the order-three tensor of size Ng x Ny x Nw whose (i, j,k) component is
%Gi(W)/ 0W;0W},, and the second term in the right-hand side of Eq. (5T7) is calculated as

%G;(W) %G;(W)
oWioW; T aW10Wyy,
Ng d2G(W) Ng
ATTPOwW) =Y 4, ————"=Y 1, : . : (5.18)
i:zl dW2 i-1 ) ' )
%G;(W) %G;(W)
| OWn, oW1 T 0Wn, 0Wn,, |

From the above, relationship between the stability of an equilibrium point and the aug-

mented Lagrangian can be summarized as follows:

Property 5.1. The equilibrium point (W, A) is stable for a given load factor A, if the solu-
tion W of Problem (5I8) satisfies the compatibility equation (5H) and the Hessian matrix
d?L.(W)/dW? is positive definite, where A is the Lagrange multiplier obtained by the ALM.
Conversely, if d2L.(W)/dW? is not positive definite, (W, A) is an unstable equilibrium point.
In particular, if one or more eigenvalues of d2L.(W)/dW? are equal to zero, the correspond-
ing load factor and the equilibrium point are referred to as the critical load factor and the
critical point, respectively. In addition, the eigenvector corresponding to a zero eigenvalue
of dch(W)/ dW? is called the critical eigenmode. A critical point is a candidate for a bifur-

cation or limit point.

5.5 Critical eigenmode and infinitesimal mechanism

The relationship between a critical eigenmode and the infinitesimal mechanism of a frame
model is investigated. Since it is not straightforward to discover the relationship analyti-
cally, it is investigated numerically in this study. Consider a critical point (W, A.;) where
Ay 1s a critical load factor. The critical eigenmode corresponding to the critical load factor
Acr is denoted by we, € RYV, which satisfies (d2L.(W)/dW?)w¢ = 0. On the other hand, a
first-order infinitesimal mechanism W’ € RV% and a second-order infinitesimal mechanism

W € RM at an equilibrium point (W, A¢;) satisfy following equations [33, 4(1]:
rYwWw' =0 (5.19)
rOWW" + [TOW)W | W' =0 (5.20)

In the following, TV(W) and I'®(W) are always evaluated at W, and the argument (W)
is omitted for a simple expression. Here, [T[?(W)W'|W' is the Ng-dimensional vector
whose i-th component is W'T (d2Gi/ dWZ)W’ . The degrees of kinematic indeterminacy Np
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and statical indeterminacy Ng are equal to Ny —rank (T'V) and Ng - rank (T'V), respec-
tively [40]. The left and right singular vectors corresponding to the zero singular values of

(1) are denoted by V1,...,UNg € RNe and NNy, € RV respec-

the compatibility matrix T’
tively. Note that vy,...,ung and ny,...,ny, are referred to as the first-order self-equilibrium
modes and the first-order infinitesimal mechanism modes, respectively [33,40]. In addi-
tion, the remaining left and right singular vectors are denoted by vyg+1,..., VNG € RNe and
NNy +15-- > NNy € RNV respectively, which correspond to the positive singular values. Note
that vi,...,un, and ng,...,ny, are the orthonormal bases of the Ng-dimensional vector
space and the Nw-dimensional vector space, respectively. Then, w¢, can be represented as

% eR as follows:

the linear combination of ny,...,ny,, with the coefficients af,...,a -

Wer=ajn ++ a%wnNW (5.21)
When w¢; and ny,...,1n Ny, are given, the coefficients a‘l?r (i=1,...,Nw) are determined as
cr _ T
a] =wen; (5.22)

According to Eqs. (B19) and (B=21)), w,, is the first-order infinitesimal mechanism, if
and only if afr is equal to zero for any i = Np +1,...,Nw; i.e., W, is represented as w¢, =
afmg+---+ a%DnND. Therefore, the value of af" is evaluated in the examples shown in
Section BH. Considering the numerical error, w¢, is determined to be the first-order in-
finitesimal mechanism if the values of Iafrl for i = Np +1,...,Nw are sufficiently smaller
than those of Ia?l for i =1,...,Np. As shown in Section B8, it can be confirmed that the
critical eigenmodes are the first-order infinitesimal mechanism. Furthermore, if w, is the
first-order mechanism, the necessary and sufficient condition for existence of the second-
order infinitesimal mechanism W” which satisfies T'VW” + [T@(W)W'| W’ = 0 is that the
following equation holds for any i = 1,...,Ng [33,40]:

o] [T2WW | W =W [v[T?]| we =0 (5.23)

Appendix H provides the detailed explanation of this condition. Therefore, the value of
ﬁ’l?r € R which is defined as follows is evaluated for i = 1,...,Ng:

B =v] [F(2)(W)W’] W =wl. [viTl‘(z)] Wer (5.24)

If 57" is equal to zero for any i = 1,..., N, the first-order infinitesimal mechanism w,, can be
extended to the second-order infinitesimal mechanism. In the similar manner as the eval-
uation of a;", Bi" is regarded to be zero if the values of | ;"] for i =1,...,Ng are sufficiently
smaller than those of || for i = Ng+1,...,Ng.

5.6 Examples

First, an example of a three-node two-member planar frame, for which an analytical solu-

tion can be easily obtained, is presented in Section B.61l. Validity of the proposed method is
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Figure 5.2: Configuration and variables of the planer two bar frame.

verified by comparing the results obtained by the proposed method with the analytical solu-
tion. In Sections 562 and B.63, examples are shown for the analysis of a waterbomb cell,
which is a unit of the waterbomb tessellation and has a rigid-foldable crease pattern. Each
analysis is carried out by using a Python 3.9 program. The optimization problem (B18) is
solved using an NLP software library L-BFGS-B [96] available in Python library SciPy. The
units of length and force are omitted because they do not have an effect on the result. The
parameters and the termination conditions of the equilibrium path analysis are specified
for each section. Note that the examples described in this chapter are the same as those in
Ref. [BT].

5.6.1 Planer two bars model
(1) Analytical solution

As shown in Fig. B4, consider a three-node two-member planar frame whose length of each
member is 1 and each hinge is parallel to the z-axis, i.e., perpendicular to the paper. The
rotational stiffness of each spring installed into the hinge is 1. The frame is straight along
with y-axis at the initial state, and the translational displacements of node % (=1,2) in x-
and y-directions are denoted by u;, and v}, respectively. Let 6; denotes the rotation angle of
member i (= 1,2) which is positive when the member rotates counterclockwise as shown in
Fig. B2. The load factor is denoted by A, and a load of magnitude A is applied to node 2 in
the negative direction of the y-axis. In this section, only translations of nodes and rotations
of members are used to express the compatibility equations for the simple calculation, and
the generalized forms of displacement vector and the compatibility equations defined in
Section B2 are not used for obtaining the analytical solution. Accordingly, the compatibility
equations which are to be satisfied by the nodal displacements and the member rotation

angles are formulated as follows:

u1=-—sinfq
vi=cosf1—-1

ug = —sinf1 —sinfy
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vg = cosf1 +cosls —2

Since the total potential energy of the frame can be written in a polynomial form when
01 and 09 are treated as the independent variables, the total potential energy I15(01,62) is

formulated as the function of 61 and 09 as follows:
1, 1 2
[TA(01,02) = 591 + 5(92 —-01)" + Avg
1
= E(29% +635 —260102) + A(cosf1 + cosfz — 2)

The Hessian matrix of I15(01,602) with respect to 61 and 6 can be calculated as follows:

0%y 0%MIa
302  90100; | [ 2-Acost; -1
My P | -1 1-Acosfs

001002 062

When 61 = 09 = 0, the determinant of the Hessian matrix of I15(01,02) is calculated as

follows:
0TI, 0211,
002 801009 9 3-v5 3+v5
1 = — = — —
det 2y 920, A2-3A+1=|A 5 A 5

001964 002

Since the determinant of the Hessian matrix of [15(01,602) is zero if an equilibrium point is a

critical point, two critical load factors A1 and Ao can be derived as follows at 61 =09 =0:

3-V5
2

Aer1 = ~(.382

(5.25)
~2.618

3+v5
Aerg = 9
Note that the equilibrium can be achieved for any A at 81 = 82 = 0. The eigenvectors X1 and
X2 Of the Hessian matrix of [14(01,602) corresponding to zero eigenvalues at A = A1, Acr2

are calculated as follows:

Xcrl =

1 (—1+\/5):(0.526)

10-2v5 2 0.851
V5 (5.26)
1 ( —1—\/5) ( ~0.851 )
Xerg = —F/—— =
10+2v5 2 0.526

(2) Stability of two bars model at undeformed state

Here, the Hessian matrix of the augmented Lagrangian formulated in Section b3 is evalu-
ated for the stability analysis of the planer two bars model, and the validity of the proposed
method is confirmed. The generalized displacement vector W consisting of the displace-
ments of nodes and members and the rotation angle increments of hinges is used in this

section. It is set to zero at the initial shape 61 = 63 = 0 of the frame shown in Fig. B2,
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Figure 5.3: Smallest and second smallest eigenvalues of the Hessian matrix of the aug-

mented Lagrangian of the two bar model.

Figure 5.4: Critical eigenmodes of the two bar model at W = 0; (a) First critical eigenmode
at A =0.382, (b) Second critical eigenmode at A =2.618.

and the stability of the frame is evaluated at W = 0. The Lagrange multiplier A in the
augmented Lagrangian L.(0) is calculated from dL.(0)/dW = 0 as follows:

A=-AT©O")'P (5.27)

where the superscript + denotes the Moore-Penrose inverse [63]. Note that the frame is in
the equilibrium state for any A at W =0 if A is determined from Eq. (5227). Therefore, the
critical load factors are investigated at W = 0 by successively increasing the load factor A
and evaluating the eigenvalues of the Hessian matrix of the augmented Lagrangian. Since
the penalty parameter c, in the augmented Lagrangian can be any value at the equilibrium
point, it is fixed to ¢ = 1 x 10% in this section for simplicity.

Figure B3 shows the smallest and second smallest eigenvalues of the Hessian matrix of
L .(0) when the load factor A is sequentially increased from 0 to 3. As shown in the figure, an
eigenvalue of the Hessian matrix of L.(0) becomes zero when A = A1, Ao where Agq and
Acro calculated as Eq. (A28, and the critical load factors obtained by the proposed method
coincide with the analytical solution. In addition, the critical eigenmodes corresponding the
critical load factors and the values of 61 and 09 calculated from the eigenmodes are shown in
Fig. 54. It can easily be confirmed that the eigenmodes (0.224,0.362)" and (0.348,-0.215)"
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Figure 5.5: Nodal displacements with the initial imperfection corresponding to the first

critical eigenmode; (a) wip; = 0.01, (b) wip; = 0.05.

obtained from the Hessian matrix of L.(0) are identical (proportional) to X1 and X2 in
Eq. (B28), respectively, which are obtained analytically. From above results, it is expected
that the stability of the equilibrium state can be determined from the eigenvalue analysis

of the Hessian matrix of the augmented Lagrangian.

(3) Equilibrium path analysis of two bars model with initial imperfection

The equilibrium path analysis is performed by increasing the magnitude of load shown in
Fig. B2. The initial displacement Wy of the analysis is determined by adding an initial
imperfection in proportion to the eigenmodes shown in Fig. B4 to the straight state W =0,
and the analysis starts from W = Wj. The two scales of imperfection are considered so that
the maximum nodal translational displacement wjy; is win; = 0.01 and 0.05 for each mode.
The rotation angles of the springs introduced in the hinges are set to zero at W = Wy; i.e., ¢
is set to @, so that the strain energy of the springs in Eq. (571) is equal to zero at W = Wy.
The initial value of Lagrange multiplier vector and the tolerance of the absolute value of an
error in incompatibility vector G(W) are assigned as Ag =0 and ey = 1 x 1078, respectively.
The load factor is sequentially increased from A = 0 by dAg = 5.0x1073, and the equilibrium
path analysis terminates just before vo shown in Fig. b2 reaches —2. For detailed investi-
gation, the increment of the load factor is reduced from 5.0 x 102 when vy approaches —2.
Since the process of the ALM is stable and shows good convergence, the penalty parameter
is fixed at cp = 1 x 108 for simplicity. It is confirmed that the eigenvalues of the Hessian ma-
trix of the augmented Lagrangian change slightly if the updating algorithm of the penalty
parameter in Algorithm Bl is used.

Figures BA and b6 show the nodal displacements obtained from the initial imperfec-
tions based on the first and second critical eigenmodes shown in Fig. B4, respectively. When
the initial imperfection corresponding to the second eigenmode is given with wj,; = 0.01, vg

suddenly exceeds —2 from the initial value as shown in Fig. 5.6(al. Hence, the termination
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critical eigenmode; (a) wip; = 0.01, (b) wipn; = 0.05.
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Figure 5.7: Smallest eigenvalues of the Hessian matrix of the augmented Lagrangian with
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all view, (b) Enlarged view near the critical load factor.
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Figure 5.9: Configuration of the analysis model, load, and boundary conditions; The frame
model is represented by bold lines, and the edges of waterbomb cell are repre-

sented by dotted lines.

condition with respect to ve is ignored in this example, and the equilibrium path analysis
proceeds until the displacement becomes visible. As shown in Fig. BH, when the initial
imperfection is based on the first critical eigenmode, the displacements drastically increase
around A¢1 = 0.382, and the equilibrium path shows a feature like the Euler buckling of a
cantilever column. The values of the eigenvalues of the Hessian matrix of the augmented
Lagrangian are shown in Figs. B0 and B8. It is observed from Fig. b7 that the smallest
eigenvalue of the Hessian matrix on the equilibrium path takes its minimum value near
A1 and approaches zero. In the other region, the smallest eigenvalue is positive, which
confirms that the equilibrium path is stable. On the other hand, when the initial imper-
fection is based on the second eigenmode, almost no displacement occurs around A = A¢p1,
and the displacement progresses rapidly at a point where the load factor exceeds A.1 by a
certain amount as shown in Fig. Bf. Figure B8 shows that the smallest eigenvalue of the
Hessian matrix on the equilibrium path becomes zero at A = A1 and takes negative value
until the displacement occurs. Therefore, the equilibrium state is unstable in the range of
A>Aer1.

5.6.2 Waterbomb cell (1)
(1) Stability of waterbomb cell (1) at fully developed state

Equilibrium path of the waterbomb cell shown in Fig. B9 1is investigated. The frame model’s
number of nodes, members, and hinges are Ny = 22, Ny = 22, and Ny = 6, respectively.
Therefore, the number of components of the generalized displacement vector and the in-
compatibility vector are calculated as Nw = 264 and Ng = 264, respectively. As shown in
Fig. B9, the nodal load is applied to node A indicated by blue star in the positive x-direction.
The translational displacements of nodes are constrained so that the rigid-body motion of
the entire model is restricted. The rotational stiffness of each spring installed in the hinge
is assigned to be proportional to the length of the corresponding crease line; 1 for a crease
line of length 5 and v/2 for a crease line of length 5v/2. The generalized displacement vector
W is set to zero at the perfectly flat and developed state where all the nodes are on the xy-

plane. At the flat state W = 0, the degrees of kinematic and static indeterminacy calculated
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Figure 5.10: Smallest to the fourth smallest eigenvalues of the Hessian matrix of the aug-

mented Lagrangian at W =0.
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Figure 5.11: Critical eigenmodes at W = 0; (a) First critical eigenmode at A = 1.137, (b)
Second critical eigenmode at A = 2.704, (c) Third critical eigenmode at A =
2.909.

from the rank of the compatibility matrix are both 4. Since the equilibrium state can be
realized for any A at W =0, the critical load factor is investigated at W = 0 by increasing
the load factor and evaluating the eigenvalues of the Hessian matrix of the augmented La-
grangian L.(0). As in Section B&1, the Lagrange multiplier for each load factor is obtained
from Eq. (521), and the penalty parameter is fixed at cp, =1 x 108.

Figure 510 shows the four smallest eigenvalues of the Hessian matrix of the augmented
Lagrangian L.(0) when the load factor A is increased from 0 to 5. The fifth smallest eigen-
value is about 10000 times larger than the fourth smallest one. Three critical load factors

are obtained as Acrq = 1.137, Ao = 2.704, and Az = 2.909, respectively. The critical eigen-
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Figure 5.12: Values of Ia‘l?rl defined in Eq. (522) and | ,Bfrl defined in Eq. (5224) for the first

critical eigenmode; (a) Values of |aj'| , (b) Values of |57"|.
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Figure 5.13: Values of Iafrl and | ,Bfrl for the second critical eigenmode; (a) Values of Iafrl,
(b) Values of | ﬁlc.rl.

modes at A = A1, Aer2, Acrg are shown in Fig. BT, Note that the number of critical load
factors is equal to the degrees of kinematic indeterminacy at the folded state to be inves-
tigated in the next subsection. The obtained critical points are the symmetric bifurcation
points; i.e., a critical eigenmode w, satisfies L.(w¢,) = L (—wW¢).

Next, the values of Iafrl defined in Eq. (5222) and the values of Iﬂfrl defined in Eq. (5=24)
are calculated for each critical eigenmode to investigate the relationship between the crit-
ical eigenmodes and the first-order infinitesimal mechanism. The values calculated for all
the singular vectors of the compatibility matrix at W = 0 are shown in Figs. B T2-5T4.
Note again that a critical eigenmode is the first-order infinitesimal mechanism if the val-
ues of |ay"| corresponding to the non-zero singular values, which are indicated by red + in
Figs. b.12(a)-b.14(a), are sufficiently smaller than that corresponding to the zero singular
values, which are indicated by blue x in Figs. b.12(a}-b5.14(a]). In addition, a critical eigen-
mode can be extended to the second-order infinitesimal mechanism if the values of | ﬁfrl

corresponding to the zero singular values, which are indicated by blue x in Figs. 5. 12(b)-
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Figure 5.14: Values of Iafrl and | ,B‘l?rl for the third critical eigenmode; (a) Values of Ia:‘l?rl, (b)
Values of | ﬁfrl.

b.14(Db), are sufficiently smaller than that corresponding to the non-zero singular values,
which are indicated by red + in Figs. B.12(b}-5.14(b]. As shown in Figs. b.12(a}-5.14(a],

the values of Ia‘i’rl corresponding to all the non-zero singular values are less than 1/ 104 of

those corresponding to zero singular values and approximately equal to zero. Therefore,
each critical eigenmode can be regarded as the first-order infinitesimal mechanism. On the
other hand, the values of |5{"| corresponding to the zero singular values are not equal to
zero as shown in Figs. 5. 12(b)}-b.14(b]), and the critical modes cannot be extended to the

second-order mechanism.

(2) Equilibrium path analysis of waterbomb cell (1) with initial imperfection

The equilibrium path analysis is carried out for the waterbomb cell shown in Fig. E9. The
initial imperfection is assigned by scaling each eigenmode shown in Fig. BT1, and the
three scales of imperfection modes are adopted so that the maximum nodal translation
is wini = 0.05, 0.1, 0.5, respectively. The initial displacement after assigning the imperfec-
tion is represented by Wy, and each analysis starts from W = Wy. The maximum absolute
value among the components of the incompatibility vector G(Wy) is about 1.07 x 10~2 which
corresponds to the translational displacement and is about 1/1000 of the span of the model.
As in the case of the two bar model, the rotation angles of the hinges at Wy are assigned to
@ to regard the rotation angles of the springs at W = Wy as the undeformed state ¢ — @ =0.
The initial value of A is given as A = 0 since it approximately satisfy the stationary condi-
tions of Problem (B1H) and can be a good estimation of the multiplier corresponding to the
stationary point of problem (5-8) at W =W, and A = 0. The tolerance of the maximum error
of G(W) is set as €y = 1 x 1077, and the penalty parameter cp is updated automatically in
accordance with Algorithm B for the stability of the equilibrium path analysis. The initial
increment of the load factor is dAg = 5.0 x 1073, and the update ratios of dA are a = 0.125
and b =2.0. Amax = 10.0 and dApi, = 1 x 10710 are assigned as the maximum value of the

load factor and the minimum value of the load factor increment, respectively. The trans-
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Figure 5.15: Displacement of node A in the x-direction with three different initial imper-

fection modes with three different magnitudes, respectively.

lational displacement in the x-direction of node A indicated by the blue star in Fig. B9 is
referred for the termination condition of the equilibrium path analysis with W;"#* =10 and
W = -1

The translational displacement of node A in the x-direction is shown in Fig. 1A for
the analyses with nine different initial imperfections. Figure. B18 shows the transition of
the shape of the waterbomb cell on each equilibrium path with wj,; = 0.05. The deformed
shapes at the end of the analysis are similar for all examples except for the symmetry about
the xy-plane. The largest absolute value among the components of the compatibility vector
G(W) is less than 1 x 10~7 throughout each path analysis as shown in Fig. 517, and the
obtained equilibrium paths can be regarded as the rigid-folding deformation paths.

In each case, the displacement of node A significantly progresses around the first critical
load factor A¢; = 1.137. As shown in Fig bTH, the displacement progresses gradually before
the load factor reaches the first critical load factor when the initial imperfection based on
the first eigenmode is applied. On the other hand, the displacement scarcely progresses
until the load factor exceeds the first critical load factor when the initial imperfection based
on the second or third eigenmode is applied. The deformed shapes at the end of the analysis
are similar for all cases except for the symmetry about the xy-plane. This similarity of the
final shapes is attributed to the isolated second and third critical load factors which are
significantly larger than the first critical load factor; i.e., the deformation occurs before
the load factor reaches the second and third critical load factors and the load factor is less

than the second and third critical load factors even at the end of the equilibrium path
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Figure 5.16: Deformation process with wi,; = 0.05 in the equilibrium with the rigid-folding
motion; (a) Imperfection corresponding to the first critical eigenmode, (b) Im-
perfection corresponding to the second critical eigenmode, (c) Imperfection

corresponding to the third critical eigenmode.

analysis. Consequently, the equilibrium paths approximately converge to the bifurcation
path corresponding to the first critical point.

Figures B18 and 519 show the value of the penalty parameter and the smallest eigen-
value of the Hessian matrix of the augmented Lagrangian on each equilibrium path, re-
spectively. The minimum value of the eigenvalue on each equilibrium path is also plotted
in Fig. BET9 by x mark. The penalty parameters tend to drastically change in the range
where the load factor is less than the first critical load factor, and the smallest eigenval-
ues change as the penalty parameters change. When the penalty parameter is large, it
indicates that the maximum error of the compatibility equations is slow to reach the ac-
ceptable value. On the other hand, when the penalty parameter is small, the augmented
Lagrangian method converges quickly or the minimization of the augmented Lagrangian
may fail to converge. Therefore, the drastic change of the penalty parameter in the range

A < A1 indicates the instability of finding the equilibrium point. Although the smallest
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Figure 5.20: Configuration of the analysis model, load, and boundary conditions.

eigenvalues oscillate in the range A < A.1, the overall trend is that the eigenvalues have
minima near the first critical load factor. It is reasonable that the equilibrium point with a

small imperfection in the shape of the second or third eigenmode is difficult to find.

5.6.3 Waterbomb cell (2)
(1) Stability of waterbomb cell (2) at fully developed state

Equilibrium path of the waterbomb cell shown in Fig. is investigated. The crease pat-
tern and the rotation stiffness of the springs are the same as those of the previous example,
respectively, while the loading and boundary conditions are different. This contributes to
obtaining various deformation patterns of the waterbomb cell. The number of nodes, mem-
bers, and hinges of the frame model are Ny =22, Ny = 22, and Ny = 6, respectively. Hence,
the generailized dispalcement vector and the incompatibility vector have Np = 264 compo-

nents and Ng = 264, respectively. The degrees of kinematic and static indeterminacy are
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Figure 5.21: Smallest to the fourth smallest eigenvalues of the Hessian matrix of the aug-

mented Lagrangian at W =0.
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Figure 5.22: Critical eigenmodes at W = 0; (a) First critical eigenmode at A = 0.280, (b)
Second critical eigenmode at A = 0.788, (c) Third critical eigenmode at A =
3.750.

both 4 at W= 0. As in the previous subsection, the eigenvalues of the Hessian matrix of
the augmented Lagrangian is evaluated to identify the critical load factors at the flat fully
developed state W = 0 by successively increasing the load factor from zero. The penalty
parameter is fixed at ¢, =1 x 108.

The change of the smallest to the forth smallest eigenvalues of the Hessian matrix of
the augmented Lagrangian L.(0) are shown in Fig. 521 when the load factor A is increased
from O to 5. The fifth smallest eigenvalue is more than 10000 times larger than the fourth
smallest one. The load factor is critical when it is A = Ag1 = 0.280, A = Ago = 0.788, and
A = Aerg = 3.750. Three critical eigenmodes are shown in Fig. B2, It is confirmed that
L.(w¢) = L.(—w¢;) holds and the obtained critical points are the symmetric bifurcation

points.
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Figure 5.26: Displacement of node A in the x-direction with three different initial imper-

fection modes with three different magnitudes, respectively.

The values of Iafrl and | ,B;’rl are calculated for all the singular vectors of the compat-
ibility matrix at W = 0 and shown in Figs. B2Z3-hZH. As shown in Figs. b.23(a}-5.25(a],
the values of Iafrl corresponding to all the non-zero singular values are less than 1/ 104 of
those corresponding to zero singular values and approximately equal to zero. Therefore,
each critical eigenmode can be regarded as the first-order infinitesimal mechanism. On the
other hand, the critical modes cannot be extended to the second-order mechanism since the

values of | 57| corresponding to the zero singular values are not equal to zero as shown in

Figs. 6.23(01-5.25(b].

(2) Equilibrium path analysis of waterbomb cell (2) with initial imperfection

The equlibrium path of the waterbomb cell shown in Fig. is traced. The initial im-
perfections are assigned based on the critical eigenmodes shown in Fig. B224. The same
conditions as those used in the previus subsection of the analysis of another waterbomb cell
are used except for d Ag and Apax, which are set as dAg =0.01 and Apax = 15.0, respectively.
The initial maximum absolute value among the components of G(Wy) after assigning the
imperfection is about 1.66 x 10~ which corresponds to the component of the translational
incompatibility vector and is about 1/600 of the span of the model. The displacement in the
x-direction of node A indicated by blue star in Fig. is used as the reference displace-
ment.

Figure shows the relationship between the displacement at node A in the x-direction
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Figure 5.27: Deformation process with w;n; = 0.05 in the equilibrium with the rigid-folding
motion; (a) Imperfection corresponding to the first critical eigenmode, (b) Im-
perfection corresponding to the second critical eigenmode, (c) Imperfection

corresponding to the third critical eigenmode.

and the value of the load factor. The transition of the shape on each equilibrium path with
Wini = 0.05 is shown in Fig. BE27. As in the previous examples of the waterbomb cell, the
final shapes of the analysis are almost identical except for the symmetry about the xy-plane
since the critical load factors are isolated. The degrees of kinematic and static indetermi-
nacy are both 3 after the out-of-plane deformation occurs. The obtained equilibrium paths
can be regarded as the rigid-folding deformation paths since the largest absolute value
among the components of the compatibility vector G(W) is less than 1 x 10~7 throughout
each path analysis as shown in Fig. B2Z8.

The overall trends of the analysis results are similar to those of the previous exam-
ples. In all the nine cases of initial imperfection, the displacement progresses significantly

around the first critical load factor A1 = 0.280. A x mark in Fig. B30 represents the
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Figure 5.29: Transition of the penalty parameter for each initial imperfection mode.
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Figure 5.30: Transition of the smallest eigenvalue for each initial imperfection mode.

minimum value of the eigenvalue of the Hessian matrix of the augmented Lagrangian on
each equilibrium paths, and all the eigenvalues have minima near the first critical load
factor. In contrast to the previous examples of the waterbomb cell, the load factor exceeds
the second and third critical load factors at the final stage of analysis. However, when A
exceeds A1, a finite deformation occurs and all eigenvalues are positive for each equilib-
rium path as shown in Fig. B230. Therefore, the equilibrium state is always stable after
the load factor exceeds the first critical load factor. Since the penalty parameters tend to
drastically change, the smallest eigenvalues also oscillate in the range A < A.r1. Therefore,

the equilibrium state before A reaches A.,; may be unstable.

5.7 Conclusions

A method of equilibrium path and stability analysis of a rigid origami represented by a
frame model has been proposed in this chapter. An equilibrium state between the nodal
loads and the moments of the springs introduced into the hinges are achieved with the ex-
act rigid-folding motion. The equilibrium path can be uniquely determined locally except
at the critical points by introducing the rotation springs. An equilibrium point is found
by solving the energy minimization problem under the compatibility equations of a frame
model, and an equilibrium path is traced by the incremental loading analysis. The aug-
mented Lagrangian method is adopted to solve the optimization problem since it has good
convergence even if the constraints degenerates. The eigenvalues of the Hessian matrix
of the augmented Lagrangian are investigated at each equilibrium point to evaluate the

stability of the equilibrium state and to find the critical load factor. If the Hessian matrix
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is positive definite at an equilibrium point, the total potential energy is local minimum and
the equilibrium state is stable. Conversely, if the Hessian matrix has a zero eigenvalue,
the equilibrium point is a candidate for a bifurcation or a limit point. The relationship
between the first-order infinitesimal mechanism modes and the critical eigenmodes, which
are the eigenvectors corresponding to the zero eigenvalues of the Hessian matrix is also
numerically investigated for the waterbomb cell examples.

The proposed method was first applied to a planar frame consisting of two members
whose analytical solution can be easily obtained. The critical load factors and the critical
eigenmodes obtained analytically and from the proposed method agree with good accuracy,
and it has been confirmed that the critical load factors that may cause instability in the
equilibrium can be determined by the proposed method. After verifying the validity of the
proposed method, the method was applied to fully developed flat waterbomb cells with two
different loads and boundary conditions. In both cases, three critical load factors are found,
and the number of them is equal to the degrees of kinematic indeterminacy at the folded
state, not at the flat state. All the critical eigenmodes have been numerically confirmed
to be the first-order infinitesimal mechanism while they cannot be extended to the second-
order infinitesimal mechanism. In the equilibrium path analysis, the initial imperfection is
assigned to avoid the multiple bifurcation at the flat state. The three critical eigenmodes at
the flat state are used for each waterbomb cell example to determine the direction of the ini-
tial imperfection, and the three different scales of imperfection are assigned to investigate
the impact of the initial imperfection on the equilibrium path. The out-of-plane deforma-
tion drastically progresses after the load factor exceeds the first critical load factor for each
initial imperfection. Since the critical points are isolated, similar final shapes are obtained
and the equilibrium paths converge to the bifurcation path of the first critical point. From
these results, it can be concluded that the waterbomb cell admits the several deformation
paths for different boundary conditions and realizes the stable equilibrium path regardless
of the initial imperfection except for around the first equilibrium point.

The proposed method only supports the incremental loading analysis at present, and
the equilibrium path may not be fully traced if it contains the limit point where a snap-
thorough behavior is observed. To trace this kind of equilibrium path, it is expected in
future work that the proposed method is extended to include the incremental displacement
method and the arc length method. In addition, the computational cost can be a major
issue in the analysis of a large-scale origami which has many faces and crease lines since
the augmented Lagrangian is minimized using BFGS in this study and the computational
cost of the optimization is proportional to the square of the number of variables which
is approximately determined by the number of faces. Therefore, to reduce the cost, the
number of variables should be reduced by simplifying the structure of the frame model and

by eliminating the dependent variables for the analysis of large-scale origami.
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Chapter 6

Conclusions

The methods of form generation and equilibrium path analysis of a rigid origami are pro-
posed in this thesis. The proposed methods are constructed based on the geometric and
kinematics of the frame model which can represent a rigid origami in a simpler way than
the other models. A form generation method is proposed for surface approximation with
non-regular crease patterns, and it may contribute to enhance the flexibility of the design
of the roofs and facades utilizing a rigid origami. A method of equilibrium path analysis is
proposed to trace the equilibrium path in the exact rigid-folding motion. This hybrid analy-
sis of the pure mechanism and the equilibrium is rarely performed while it is important to
understand the deformation properties of a rigid origami with the multi-degrees of freedom
mechanism. In the following, the results obtained in Chapters 2-H are summarized.

In Chapter B, the review of the numerical models of a rigid origami are provided, and
the frame model used in this study is described. A frame model consists of rigid frame ele-
ments connected by hinges representing the crease lines of an origami. The equations of the
geometric constraints on the nodal coordinates of the frame model are formulated so that
the frame model represents the corresponding rigid origami appropriately, and the indepen-
dent nodal coordinates are identified from these equations. The infinitesimal mechanism of
the frame model is investigated by the methods for partially rigid frames. The compatibil-
ity equations are formulated by using nonlinear functions of the generalized displacement
vector defined as the assemblage of the unconstrained translational and rotational displace-
ments of nodes, the translational and rotational displacements of center points of members,
and the increments of the hinge rotation angles. The kinematic indeterminacy and the
first-order infinitesimal mechanism modes are derived from the compatibility matrix which
is the first-order derivative of the incompatibility vector with respect to the generalized dis-
placement. The geometric properties and the method of the kinematic analysis of the frame
model introduced in this chapter is used in the following chapters.

Chapter B has presented a form generation method of a developable rigid origami struc-
ture approximating a Bézier surface. An optimization problem for generating a developable
origami surface has been formulated to minimize an approximation error function under

developability conditions. Developability conditions are considered around each inner ver-
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tex, dividing edge, and inner cuts, and they are formulated with respect to the geometric
properties of the origami surface such as the discrete Gaussian curvatures, normal vectors
of the faces, and the sets of the inner angles of the faces and the length of edges constituting
a cut. Three approximation error functions are defined reflecting the distance between the
origami vertices and the target surface, the difference of the surface area, and the differ-
ence of the face normal vectors, respectively. The weighted sum of the three functions are
minimized in the optimization problem. Form generation starts from a triangulated target
surface and its crease lines are sequentially fixed to reduce the DOF of the deformation
mechanism. The transition of the deformation mechanism due to fixing the crease lines is
predicted by utilizing the kinematic properties of the frame model. The pseudo stiffness ma-
trix of the frame model is defined by assuming the fictious rotational stiffness of the hinges,
and its eigenvalue and eigenvector derivatives are used for the prediction. Selection criteria
of the crease lines to be fixed are proposed to prevent the unfixed crease lines from being
locked. They are defined based on the shape of an origami surface and the prediction of the
transition of the deformation mechanism. The properties related to the prediction method
are illustrated for the origami surface approximating an HP surface.

The case studies of form generation are shown in Chapter @. The form generation pro-
cedure has been carried out for 100 randomly generated target surfaces and for an HP
and a face surfaces. From the results of the approximation of the randomly generated sur-
face, the proposed selection criteria of crease lines, which reflect both the shape and the
deformation mechanism of an origami surface, are confirmed to be able to improve the ef-
ficiency of form generation by preventing the crease lines from being locked and reducing
the times of solving the optimization problems. Furthermore, the approximation accuracy
is also better when the proposed criteria are used. On the other hand, the impacts of the
weight coefficients in the approximation error function, the choice of the design variables,
and the introduction of cuts on the results of form generation are demonstrated for an HP
and a dome surfaces. It can be seen from the results that there is no clear trade-off relation
between the three approximation error functions and the values of the weight coefficients
do not have large impact on the results while the choice of the design variables may affect
the stability of the process of form generation. It is preferable to use the coordinates of the
origami vertices or the nodal coordinates of the frame model as variables when the arrange-
ment of the control points of the target Bézier surface is uniform in x- and y-coordinates.
Effectiveness of cuts is evaluated for an HP and a dome surface. As shown in the results, ex-
terior cuts can significantly improve the approximation accuracy while the inner cuts does
not. Since a limited number of types of crease and cut patterns are considered in this study,
it is important to investigate methods for finding good crease and cut patterns in future
research.

In Chapter H, a method of equilibrium path and stability analysis of a rigid origami
represented by a frame model has been proposed. An equilibrium state between the nodal
loads and the moments of the springs introduced into the hinges are achieved with the ex-

act rigid-folding motion. An equilibrium point is found by solving the energy minimization
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problem under the compatibility equations of a frame model, and an equilibrium path is
traced by the incremental loading analysis. The augmented Lagrangian method is adopted
to solve the optimization problem, and the eigenvalues of the Hessian matrix of the aug-
mented Lagrangian are evaluated to investigate the stability of the equilibrium state and
to find the critical load factor. If the Hessian matrix has a zero eigenvalue, the equilibrium
point is a candidate for a bifurcation or a limit point. The proposed method was first ap-
plied to a planar frame consisting of two members whose analytical solution can be easily
obtained, and it has been confirmed that the critical load factors that may cause insta-
bility in the equilibrium can be determined by the proposed method. Then, the method
was applied to fully developed flat waterbomb cells with two different loads and boundary
conditions. Three critical eigenmodes have been found for each example, and it has been
numerically confirmed that these eigenmodes are the first-order infinitesimal mechanism
while they cannot be extended to the second-order infinitesimal mechanism. The equilib-
rium path analysis was performed from the flat state with the initial imperfection based on
the obtained critical eigenmodes. The out-of-plane deformation drastically progresses after
the load factor exceeds the first critical load factor for each initial imperfection. Since the
critical points are isolated, similar final shapes are obtained and the equilibrium paths con-
verge to the bifurcation path of the first critical point. It is expected in future work that the
proposed method is extended to include the incremental displacement method and the arc
length method to fully trace the path which contains the limit point where a snap-thorough
behavior is observed. In addition, to reduce the cost, the number of variables should be
reduced by simplifying the structure of the frame model and by eliminating the dependent

variables for the analysis of large-scale origami.
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Appendix A

Identification of independent
variables by the reduced

row-echelon form of a matrix

Consider the following linear equation for A € R™*"* b € R™, and x € R":
Ax=b (A1)

Here, A and b are constant and given, and the existence of x satisfying Eq. (A1) is assumed.
If rank(A) < n, there are n —rank(A) components of x which can be arbitrarily determined,
and rank(A) < n is assumed in the following. The independent components of x satisfying
Eq. () can be identified by the method utilizing the reduced row-echelon form (RREF) of
a matrix [62,97,98]. The RREF of a matrix can be obtained from a finite sequence of linear

elementary row operation and has the following three properties [67]:

1. The first nonzero component in any nonzero row is one. This non-zero component is
referred to as the pivot, and the column including the pivot is referred to as the pivot

column.

2. All the components other than the pivot are equal to zero in any pivot column, and

the pivot columns are linearly independent with each other.

3. The column containing the pivot of a row is to the right of the column containing the

pivot above that row.
4. The number of pivots is equal to the rank of the matrix whose RREF is computed.

For the procedure of deriving the RREF of a matrix, see Ref. [6Z2]. If b # 0 holds, Eq. (A1) is

rewritten as follows:

| A —b](’l‘):&ho (A.2)

where 7 =n+1, Ae R™*" and x € R”. On the other hand, if b =0 holds, 7, A, and x are

defined as 7 =n, A=A, and X = X, respectively, and the linear equation to be considered
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pivot pivot pivot

column column column
—_— —_— —_—

1

RREF(A)=

Figure A.1: Reduced row-echelon form of matrix A; the leading 1 of each row is pivot, and

the gray shaded columns are not the pivot columns.

is written in the same form as Eq. (B2). Since the existence of x satisfying Eq. (A1) is
assumed, the rank of A and A is the same and denoted as r = rank(A) = rank(A).

Let RREF(A) € R"*" denote the RREF of A. It can be written as in Fig. &, and all
the components in the last m —r rows are equal to zero. 6pivot and Gother are defined as
the sets of indices of pivot columns and the other columns of RREF(A), respectively. The
number of elements of €pivot and Gother are r and 72 —r = 1, respectively. As shown in
Fig. B, A € R"**7) ig constructed by assembling the first 7 components of each column of
RREF(A) corresponding to €yther. The columns of A is arranged in ascending order of the
column indices of RREF(A). Here, the vectors Xpivot € R and Xpree € R”~" are defined as the
vectors whose components are the components of x corresponding to the indices in 6p;yot and
Bother, respectively, arranged in ascending order of the component indices. Since RREF(A)
is obtained from a finite sequence of linear elementary row operation on A, Eq. (B32) is
equivalent to the following equation:

Xfree

- Xpi ~
[ IL. A ] ( pivot ) = ipivot +AXfree = 0 (A.3)

Therefore, the independent components and the dependent components of X satisfying
Eq. (A2) are identified as Xgee and Xpivot, respectively, and Xpiyot can be calculated from
Xree as follows:

Zpivot = ~AXfree (A.4)

Note that when b # 0; i.e., 7 = n+1, the last 1 in X, which is a constant component, is always
the last component of Xgee. In conclusion, the independent components of x satisfying
Eq. (A1) can be identified as the components corresponding to the first n — r components of

ifree .
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Appendix B

Example of independent nodal

coordinates identification

In this appendix, the process of identifying the independent nodal coordinates introduced
in Chapter B is presented for the single vertex model shown in Fig. Bl. The matrix Cy
for calculating the vertex coordinates from all the nodal coordinates and the matrix Cy
for calculating all the nodal coordinates from the independent nodal coordinates are also
shown. When the global indices of vertices and nodes are arranged as shown in Fig. B,
the edge consistency matrix Cg € R12*38 ig constructed according to Eqs. (22) and (E77) in
Chapter B as

®lI3 (B.1)

o
o
—
|
—
o
—
|
—
(en)
S O O O
S O O O
S O O O
S O O O

Figure B.1: Vertex and node indices of single vertex model (Each vertex index is sur-

rounded by a rectangle).
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where A® B € R™P*"Y represents the Kronecker product of matrices A = [a;;] € R™*" and

B € RP*9? defined as follows:

A®B=

a11B

an,1B

a1,B

amnB

The face consistency matrix Cr € R12*3% is constructed according to Egs. (235), (£8), and

(ZR) as

Cr=

W =
= o O =

The RREF of the node consistency matrix

lows [62]:

1
RREF(Cy) = 2

S O ©O O O © O N

S O O =

S O = =

S ©O ©O O O O N O

S O = O

S ©O ©O O O N O O

S = = O

S ©O © O N O O O

S = O O

S ©O O N O O O O

= = O O

CN _ [CE C;]T € R24x36

S O N O O O O O

= o O O

S O O N O

0
0 -3
0 O
0 0

S N O O O O © O

-3

®I3

(B.2)

is calculated as fol-

I3 (B.3)

Therefore, the coordinates of nodes 1-6 and 9 correspond to the pivots of RREF(Cy), and

the independent coordinates are determined as those of nodes 7, 8 and 10—12. The position

vectors of nodes 1-6 and 9 denoted by C;,...,(g, and {g € R? are determined by those of nodes

7, 8, and 10-12 denoted by {7, {g, 19, {11, and {19 € R3 as follows:

(6]
Co
Cs

Cs
G
Co

G | =

(=)

S O N O

I3

(&
Cs
C10
C11
Cio

(B.4)



Consequently, the matrix Ca € R36*15 for calculating all the nodal coordinates from the

independent nodal coordinates is written as

Ca=-2

2

S © O O O N O N O

2 0 0 -6 ]
-2 -3 3 0
0 -3 3 0
-2 -3 0 3
2 0 -3 -3
-2 0 -3 3
®I3
0 0 0 0
2 0 0 0
0 -2 2 -2
0 2 0 0
0 0 2 0
0 0 0 2|

(B.5)

On the other hand, according to Egs. (2T7) and (P-I8) in Chapter B, the matrix Cy € R1°*36

for calculating the vertex coordinates from all the nodal coordinates is constructed as fol-

lows:
2 -1
1 -2 2
Cy=-
\Y4 1 0 0
-2 0
4 2

Therefore, the position vectors of vertices 1-5 denoted by &, ...

-1

S O NN

2 -1 2 -1 0 00
-2 0 0 00 00O
4 2 -2 0000
-2 2 4 2 0 00
0O 0 -2 2 000

the independent noral coordinates as follows:

&1
&2

& |=—

&4
&

2
-4

3 0 0 -6 &
-4 -6 6 6 s
0 0 -6 olz| ¢y
-2 0 0 6 Ci1
2 0 0 -6 | Cio
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,&5 € R? are determined by
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Appendix C

Rotation matrix and its derivatives

The Rodrigues’ rotation matrix R(0) € R3*3 with respect to a rotation vector 8 = n that
rotates an arbitrary vector in three-dimensional space by an angle 6 (8 = 0) around the

rotation axis n = (n1,n9,n3)" € R? (|n| = 1) is written as follows [F4]:

R(0) = cosOI3+ (1 —cos Onn' +sinOnl,

n%(l—cos9)+cos0 ningo(l—cosfB)—ngsinf ngni(l—cosf)+ngosinf
= | ning(l—cosf)+ngsinf n%(l—cos@)+cos€ nang(l—cosf)—nqsind
ngni(l—cosf)—ngsinf nong(l—cosf)+nqsind n§(1—00s0)+c0s9
(C.1)

If 0 and n are considered as functions of the vector 8 = (01,602,03)", the following equations
hold:

6=10l=/6%+62+062

0 0

n=-—=

0\ /62+62+62

Accordingly, the first-order derivatives of 8 and n with respect to 0; (I = 1,2,3) are calculated

for positive 6 as

0 0;

o___ % _, (C.2)
1 /62 +62+02

on_1( 00 _30) 1

== —0—|=Z(e/ - C.3
36, 92( 36, ael) g e ™ ©3)

where e; =(1,0,0)T, e3 =(0,1,0)T, and es =(0,0,1)T. In addition, the derivatives of nj, (k =
1,2,3) with respect to 6; (I =1,2,3) are calculated as

onp 1
— =—(0p; — C4
36, 9( kL —NEpRY) (C4)
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where 6;; is the Kronecker delta. According to Eqs. (C2) and (C3), the following equations

hold for 1 =1,2,3:

0 1

6_91 (nnT) =3 (elnT +ne
0 1
a—el[n]x = 5([el]x —nj[n]
dcosf .
36, =—n;sin6
0sinf
36, =njcosf

Therefore, the first- and second-order derivatives of R(0) are calculated as follows:

ZT—2nlnnT)

x)

OR(0 1-cosf
{ )=—nlsin013+nl (sin9—2 cos )nnT
00,
in 6 1-cosf
+ny (cos@—%)[n]X + cos (elnT+nelT)
0°R(0 in0
09k(;9; =—{nknlcos9+(6kl—nknl)SIE }13

inf
+ {nknl cosB +(Op; —5nkn1)% —2(0p; —4npny)

sine)}[n]x

cosf

+ {—nknl sinf + (6p; —3nknl)(— -

0

N (sin@ 21—cos€

— ){(nkez+nlek)nT+n(nkel+nlek)T}

0 62

1—cosO
92 (ekelT + ele,I)
cosf sinf
+( 0 o2 )(nk[el]x +nilerls)

@2

sinf
+ _[el]x

(C.5)

(C.6)

(C.7)

(C.8)

(C.9)

(C.10)

Since Eqs. (C3) and (CI0) are valid only when 6 > 0, the derivatives of R(0) for 8 = 0 is

calculated by utilizing the following relations:

i 1—cos®
m =
60 0

. sin@
lim
6—0 0

0 02

(cos@ sin@)

Hence, when 0 =0 the first- and second-order derivatives of R(0) are calculated as follows:

OR(0)
601 = [el]x

4%R(0) 1

a0,00, ~ Oklsty (e
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Appendix D

Derivatives of incompatibility

vector

This appendix shows the first- and second-order derivatives of the components of the in-
compatibility vector G(W) with respect to the components of the generalized displacement
vector W. It is assumed that the j-th end (j = 1,2) of member i (=1,..., Ny) is connected to
node k (=1,...,Ny) rigidly or via hinge k& (=1,...,Ng) where Ny, NN, and Ny are the num-
ber of nodes, members, and hinges of a frame model, respectively. According to Eq. (2238),
the non-zero first-order derivatives of the translational incompatibility vector AU;; at the

Jj-th end of member i are calculated for [ = 1,2,3 as follows:

0AU;;
—h = (D.1)
i
0AU;; OR(Y;
(ll)J = ((nl)rij (D.2)
oY oV
13 l
AU
D =e (D.3)
U

Note that the derivatives with respect to @g), ¢y are equal to zero for arbitrary 2 =1,...,Ny,
h=1,...,Nyg, and [ =1,2,3. In addition, the derivatives with respect to Vi(,l), ‘I’g), U,(el,) are
also equal to zero when i’ # i and k' # k. Accordingly, the second-order derivative of AUj; is
0 except for the following term:

02AUij 02R(\Pi)

v o™~ gyDay® Y (D-4)
l l 1 1

When j-th end of member i is rigidly connected to node %, the non-zero first-order deriva-
tives of the rotational incompatibility vector A®;; defined in the first equation of Eq. (2237)

are calculated as follows:

ONG;;

o =—e (D.5)
0w

1
ING;;

L= (D.6)
90!
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Therefore, the second-order derivative of A®;; with respect to any component of W is zero
if the j-th end of member i is the rigid end. According to Eqs. (2£34), (233H), and (Z237),
when the j-th end of member i is connected to node % via hinge A, the non-zero first-order

derivatives of A®;; = ®;;(¥;,0;,¢}) are calculated as follows:

00} (9R(¥) g ~(R(®) <2>) (D.7)
a\P(ll) = a\I](ll) Th k Th .

390~ | 590 T, ( (Or)T,, ) .
1A 1A

007 (GR(W,)
Y D@ -{sin(ph (R(@k)rf>)+cos<ph (R(@k)Tf))} (D.9)

o - %)
v | ow!

oY SR(O
i (Rawye )| 2RO o (D.10)
) h @ “h
00, 00,
o SR(O
i (Reppe®). [ BO o (D.11)
) h @ “h
00, 00,
o JR(©
uo_ A2 ) o k) (2) 0R(Oy) (3)
0@5@” —(R(‘Pl)rh ) {sm(ph (—6®g) L )+cos(,0h( 095:) T, (D.12)
(3)
2 (Rew)T?) - {cos pn (ROTY ) - singy (R@Op)T} )} (D.13)
0P, h h h
Therefore, the second-order derivatives of ®;; are 0 except for the following terms:
02(13(.1.) 62R .
D@ = z)( ’;)12” '(R(Gk)Tf)) (D.14)
¥ Vo \owiow!
A PG VR I (3)
0¥ ow ~ {gwDay® " (R@VT?) (D.15)
Y = @ Ly @ @
O\I’y)a‘{’gl/) B a\Pgl)a\qu T {SlIl(Ph (R(G)k)‘rh )+cos<ph (R(@)k)‘rh )} (D.16)
a2V 2RO
B :(R(‘P")Tézb)'( (l)( ]El)’)T;?)) (D.17)
00,700 00,700
E 7k E Ok
92? 2RO
D) LJ(l’) - (R(‘Pi).r;zb)'( (l)( ]El)’) T;L&) (D.18)
00,700 0060
kO k E Ok
o) LJ(Z/) :(R(‘PL)T;?)) Sln(ﬂh TIEZ/)T;?> +COS‘ph lel,)‘[§?> (D.lg)
9006 9006 9006
GRS
a(p;J =- (R(‘Pi)'l'f)) . {Sin(Ph (R(@k)'r;zz)) +cos @y, (R(@k)'r;f”)} = —<I>(i§.) (D.20)
h
25D
0°C;;  [OR(¥:) 1)) [0R®))
Ol T | y Th (D.21)
avse!’ | awl 06{"
l l
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2 4(2)

6 (DU _ aR(‘Pl)‘[<1> . aR(@k)T<3>
avPae!" | aw? ]| g0

24(3)

>0 _(aR(‘I’i)T@)) {Sin(p (aR(Ok)T<2>)+cosq) (6R(®k)1<3>

DA — O ‘A h @ 'h h @ ‘h
a¥Po0 P! 96 00

tj 1) _(2) 2) . 3
= 1,7 |- {cospp |R(O)T,” | —singy (R(Op)T

i = | S| -ooson (@) v (0015
2o OR(©},) dR(O;,)

) . :(R(‘PL)T;?).{COS%( (z']>e T;?)_Sin(ph( (l"; 23>)}
30 o¢, 06 GO,
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Appendix E

Singular value decomposition for

infinitesimal mechanism analysis

The number of components of the generalized displacement vector W and the incompatibil-
ity vector G(W) are denoted by Nw and N, respectively. As explained in Chapters B and
H, a first-order infinitesimal mechanism W’ € RM¥ and a second-order infinitesimal mech-
anism W” € RNV satisfy following equations [33, 0] when the displacement of the frame
model is W:

r'ww =0 (E.1)
rOwW)w” + [r@)(v'v)w’] W =0 (E.2)

Here, T'V(W) and I'® (W) are the Ng x Ny matrix whose (i, J) component is 0G;(W)/0W; and
the order-three tensor of size Ng x Nw x Nw whose (i, j,£) component is 6°G;(W)/ oW;0Wy,
respectively, where G;(W) and W; are the i-th component of G(W) and the j-th component
W, respectively. In the following, the argument (W) is omitted for the simple expression.
When the rank of I'V is denoted by rr and Np and Ng are defined as Np = Nw —rr and
Ng=Ng-rr, TV is decomposed as follows by the singular value decomposition [63]:

n{
di yeees O, x
r(l): vl UNG ] lag(ﬂl IJT'I‘) rr ND (E.3)
ONerr ONSXND T
Ny

where 1,..., 4 are the singular values ordered as yj = --- = y,.. The left singular vectors
V1,..., VNG € RN and the right singular vectors Ni-- My € RMW are the orthonormal bases

of the Ng and Nw dimensional vector spaces, respectively. Then, they satisfy the following

equations:
wiv; (G=1,...,rr)
r(l)']j= g5 (E.4)
0 (G=rr+1,...,Nw)
rTy, = pin; G=1,...,rr) (E.5)
0 (J=rr+1,...,Ng)
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According to Eqgs. (ET) and (EZ4), when r1 < Ny, a first-order infinitesimal mechanism
W' can be represented as the linear combination of the right singular vectors n,,1,..., Ny,
corresponding to the zero singular values; i.e., W’ is orthogonal to ny,-.-,N,.- In addition,
if non-zero vectors W' and W” satisfying Eqs. (ECT) and (ECT) exist, [T®(W)W'] W' needs to
be orthogonal to the left singular vectors v, 41,...,Un, corresponding to the zero singular
values since the non-zero vector T (W)W” is orthogonal to them according to Eq. (E3);
ie., v;r [T®(W)W']W’ =0 holds for all i = rr +1,...,Ng. Conversely, if a non-zero W' satis-
fies Eq. (ECTl) and viT [T®W)W'|W' =0 for all i = rr +1,...,Ng, there exists a non-zero W”
satisfying Eq. (E2). Here, viT [T@(W)W'| W' is equal to the quadratic form W'T [viTI‘ Aw'.
Therefore, the necessary and sufficient condition for the existence of the first-order infinites-
imal mechanism W’ which can be extended to the second-order infinitesimal mechanism W

is that W’ satisfies the following equations:

W’-nj:O (G=1,...,rr) (E.6)
W T®?|W'=0  (=rr+1,..,No) E.7)
Note that if 71 < Nw and rr = Ng, W and W” satisfying Eqs. (E-1) and (E2) always exist.
In Chapters 2 and B, the order of the singular vectors are reversed so that vi,...,vy, and

N5 My, 10 this appendix corresponds to vyg,...,v1 and NNys---> M 10 Chapters 2 and B,

respectively.
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Appendix F

Results for case studies of form

generation

The tables of the DOF's and the values of the approximation error functions F st (X), Farea(X)
are shown to compare the results obtained from different (carea, Cnormal) and from different
choice of the design variables. In addition, the graphs of the DOFs and values of approx-
imation error functions are shown for the examples of form generation in Chapter @. The
makers and the types of lines used in the following graphs are summarized in Table. E.
In each graph, the DOFs or the values of the approximation error functions of the solutions
with cut pattern C, E, or X obtained by setting (carea, Cnormal) = (0, 0), (0.2, 0.5), (0.2, 1.0),
(0.4, 0.5), and (0.4, 1.0) are plotted with those of the solutions without cut. The range of the
vertical axes are defined so that the average values of the solution without cut are approxi-

mately centered.

Table F.1: Markers and lines in graphs of form generation results.

Carea Cnormal Without cut Cut pattern C Cut pattern E  Cut pattern X

0.0 0.0

0.2 0.5 —%-—

0.2 1.0 e aRE R T et

0.4 0.5 - et - PO
0.4 1.0 — ¥ — — 4+ — — % — — -

F.1 Approximation of HP surface

The tables and graphs are shown for the solutions considered in Section B3 of Chapter H,

which approximate the HP surface in Fig. AA.
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F.1.1 Tables comparing form generation results with respect to weight
coefficients of approximation error functions

This section shows the tables arranged with respect to the weight coefficients carea and
Cnormal 1N the approximation error function. The results of the approximation of the HP

surface obtained in cases G1-R3 are summarized as follows:

e Case G1: Tables F2-FH

Case G2: Tables EA-FY

Case G3: Tables ET0-F13

Case R1: Tables FT4-F17

Case R2: Tables FI8-FZ1

Case R3: Tables FZ2-F2H

Table F.2: Results for the approximation of the HP surface without cuts in Case G1 ar-

ranged with respect to carea and cnormal-

Carea 0.0 0.2 0.2 0.4 0.4
Cnormal 0.0 0.5 1.0 0.5 1.0
No. solutions 7 7 6 7 8
Min. DOF 3 1 5 1 1

max. 4.95 3.80 190 223 464
FgiseX) min. 179 151 182 187 198
avg. 2.33 244 187 203 249
max. 6.73 920 343 3.65 3.45
FareaX) min. 517 294 293 237 231
avg. 641 472 315 296 2.76
max. 4.38 401 228 269 395
FpomalX) min. 375 219 206 211 2.02
avg. 422 288 216 238 2.39

Table F.3: Results for the approximation of the HP surface with cut pattern C in Case G1

arranged with respect to carea and cpormal-

Carea 0.0 0.2 0.2 0.4 0.4
Cnormal 0.0 0.5 1.0 0.5 1.0

No. solutions 10 8 6 7 8
Min. DOF 9 5 8 6 5
max. 565.57 87.52 5.09 411.36 152.63

FgistX) min. 4.08 1.56 1.39 141 47.73

avg.  232.89 18.86 3.01 133.13 132.30

max. 1598.92 11147 16.80 128.03 439.98

FareaX)  min. 1369 320 251 230  63.01
avg. 66391 2518 545 4439 298.32

max. 6624 4023 9.06 4651 51.84

Fpormal(X)  min. 1188 250 226 218 2451
avg. 4042 1223 402 17.79  42.34
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Table F.4: Results for the approximation of the HP surface with cut pattern E in Case G1

arranged with respect to carea and cpormal-

Carea 0.0 0.2 0.2 0.4 0.4
Cnormal 0.0 0.5 1.0 0.5 1.0
No. solutions 7 8 10 7 7
Min. DOF 7 3 3 7 11

max. 179 291 877 209 0.67
FgieX) min. 018 020 035 0.36 028
avg. 071 1.01 238 083 048
max. 5.16 3.32 549 691 168
Farea®X) min. 205 098 236 117 0.61
avg. 3.19 200 345 213 116
max. 410 3.16 667 4.05 1.10
FpormalX) min. 104 066 114 090 0.67
avg. 217 173 2775 157 0.89

Table F.5: Results for the approximation of the HP surface with cut pattern X in Case G1

arranged with respect to carea and cpnormal-

Carea 0.0 0.2 0.2 0.4 0.4
Cnormal 0.0 0.5 1.0 0.5 1.0
No. solutions 11 8 11 10 8
Min. DOF 1 2 3 2 3

max. 12.08 828 20947 3456 175.03
Fgsee®X)  min. 110 127 158 189 143
avg. 437 349 7077 895 96.75
max. 1940 1622 18861 4440 469.95
Farea®X) min. 561 348 195 196  1.86
avg. 10.89 821 5653 10.71 245.46
max. 1092 942 6436 1889 51.20
FpomalX) min. 495 262 210 244 203
avg. 648 529 2182 591  30.46

Table F.6: Results for the approximation of the HP surface without cuts in Case G2 ar-

ranged with respect to carea and cnormal-

Carea 0.0 0.2 0.2 0.4 0.4
Cnormal 00 05 1.0 05 1.0
No. solutions 7 1 6 1 8
Min. DOF 1 21 1 21 3

max. 7.31 580 1470 525 10.39
FgitX) min. 675 580 410 525 272
avg. 7.5 580 1737 525 5.9
max. 1641 000 461 000 585
Farea®X) min. 348 000 000 0.0 0.00
avg. 1164 000 226 000 254
max. 7.02 231 536 199 355
FpomalX) min. 358 231 189 199 185
avg. 590 231 324 199 257
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Table F.7: Results for the approximation of the HP surface with cut pattern C in Case G2

arranged with respect to carea and cpormal-

Carea 0.0 0.2 0.2 0.4 0.4
Cnormal 0.0 0.5 1.0 0.5 1.0
No. solutions 11 8 7 1 1
Min. DOF 5 8 5 26 26

max. 7224 1349 1327 493 501
FgitX) min. 545 640 800 493 5.01
avg. 23.22 9.83 1048 4.93 5.01
max. 6202 425 348 000 0.00
Farea®)  min. 207 000 133 0.00 0.00
avg. 1942 262 249 0.0 0.00
max. 19.39 289 368 195 191
FpomalX) min. 452 224 209 195 191
avg. 813 262 236 195 191

Table F.8: Results for the approximation of the HP surface with cut pattern E in Case G2

arranged with respect to carea and cpnormal-

Carea 0.0 0.2 0.2 0.4 0.4
Cnormal 0.0 0.5 1.0 0.5 1.0
No. solutions 12 1 1 1 1
Min. DOF 5 29 29 29 29

max. 1874 0.67 0.73 172 4.76
Fyse®X) min. 023 067 073 172 4.76
avg. 649 067 073 172 476
max. 563 0.00 0.00 0.0 0.00
Farea®X) min. 156 0.00 0.0 0.0 0.00
avg. 261 000 000 000 0.00
max. 561 073 071 103 089
Fpomal®X) min. 075 073 071 1.03 0.89
avg. 270 0.73 0.71 103 0.89

Table F.9: Results for the approximation of the HP surface with cut pattern X in Case G2

arranged with respect to carea and cpormal-

Carea 0.0 0.2 0.2 0.4 0.4
Cnormal 0.0 0.5 1.0 0.5 1.0
No. solutions 10 10 10 7 8
Min. DOF 4 4 2 4 1

max. 651 1443 1281 3125 26.20
FaitX) min. 214 407 329 364 6.75
avg. 382 7.05 837 1071 10.27
max. 11.18 883 641 2816 6.98
FareaX) min. 622 000 000 000 035
avg. 966 327 164 666 276
max. 665 449 384 1582 622
FpomarX) min. 349 181 181 196 234
avg. 537 276 241 595 3.45
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Table F.10: Results for the approximation of the HP surface without cuts in Case G3 ar-

ranged with respect to carea and cnormal-

Carea 0.0 0.2 0.2 0.4 0.4
Cnormal 0.0 0.5 1.0 0.5 1.0
No. solutions 7 10 9 9 7
Min. DOF 1 3 1 1 5

max. 66.07 4656 17.72 7357 1441
FgiseX) min. 392 353 711 248 398
avg. 12.85 2246 890 2253 12.79
max. 6.78 993 451 6.75 564
FareaX) min. 546 283 291 267 283
avg. 596 476 330 360 3.28
max. 552 741 363 557 4.02
FpormalX) min. 394 203 182 211 203
avg. 426 352 213 265 232

Table F.11: Results for the approximation of the HP surface with cut pattern C in Case G3

arranged with respect to carea and cpormai-

Carea 0.0 0.2 0.2 0.4 0.4
Cnormal 0.0 0.5 1.0 0.5 1.0
No. solutions 12 9 9 7 10
Min. DOF 6 5 6 6 5

max. 21.37 4214 2046 19.36 113.01
FgitX) min. 201 1872 7.06 1810 451
avg. 13.30 2282 9.86 18.67  48.68
max. 646 622 496 280  7.12
FareaX) min. 454 258 293 252 289
avg. 582 337 324 267  4.49
max. 507 532 421 234 487
FpormalX) min. 293 203 177  1.93 1.82
avg. 425 280 217 204  3.68

Table F.12: Results for the approximation of the HP surface with cut pattern E in Case G3

arranged with respect to carea and cpnormal-

Carea 0.0 0.2 0.2 0.4 0.4
Cnormal 0.0 05 1.0 05 1.0
No. solutions 12 8 8 8 9
Min. DOF 4 5 1 9 3

max. 21.83 3320 587 7.80 23.17
FgitX) min. 0.18 031 040 023 065
avg. 10.68 7.73 1.63 260 840
max. 691 530 7.17 293 1116
FareaX) min. 1.39 122 121 1.02 126
avg. 422 268 269 175 3.60
max. 491 433 478 227 911
FpormalX) min. 074 078 0.83 065 0.78
avg. 286 202 176 117 266
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Table F.13: Results for the approximation of the HP surface with cut pattern X in Case G3

arranged with respect to carea and cpormai-

Carea 0.0 0.2 0.2 0.4 0.4
Cnormal 0.0 0.5 1.0 0.5 1.0
No. solutions 10 11 10 9 10
Min. DOF 2 1 3 1 2

max. 954 3717 7135 5251 35.60
Fgise®) min. 197 330 342 328 252
avg.  3.34 1898 23.09 2330 10.48
max. 16.74 33.12 20.02 13.47 4156
FareaX) min. 859 254 303 254 291
avg. 11.11 660 740 465 17.67
max. 9.68 17.60 1475 944 1943
FpormalX) min. 599 180 163 193 166
avg. 7.09 407 544 335 416

Table F.14: Results for the approximation of the HP surface without cuts in Case R1 ar-

ranged with respect to carea and cnormal-

Carea 0.0 0.2 0.2 0.4 0.4
Cnormal 0.0 0.5 1.0 0.5 1.0
No. solutions 6 6 6 6 7
Min. DOF 1 1 1 1 1

max. 2.03 200 174.68 264 3159
Fgise®X)  min. 127 162 2165 250  3.09
avg. 159 171 17005 254 7.20
max. 10.65 511 8203 325 2454
Farea®X) min. 913 401 3548 295 260
avg. 984 436 5175 3.02 5.0
max. 7.26 3.83 3340 3.05 11.16
FpomalX) min.  6.83 337 2482 298 282
avg. 7.02 345 2856 3.01 4.14

Table F.15: Results for the approximation of the HP surface with cut pattern C in Case R1

arranged with respect to carea and cpnormal-

Carea 0.0 0.2 0.2 0.4 0.4
Cnormal 0.0 0.5 1.0 0.5 1.0

No. solutions 6 8 8 8 8
Min. DOF 12 4 1 3 1
max. 80.75 206.61 11556 100.51 444.23

FgistX) min. 1.61 1.20 2.56 1.32 23.49

avg. 3046 39.78 17.71 1756 105.10

max. 202.06 80.02 73.83 213.65 215.32

FareaX)  min. 819 311 340 219  33.90
avg. 10063 33.76  14.36  31.37 108.59

max.  55.74 4120 29.34 4973  50.14

Fpormal(X)  min. 6.35 266  3.04 246 2456
avg. 3044 1853  7.24 996 3558
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Table F.16: Results for the approximation of the HP surface with cut pattern E in Case R1

arranged with respect to carea and cpormai-

Carea 0.0 0.2 0.2 0.4 0.4
Cnormal 0.0 0.5 1.0 0.5 1.0
No. solutions 8 10 10 8 7
Min. DOF 1 5 5 5 7

max. 14.78 100.39 1.67 156 145
FgitX) min. 045 066 059 076 0.63
avg. 262 11.82 127 122 0.86
max. 3648 1599 281 265 3.22
FareaX) min. 240 172 137 106 134
avg. 771 403 200 193 1.79
max. 29.37 817 241 230 180
FpormalX) min.  2.06 122 099 110 1.12
avg. 662 268 166 179 131

Table F.17: Results for the approximation of the HP surface with cut pattern X in Case R1

arranged with respect to carea and cpormai-

Carea 0.0 0.2 0.2 0.4 0.4
Cnormal 0.0 0.5 1.0 0.5 1.0
No. solutions 8 8 8 8 8
Min. DOF 1 1 1 1 1

max. 9.64 1687 8649 33127 97.27
Fgie®X)  min. 1.03 177 188 141 207
avg. 326 598 2836 117.13  20.18
max. 2811 29.67 89.11 533.68 128.06
FareaX) min. 635 356 287 279 248
avg. 1237 1208 27.83 24650 42.85
max. 1828 1852 3458 66.65  46.62
FpormalX) min. 539 233 28 256 281
avg. 950 801 1430 3952 2571

Table F.18: Results for the approximation of the HP surface without cuts in Case R2 ar-

ranged with respect to carea and ¢normal-

Carea 0.0 0.2 0.2 0.4 0.4
Cnormal 00 05 1.0 05 1.0
No. solutions 6 1 6 1 1
Min. DOF 1 21 1 21 21

max. 7.31 871 1144 765 7.41
FgistX) min. 579 871 738 765 741
avg. 7.06 871 1040 7.65 7.41
max. 4.17 0.00 0.74 000 0.00
Farea®X) min. 143 000 000 0.00 0.00
avg. 189 0.0 059 0.00 0.00
max. 533 234 269 241 213
FpomalX) min. 484 234 239 241 213
avg. 494 234 256 241 213
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Table F.19: Results for the approximation of the HP surface with cut pattern C in Case R2

arranged with respect to carea and cpormai-

Carea 0.0 0.2 0.2 0.4 0.4
Cnormal 0.0 0.5 1.0 0.5 1.0
No. solutions 9 8 8 8 9
Min. DOF 1 2 1 1 1

max. 78.00 3334 1507 72.00 78.34
FgitX) min. 440 873 700 555 759
avg. 28.67 1429 975 3940 2532
max. 27.77 899 402 197.02 1259
Farea®) min. 158 000 0.00 201 0.0
avg. 891 177 089 77.81 331
max. 1750 454 468 5029 7.94
FpomalX) min. 331 230 220 264 220
avg. 708 271 331 2753 328

Table F.20: Results for the approximation of the HP surface with cut pattern E in Case R2

arranged with respect to carea and cpormai-

Carea 0.0 0.2 0.2 0.4 0.4
Cnormal 0.0 0.5 1.0 0.5 1.0
No. solutions 10 1 1 1 1
Min. DOF 5 29 29 29 29

max. 858 197 220 1.77 1.82
FgseX) min. 235 197 220 1.77 1.82
avg. 399 197 220 177 1.82
max. 5.35 0.00 0.00 0.00 0.00
Farea®X) min. 2389 000 000 0.00 0.00
avg. 4.05 0.00 000 000 0.00
max. 530 105 105 1.14 1.05
Fpormal®X) min. 304 105 1.05 114 1.05
avg. 439 105 1.05 114 1.05

Table F.21: Results for the approximation of the HP surface with cut pattern X in Case R2

arranged with respect to carea and cpnormal-

Carea 0.0 0.2 0.2 0.4 0.4
Cnormal 0.0 0.5 1.0 0.5 1.0
No. solutions 8 9 8 9 8
Min. DOF 1 2 1 1 1

max. 5.30 9750 1359 17.47 13.48
Fgist®X) min. 438 581 432 559 5.39
avg. 463 2169 722 863 850
max. 6.66 1869 164 831 290
Farea®) min. 157 000 013 043  0.00
avg. 293 477 098 287 1.05
max. 6.60 14.02 3.01 10.14 291
FpomalX) min. 357 184 237 261 214
avg. 437 463 256 356  2.60
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Table F.22: Results for the approximation of the HP surface without cuts in Case R3 ar-

ranged with respect to carea and cnormal-

Carea 0.0 0.2 0.2 0.4 0.4
Cnormal 0.0 0.5 1.0 0.5 1.0
No. solutions 8 9 6 7 8
Min. DOF 1 1 1 1 1

max. 15.66 21.65 17.37 2545 43.49
FgitX) min. 756 1785 885 1627 21.29
avg.  9.38 20.05 11.69 23.07 24.42
max. 2230 470 3.10 507 3.82
FareaX) min. 452 261 288 236 256
avg. 728 286 303 288 273
max. 1554 523 192 395 4.32
FpomarX) min. 459 196 185 260 197
avg. 644 234 188 289 228

Table F.23: Results for the approximation of the HP surface with cut pattern C in Case R3

arranged with respect to carea and cpormai-

Carea 0.0 0.2 0.2 0.4 0.4
Cnormal 0.0 0.5 1.0 0.5 1.0
No. solutions 10 8 8 8 8
Min. DOF 1 3 5 2 1

max. 2456 87.83 2261 51.79 34.20
FgiwX) min. 725 679 561 729 14.69
avg. 12.82 2239 95838 1521 18.07
max. 27.62 801 3.60 17.38  5.36
Farea(X) min. 458 267 288 277 268
avg. 1483 366 3.09 466 3.12
max. 20.87 812 358 1151 467
FpormalX) min. 418 191 222 273 212
avg. 1133 305 255 3.86 251

Table F.24: Results for the approximation of the HP surface with cut pattern E in Case R3

arranged with respect to carea and cpnormal-

Carea 0.0 0.2 0.2 0.4 0.4
Cnormal 0.0 0.5 1.0 0.5 1.0
No. solutions 11 9 11 10 8
Min. DOF 5 5 1 5 5

max. 2.98 2464 2827 3643 13.67
Fgist®X) min. 226 082 085 295 093
avg. 268 902 11.37 13.83  7.17
max. 6.12 562 393 224 153
Farea(X) min. 3.84 125 145 128 125
avg. 482 196 250 154 143
max. 517 353 352 3.00 160
FpomalX) min. 311 098 112 110 0.98
avg. 394 161 224 171 130
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Table F.25: Results for the approximation of the HP surface with cut pattern X in Case R3

arranged with respect to carea and cpormai-

Carea 0.0 0.2 0.2 0.4 0.4
Cnormal 0.0 0.5 1.0 0.5 1.0
No. solutions 8 8 9 8 8
Min. DOF 1 3 1 1 1

max. 7.97 77.61 3422 2836 36.82
Fgise®X) min. 279 1733 438 1922  7.01
avg. 17.26 3959 13.80 21.18 2255
max. 8.16 141.10 27.79 457  7.70
Farea(X) min. 424 250 245 220 2.86
avg. 5.09 6825 7.32 264 419
max. 598 4566 12.89 458  6.20
FpormalX) min. 4.06 224 220 243 214
avg. 458 2648 439 278 347

F.1.2 Tables comparing form generation results with respect to choice of
design variables

This section shows the tables arranged with respect to the design variables of the optimiza-
tion problems (B50) and (B5R1), which are the nodal coordinates of the frame model or the
pairs of (s,t) parameters of the target Bézier surface and the offsets. The results of the
approximation of the HP surface obtained by setting (carea, Cnormal) to (0.0, 0.0), (0.2, 0.5),
(0.2,1.0), (0.4, 0.5), and (0.4, 1.0) are summarized as follows:

* (Carea, Cnormal) = (0.0, 0.0): Tables F26-FZ9

* (Carea; Cnormal) = (0.2, 0.5): Tables E30-F33

(Carea, Cnormal) = (0.2, 1.0): Tables E34-F37

(Carea, Cnormal) = (0.4, 0.5): Tables E38-F41

* (Careas Cnormal) = (0.4, 1.0): Tables FZ2_F27

Table F.26: Results for the approximation of the HP surface without cuts and with

(Carea, Cnormal) = (0.0, 0.0) arranged with respect to the choice of design vari-

ables.
Cases G1 G2 G3 R1 R2 R3
No. solutions 7 7 7 6 6 8
Min. DOF 3 1 1 1 1 1

max. 4.95 731 6607 203 731 15.66
Fgist®X) min. 179 675 392 127 579  7.56
avg. 233 715 1285 159 7.06 9.38
max. 6.73 1641 6.78 1065 4.17 22.30
FareaX) min. 517 348 546 913 143 452
avg. 641 1164 596 984 189 728
max. 4.38 7.02 552 726 533 1554
FpomalX) min. 375 358 394 683 484 459
avg. 422 590 426 7.02 494 644
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Table F.27: Results for the approximation of the HP surface with cut pattern C and

(Carea, Cnormal) = (0.0, 0.0) arranged with respect to the choice of design vari-

ables.
Cases G1 G2 G3 R1 R2 R3
No. solutions 10 11 12 6 9 10
Min. DOF 9 5 6 12 1 1
max. 565.57 72.24 21.37 80.75 78.00 24.56
FgistX) min. 4.08 5.45 2.01 1.61 4.40 7.25

avg.  232.89 2322 1330 3046 28.67 12.82
max. 1598.92 62.02 646 202.06 27.77 27.62

FareaX)  min. 1369 207 454 819 158 458
avg. 66391 1942 582 10063 891 14.83

max. 6624 1939 507 5574 1750 20.87

FpormalX)  min. 1188 452 293 635 331 418
avg. 4042 813 425 3044 7.08 1133

Table F.28: Results for the approximation of the HP surface with cut pattern E and
(Carea, Cnormal) = (0.0, 0.0) arranged with respect to the choice of design vari-

ables.
Cases G1 G2 G3 R1 R2 R3
No. solutions 7 12 12 8 10 11
Min. DOF 7 5 4 1 5 5

max. 179 1874 21.83 1478 858 298
Fgist®X) min. 018 023 018 045 235 226
avg. 071 649 1068 262 3.99 2.68
max. 5.16 563 691 3648 535 6.12
Farea®X) min. 205 156 139 240 289 384
avg. 3.19 261 422 771 405 4.82
max. 4.10 561 491 2937 530 5.17
FpomaiX) min. 104 075 074 206 3.04 3.11
avg. 217 270 286 6.62 439 3.94

Table F.29: Results for the approximation of the HP surface with cut pattern X and

(Carea, Cnormal) = (0.0, 0.0) arranged with respect to the choice of design vari-

ables.
Cases G1 G2 G3 R1 R2 R3
No. solutions 11 10 10 8 8 8
Min. DOF 1 4 2 1 1 1

max. 12.08 651 954 964 530 7.97
Fgist®) min. 110 214 197 103 438 279
avg. 437 382 334 326 463 7.26
max. 1940 11.18 16.74 28.11 6.66 8.16
FareaX) min. 561 622 859 635 157 424
avg. 1089 966 11.11 1237 293 5.09
max. 1092 6.65 9.68 1828 6.60 598
FpomalX) min. 495 349 599 539 357 4.06
avg. 648 537 709 950 437 458
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Table F.30: Results for the approximation of the HP surface without cuts and with

(Carea, Cnormal) = (0.2, 0.5) arranged with respect to the choice of design vari-

ables.
Cases G1 G2 G3 R1 R2 R3
No. solutions 7 1 10 6 1 9
Min. DOF 1 21 3 1 21 1

max. 3.80 580 4656 200 871 2165
Fgit®X) min. 151 580 353 162 871 17.85
avg. 244 580 2246 171 871 20.05
max. 920 0.00 993 511 000 4.70
Farea®X) min. 294 000 283 401 000 261
avg. 472 0.00 476 436 000 2.86
max. 4.01 231 741 383 234 523
FoormalX) min. 219 231 203 337 234 196
avg. 2.88 231 352 345 234 234

Table F.31: Results for the approximation of the HP surface with cut pattern C and

(Carea, Cnormal) = (0.2, 0.5) arranged with respect to the choice of design vari-

ables.
Cases G1 G2 G3 R1 R2 R3
No. solutions 8 8 9 8 8 8
Min. DOF 5 8 5 4 2 3
max. 87.52 1349 42.14 206.61 33.34 87.83
FgistX) min. 1.56 6.40 18.72 1.20 8.73 6.79

avg.  18.86 9.83 2282 39.78 1429 22.39
max. 11147 425 622 8002 899 801

FareaX)  min. 320 000 258 311 000 267
avg. 2518 262 337 3376 177  3.66

max. 4023 289 532 4120 454 812

FrormalX)  min. 250 224 203 266 230 191
avg. 1223 262 280 1853 271 3.5

Table F.32: Results for the approximation of the HP surface with cut pattern E and

(Carea, Cnormal) = (0.2, 0.5) arranged with respect to the choice of design vari-

ables.
Cases G1 G2 G3 R1 R2 R3
No. solutions 8 1 8 10 1 9
Min. DOF 3 29 5 5 29 5

max. 291 0.67 3320 100.39 197 24.64
Fgist®X) min. 020 067 031 066 197  0.82
avg. 101 067 7.73 1182 197  9.02
max. 3.32 0.00 530 1599 000 562
Farea®X) min. 098 000 122 172 000 1.25
avg. 200 000 268 403 000 196
max. 3.16 0.73 433 817 105 353
FpomalX) min. 066 073 078 122 1.05 0.98
avg. 173 073 202 268 105 161
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Table F.33: Results for the approximation of the HP surface with cut pattern X and

(Carea, Cnormal) = (0.2, 0.5) arranged with respect to the choice of design vari-

ables.
Cases G1 G2 G3 R1 R2 R3
No. solutions 8 10 11 8 9 8
Min. DOF 2 4 1 1 2 3

max. 828 1443 37.17 1687 9750  77.61
FgitX) min. 127 407 330 177 581 17.33
avg. 349 7.05 1898 598 21.69  39.59
max. 16.22 883 33.12 29.67 1869 141.10
FareaX) min. 348 0.00 254 356  0.00 2.50
avg. 821 327 660 1208 477 6825
max. 942 449 17.60 1852 1402 45.66
FpomalX) min. 262 181 180 233 184 2.24
avg. 529 276 407 801 463 2648

Table F.34: Results for the approximation of the HP surface without cuts and with

(Carea, Cnormal) = (0.2, 1.0) arranged with respect to the choice of design vari-

ables.
Cases G1 G2 G3 R1 R2 R3
No. solutions 6 6 9 6 6 6
Min. DOF 5 1 1 1 1 1

max. 190 14.70 17.72 17468 1144 17.37
FgseX) min. 182 410 7.1 2165 7.38 885
avg. 187 737 890 70.05 10.40 11.69
max. 343 461 451 8203 074 3.10
Farea®X) min. 293 000 291 3548 0.00 2.88
avg. 315 226 330 5175 059 3.3
max. 228 536 3.63 3340 269  1.92
FpomalX) min. 206 189 182 2482 239 185
avg. 216 324 213 2856 256 188

Table F.35: Results for the approximation of the HP surface with cut pattern C and

(Carea, Cnormal) = (0.2, 1.0) arranged with respect to the choice of design vari-

ables.
Cases G1 G2 G3 R1 R2 R3
No. solutions 6 7 9 8 8 8
Min. DOF 8 5 6 1 1 5

max. 509 1327 2046 11556 15.07 2261
Fgit®X) min. 139 800 7.06 256 7.00 561
avg. 3.01 1048 9.86 17.71 975  9.88
max. 16.80 348 4.96 7383 4.02  3.60
FareaX) min. 251 133 293 340 000 288
avg. 545 249 324 1436 089  3.09
max. 9.06 3.68 421 2934 468 358
FpomarX) min. 226 209 177 304 220 222
avg. 402 236 217 724 331 255
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Table F.36: Results for the approximation of the HP surface with cut pattern E and

(Carea, Cnormal) = (0.2, 1.0) arranged with respect to the choice of design vari-

ables.
Cases G1 G2 G3 R1 R2 R3
No. solutions 10 1 8 10 1 11
Min. DOF 3 29 1 5 29 1

max. 8.77 0.73 587 167 220 2827
Fgist®) min. 035 073 040 059 220 0.85
avg. 238 073 163 127 220 11.37
max. 5.49 0.00 7.17 281 000 393
Farea®X) min. 236 000 121 137 0.0 145
avg. 3.45 000 269 200 0.00 250
max. 6.67 0.71 4.78 241 105 3.52
FpormalX) min. 114 071 083 099 105 112
avg. 2.75 071 176 166 105 224

Table F.37: Results for the approximation of the HP surface with cut pattern X and

(Carea, Cnormal) = (0.2, 1.0) arranged with respect to the choice of design vari-

ables.
Cases G1 G2 G3 R1 R2 R3
No. solutions 11 10 10 8 8 9
Min. DOF 3 2 3 1 1 1
max. 209.47 12.81 71.35 86.49 13.59 34.22
F4istX) min. 1.58 3.29 3.42 1.88 4.32 4.38

avg.  70.77 837 23.09 2836 722 13.80
max. 188.61 641 2002 89.11 1.64 27.79

Farea(X)  min. 195 000 303 287 013 245
avg. 5653 164 740 27.83 098  7.32

max. 64.36 3.84 1475 3458 3.01 12.89

FpomalX) min. 210 181 163 288 237 220
avg. 21.82 241 544 1430 256  4.39

Table F.38: Results for the approximation of the HP surface without cuts and with

(Carea, Cnormal) = (0.4, 0.5) arranged with respect to the choice of design vari-

ables.
Cases G1 G2 G3 R1 R2 R3
No. solutions 7 1 9 6 1 7
Min. DOF 1 21 1 1 21 1

max. 223 525 7357 264 765 2545
Fgit®) min. 187 525 248 250 7.65 1627
avg. 203 525 2253 254 7.65 23.07
max. 3.65 0.00 675 325 0.00 5.07
Farea®X)  min. 237 000 267 295 000 2.36
avg. 296 000 360 302 000 288
max. 269 199 557 305 241 395
FpomarX) min. 211 199 211 298 241 260
avg. 238 199 265 301 241 289
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Table F.39: Results for the approximation of the HP surface with cut pattern C and

(Carea, Cnormal) = (0.4, 0.5) arranged with respect to the choice of design vari-

ables.
Cases G1 G2 G3 R1 R2 R3
No. solutions 7 1 7 8 8 8
Min. DOF 6 26 6 3 1 2
max. 411.36 493 19.36 100.51 72.00 51.79
FgistX) min. 141 4.93 18.10 1.32 5.55 7.29

avg. 13313 493 1867 1756 39.40 1521
max. 128.03 000 2.80 213.65 197.02 17.38

FareaX)  min. 230 000 252 219 201 277
avg. 4439 000 267 3137 7781 466

max. 4651 195 234 4973 5029 1151

Fporma1X)  min. 218 195 193 246 264 273
avg. 1779 195 204 996 2753 3.86

Table F.40: Results for the approximation of the HP surface with cut pattern E and

(Carea, Cnormal) = (0.4, 0.5) arranged with respect to the choice of design vari-

ables.
Cases G1 G2 G3 R1 R2 R3
No. solutions 7 1 8 8 1 10
Min. DOF 7 29 9 5 29 5

max. 209 172 7.80 156 177 3643
FgseX) min. 036 172 023 076 177 2.95
avg. 0.83 172 260 122 177 13.83
max. 691 0.00 293 265 000 224
Farea®) min. 117 000 102 1.06 0.00 128
avg. 213 000 175 193 000 154
max. 4.05 103 227 230 114 3.00
Fpormal®X) min. 090 103 065 110 114 110
avg. 157 1.03 117 179 114 171

Table F.41: Results for the approximation of the HP surface with cut pattern X and

(Carea, Cnormal) = (0.4, 0.5) arranged with respect to the choice of design vari-

ables.
Cases G1 G2 G3 R1 R2 R3
No. solutions 10 7 9 8 9 8
Min. DOF 2 4 1 1 1 1

max. 3456 31.25 5251 331.27 1747 28.36
Faist®) min. 189 364 328 141 559 19.22
avg. 895 1071 23.30 117.13 863 21.18
max. 4440 2816 1347 533.68 831 457
Farea®X) min. 196 000 254 279 043 220
avg. 1071 666 465 24650 287  2.64
max. 1889 1582 944 6665 10.14 458
FpomarX) min. 244 196 193 256 261 243
avg. 591 595 335 3952 356 278
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Table F.42: Results for the approximation of the HP surface without cuts and with

(Carea, Cnormal) = (0.4, 1.0) arranged with respect to the choice of design vari-

ables.
Cases G1 G2 G3 R1 R2 R3
No. solutions 8 8 7 7 1 8
Min. DOF 1 3 5 1 21 1

max. 4.64 1039 1441 3159 7.41 43.49
Fgist®X) min. 198 272 398 309 741 21.29
avg. 249 569 1279 7.20 7.41 2442
max. 345 585 564 2454 000 3.82
FareaX) min. 231 000 283 260 000 256
avg. 276 254 328 580 0.00 273
max. 3.95 355 402 11.16 213  4.32
FpormalX) min. 202 185 203 282 213 197
avg. 239 257 232 414 213 228

Table F.43: Results for the approximation of the HP surface with cut pattern C and

(Carea, Cnormal) = (0.4, 1.0) arranged with respect to the choice of design vari-

ables.
Cases G1 G2 G3 R1 R2 R3
No. solutions 8 1 10 8 9 8
Min. DOF 5 26 5 1 1 1

max. 152.63 501 113.01 44423 7834 34.20
FgstX)  min.  47.73 501 451 2349 759 14.69
avg. 13230 501 4868 10510 2532 18.07
max. 439.98 000  7.12 21532 1259 5.36
Farea®X)  min.  63.01 0.00 289 3390 000 268
avg. 29832 0.00 449 10859 331 3.12
max. 51.84 191 487 5014 7.94 467
Fpormal®X) min. 2451 191 182 2456 220 212
avg. 4234 191 368 3558 328 251

Table F.44: Results for the approximation of the HP surface with cut pattern E and

(Carea, Cnormal) = (0.4, 1.0) arranged with respect to the choice of design vari-

ables.
Cases G1 G2 G3 R1 R2 R3
No. solutions 7 1 9 7 1 8
Min. DOF 11 29 3 7 29 5

max. 067 476 2317 145 182 13.67
Fgit®X) min. 028 476 065 063 182 093
avg. 048 476 840 086 1.82  7.17
max. 168 0.00 11.16 322 0.00 153
Farea®X) min. 061 000 126 134 000 125
avg. 116 0.00 360 179 0.00 143
max. 110 089 911 180 1.05 1.60
FpomaaX) min. 067 089 078 112 105 098
avg. 0.89 089 266 131 105 1.30
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Table F.45: Results for the approximation of the HP surface with cut pattern X and

(Carea, Cnormal) = (0.4, 1.0) arranged with respect to the choice of design vari-

ables.
Cases G1 G2 G3 R1 R2 R3
No. solutions 8 8 10 8 8 8
Min. DOF 3 1 2 1 1 1
max. 175.03 26.20 35.60 97.27 1348 36.82
FgistX) min. 1.43 6.75 2.52 2.07 5.39 7.01
avg. 96.75 10.27 10.48 20.18 8.50 22.55
max. 469.95 6.98 4156 128.06 2.90 7.70
Farea(X) min. 1.86 0.35 2.91 2.48 0.00 2.86
avg. 24546 2.76 7.67 42.85 1.05 4.19
max. 51.20 6.22 19.43 46.62 2.91 6.20
FrormalX)  min. 2.03 234 166 281 214 214
avg. 30.46 3.45 4.16 25.71 2.60 3.47

F.1.3 Graphs of solutions approximating HP surface

The graphs plotting the DOFs and values of approximation error functions with respect to

the number of fixed crease lines are shown for the examples of the approximation of the HP

surface. The correspondence between the cases of examples and the indices of graphs are

as follows:

¢ Case G1: Figs. E1-E4

Case G2: Figs. ER-FR

Case G3: Figs. E9-F12

Case R1: Figs. FI3-E14

Case R2: Figs. ET7-E20

Case R3: Figs. E21F24
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Figure F.1: DOF's in Case G1 with the HP surface.
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Figure F.5: DOF's in Case G2 with the HP surface.
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Figure F.9: DOF's in Case G3 with the HP surface.
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Figure F.10: Values of F;(X) in Case G3 with the HP surface.
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Figure F.11: Values of F,.¢,(X) in Case G3 with the HP surface.
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Figure F.12: Values of F,;;ma1(X) in Case G3 with the HP surface.
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Figure F.16: Values of F,;;ma1(X) in Case R1 with the HP surface.
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Figure F.17: DOF's in Case R2 with the HP surface.
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Figure F.18: Values of F;(X) in Case R2 with the HP surface.
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Figure F.20: Values of F,;;ma1(X) in Case R2 with the HP surface.
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Figure F.24: Values of F,,;ma1(X) in Case R3 with the HP surface.

F.2 Approximation of dome surface

The tables and graphs are shown for the solutions considered in Section A3 of Chapter @,

which approximate the dome surface in Fig. B8.

F.2.1 Tables comparing form generation results with respect to weight

coefficients of approximation error functions

This section shows the tables arranged with respect to the weight coefficients c,rea and

Cnormal 1N the approximation error function. The results of the approximation of the HP
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surface obtained in cases G1-R3 are summarized as follows:

Case G1: Tables F46-F49

Case G2: Tables EER0-FR3

Case G3: Tables EA4-FAR7

Case R1: Tables FA8-F&1

Case R2: Tables F62-F 63

Case R3: Tables F66-F69

Table F.46: Results for the approximation of the dome surface without cuts in Case G1

arranged with respect to carea and cpormal-

Carea 0.0 0.2 0.2 0.4 0.4
Cnormal 0.0 0.5 1.0 0.5 1.0
No. solutions 7 7 7 7 1
Min. DOF 3 1 1 3 21

max. 250 3322 593 1833 232
FgitX) min. 206 224 261 218 232
avg. 230 1140 417 982 232
max. 125 882 335 431 0.00
Farea®X) min. 0.00 0.00 000 0.0 0.00
avg. 056 225 056 0.62 0.00
max. 443 1583 811 1344 231
FpormalX) min. 412 321 270 335 231
avg. 421 843 414 858 231

Table F.47: Results for the approximation of the dime surface with cut pattern C in Case

G1 arranged with respect to carea and cpormal-

Carea 0.0 0.2 0.2 0.4 0.4
Cnormal 0.0 0.5 1.0 0.5 1.0
No. solutions 6 7 7 7 8
Min. DOF 15 9 6 10 3

max. 305.62 17242 4993  567.64 449.52
FgistX)  min. 211 209 337 17768 291
avg. 5950  60.02 20.38 50097  80.46
max. 173.35 12753 35.83 1493.76  68.12
FareaX)  min. 207 000 000 621.89  0.00
avg. 4997 5145 1291 126515  30.56
max. 37.06 40.39 2480 5819  44.10
Fpormal(X)  min. 744 377 301 5658 353
avg. 2063 1981 1216  57.12  27.13
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Table F.48: Results for the approximation of the dome surface with cut pattern E in Case

G1 arranged with respect to carea and cpormai-

Carea 0.0 0.2 0.2 0.4 0.4
Cnormal 0.0 0.5 1.0 0.5 1.0
No. solutions 5 4 3 7 2
Min. DOF 13 17 21 9 25

max. 0.66 0.71 055 1.25 0.72
FgistX) min. 042 044 054 054 0.72
avg. 052 058 055 077 0.72
max. 034 0.00 000 0.03 0.00
Farea®X)  min.  0.02 0.0 0.00 0.00 0.00
avg. 021 0.00 0.0 000 0.00
max. 139 134 156 178 1.66
Fpomal®X) min. 116 101 1.04 119 160
avg. 128 115 122 158 163

Table F.49: Results for the approximation of the dome surface with cut pattern X in Case

G1 arranged with respect to carea and cpormal-

Carea 0.0 0.2 0.2 0.4 0.4
Cnormal 0.0 0.5 1.0 0.5 1.0

No. solutions 7 7 9 8 8
Min. DOF 2 6 3 1 1
max. 151.42 311.04 196.32 36.12 560.27

FistX) min. 1.94 2.07 2.63 2.53 3.68

avg.  27.28 9587 147.06 16.21 305.95
max.  25.76 20525 503.27 1657 252.53
FareaX)  min. 0.45 0.00 0.00  0.00 0.00

avg. 745 6651 37235 453 13327
max. 1486 46.79 6335 830  46.31
Frormal(X)  min. 370 252 271 3.06 358
avg. 656 2699 4965 6.06  30.76

Table F.50: Results for the approximation of the dome surface without cuts in Case G2

arranged with respect to carea and cpnormal-

Carea 0.0 0.2 0.2 0.4 0.4
Cnormal 0.0 0.5 1.0 05 1.0
No. solutions 8 5 7 1 6
Min. DOF 1 5 1 21 3

max. 77.97 2334 5722 6.15 4121
Fgist®X) min. 613 856 394 615 357
avg. 20.83 1652 16.89 6.15 13.08
max. 37.36 000 1.02 0.0 0.00
Farea®X) min. 344 000 0.0 000 0.00
avg. 17.89 000 0.15 0.00  0.00
max. 13.04 360 517 3.03 653
FpomalX) min. 331 261 205 303 210
avg. 754 314 302 3.03 3.48
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Table F.51: Results for the approximation of the dime surface with cut pattern C in Case

G2 arranged with respect to carea and cpormai-

Carea 0.0 0.2 0.2 0.4 0.4
Cnormal 0.0 0.5 1.0 0.5 1.0
No. solutions 8 8 1 6 6
Min. DOF 6 1 26 10 7

max. 7173 179.30 5.13 4590 81.56
FgiseX) min. 5211 500 513 7.28 29.78
avg. 6135 3255 513 2297 46.16
max. 10357 000 0.00 0.00 043
Farea®X) min. 7526  0.00 0.00 0.0 0.00
avg. 9580 0.00 000 000 0.07
max. 35.08 7.35 201 7.78 12.06
FpomalX) min.  30.31 240 201 266 278
avg. 3143 533 201 451 522

Table F.52: Results for the approximation of the dome surface with cut pattern E in Case

G2 arranged with respect to carea and cpormal-

Carea 0.0 0.2 0.2 0.4 0.4
Cnormal 0.0 0.5 1.0 0.5 1.0
No. solutions 8 1 1 1 1
Min. DOF 3 29 29 29 29

max. 4.39 057 081 054 145
FgigX) min. 083 057 081 054 145
avg. 151 057 081 054 145
max. 249 0.00 0.00 0.00 0.00
Farea®X) min. 097 000 000 0.0 0.00
avg. 160 0.00 0.0 0.00 0.00
max. 3.18 0.78 0.78 0.73 0.78
FpormalX) min. 169 0.78 0.78 0.73 0.78
avg. 203 0.78 0.78 0.73 0.78

Table F.53: Results for the approximation of the dome surface with cut pattern X in Case

G2 arranged with respect to carea and cpormai-

Carea 0.0 0.2 0.2 0.4 0.4
Cnormal 0.0 0.5 1.0 0.5 1.0
No. solutions 9 8 9 8 8
Min. DOF 1 1 3 1 2

max. 9953 39.47 4831 85.04 78.44
Fgit®X) min. 655 404 571 617 548
avg. 21.68 11.03 29.00 36.61 23.49
max. 1652 007 429 0.00  0.00
FareaX) min. 143 000 000 0.00 0.0
avg. 873 001 076 000  0.00
max. 1322 6.74 831 887 9.79
FpomarX) min. 408 222 221 244 223
avg. 695 386 459 508  6.37
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Table F.54: Results for the approximation of the dome surface without cuts in Case G3

arranged with respect to carea and cpormai-

Carea 0.0 0.2 0.2 0.4 0.4
Cnormal 0.0 0.5 1.0 0.5 1.0
No. solutions 7 9 8 2 1
Min. DOF 1 1 1 17 21

max. 12.30 17.28 13.08 5.00 8.60
FgistX) min. 1223 612 345 487 8.60
avg. 1226 953 7.83 494 8.60
max. 164 003 2524 0.00 0.00
Farea®) min. 117 000 0.0 0.00 0.00
avg. 149 001 3.6 0.00 0.00
max. 627 1110 12.85 4.04 452
FpomalX) min. 582 416 233 328 4.52
avg. 597 588 503 3.66 4.52

Table F.55: Results for the approximation of the dime surface with cut pattern C in Case

G3 arranged with respect to carea and cpormal-

Carea 0.0 0.2 0.2 0.4 0.4
Cnormal 0.0 0.5 1.0 0.5 1.0

No. solutions 8 9 5 9 8
Min. DOF 3 2 12 2 1
max. 8240 21.80 7.12 11.33 23.64

F4istX) min. 9.46 3.60 5.14 4.69 7.36

avg. 4229 1097 637 6.73 13.72
max. 20927 000 002 005 0.2

FareaX)  min. 812 0.00 000 0.00 0.00
avg.  96.07 0.00 0.00 001 0.0

max. 3646 808 284 557 11.77

FpormalX)  min. 565 200 188 223 238
avg.  19.01 472 260 381 579

Table F.56: Results for the approximation of the dome surface with cut pattern E in Case

G3 arranged with respect to carea and cpormai-

Carea 00 02 02 04 04
Cnormal 00 05 10 05 1.0
No. solutions 8 1 5 1 1
Min. DOF 1 29 13 29 29

max. 921 091 122 057 0.94
FgitX) min. 058 091 075 057 094
avg. 182 091 1.05 057 0.94
max. 1.87 0.00 000 0.00 0.00
Farea®X)  min.  0.09 0.00 0.00 0.00 0.00
avg. 101 0.0 0.0 000 0.00
max. 495 145 160 0.78 1.46
FpomalX) min. 1.07 145 090 0.78 146
avg. 169 145 144 0078 146
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Table F.57: Results for the approximation of the dome surface with cut pattern X in Case

G3 arranged with respect to carea and cpormai-

Carea 0.0 0.2 0.2 0.4 0.4
Cnormal 0.0 0.5 1.0 0.5 1.0
No. solutions 9 8 8 8 5
Min. DOF 1 1 2 1 10

max. 8121 1993 3546 56.90  76.52
FgistX) min. 744 298 311 336  3.30
avg. 3059 752 1261 2099  44.78
max. 7229 314 457 0.14 203.02
Farea®X)  min. 007 000 000 000 0.0
avg. 27.86 0.69 057 002 110.18
max. 2426 846 695 1838  40.93
FpomalX) min. 584 248 226 245 237
avg. 1253 437 434 885 2445

Table F.58: Results for the approximation of the dome surface without cuts in Case R1

arranged with respect to carea and cpormai-

Carea 0.0 0.2 0.2 0.4 0.4
Cnormal 0.0 0.5 1.0 0.5 1.0
No. solutions 8 2 3 3 5
Min. DOF 1 19 13 17 7

max. 562 295 269 417 342
Fguse®X) min. 184 225 245 222 243
avg.  3.25 260 257 3.04 290
max. 4.66 0.00 0.00 0.0 0.00
Farea®X) min.  0.08 0.00 0.0 0.0 0.00
avg.  2.88 000 000 0.00 0.00
max. 10.17 449 288 431 345
FpomalX) min. 382 275 262 289 265
avg. 593 362 274 355 323

Table F.59: Results for the approximation of the dime surface with cut pattern C in Case

R1 arranged with respect to carea and cnormal-

Carea 0.0 0.2 0.2 0.4 04
Cnormal 0.0 05 1.0 05 1.0

No. solutions 9 0 8 8 0
Min. DOF 5 - 2 5 -
max. 502.45 - 1745 90.81 -

FistX) min. 1.89 - 2.67 2.23 -
avg. 129.36 - 4.95 22.46 -

max. 78.91 - 4.44 54.44 -

FareaX) min. 1.49 - 0.00 0.00 -
avg. 22.06 - 1.23 1242 -

max. 53.05 - 7.93 36.70 -

Frorma1lX)  min. 4.53 - 3.37 2.79 -
avg. 23.17 - 492 1441 -
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Table F.60: Results for the approximation of the dome surface with cut pattern E in Case

R1 arranged with respect to carea and cnormal-

Carea 0.0 0.2 0.2 0.4 0.4
Cnormal 0.0 0.5 1.0 0.5 1.0
No. solutions 7 1 1 1 1
Min. DOF 7 29 29 29 29

max. 210 039 072 039 041
FgistX) min. 057 039 072 039 041
avg. 099 039 072 039 041
max. 3.64 0.00 000 0.00 0.00
Farea®®) min. 0.36 0.00 0.00 0.00 0.00
avg. 173 0.0 0.0 000 0.00
max. 3.15 092 146 092 0093
FpomalX) min. 207 092 146 092 093
avg. 246 092 146 092 0.93

Table F.61: Results for the approximation of the dome surface with cut pattern X in Case

R1 arranged with respect to carea and cnormal-

Carea 0.0 0.2 0.2 0.4 0.4
Cnormal 0.0 0.5 1.0 0.5 1.0

No. solutions 9 8 8 8 10
Min. DOF 5 6 1 1 1
max. 530.93 156.08 68.35 52.46 73.42

FistX) min. 1.64 3.22 7.78 4.15 3.05

avg. 204.30 64.69 4399 1610 29.23
max. 82951 308.72 163.19 3241 28.72

Farea(X)  min. 138 000 2717 0.00 0.00
avg. 31811 156.37 107.91 1146  8.46

max. 7026 6042 5753 21.23 34.36

FrormalX)  min. 715 437 1795 530  3.86
avg.  46.02 4500 4551 1146 11.53

Table F.62: Results for the approximation of the dome surface without cuts in Case R2

arranged with respect to carea and cpnormal-

Carea 0.0 0.2 0.2 0.4 0.4
Cnormal 0.0 0.5 1.0 0.5 1.0
No. solutions 8 1 6 1 7
Min. DOF 1 21 1 21 1

max. 6.97 3.36 1190 396 12.19
Fgist®X) min. 411 336 371 396 288
avg. 476 3.36 933 396 852
max. 817 0.0 0.14 000 0.00
Farea®X) min. 230 000 000 0.0  0.00
avg. 484 000 002 000 0.0
max. 575 285 3.15 280 5.30
FpomarX) min. 290 285 232 280 250
avg. 405 285 282 280 3.69
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Table F.63: Results for the approximation of the dime surface with cut pattern C in Case

R2 arranged with respect to carea and cnormal-

Carea 0.0 0.2 0.2 0.4 0.4
Cnormal 0.0 0.5 1.0 0.5 1.0

No. solutions 7 9 8 10 9
Min. DOF 2 3 1 2 2
max. 52.36 8272 5443 4391 91.17

F4istX) min.  42.47 4.72 9.03 4.49 3.39
avg. 44.71 46.21 19.09 1591 23.15

max. 95.23 12.09 13.42 8.29 0.04

FareaX) min. 78.84 0.00 0.00 0.00 0.00
avg. 83.15 2.67 1.68 1.32 0.01

max. 43.21 1899 18.57 9.30 9.24

FrormalX) min.  40.14 3.21 2.70 3.17 2.51
avg. 41.88 11.87 5.03 4.93 4.78

Table F.64: Results for the approximation of the dome surface

R2 arranged with respect to carea and cnormal-

with cut pattern E in Case

Carea 0.0 0.2 0.2 0.4 0.4
Cnormal 0.0 0.5 1.0 0.5 1.0

No. solutions 11 1 7 1 1
Min. DOF 9 29 7 29 29
max. 1090 0.56 11.06 045 0.50

FistX) min. 1.73 0.56 049 045 0.50
avg. 450 0.56 3.86 045 0.50

max. 5.15 0.00 0.00 0.00 0.00

FareaX) min. 3.15 0.00 0.00 0.00 0.00
avg. 3.81 0.00 0.00 0.00 0.00

max. 4.32  0.90 1.98 0.90 0.89

Frorma1X)  min. 1.58 0.90 0.89 090 0.89
avg. 2.58 0.90 146 0.90 0.89

Table F.65: Results for the approximation of the dome surface

R2 arranged with respect to carea and cnormal-

with cut pattern X in Case

Carea 0.0 0.2 0.2 0.4 0.4
Crormal 0.0 0.5 1.0 0.5 1.0

No. solutions 9 8 9 9 8
Min. DOF 1 2 2 2 7
max. 85.75 3497 5699 89.29 116.79

FgiX) min. 803 7.03 623 2343 6149
avg. 27.29 19.29 17.73 53.89 85.98

max. 44.86 0.00 1543 16.14 367.36

FareaX) min. 5.85 0.00 0.00 0.00 216.71
avg. 16.38 0.00 2.21 1.79 283.89

max. 22.29 6.00 11.27 1293 49.83

FpormalX) min. 523 268 253 543 43.15
avg. 10.50 4.12 5.18 8.80 47.46
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Table F.66: Results for the approximation of the dome surface without cuts in Case R3

arranged with respect to carea and cpormai-

Carea 0.0 0.2 0.2 0.4 0.4
Cnormal 0.0 0.5 1.0 0.5 1.0
No. solutions 7 1 7 1 1
Min. DOF 1 21 1 21 21

max. 4.72 466 26.37 557 5.03
FgistX)  min. 440 466 313 557 5.03
avg. 454 4.66 1093 557 5.03
max. 449 0.00 001 000 0.00
Farea®X) min. 240 000 000 0.0 0.00
avg. 328 0.0 0.00 0.00 0.00
max. 4.63 289 554 306 2.99
FpomalX) min. 356 289 247 3.06 299
avg. 4.13 2589 358 3.06 2.99

Table F.67: Results for the approximation of the dime surface with cut pattern C in Case

R3 arranged with respect to carea and cnormal-

Carea 0.0 0.2 0.2 0.4 0.4
Cnormal 0.0 0.5 1.0 0.5 1.0
No. solutions 8 8 8 6 9
Min. DOF 3 1 1 10 2

max. 64.85 2052 2024 7523 6247
FgitX) min. 59.17 3.03 6.18  9.83  5.46
avg. 6256 886 889 6107 16.33
max. 186.15 0.00 16.45 14512  3.72
Farea®X) min. 5012  0.00 000  0.00  0.00
avg. 13767 0.00 206 30.32  0.42
max. 4205 7.10 11.35 4851 22.85
FpormalX) min. 4023 281 340 580 272
avg. 4087 454 528 2866 831

Table F.68: Results for the approximation of the dome surface with cut pattern E in Case

R3 arranged with respect to carea and cnormal-

Carea 00 02 02 04 04
Cnormal 00 05 10 05 1.0
No. solutions 10 1 1 1 1
Min. DOF 11 29 29 29 29

max. 244 046 045 044 0.46
FgistX) min. 132 046 045 044 046
avg. 180 046 045 044 0.46
max. 2.61 0.00 000 0.0 0.00
Farea®X) min. 150 0.00 0.00 0.00 0.00
avg. 2.03 0.0 0.0 000 0.00
max. 3.81 087 087 087 087
FpomarX) min. 172 087 0.87 087 0.87
avg. 260 087 087 087 0.87
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Table F.69: Results for the approximation of the dome surface with cut pattern X in Case

R3 arranged with respect to carea and cnormal-

Carea 0.0 0.2 0.2 0.4 0.4
Cnormal 0.0 0.5 1.0 0.5 1.0
No. solutions 12 9 2 8 8
Min. DOF 1 1 24 2 3

max. 7098 32.82 11.70 7486  94.06
FgisgX) min. 705 523 485 1860  5.10
avg. 5342 1381 828 4867  45.09
max. 87.18 0.0 000 160.34 115.09
Farea®X)  min. 447 000 000 000  0.00
avg. 5896 0.00 000 3050 14.39
max. 17.14 923 3.85 4812 4264
FpomalX) min. 462 374 336 1626  3.50
avg. 1410 565 361 3260 23.14

F.2.2 Tables comparing form generation results with respect to choice of
design variables

This section shows the tables arranged with respect to the design variables of the opti-
mization problems (B50) and (BA1l). The results of the approximation of the dome surface
obtained by setting (carea, Cnormal) to (0.0, 0.0), (0.2, 0.5), (0.2, 1.0), (0.4, 0.5), and (0.4, 1.0)

are summarized as follows:
* (Careas Cnormal) = (0.0, 0.0): Tables F70-F73
* (Carea, Cnormal) = (0.2, 0.5): Tables F74-F77
* (Carea, Cnormal) = (0.2, 1.0): Tables F78-FRT
® (Careas Cnormal) = (0.4, 0.5): Tables EER2-F-85
* (Careas Cnormal) = (0.4, 1.0): Tables RG-89

Table F.70: Results for the approximation of the dome surface without cuts and with

(Carea, Cnormal) = (0.0, 0.0) arranged with respect to the choice of design vari-

ables.
Cases G1 G2 G3 R1 R2 R3
No. solutions 7 8 7 8 8 7
Min. DOF 3 1 1 1 1 1

max. 250 77.97 1230 562 697 4.72
Fgst®X) min. 206 613 1223 184 411 440
avg. 230 20.83 12.26 3.25 476 454
max. 125 37.36 164 466 817 4.49
Farea®)  min. 000 344 117 008 230 240
avg. 056 17.89 149 288 484 328
max. 4.43 13.04 627 10.17 575 4.63
FpomalX) min. 412 331 582 382 290 356
avg. 421 754 597 593 405 413

165



Table F.71: Results for the approximation of the dome surface with cut pattern C and

(Carea, Cnormal) = (0.0, 0.0) arranged with respect to the choice of design vari-

ables.
Cases G1 G2 G3 R1 R2 R3
No. solutions 6 8 8 9 7 8
Min. DOF 15 6 3 5 2 3
max. 305.62 71.73 82.40 502.45 52.36 64.85
FistX) min. 2.11 52.11 9.46 1.89 42.47 59.17

avg. 5950  61.35 4229 129.36 4471  62.56
max. 173.35 10357 209.27 7891 9523 186.15

FareaX)  min. 207 7526  8.12 149 7884  50.12
avg.  49.97 9580 96.07 22.06 83.15 137.67

max. 37.06 35.08 36.46 53.05 4321 4205

FrormalX)  min. 744 3031 565 453 40.14  40.23
avg. 2063 3143  19.01 23.17 41.88  40.87

Table F.72: Results for the approximation of the dome surface with cut pattern E and

(Carea, Cnormal) = (0.0, 0.0) arranged with respect to the choice of design vari-

ables.
Cases G1 G2 G3 R1 R2 R3
No. solutions 5 8 8 7 11 10
Min. DOF 13 3 1 7 9 11

max. 0.66 439 921 210 1090 244
FgseX) min. 042 083 058 057 173 132
avg. 052 151 182 099 450 1.80
max. 0.34 249 187 364 515 261
Farea®X) min. 002 097 009 036 315 150
avg. 021 160 101 173 381 203
max. 139 3.18 495 3.15 432 381
Fpomal®X) min. 116 169 107 207 158 172
avg. 128 203 169 246 258 260

Table F.73: Results for the approximation of the dome surface with cut pattern X and

(Carea, Cnormal) = (0.0, 0.0) arranged with respect to the choice of design vari-

ables.
Cases G1 G2 G3 R1 R2 R3
No. solutions 7 9 9 9 9 12
Min. DOF 2 1 1 5 1 1
max. 151.42 99.53 81.21 53093 85.75 70.98
FgitX)  min. 194 655 7.44 164 803 7.05
avg. 27.28 21.68 30.59 204.30 27.29 53.42
max. 25.76 16.52 72.29 829.51 44.86 87.18
FareaX) min. 0.45 1.43 0.07 1.38 5.85 4.47
avg. 7.45 8.73 27.86 318.11 16.38 58.96
max. 14.86 13.22 24.26 70.26 2229 17.14
FpormalX)  min. 3.70 4.08 5.84 715 523 462
avg. 6.56 6.95 12.53 46.02 10.50 14.10
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Table F.74: Results for the approximation of the dome surface without cuts and with

(Carea, Cnormal) = (0.2, 0.5) arranged with respect to the choice of design vari-

ables.
Cases G1 G2 G3 R1 R2 R3
No. solutions 7 5 9 2 1 1
Min. DOF 1 5 1 19 21 21

max. 3322 2334 1728 295 336 4.66
Fgst®X) min. 224 856 612 225 3.36 4.66
avg. 1140 1652 953 260 3.36 4.66
max. 882 000 003 000 000 0.00
Farea®) min.  0.00 0.00 0.0 000 0.0 0.00
avg. 225 000 001 0.0 0.00 0.00
max. 15.83 3.60 11.10 449 285 2.89
FpormalX) min. 321 261 416 275 285 289
avg. 843 314 588 362 285 289

Table F.75: Results for the approximation of the dome surface with cut pattern C and

(Carea, Cnormal) = (0.2, 0.5) arranged with respect to the choice of design vari-

ables.
Cases G1 G2 G3 RI1 R2 R3
No. solutions 7 8 9 0 9 8
Min. DOF 9 1 2 - 3 1
max. 172.42 79.30 21.80 - 8272 20.52
F4istX) min. 2.09 5.00 3.60 - 4.72 3.03
avg. 60.02 32.55 10.97 - 46.21 8.86
max. 127.53 0.00 0.00 - 12.09 0.00
Farea(X) min. 0.00 0.00 0.00 - 0.00 0.00
avg. 51.45 0.00 0.00 - 2.67 0.00
max. 40.39 7.35 8.08 - 18.99 7.10
Frorma1X)  min. 3.77 2.40 2.00 - 3.21 2.81
avg. 19.81 5.33 4.72 - 11.87 4.54

Table F.76: Results for the approximation of the dome surface with cut pattern E and

(Carea, Cnormal) = (0.2, 0.5) arranged with respect to the choice of design vari-

ables.
Cases G1 G2 G3 R1 R2 R3
No. solutions 4 1 1 1 1 1
Min. DOF 17 29 29 29 29 29

max. 0.71 057 091 039 056 0.46
Fgist®X)  min. 044 057 091 039 056 0.46
avg. 058 057 091 039 056 0.46
max. 0.00 0.00 000 0.00 0.0 0.00
Farea®)  min. 0.00 0.00 0.0 0.00 000 0.00
avg. 0.00 0.0 0.0 000 0.0 0.00
max. 134 078 145 092 090 0.87
FpomalX) min. 1.01 078 145 092 090 0.87
avg. 115 0.78 145 092 090 0.87
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Table F.77: Results for the approximation of the dome surface with cut pattern X and

(Carea, Cnormal) = (0.2, 0.5) arranged with respect to the choice of design vari-

ables.
Cases G1 G2 G3 R1 R2 R3
No. solutions 7 8 8 8 8 9
Min. DOF 6 1 1 6 2 1
max. 311.04 39.47 19.93 156.08 34.97 32.82
FgistX) min. 2.07 4.04 2.98 3.22 7.03 5.23

avg. 9587 11.03 752 6469 1929 13.81
max. 20525 007 3.14 30872 000 0.00

FareaX)  min. 0.00 0.00 000 000 000 000
avg. 6651 001 069 15637 0.00  0.00

max. 46.79 6.74 846 6042 6.00 9.23

Fporma1X)  min. 252 222 248 437 268 3.74
avg. 2699 386 437 4500 412 565

Table F.78: Results for the approximation of the dome surface without cuts and with

(Carea, Cnormal) = (0.2, 1.0) arranged with respect to the choice of design vari-

ables.
Cases G1 G2 G3 R1 R2 R3
No. solutions 7 7 8 3 6 7
Min. DOF 1 1 1 13 1 1

max. 593 5722 13.08 269 1190 26.37
FgueX) min. 261 394 345 245 371 3.3
avg. 417 1689 7.83 257 933 1093
max. 3.35 1.02 2524 000 0.14 0.01
FareaX) min. 0.00 000 0.00 0.00 000 0.0
avg. 056 015 3.16 0.00 0.02  0.00
max. 811 517 12.85 288 3.15 5.4
FpomalX) min. 270 205 233 262 232 247
avg. 414 302 503 274 282 358

Table F.79: Results for the approximation of the dome surface with cut pattern C and

(Carea, Cnormal) = (0.2, 1.0) arranged with respect to the choice of design vari-

ables.
Cases G1 G2 G3 R1 R2 R3
No. solutions 7 1 5 8 8 8
Min. DOF 6 26 12 2 1 1

max. 4993 5.13 7.12 1745 5443 2024
Fgit®) min. 337 513 514 267 903 6.18
avg. 20.38 513 6.37 495 19.09 889
max. 35.83 0.00 002 444 1342 1645
Farea®X) min.  0.00 0.00 000 000 0.00 0.00
avg. 1291 000 000 123 168 206
max. 2480 201 284 793 1857 11.35
FpomalX) min. 301 201 188 337 270  3.40
avg. 1216 201 260 492 503 528
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Table F.80: Results for the approximation of the dome surface with cut pattern E and

(Carea, Cnormal) = (0.2, 1.0) arranged with respect to the choice of design vari-

ables.
Cases G1 G2 G3 R1 R2 R3
No. solutions 3 1 5 1 7 1
Min. DOF 21 29 13 29 7 29

max. 055 081 122 072 11.06 045
Fgist®X) min. 054 081 075 072 049 0.45
avg. 055 081 1.05 072 386 045
max. 0.00 0.0 000 0.00 0.0 0.00
FareaX)  min. 0.00 000 0.00 0.0 0.00 0.00
avg. 0.00 0.0 0.00 000 000 0.00
max. 156 0.78 160 146 198 087
Fpomal®X) min. 1.04 078 090 146 089 0.87
avg. 122 078 144 146 146 0.87

Table F.81: Results for the approximation of the dome surface with cut pattern X and

(Carea, Cnormal) = (0.2, 1.0) arranged with respect to the choice of design vari-

ables.
Cases G1 G2 G3 R1 R2 R3
No. solutions 9 9 8 8 9 2
Min. DOF 3 3 2 1 2 24
max. 196.32 48.31 35.46 68.35 56.99 11.70
F4istX) min. 2.63 5.71 3.11 7.78 6.23 4.85

avg. 147.06 29.00 1261 4399 17.73 828
max. 50327 429 457 163.19 1543  0.00

FareaX)  min. 0.00 0.0 000 2717 0.00 0.0
avg. 37235 076 057 107.91 221  0.00

max. 6335 831 695 5753 11.27 3.85

FrormalX)  min. 271 221 226 1795 253 3.36
avg.  49.65 459 434 4551 518 361

Table F.82: Results for the approximation of the dome surface without cuts and with

(Carea, Cnormal) = (0.4, 0.5) arranged with respect to the choice of design vari-

ables.
Cases G1 G2 G3 R1 R2 R3
No. solutions 7 1 2 3 1 1
Min. DOF 3 21 17 17 21 21

max. 1833 6.5 500 417 3.96 557
FgistX) min. 218 6.15 487 222 396 557
avg. 982 6.15 494 304 396 557
max. 431 000 000 000 0.0 0.00
FareaX) min.  0.00 0.00 000 0.0 0.00 0.00
avg. 062 000 0.0 000 000 0.00
max. 1344 3.03 404 431 280 3.06
FpomaX) min. 335 3.03 328 289 280 3.06
avg. 858 303 3.66 355 280 3.06
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Table F.83: Results for the approximation of the dome surface with cut pattern C and

(Carea, Cnormal) = (0.4, 0.5) arranged with respect to the choice of design vari-

ables.
Cases G1 G2 G3 R1 R2 R3
No. solutions 7 6 9 8 10 6
Min. DOF 10 10 2 5 2 10

max. 567.64 4590 11.33 90.81 4391 7523
Fgist®X)  min.  177.68 7.28 469 223 449  9.83
avg. 50097 2297 673 2246 1591 6107
max. 149376 0.00 005 5444 829 14512
Farea®X) min.  621.89  0.00 0.0 0.00 0.00  0.00
avg. 126515 0.00 001 1242 132  30.32
max.  58.19 7.78 557 36.70 9.30 4851
FpormalX)  min. 5658 266 223 279 317 580
avg. 57.12 451 381 1441 493 2866

Table F.84: Results for the approximation of the dome surface with cut pattern E and

(Carea, Cnormal) = (0.4, 0.5) arranged with respect to the choice of design vari-

ables.
Cases G1 G2 G3 R1 R2 R3
No. solutions 7 1 1 1 1 1
Min. DOF 9 29 29 29 29 29

max. 125 054 057 039 045 044
FgseX)  min. 054 054 057 039 045 0.44
avg. 0.77 054 057 039 045 0.44
max. 0.03 0.00 0.00 0.00 000 0.00
Farea®X) min. 000 0.00 0.00 0.00 0.00 0.00
avg. 0.00 0.0 0.0 000 000 0.00
max. 178 0.73 0.78 092 090 0.87
FpormalX) min. 119 073 0.78 092 0.90 0.87
avg. 158 0.73 0.78 092 090 0.87

Table F.85: Results for the approximation of the dome surface with cut pattern X and

(Carea, Cnormal) = (0.4, 0.5) arranged with respect to the choice of design vari-

ables.
Cases G1 G2 G3 R1 R2 R3
No. solutions 8 8 8 8 9 8
Min. DOF 1 1 1 1 2 2

max. 36.12 8504 56.90 5246 8929  74.86
Faist®X) min. 253 617 336 415 2343 18.60
avg. 1621 36.61 2099 1610 53.89  48.67
max. 1657 000 014 3241 16.14 160.34
Farea®X) min.  0.00 0.00 000 000 000 0.0
avg. 453 000 002 1146 179  30.50
max. 830 887 1838 2123 1293 4812
FpomarX) min. 306 244 245 530 543 1626
avg. 606 508 885 1146 880  32.60
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Table F.86: Results for the approximation of the dome surface without cuts and with

(Carea, Cnormal) = (0.4, 1.0) arranged with respect to the choice of design vari-

ables.
Cases G1 G2 G3 R1 R2 R3
No. solutions 1 6 1 5 7 1
Min. DOF 21 3 21 7 1 21

max. 232 4121 860 342 1219 5.03
FgistX) min. 232 357 860 243 288 503
avg. 232 13.08 860 290 852 5.03
max. 0.00 0.0 0.00 000 0.00 0.00
Farea®)  min. 0.00 0.00 0.0 0.00 000 0.00
avg. 0.00 000 0.0 000 000 0.00
max. 231 653 452 345 530 299
FpormalX) min. 231 210 452 265 250 299
avg. 231 348 452 323 369 299

Table F.87: Results for the approximation of the dome surface with cut pattern C and

(Carea, Cnormal) = (0.4, 1.0) arranged with respect to the choice of design vari-

ables.
Cases G1 G2 G3 RI1 R2 R3
No. solutions 8 6 8 0 9 9
Min. DOF 3 7 1 - 2 2
max. 449.52 81.56 23.64 - 91.17 6247
FistX) min. 291 29.78 7.36 - 3.39 5.46
avg. 80.46 46.16 13.72 - 23.15 16.33
max. 68.12 0.43 0.02 - 0.04 3.72
Farea(X) min. 0.00 0.00 0.00 - 0.00 0.00
avg. 30.56 0.07 0.00 - 0.01 0.42
max. 4410 12.06 11.77 - 9.24 2285
Frorma1X)  min. 3.53 2.78 2.38 - 2.51 2.72
avg. 27.13 5.22 5.79 - 4.78 8.31

Table F.88: Results for the approximation of the dome surface with cut pattern E and

(Carea, Cnormal) = (0.4, 1.0) arranged with respect to the choice of design vari-

ables.
Cases G1 G2 G3 R1 R2 R3
No. solutions 2 1 1 1 1 1
Min. DOF 25 29 29 29 29 29

max. 0.72 145 094 041 050 0.46
Fgist®X) min. 072 145 094 041 050 0.46
avg. 0.72 145 094 041 050 0.46
max. 0.00 0.00 000 0.00 0.0 0.00
Farea®)  min. 0.00 0.00 0.0 0.00 000 0.00
avg. 0.00 0.0 0.0 000 0.0 0.00
max. 166 0.78 146 093 089 0.87
FpomalX) min. 160 078 146 093 089 0.87
avg. 163 078 146 093 0.89 0.87
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Table F.89: Results for the approximation of the dome surface with cut pattern X and

(Carea, Cnormal) = (0.4, 1.0) arranged with respect to the choice of design vari-

ables.
Cases G1 G2 G3 R1 R2 R3
No. solutions 8 8 5 10 8 8
Min. DOF 1 2 10 1 7 3
max. 560.27 78.44 76.52 73.42 116.79 94.06
FgistX) min. 3.68 5.48 3.30 3.05 61.49 5.10
avg. 305.95 23.49 44.78 29.23 85.98 45.09
max. 252.53 0.00 203.02 28.72 367.36 115.09
FareaX) min. 0.00 0.00 0.00 0.00 216.71 0.00
avg. 133.27 0.00 110.18 8.46 283.89 14.39
max. 46.31 9.79 40.93 34.36 49.83 42.64
FrormalX)  min. 3.58 2.23 2.37 3.86 43.15 3.50
avg. 30.76 6.37 2445 11.53 47.46 23.14

F.2.3 Graphs of solutions approximating dome surface

The graphs plotting the DOFs and values of approximation error functions with respect to

the number of fixed crease lines are shown for the examples of the approximation of the

dome surface. The correspondence between the cases of examples and the indices of graphs

are as follows:

¢ Case G1: Figs. E25-F28

40
30
Q20
10

Case G2: Figs. EZ9-F37

Case G3: Figs. E33-F3d

Case R1: Figs. E37-FE40

Case R2: Figs. F41-F44

Case R3: Figs. E45-F48
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Figure F.25: DOF's in Case G1 with the dome surface.
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Figure F.26: Values of F;st(X) in Case G1 with the dome surface.
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Figure F.27: Values of Fye5(X) in Case G1 with the dome surface.
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Figure F.28: Values of F\,grma1(X) in Case G1 with the dome surface.
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Figure F.29: DOF's in Case G2 with the dome surface.
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Figure F.33: DOF's in Case G3 with the dome surface.
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Figure F.34: Values of F;st(X) in Case G3 with the dome surface.
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Figure F.41: DOF's in Case R2 with the dome surface.
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Figure F.42: Values of F;s(X) in Case R2 with the dome surface.
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Figure F.43: Values of F,16,(X) in Case R2 with the dome surface.
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Figure F.45: DOF's in Case R3 with the dome surface.
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