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Abstract

Direct observation of exoplanets is crucial for solving the following two prob-
lems: clarifying the mechanisms of planet formation and searching for ex-
traterrestrial biological activities. Potential targets have small angular sep-
arations (∼ 0.01− 0.1 arcsec) from their host stars and small planet-to-star
contrasts (∼ 10−7). Thus, direct observation requires a high angular res-
olution and high contrast. Such observation with ground-based telescopes
is affected by the Earth’s atmospheric turbulence. This is because the tur-
bulence causes wavefront aberrations, which scatter the host star’s light to
degrade the angular resolution and contrast. Therefore, wavefront correction
with adaptive optics (AO) is necessary. AO measures the incident wavefront
aberration with a wavefront sensor (WFS) and corrects the aberration with
a deformable mirror (DM), controlled by a real-time controller (RTC).

A highly accurate wavefront correction is required to obtain a 10−7-
level final contrast. Such correction can be achieved with extreme adaptive
optics (ExAO), which has ∼ 40000 measurement/correction points in a 30-m
telescope aperture and runs at ∼ 5 kHz. ExAO requires a high-performance
WFS with the following properties:

• high efficiency: a small measurement error with a limited number of
photons,

• high-speed capabilities: low calculation cost and a small readout region
for wavefront sensing,

• a large dynamic range.

As for high efficiency, ExAO favors phase sensors, such as a fixed pyramid
WFS and a Zernike WFS. However, These current phase sensors have room
to improve high-speed capabilities and dynamic ranges.

This thesis describes the development of a new phase sensor named b-
PDI (birefringent point-diffraction interferometer). The b-PDI utilizes bire-
fringent crystal as its key optical element. The following properties are
predicted with simulations and demonstrated with experiments:

• high efficiency comparable to other phase sensors,

• high-speed capabilities with the lowest level of calculation cost and the
smallest level of readout region width for wavefront sensing,



• a larger dynamic range than other phase sensors.
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Chapter 1

Introduction: Direct
Observation of Exoplanets

Modern astronomy has two challenging problems: (1) clarifying the mech-
anisms of planet formation and (2) searching for extraterrestrial biological
activities. Direct observation of exoplanets can bring essential information
to solve these problems. Exoplanets are the planets orbiting stars other
than the Sun. After the first detection of the planet around a main-sequence
star by Mayor and Queloz in 1995 [1], about 5000 exoplanets [2] have been
detected mostly through indirect observation such as radial velocity mea-
surement. Indirect observation reveals the physical properties of exoplanets,
such as the mass and the radius, but cannot bring crucial information to
solve the problems above. This chapter describes the necessity for direct ob-
servation, in which exoplanets and their host stars are spatially resolved with
telescopes, and raises the observational characteristics of potential targets.

1.1 Clarifying the mechanisms of planet formation

So far, two planet formation models have been presented: the disk instability
(hot-start) model [3] and the core accretion (cold-start) model [4, 5, 6]. Each
model predicts different luminosity evolution of gas-giant planets (Fig. 1.1).
According to the disk instability model, planets are formed through gravi-
tational collapse via the instability of the protoplanetary disk. This process
enables the gas to retain much of its initial heat. Thus, the gas-giant planets
just after the formation are hot (≳ 1000 K [7]) and luminous at the infrared
band due to a strong thermal emission. On the other hand, according to
the core accretion model, gas-giant planets are formed through gas accretion
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1.2. SEARCHING FOR EXTRATERRESTRIAL BIOLOGICAL
ACTIVITIES

onto solid cores (∼ 10 Earth masses). The process leads the accreting gas to
radiate away much of its initial heat due to an accretion shock [8, 9]. Thus,
the gas-giant planets just after the formation are relatively cold (≲ 1000 K
[7]) and less luminous.

The two models are validated by comparing the observed luminosity of
gas-giant exoplanets with the predicted values. Detailed comparison requires
the infrared luminosity of gas giants with known ages (≲ 0.1 Gyr) and
masses. The age is considered the same as the age of its host star. The
mass is determined by indirect observations such as astrometry and radial
velocity measurement. The infrared luminosity is measured only by direct
photometric observation. Therefore, direct observation at the infrared band
is essential to clarify the mechanisms of planet formation.

Figure 1.1: The figures from Spiegel & Burrows [7] showing the luminosity evolu-
tion of gas-giant planets under two models. Left: evolution of J-band
absolute magnitude. Right: evolution of H-band absolute magnitude.
Red solid lines: the disk instability (hot-start) model. Blue solid lines:
the core accretion (cold-start) model. Gas-giant planets with masses
of 1, 2, 5, and 10 Jupiter mass (MJ) are assumed.

1.2 Searching for extraterrestrial biological activ-
ities

In recent years, potentially habitable exoplanets have been detected through
indirect observations. They are rocky planets and orbiting within the hab-
itable zones around their host stars. Such planets are expected to maintain
liquid water and biological activities. Representative examples are the plan-
ets around the M-type star TRAPPIST-1 [10].

Detection of biosignatures supports biological activities on exoplanets.
Examples of biosignature are atmospheric O2 and CH4 [11, 12], which can
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1.3. CHARACTERISTICS OF POTENTIAL TARGETS

be produced by biological activities. In particular, simultaneous detection
of O2 and CH4 provides a strong support for the existence of life [12].

These substances produce absorption lines in the exoplanet’s reflected
light and emitted light. The wavelengths of typical O2 and CH4 absorption
lines are respectively 1.27 µm and ∼ 1.6 µm (Fig. 1.2), around which
reflected light is prominent. Thus, the absorption lines could be detected
by direct spectroscopic observation of the reflected light at the near-infrared
bands. The direct spectroscopy in this band is also useful for disctiminating
the false positives, as shown in Fig. 1.2.

Note that the atmospheric composition of exoplanets can also be searched
by spectroscopy of the transmitted light. However, the transmission spec-
troscopy suffers from low signal-to-noise (S/N) ratios because the strong
light arriving directly from the star is mixed into the transmitted light and
becomes noise. In contrast, direct spectroscopic observations can yield rel-
atively high S/N ratios because the light from the planet and the star is
physically isolated [13]. In addition, direct observations of reflected light
can access deeper atmosphere of planets than transmission spectroscopy
[14].

1.3 Characteristics of potential targets

Exoplanets are located at small angular separation (≪ 1 arcsec) from their
host star. In addition, its luminosity is several orders of magnitude less than
that of its host star. In other words, the planet/star luminosity ratio (con-
trast) is small. This property is referred to as “high contrast” This section
specifies the angular separations and contrasts of the potential targets.

1.3.1 Gas-giant planets

In order to verify the models of planet formation, the targets should be
young gas-giant planets with known masses. Matsuo et al. focused on the
gas-giant planets [17] whose masses are determined by GAIA astrometry
mission. Astrometry is an effective method to determine the masses of
young planets. This is because the method is less subject to the activity of
young host stars than radial velocity measurement. Matsuo et al. estimated
the luminosity and contrast of the planets within the discovery space of
GAIA. Figure 1.3 shows the result. The assumed host stars are solar-type
with masses of 1M⊙

1. With a ∼ 20-µarcsec astrometry accuracy and a

1M⊙: Solar mass.
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1.4. SUMMARY OF THIS CHAPTER

5-year mission lifetime, GAIA can detect planets with masses of ≳ 0.1 MJ
2 and orbital periods of less than several years [18]. The periods correspond
to angular separations of ≲ 0.6 arcsec from the host stars at 5 pc from the
Earth. The contrast of such planets are ≳ 10−10. In particular, the planets
at > 5 MJ have contrasts of 10−6 − 10−7.

1.3.2 Potentially habitable planets

The targets are earth-sized planets orbiting within habitable zones. Guyon
et al. estimated the angular separations and contrasts of hypothetical Earth
analogs at the habitable zones of the stars within 30 pc from the Earth [19].
Figure 1.4 shows the result. The estimated angular separations and contrasts
are grouped by the spectral types of the host stars. In the case of G-type host
stars, the angular separations are relatively large (∼ 0.1 arcsec) because the
habitable zones are distant from hot host stars. The contrasts are ∼ 10−10

because of the high luminosity of the host stars. In the case of M-type host
stars with low temperature, in contrast, the angular separations are small
(∼ 0.01 arcsec), and the contrasts are relatively moderate (∼ 10−7).

1.4 Summary of this chapter

Direct observation of exoplanets in near-infrared wavelengths brings crucial
information about planet formation and exraterrestrial biologiacl activities.
Potential targets have small angular separations (∼ 0.01− 0.1 arcsec) from
their host stars and small planet/star luminocity ratios (∼ 10−7 − 10−10).
The latter property is referred to as “high contrast.”

2MJ : Jupiter mass.

7



1.4. SUMMARY OF THIS CHAPTER

Figure 1.2: The figures fromMeadows et al. [15] showing the predicted reflectivity
spectra of the potential planet Proxima Centauri b. The topmost fig-
ure assumes Earth-like atmosphere containing biological O2 and CH4.
The second to fourth figures from the top are examples of false posi-
tives with abiotic O2. The second and third assume the atmosphere
with massive O2 produced via the ocean loss and the succeeding pho-
tolysis of H2O. These cases show broad O4 absorption lines induced
by O2−O2 collisions [16]. The fourth assume the atmosphere with O2

produced via the photolysis of CO2. This case shows prominent CO
lines [16]. These features are used to discriminate false positives.
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1.4. SUMMARY OF THIS CHAPTER

Figure 1.3: The figures cited from Matsuo et al. [17] Left: the estimated star-
to-planet contrast plotted against the mass of gas-giant planets. The
black solid and dashed lines assume the planetary age of 1 Gyr and 100
Myr, respectively. Right: Discovery space of GAIA. The horizontal
axis is the angular separation between the planet and its host star.
The vertical axis is the planetary mass normalized by Jupiter’s mass.
The black solid line represents the lower limit of the discovery space,
assuming GAIA’s astrometry accuracy of 20 µarcsec, mission lifetime
of 5 years, and the host star’s mass of 1M⊙. The black dotted lines
are the outer limits on the detectable angular separation for various
distances. The red lines in both figures are the potential discovery
space of the high-contrast instrument SEICA described later.
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1.4. SUMMARY OF THIS CHAPTER

Figure 1.4: The figure from Guyon et al. [19] showing the samples of potentially
habitable planets. The horizontal axis is the angular separation of the
planet and its host star. The vertical axis is the logarithmic contrast.
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Chapter 2

Atmospheric Turbulence and
Adaptive Optics

The previous chapter showed that the direct observation of exoplanets re-
quires high angular resolution (∼ 0.01 − 0.1 arcsec) and high contrast (∼
10−7−10−10). However, the turbulence in the Earth’s atmosphere has nega-
tive impacts on high-resolution and high-contrast observation with ground-
based telescopes. This chapter characterizes the atmospheric turbulence
and introduces the relevant parameters. In addition, this chapter overviews
adaptive optics (AO), which is a technology to overcome the turbulence.

2.1 Atmospheric turbulence and wavefront aber-
rations

The Earth’s atmosphere is always turbulent. This turbulence forms fluctu-
ations in the refractive index distribution in the atmosphere and disturbs
the light from stars. As a result, the telescopic image of the host star is
disturbed, degrading the angular resolution and contrast around it. This
section outlines this process based on Hardy [20] and Guyon [13].

2.1.1 Description of atmospheric turbulence

The shear of the wind velocity in the Earth’s atmosphere causes turbulence.
Kolmogorov presented the model describing the velocity distribution of tur-
bulent fluid [21]. In the model, turbulence is formed as large-scale (outer
scale L0) disturbances, which gradually break down into smaller structures.
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2.1. ATMOSPHERIC TURBULENCE AND WAVEFRONT
ABERRATIONS

When the structure size reaches the minimum scale (inner scale l0), the ki-
netic energy of the disturbance dissipates as heat. Kolmogorov found that
isotropic and homogeneous fluid in turbulence has the velocity distribution
v(x), which satisfies the following structure function Dv(r):

Dv(r) = ⟨[v(x)− v(x+ r)]2⟩ = C2
vr

2/3. (2.1)

In the function, r is the distance between two arbitrary points in the fluid
and is restricted as l0 < r < L0. In the Earth’s atmosphere, L0 = 1 − 100
m and l0 = 1 − 10 mm [22]. The operator ⟨⟩ means an ensemble average
with respect to the position x. The constant Cv denotes the strength of the
turbulence.

The turbulence mixes air masses with different altitudes from the Earth’s
surface. The mixing causes the fluctuations in temperature because the air
masses with different altitudes have different temperatures. Thus, the fluctu-
ations are prominent under the altitude of ∼ 10 km, where the temperature
gradient is large [20]. The turbulence-induced fluctuations in temperature
have a similar scale to the turbulence in the background [23]. Thus, the tem-
perature distribution T (x) satisfies the following structure function DT (r):

DT (r) = ⟨[T (x)− T (x+ r)]2⟩ = C2
T r

2/3, (2.2)

where CT is constant.
The temperature fluctuations produce the fluctuations in the refractive

index. The refractive index n of the air depends on its temperature T and
pressure P [20] as follows:

N = n− 1 = (77.6× 10−6)P/T. (2.3)

The local fluctuations in the pressure P rapidly diffuse at the speed of sound
and are smoothed out. Hence, they are negligible when compared with the
fluctuations in the temperature T . Therefore, the refractive index fluctua-
tions ∆N are mainly caused by the temperature fluctuations ∆T :

∆N = (−77.6× 10−6)
P

T 2
∆T. (2.4)

Under the relationship, the refractive index distribution N(x) follows the
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2.1. ATMOSPHERIC TURBULENCE AND WAVEFRONT
ABERRATIONS

structure function DN (r):

DN (r) = ⟨[N(x)−N(x+ r)]2⟩ (2.5)

=

(
∆N

∆T

)2

DT (r) (2.6)

=

(
∆N

∆T

)2

C2
T r

2/3 (2.7)

= C2
Nr

2/3. (2.8)

The term C2
N in the function is described as follows:

C2
N =

(
∆N

∆T

)2

C2
T . (2.9)

Generally, C2
N is a function of the altitude H and denotes the strength of

the fluctuation at the altitude.

2.1.2 Atmospheric wavefront aberration

The refractive index fluctuations disturb the wavefront of the light (wave-
length: λ) passing through the atmosphere. In the absence of the fluctua-
tions, light from sufficiently distant point-sources is considered as a plane
wave. The refractive index fluctuations deform the plane wave and produce
wavefront aberration, which is defined as deviation from the plane wave.
The atmospheric wavefront aberration W (x) is formulated by integrating
Eq. 2.8 along the optical path from the sky to the ground [22]. The integra-
tion results in the following structure function Dϕ(r) of the wavefront phase
ϕ(x) [rad] (= 2πW (x)/λ):

Dϕ(r) = ⟨[ϕ(x)− ϕ(x+ r)]2⟩ (2.10)

= 2.914k2(sec z)r5/3
∫
h
CN (h)2dh (2.11)

= 6.88

(
r

r0

)5/3

, (2.12)

where z is a zenith angle of the optical path, and k = 2π/λ. The term r0 is
the Fried parameter [24], which is defined as:

r0 =

[
0.423k2(sec z)

∫
h
CN (h)2dh

]−3/5

. (2.13)
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2.1. ATMOSPHERIC TURBULENCE AND WAVEFRONT
ABERRATIONS

Using the Fried parameter r0, the phase variance σ
2
ϕ [rad2] over the telescope

aperture of diameter D is expressed by the following equation [25]:

σ2ϕ = 1.0299

(
D

r0

)5/3

. (2.14)

Therefore, r0 is interpreted as the aperture size over which the phase variance
is ∼ 1 rad2. In the case with D = 30 m and r0 = 0.15 m, σϕ = 84 rad,
which corresponds to 6.7 µm at λ = 0.5 µm.

The Fried parameter r0 is used to define the parameters related to the
time and angular dependence of the wavefront aberration. First, coherence
time t0 is a parameter that characterizes the time dependence of atmospheric
wavefront aberration. The atmospheric turbulence is swept laterally by
the average wind speed V0 and crosses over the line of sight faster than
the turbulence itself develops. Due to this property, the time evolution of
atmospheric turbulence is approximated by the frozen flow assumption [26];
a screen with fixed turbulence crosses the line of sight with the velocity V0.
When the turbulence is localized in one layer, the wavefront phase change
σϕ(∆t) [rad RMS 1] with time ∆t is described by the following equation [13]:

σϕ(∆t)
2 = ⟨[ϕ(x, t)− ϕ(x, t+∆t)]2⟩ =

(
∆t

t0

)5/3

, (2.15)

where the coherence time t0 is defined as:

t0 = 0.31
r0
V0
. (2.16)

Thus, t0 stands for the average time interval in which the change in the
wavefront aberration reaches 1 rad RMS over the telescope aperture. When
r0 = 0.15 m and V0 = 10 m/s, t0 = 4.7 ms.

Second, the isoplanatic angle θ0 is a parameter that characterizes the
angular dependence of the wavefront aberration. When the turbulence is
localized in one layer, the wavefront phase change σϕ(θ) [rad RMS] due
to the difference in line-of-sight direction ∆θ is described by the following
equation [20]:

σϕ(θ)
2 = ⟨[ϕ(x, θ)− ϕ(x, θ +∆θ)]2⟩ =

(
∆θ

θ0

)5/3

, (2.17)

1Root-mean-square value over the telescope aperture
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2.1. ATMOSPHERIC TURBULENCE AND WAVEFRONT
ABERRATIONS

where the isoplanatic angle θ0 is defined as:

θ0 = 0.31(cos z)
r0
H
. (2.18)

Thus, θ0 stands for the difference in line-of-sight direction with which the
change in the wavefront aberration reaches 1 rad RMS over the telescope
aperture. When r0 = 0.15 m and H = 10 km, θ0 ≃ 1 arcsec at the zenith
(z = 0).

2.1.3 Effect on the image quality

Wavefront aberration disturbs the telescope’s point-spread function (PSF),
which is the image of a point source such as a star. With an aberration-
free telescope, plane wave yields a diffraction-limited image (Fig. 2.1(a)),
whose angular core size is ∼ λ/D [rad]. When λ = 1.2 µm and D = 30
m, λ/D ∼ 0.008 arcsec. Hence, the angular resolution is ∼ 0.008 arcsec.
In contrast, the atmospheric wavefront aberration yields an aberrated PSF
called a seeing-limited PSF (Fig. 2.1(c)), whose angular size is ∼ λ/r0
[rad]. When λ = 1.2 µm and r0 = 0.15 m, λ/r0 ∼ 1 arcsec. In the direct
observation of exoplanets, the atmospheric wavefront aberration degrades
the angular resolution and contrast by scattering the host star’s light into
the areas where planets exist.

An aberrated PSF is interpreted as a collection of speckles, which are
point images with diffraction-limited image sizes. There is a relationship
between the position of the speckle and the pattern of wavefront aberration.
This is explained by Fraunhofer diffraction. That is, the electric field of the
PSF is the Fourier transform of the electric field of the observed light with
wavefront aberration. Thus, an wavefront aberration with a single spatial
frequency create a pair of speckles (Figure2.2). The higher frequency compo-
nents create speckles at a greater distance from the PSF center. Wavefront
aberrations with various spatial frequencies create an aberrated PSF by cre-
ating numerous speckles. This effect has been quantified by Guyon [27].
The wavefront phase ϕ(u) (u: position (x, y)) at the telescope aperture is
expressed as a sum of sinusoidal components:

ϕ(u) =
∑
i

2πhi
λ

cos(2πfiu+ ψi), (2.19)

where each component has an amplitude hi, a spatial frequency fi, and a
translation ψi. When the amplitude hi ≪ λ, the resulting PSF is approxi-
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ABERRATIONS

mated by the following equation:

I(a) ≃ I0(a) +
∑
i

(
πhi
λ

)2

[I0(a+ fiλ) + I0(a− fiλ)], (2.20)

where a [rad] is the angular coordinate on the celestial sphere, and I0 is
the diffraction-limited PSF. The terms after the

∑
i stand for a pair of

speckles corresponding to a sinusoidal component. This equation relates the
amplitude of the wavefront aberration and the intensity of the speckles.

Figure 2.1: Simulated PSFs with an 8-m telescope at the infrared wavelength,
cited from Guyon. [13] (a) a diffraction-limited PSF without wave-
front aberration. Its angular core size is ∼ λ/D. (b) a short-exposure
image of a seeing-limited PSF, consisting of numerous speckles. The
speckles have diffraction-limited size ∼ λ/D. (c) a long-exposure im-
age of a seeing-limited PSF, whose angular size is ∼ λ/r0.
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2.2. ADAPTIVE OPTICS

Figure 2.2: The relationship between the wavefront aberration (top row) and the
speckle position (bottom row), cited from Guyon. [13]

2.2 Adaptive optics

The adaptive optics (AO) system corrects the atmospheric wavefront aber-
ration to improve the angular resolution and contrast. This section outlines
the components and error sources of the AO.

2.2.1 Overview

A general AO consists of a wavefront sensor (WFS), a real-time controller
(RTC), and a deformable mirror (DM). Figure 2.3 shows a closed-loop AO
configuration. In the configuration, the WFS converts the incident wave-
front aberration into light intensity distributions (signals), which are read
out with detectors. The RTC calculates the wavefront aberration based on
the WFS signal and drives the DM to cancel the aberration. This sequence
of operations (AO loop) is repeated to correct time-varying wavefront aber-
rations continuously. While the correction continues, the WFS measures
the residual aberration of the corrected wavefront, and the DM is driven to
reduce the residual aberration further. A general AO measures the wave-
front aberration with visible light and provides corrected infrared light to
downstream science instruments such as imaging cameras or spectrographs.

The WFS has a finite number of measurement points (subapertures),
which sample the incident wavefront aberrations. The principles of typi-
cal WFSs are specified in Chapter 4. On the other hand, the DM has a
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2.2. ADAPTIVE OPTICS

thin-film mirror surface that is driven by actuators on the back side, which
are typically composed of piezoelectric elements or micro-electro-mechanical
systems (MEMS).

Typical parameters for AO performance are spatial resolution NSA of the
wavefront and loop speed FAO. NSA is the number of the WFS subapertures
or the number of the DM actuators. NSA is related to the fitting error
described below and is determined based on r0. FAO is the number of AO
loops per second. FAO is related to the temporal error and WFS noise error
described below and is determined with reference to t0.

Figure 2.3: Schematic drawing of a closed-loop adaptive optics. Vis: visible light.
IR: infrared light.

2.2.2 Errors in adaptive optics

The errorrs listed below result in a residual aberration of the AO-corrected
wavefront. The residual aberration is a root-sum-square of these errors be-
cause they are independent of each other. The residual aberration forms
speckles, as shown by Eq. 2.20, and limits the angular resolution and con-
trast. Therefore, the error sources must be considered in designing the AO
with a designated angular separation and contrast.

• Fitting error: According to Kolmogorov’s model, the spatial scale
of wavefront aberration spans from L0 (≳ 1 m) to l0 (≳ 1 mm).
However, correcting the wavefront aberration down to the smallest
scale is not practical. One reason for this is the limited number of
DM actuators that can be manufactured. Therefore, high-frequency
wavefront aberrations that exceed the DM’s Nyquist frequency remain
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uncorrected. The fitting error σfit is described by using the actuator
spacing d (projected onto the telescope aperture) as follows [28]:

σ2fit = afit(d/r0)
5/3, (2.21)

where the coefficient afit is dependent on the types of DM surface.
The 1-D spatial resolution N1d = D/d is determined with reference to
the required value of σfit.

• Temporal error: There is an unavoidable time lag ∆t between the
WFS measurement and the DM correction. The time lag includes the
exposure time of the WFS, the readout time of the detector, and the
calculation time of the RTC. The time lag produces a temporal error
represented by the expression 2.15. Increasing FAO reduces this error.

• WFS noise error: The signals captured by the WFS detectors con-
tain random noise. Typical noise is photon noise and readout noise.
Even an ideal detector without readout noise is affected by photon
noise. These noises produce errors in the measurement of wavefront
aberration. This is the WFS noise error. This error can be reduced
by improving the S/N ratio. One specific method is increasing the
WFS exposure time by decreasing FAO, which increases temporal er-
ror. Therefore, the tradeoff between the temporal and WFS noise
errors must be considered in determining the optimal FAO.

• Anisoplanatic error: When the WFS’s reference star (guide star)
and the science target have a separation angle, the turbulence detected
by the WFS and the turbulence in the optical path from the science
target are different. Therefore, the separation angle ∆θ produces the
anisoplanatic error represented by the equation 2.17.

• Chromatic wavefront due to reflactive index: The refractive
index of the atmosphere depends on wavelength, although this is not
considered in Section 2.1.2. The refractive index n(λ) of dry air at
standard conditions is given by [29]:

N(λ) = (n(λ)− 1)× 106 (2.22)

= 8.34213× 10−5 +
2.40603× 10−2

130− λ−2
+

1.5997× 10−4

38.9− λ−2
, (2.23)

where λ is expressed in µm. Based on this equation, the refractive
index of the atmosphere in the visible region differs from that in the
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infrared region by ∼ 10−5. The difference changes the scale of the
wavefront aberration in the optical path direction between the visible
WFS and the infrared science instrument. This difference in scale
creates errors in the aberration correction in the IR region.

• Chromatic wavefront due to atmospheric dispersion: The den-
sity gradient of the Earth’s atmosphere refracts light incident at an
oblique angle. The degree of refraction depends on the wavelength.
This is atmospheric dispersion. Therefore, visible light used by the
WFS and infrared light used by the science instruments take different
paths in the atmosphere to reach the telescope. Due to the lateral
shift of these paths (∼ 1 cm [13]), the turbulence detected by the
WFS does not exactly match the turbulence affecting the science tar-
get. This creates errors in the aberration correction.

2.3 Summary of this chapter

The Earth’s atmospheric turbulence causes wavefront aberration, which is
characterized by the Fried parameter r0, coherence time t0, and isoplanatic
angle θ0. The Wavefront aberration distorts the telescope’s images, degrad-
ing the angular resolution and contrast. AO corrects the wavefront aberra-
tion and improves the angular resolution and contrast. The AO design must
consider the parameters to reduce the residual aberrations and achieve the
designated angular resolution and contrast.
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Chapter 3

Extreme Adaptive Optics

To achieve high angular resolution (0.01 − 0.1 arcsec) and high contrast
(∼ 10−7 − 10−10), AO needs to correct the wavefront aberrations with high
precision. An AO specialized for this purpose is extreme adaptive optics
(ExAO). This chapter provides an overview of ExAO and describes the
requirements for ExAO and WFS based on the study of an actual direct
observation project.

3.1 Overview of extreme adaptive optics

Improving the angular resolution and contrast with AO is equivalent to
bringing the aberrated PSF closer to the diffraction-limited PSF. The dif-
ference between the aberrated and diffraction-limited PSF is described by
the Strehl ratio (SR). The SR is the ratio between the peak intensity of
the aberrated PSF and that of the diffraction-limited PSF. Using the RMS
value σW [µm] of the wavefront aberration, the SR is approximated by the
following equation (the extended Marechal approximation [20]):

SR = exp{−(2πσW /λ)
2}. (3.1)

For example, SR > 0.9 requires σW ≲ λ/20, which corresponds to σW ≲
60 nm at λ = 1.2 µm. Such highly accurate correction requires a strong
reduction of each error in the AO (Section 2.2.2); ExAO is specialized for
this purpose and has the following characteristics.
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3.1. OVERVIEW OF EXTREME ADAPTIVE OPTICS

3.1.1 High spatial resolution

ExAO has a high spatial resolution (NSA) of wavefronts to reduce the fitting
error. The 1-D spatial resolution is generally set by:

N1d ≃ D/r0. (3.2)

When D = 30 m and r0 = 0.15 m, N1d ≃ 200. Thus, NSA ∼ N2
1d ∼ 40000.

The DM requires NSA (∼ N2
1d) actuators and ∼ 10-µm stroke to deal

with the incident wavefront aberration expressed by Eq. 2.14. Currently,
available DMs are not able to satisfy both two requirements. Thus, a typ-
ical ExAO consists of two AO systems connected in series. The first stage
(“Woofer”) has a small spatial resolution and a large stroke; it corrects
low-order and large-amplitude wavefront aberrations. The second stage
(“Tweeter”) has a large spatial resolution (Eq. 3.2) and a small stroke;
it corrects high-order and small-amplitude wavefront aberrations along with
low-order residuals of the Woofer.

3.1.2 High speed

ExAO (Tweeter) runs a fast AO loop to reduce the temporal error. The
speed FAO is generally set by:

FAO ∼ 10/t0, (3.3)

which means 10 AO loops per t0. When r0 = 0.15 m and V = 10 m/s,
FAO ∼ 2 kHz.

A high-speed AO loop has the problem of increasing WFS noise error.
The error can be suppressed by a WFS with a small measurement error
induced by noise. This property is referred to as “high efficiency” and is one
of the necessary properties of the Tweeter WFS in ExAO.

3.1.3 Narrow field of view

The host star is used as a guide star in direct observations of exoplanets.
The science target planet is located within ∼ 0.1 arcsec of the guide star.
This separation angle is smaller than the typical isoplanatic angle θ0. Thus,
the anisoplanatic error is negligible.

3.1.4 Supression of the chromatic errors

The chromatic errors stand for the chromatic wavefront due to atmospheric
dispersion and refractive index introduced in Section 2.2.2. There are sev-
eral proposals to attempt the error. The first example is an additional
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3.2. HIGH-CONTRAST INSTRUMENTS

infrared WFS [19] along with a visible Tweeter WFS. The second example
is a Tweeter WFS operated in the infrared [17].

3.2 High-contrast instruments

The ExAO-corrected PSF of the host star has two factors limiting the con-
trast. The first is the diffraction patterns due to the telescope aperture.
The second is the speckles induced by the residual wavefront aberrations
of ExAO. These limiting factors are suppressed by coronagraphs and post-
process connected downstream of ExAO. The system consisting of these
instruments and ExAO is called a high-contrast instrument (HCI) and ulti-
mately achieves a contrast at the < 10−6 level.

Figure 3.1 shows the process of the contrast improvement with HCI. (A)
Without ExAO-correction, the PSF of the host star is seeing-limited and has
a spread of ∼ λ/r0 (∼ 1 arcsec). (B) After ExAO-correction, the PSF core
of the host star is converged to the size of ∼ λ/D, improving the angular
resolution and contrast. However, the PSF has diffraction patterns and
residual speckles. (C) The diffraction patterns are canceled by coronagraphs
[30]. The residual speckles are reduced by post-process (not shown in the
figure). The post-process includes differential imaging (i.e. [31, 32]) and
speckle nulling [33].

3.3 Requirements for high-contrast instruments and
extreme adaptive optics

To achieve the target contrast, one must allocate the contrast improvement
to each HCI component, as shown in Fig. 3.1. This section specifies the
allocated contrast improvement of ExAO based on the two studies of HCI
projects.

3.3.1 SEICA instrument

SEICA (Second-generation Exoplanet Imager with Coronagraphic Adaptive
optics; Matsuo et al. [17]) is an HCI to be mounted on the Seimei telescope
(D = 3.8 m) [34]. To observe gas-giant planets, SEICA aims to achieve a
contrast of 10−6−10−7 at 0.1−0.2-arcsec (1.2−2.4λ/D) angular separation
and H-band. Its ExAO is required to achieve a 10−3 − 10−4 contrast.
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Figure 3.1: The process of the contrast improvement with a simulated HCI, cited
from Guyon. [13] The indices (A-C) have been modified from the
original figure. (A) The seeing-limited PSF of the host star with a
spread of ∼ λ/r0 (∼ 1 arcsec). (B) The ExAO-corrected PSF of the
host star. 1: ExAO control radius, which is the angular separation
(N1d/2)× (λ/D) corresponding to the Nyquist frequency of the DM.
2: The diffraction pattern due to the spiders (the support structure
of the secondary mirror) at the telescope aperture. 3: The diffraction
pattern due to the edge of the telescope apertre. (C) The PSF after
ExAO and coronagraph. 4, 5, and 6: The collection of the speckles
due to the residual aberrations

3.3.2 PSI instrument

PSI (Planetary Systems Imager; Guyon et al., [19, 35]) is an HCI to be
mounted on the TMT (Thirty Meter Telescope; D = 30 m). To observe
potentially habitable planets around M-type stars, PSI aims to achieve a
contrast of ∼ 10−7 at 0.015-arcsec (1.3λ/D) angular separation and J-band.
Its ExAO is required to achieve a ∼ 10−5 contrast.

3.4 Requirements for wavefront sensors

ExAO requires a high-performance Tweeter WFS to achieve the contrast
specified above. As shown in Section 2.2.2, there are two ExAO errors
related to the Tweeter WFS: the WFS noise error and the temporal error.
These errors create speckles following Eq. 2.20 and limits the contrast.
To suppress the contrast limits below the target value under the trade-off
nature, the Tweeter WFS is required to have the following properties.

• High efficiency: High efficiency stands for a small measurement er-
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ror (statistical error) with a certain number of photons. This property
suppresses the WFS noise error with a short exposure time, relaxing
the trade-off. SEICA [17] and PSI [19, 35] require an efficiency compa-
rable to or better than that of a fixed pyramid WFS described below.
Note that this property should be achieved when the wavefront aber-
ration incident to the WFS is around 0. This is because the WFS in a
closed-loop AO measures small residual aberrations of DM-corrected
wavefronts during most of its operation.

• High-speed capabilities: The trade-off studies result in requiring
sampling rates (= FAO) of 5 − 8.5 kHz (SEICA [17]) and 1 − 5 kHz
(PSI [19]). These high sampling rates require the following properties.

– Low calculation cost: The RTC calculates the wavefront aber-
ration from the WFS signals. The calculation deals with NSA (∼
40000) subapertures at ∼ 5 kHz. Thus, a low calculation cost is
crucial to achieve the high sampling rate.

– Small readout region: The WFS detectors read out the sig-
nals with ∝ NSA pixels. The frame rates of the detectors must
match the required sampling rates. For this purpose, CMOS de-
tectors are potential candidates because they do not need time
for a charge transfer, whereas CCD detectors need the transfer.
In particular, many scientific CMOS (sCMOS) detectors have a
circuit that simultaneously reads out the pixel values in each hor-
izontal line (Fig. 3.2). Hence, the frame rate of sCMOS detectors
is further enhanced by minimizing the vertical size of the readout
region.

• High spatial resolution: Equation 3.2 determines the approximate
number of the Tweeter WFS’s subapertures. Assuming r0 = 0.15
m, the 1-D spatial resolution N1d = 25 and 200 for apertures with
D = 3.8 m and 30 m, respectively.

• Large dynamic range: A Tweeter WFS with a large dynamic range
relaxes requirements for an upstream Woofer and stabilizes the oper-
ation of ExAO.

As evidence for the required High efficiency and High-speed capability
above, the contrast estimates in SEICA [17] are shown in Figure 3.3. The
WFS noise error and temporal error limit the contrast to ∼ 10−5, which
satisfies SEICA’s requirement for ExAO (10−3 − 10−4).
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Figure 3.2: Structure of an sCMOS image sensor, cited from the manual of Hama-
matsu ORCA-Flash 4.0V2 sCMOS camera. [36] The indicators of
the horizontal and vertical directions are added. Each pixel have a
combination of a photo diode (the black triangle) and an amp (the
right-pointing gray/blue triangle). The circuit simultaneously reads
out the pixel values in each horizontal line (row). CDS: correlated
double sampling circuit. A/D: analog-to-digital converter.
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Figure 3.3: The contrast estimates in SEICA, cited from Matsuo et al. [17] The
contrast is calculated under the following assumptions: imaging wave-
length λ = 1.65 µm, D = 4 m, r0 = 10 cm, V0 = 10 m/s, N1d = 24,
and a 6-magnitude guide star at the Tweeter WFS’s wavelength band.
Left: the baseline design in which the Tweeter WFS operates at
FAO = 8.5 kHz in the visible wavelength band (0.8± 0.1 µm). Right:
the goal design in which the Tweeter WFS operates at FAO = 5 kHz
in the infrared wavelength band (1.65 ± 0.15 µm). The red curves:
the temporal error. The brown curves: the WFS noise error. The
green curves: the fittig error. The blue solid curves: the wavefront
chromaticity due to atmospheric dispersion. The blue dashed curves:
the wavefront chromaticity due to refractive index. The black dot-
ted curves: without ExAO correction. Note that these figures do not
consider the diffracton patterns.
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3.5 Summary of this chapter

A high-precision wavefrot correction with ExAO is necessary in direct ob-
servations of exoplanets, which have small angular separations (0.01 − 0.1
arcsec) and high contrasts (∼ 10−7).

The high-contrast instrument (HCI) consists of ExAO, coronagraph, and
post-process. The combination of these elements achieves high contrast at
a small angular separation. To obtain a final contrast of ∼ 10−7 at near-
infrared wavelengths, ExAO must achieve a contrast of ∼ 10−5. Therefore,
ExAO requires a Tweeter WFS with the following characteristics.

• High efficiency

• High-speed capabilities

– Low calculation cost

– Small readout region

• High spatial resolution

• Large dynamic range
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Chapter 4

Review of Wavefront Sensors

The previous chapter showed the properties required for the Tweeter WFS
in ExAO: high efficiency, high-speed capabilities, high spatial resolution, and
a large dynamic range. Focusing on these requirements, this chapter reviews
and classifies the representative WFSs for AO that have been demonstrated
to date.

4.1 Types of wavefront sensors and their efficiency

This section introduces a classification of WFSs, which convert the wavefront
aberration into light intensity distributions (signals). Depending on the
relationship between the wavefront aberration and the signals, WFSs can be
classified into three types: slope, curvature, or phase sensors. Depending on
this classification, the frequency characteristics of the efficiency is different.
The reconstruction methods to calculate the wavefront aberration from the
signals can be classified into zonal or modal, which set different efficiency
measures.

4.1.1 Relationship between wavefront aberrations and sig-
nals

The coordinate and the phase aberration are defined for the classification.
The position of a subaperture is (x, y) in the telescope aperture. The wave-
front aberration in the subaperture is W (x, y) [nm]. The phase aberration
δ(x, y) [rad] is defined as:

δ(x, y) =
2π

λC
W (x, y), (4.1)
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where λC [nm] is the center of the wavelength band used by the WFS. De-
pending on the relationship between δ(x, y) and the signals, WFS is classified
into three types.

• Curvature sensors: The signals reflect the local curvature ∇2δ(x, y).

• Slope sensors: The signals reflect the local slope ∇δ(x, y).

• Phase sensors: The signals reflect the phase aberration δ(x, y) itself
when the aberration is small.

These classes have different frequency characteristics of efficiency. The
curvature and slope sensors have low efficiency for phase aberrations with
low spatial frequencies. Such aberrations have loose slopes or curvatures,
which produce weak signals and result in low S/N ratios and significant
measurement errors. On the other hand, the phase sensors, in principle,
have a constant efficiency regardless of spatial frequency.

These frequency characteristics have impacts on the contrast after ExAO.
The spatial frequency of the wavefront aberration determines the position
of the speckles, as shown in Section 2.1.3. A low frequency corresponds to a
small angular separation from the host star. Thus, the curvature/slope sen-
sors have low sensitivity to speckles near the host star. On the other hand,
the phase sensors have constant and relatively high sensitivity to speckles
regardless of their angular separations [27]. Therefore, the phase sensors are
preferable for the Tweeter WFS in ExAO that suppresses speckles near the
host star.

4.1.2 Reconstruction

Reconstruction stands for the calculation of the phase aberration from the
signals. There are two types of reconstructions.

• Zonal reconstruction: The phase, slope, or curvature at each sub-
aperture (x, y) is determined only from the signals corresponding to
the subaperture. The curvature/slope sensors require a further 2-D
integration of the measured curvature/slope to calculate the phase
aberration.

• Modal reconstruction: The phase aberration is determined without
calculating the phase, slope, or curvature at each subaperture. The
modal reconstruction expresses the phase aberration δ(x, y) as a linear

30



4.1. TYPES OF WAVEFRONT SENSORS AND THEIR EFFICIENCY

combination of the known bases ϕm(x, y):

δ(x, y) =

M∑
m=1

Amϕm(x, y), (4.2)

where Am is the amplitude of each basis, and M (≤ NSA) is the total
number of the bases. Examples of the bases are the Fourier modes
and the Zernike modes. The amplitude Am is calculated from the
WFS signals. In the calculation, the captured signal Sδ(x, y) of the
unknown phase δ(x, y) is approximated as a linear combination of the
known signals Sϕm(x, y) of ϕm(x, y):

Sδ(x, y) =

M∑
m=1

AmSm(x, y). (4.3)

Based on the captured signal Sδ(x, y) and the known signals Sm(x, y),
the unknown amplitudes Am is calculated with several methods such
as a matrix operation.

These reconstructions have different efficiency measures. Note that only
photon noise is considered here as the noise that produces measurement
errors of the WFS; readout noise is not considered.

• Cp for zonal reconstruction: The RMS error σpn [rad] of the phase-
aberration measurement is expressed as:

σpn =
Cp√
Ne

, (4.4)

where Cp is the coefficient of error propagation, and Ne is the average
number of photons (in the number of photo-electrons) incident in a
subaperture. A small value of Cp represents a high efficiency.

• βp for modal reconstruction: The sensitivity factor βp [27] is de-
fined when the bases are the Fourier modes. A sinusoidal phase aberra-
tion with a singe spatial frequency is assumed. The WFS measures the
amplitudes Asin/Acos of the sine/cosine components and reconstructs
the phase aberration. The RMS error Σ [rad] of the reconstructed
phase aberration is expressed as:

Σ =
βp√

Ne ×NSA
, (4.5)

whereNSA is the number of the subapertures used in the measurement.
A small value of βp represents a high efficiency. The minimum βp = 1.
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4.2 Examples of curvature sensors

There are various examples of Curvature WFS (CWFS) optical systems
[37, 38, 39]. This section introduces the CWFS by Roddier [37].

The optical system consists of a convex lens L1 with a focal length of f
and another convex lens L2 with a focal length of f/2 placed at the focal
plane of L1 (Fig. 4.1(a)). The signals I1(x, y) and I2(x, y) are respectively
captured at the two surfaces P1 and P2, separated from L2 by a distance l
back and forth. L1 makes P1 conjugated to the surface P ′

1, which is separated
from the wavefront W by a distance (f − l)f/l forward. Also, L1 and L2

makes P2 conjugated to the surface P ′
2, which is separated from the wavefront

W by a distance (f − l)f/l backward (Fig. 4.1(b)). If the wavefront W is
convex with respect to the direction of propagation, the rays diverge from
P ′
2 to P ′

1, creating bright and dark regions on P ′
2, P

′
1, respectively. Thus, the

difference between I2 and I1 reflects the local curvature of the wavefront W .
The relationship is formulated as follows:

I2(x, y)− I1(x, y)

I2(x, y) + I1(x, y)
=
f(f − l)

2l

{
∇2W (x, y) +

∂

∂n
W (x, y)δC

}
, (4.6)

where ∂/∂n represents the derivative in the radial direction of the beam. δC
is defined as follows:

δC =

{
0 (when (x, y) is inside of the beam,)
∞ (when (x, y) is at the edge of the beam.)

(4.7)

These equations enable the zonal reconstruction.

Figure 4.1: (a) The CWFS optical system, cited from Roddier. [37] The black
double arrows L1 and L2 represent the convex lenses. The black single
arrows represent the edge of the beam. (b) Location of the conjugate
surfaces P ′

1 and P ′
2 of P1 and P2 relative to the wavefront W . Solid

red lines represent rays.
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4.3 Examples of slope sensors

4.3.1 Shack-Hartmann wavefront sensor (SHWFS)

The SHWFS [40] consists of a micro-lens array (MLA) and a detector at
the focal plane of the MLA (Fig. 4.2). The MLA creates a focal spot array
on the detector. One element of the MLA corresponds to one subaperture.
The position of the spot generated by each element is related to the local
wavefront slope ∇W (x, y) at each subaperture (x, y). In the coordinate
system on the detector, the coordinate (X,Y ) [mm] represents the position
of the center of gravity (CoG) of the spot corresponding to one subaperture.
The coordinate (X0, Y0) [mm] represents the position of the CoG of the spot
relative to the reference plane wave. The slope of the wavefront at that
subaperture is given by

∇W (x, y) =
1

F
(X −X0, Y − Y0), (4.8)

where F [mm] is the focal length of the MLA. This equation enables the
zonal reconstruction.

Figure 4.2: The conseptual drawing of the SHWFS, cited from Platt & Shack.
[40] The spot deviation ∆X = X −X0.

4.3.2 Modulated pyramid wavefront sensor (MPyWFS)

The MPyWFS, originally proposed by Ragazzoni [41], consists of a tip/tilt
mirror, a pyramid prism, a converging lens, a relay lens, and a detector
(Fig. 4.3(a)). The tip/tilt mirror is a flat mirror whose normal direction is
variable. The pyramid prism is located at the focal plane of the converging
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lens. The detector is placed at the output pupil. In the following, the prin-
ciple with geometrical optics is explained using a ray from the subaperture
A (position (x, y)). The tip/tilt mirror periodically modulates the direction
of the ray. The intersection of the ray and the focal plane moves in a cir-
cle with a radius of α [rad] at a constant speed. The circle is called the
modulation path. The ray is refracted with the pyramid prism to intersect
the detector at any one point of the four points (A1 − A4); each of the
four points corresponds to one of the four quadrants of the pyramid. The
detector is exposed during the modulation period and captures the signals
I1(x, y) − I4(x, y). When the local wavefront slope is zero at the subaper-
ture A, the modulation path’s center matches the pyramid’s apex. Thus,
the ray from A stays in the four quadrants for the same amount of time
each, producing the equal signals I1(x, y) − I4(x, y). When the local slope
∂W/∂x > 0 at A, the modulation path’s center moves by ∆X [rad] in the x
direction (Fig. 4.3(b)):

∆X =
∂W (x, y)

∂x
. (4.9)

Thus, the ray from A stays in the two quadrants at x > 0 longer than
the other two quadrants, producing larger signals I1(x, y) and I4(x, y) than
I2(x, y) and I3(x, y). Therefore, the difference between [I1(x, y) + I4(x, y)]
and [I2(x, y) + I3(x, y)] reflects the local wavefront slope in the x direction.
The following equation describes the relationship between the signals and
the local slope of the phase aberration δ(x, y) [42, 43]:

∂δ(x, y)

∂x
=
απ2

λC
sin(Sx(x, y)) (4.10)

Sx(x, y) = 4
[I1(x, y) + I4(x, y)]− [I2(x, y) + I3(x, y)]

[I1(x, y) + I4(x, y)] + [I2(x, y) + I3(x, y)]
, (4.11)

where Sx(x, y) is the normalized signal. The equation enables the zonal
reconstruction.

According to analysis with wave optics [42], the MPyWFS acts as a
slope sensor with the low-order phase aberrations whose spatial frequencies
are < α/λC . The MPyWFS also acts as a phase sensor with higher-order
aberrations; the principle is similar to the fixed pyramid WFS described in
the next section.
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Figure 4.3: The conceptual drawings of the MPyWFS. (a) Overview. The thick-
ness of the pyramid prism in the optical axis direction is depicted
with emphasis. (b) The pyramid prism viewed from the incident side,
showing the four quadrants and the modulation paths.

4.4 Examples of phase sensors

4.4.1 Fixed pyramid wavefront sensor (FPyWFS)

The FPyWFS, also called non-modulated PyWFS, consists of a pyramid
prism, a converging lens L1, a relay lens L2, and a detector (Fig 4.4(a)).
The pyramid prism is located at the focal plane of the converging lens. The
detector is placed at the output pupil. The FPyWFS does not include the
tip/tilt mirror; the PSF core is fixed at the pyramid prism’s apex. The
pyramid prism divides the PSF into four parts, which produce the four
signals I1(x, y) − I4(x, y) on the detector. These signals are interpreted as
the interferograms of the divided PSF core and the speckles at each quadrant
[17].

Using a diffraction theory, the relationship between the phase aberration
δ(x, y) and the signals are described as follows [44, 45]:

Sx(x, y) =
[I1(x, y) + I4(x, y)]− [I2(x, y) + I3(x, y)]

|u0|2(f1/f2)2
, (4.12)

Sx(x, y) =

∫ P (y)

−P (y)
dx′

sin[δ(x, y)− δ(x′, y′)]

2π(x− x′)

+

∫ P (x)

−P (x)
dy2

∫ P (x)

−P (x)
dy1

∫ P (y1)

−P (y1)
dx1

sin[δ(x, y2)− δ(x1, y1)]

2π3(x− x1)(y − y1)(y − y2)
.

(4.13)

In the equations, Sx(x, y) is the normalized signal. |u0|2 is the average
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intensity of the incident light at each subaperture. f1 and f2 are the focal
lengths of L1 and L2, respectively. P (x)/P (y) denote the y/x coordinates
of the points at the edge of the entrance pupil; the points have the same
x/y coordinates as the subaperture (x, y) (Fig. 4.4(b)).

Figure 4.4: (a) The conceptual drawing of the FPyWFS, cited from Wang et al.
[44] (b) The definition of the coordinates P (x) and P (y) in Eq. 4.13

The FPyWFS has various methods for the reconstruction [43]. Among
them, a standard modal reconstruction called MVM (matrix vector multipli-
cation) is described below. This method is widely used in actual facilities.
When the phase aberration |δ| ≪ 1 rad, Eq. 4.13 is linearized with the
following approximations:

sin[δ(x, y)− δ(x′, y′)] = δ(x, y)− δ(x′, y′),

sin[δ(x, y2)− δ(x1, y1)] = δ(x, y2)− δ(x1, y1). (4.14)

In addition, δ is expanded with the known bases ϕm:

δ(x, y) =

NSA∑
m=1

Amϕm(x, y), (4.15)

where Am is the unknown amplitude. The approximations and expansion
result in the following linear approximation of Eq. 4.13:

Sx(x, y) =

NSA∑
m=1

AmS
x
m(x, y). (4.16)

In this approximation, Sx
m is the known normalized signal of the m-th mode
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ϕm. Similarly, the normalized signal Sy(x, y) is linearized as:

Sy(x, y) =
[I1(x, y) + I2(x, y)]− [I3(x, y) + I4(x, y)]

|u0|2(f1/f2)2
, (4.17)

Sy(x, y) =

NSA∑
m=1

AmS
y
m(x, y), (4.18)

where Sy
m is the known normalized signal of the m-th mode ϕm. Sx(x, y) and

Sy(x, y) are measured at all the NSA subapertures; the number of measured
value is 2NSA. These values are aligned in one dimension and defined as
the vector S. Similarly, the NSA values of amplitude Am are aligned and
defined as the vector A. Using the Eqs. 4.16 and 4.18, the vectors S and A
is related with the known matrix T as:

S = TA, (4.19)

The components of the matrix T are Sx
m(x, y) and Sy

m(x, y). Thus, the
unknown A is calculated through multiplying the measured S by the known
pseudo-inverse matrix T−1:

A = T−1S (4.20)

The calculated A determines the phase aberration δ(x, y) using Eq. 4.15.

4.4.2 Zernike wavefront sensor (ZWFS)

The ZWFS, originally proposed by Zernike [46], is a kind of the PDI (Point-
Diffraction interferometer). The PDI (Fig. 4.5) includes a focusing lens and
a point-diffraction plate placed at the focal plane. The plate is transparent
and has a pinhole smaller than the PSF core. The pinhole extracts an
unaberrated beam (reference beam) from the incident beam under test. The
rest of the beam (test beam) retains the phase information of the incident
beam. The two beams interfere, and an interferogram arises on a detector.
The intensity distribution of the interferogram reflects the phase aberration
of the incident beam.

The ZWFS has the following properties. The pinhole radius is ≃ FλC ,
where F is the F-number of the focused beam onto the point-diffraction
plate. The phase shift of the reference beam induced by the pinhole is +π/2
rad or ±π/2 rad; each type is described as follows.

A. +π/2 type
The practical example is ZELDA (Zernike sensor for Extremely Low-
level Differential Aberrations) [48, 49]. The signal IC against the phase
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Figure 4.5: The conceptual drawing of the PDI, cited from Millerd et al. [47] The
reference and test wave indicate the wavefront of the reference and
test beam, respectively.

aberration δ is formulated as:

IC = P 2 + 2b2 + 2Pb(sin δ − cos δ) (4.21)

= P 2 + 2b2 + 2
√
2Pb sin(δ − π/4), (4.22)

where P is the amplitude of the incident beam, and b (≃ 0.5P ) is the
amplitude of the reference beam. Normalizing to P = 1 and assuming
b is known, δ is calculated as follows:

δ = arcsin

(
IC − 1− 2b2

2
√
2b

)
+
π

4
. (4.23)

An approximate solution of δ is calculated by expanding Eq. 4.21 [48]:

IC = 1 + 2b2 + 2b(δ2/2 + δ − 1), (4.24)

in which P is normalized to unity. Solving Eq. 4.24 yields the approx-
imated δ as follows:

δ = −1 +
√

3− 2b− (1− IC)/b. (4.25)

These equations enable the zonal reconstruction.

B. ±π/2 type
The practical example is the vector-Zernike WFS [50]. The signals IR
and IL with phase shifts of ±π/2 are formulated as:

IR =
1

2

{
P 2 + 2b2 + 2Pb(sin δ − cos δ)

}
, (4.26)

IL =
1

2

{
P 2 + 2b2 − 2Pb(sin δ + cos δ)

}
. (4.27)

38



4.5. COMPARISON OF EXISTING WAVEFRONT SENSORS

δ is calculated with the differential of these signals:

δ = arcsin

(
IR − IL
2Pb

)
, (4.28)

P =

√
IR + IL +

√
4b2(IR + IL)− (IR − IL)2 − 4b2. (4.29)

These equations enable the zonal reconstruction.

4.5 Comparison of existing wavefront sensors

This section compares the WFSs exemplified above. This section focuses on
the requirements presented in Section 3.4 except for “high spatial resolution”
because the WFSs can achieve high spatial resolution by increasing the
number of detector pixels or micro lenses.

4.5.1 Efficiency

Guyon calculated the sensitivity factor βp of each WFS to compare the effi-
ciency [27]. Note that βp depends on the spatial frequency of the wavefront
aberration, i.e., the speckle separation angle. The Curvature/slope sensors
have relatively large βp (≳ 10) for low spatial frequency wavefronts. In other
words, the efficiency is low for speckles in the vicinity of the host star. On
the other hand, the phase sensor has a constant βp (≲ 2) regardless of the
spatial frequency; the efficiency does not decrease even for speckles near the
host star. Therefore, the phase sensors are suitable for ExAO. Figure 4.6
summarizes the above characteristics.

4.5.2 High-speed capabilities

• Calculation cost: The total number of the subapertures is NSA.
The calculation cost of each WFS is summarized in Table 4.1. The
curvature/slope sensors require the calculation of the curvature/slope
at each subaperture and 2-D integration of them. The former has a
calculation cost of O(NSA); the latter has a cost of O(N2

SA) because
it requires a matrix operation with ∼ NSA ×NSA elements. The lat-
ter cost surpasses the former in the limit where NSA is large. The
phase sensors have various calculation costs. The FPyWFS have var-
ious reconstruction methods, whose costs range O(NSA) − O(N2

SA)
[43]. The standard method MVM described in Section 4.4.1 has a
cost of O(N2

SA) because it uses a matrix with ∼ NSA×NSA elements.
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Figure 4.6: The comparison of βp, cited from Guyon. [27] The horizontal axis is
the angular separation from the host star, which is converted from the
spatial frequency under D = 8 m and the imaging wavelength λi =
1.6 µm. MPYRWFS: MPyWFS. FPYRWFS: FPyWFS. PPMZWFS:
Pupil-plane Mach-Zehnder WFS. FPWFS: Focal plane WFS.

It has been noted that such a calculation is challenging for ExAO
with NSA ∼ 40000 [43]. On the other hand, the ZWFS has a cost of
O(NSA) because the phase aberration δ is directly calculated at each
subaperture.

• Size of the readout region: The 1-D number of the subapertures
is N1d. The size of the readout region of each WFS is summarized in
Table 4.1. The CWFS and the ZWFS produces one or two signals on
the detector, whose one pixel corresponds to one subaperture. Thus,
the vertical size of the readout region is equal to N1d pixels. The
SHWFS requires at least 2× 2 pixels to detect the CoG of each spot.
Thus, the vertical size of the readout region is ≥ 2N1d pixels to deal
with vertical N1d spots (subapertures). The MPyWFS and FPyWFS
produces 2 × 2 signals on the detector, whose one pixel corresponds
to one subaperture. Each signal also has a finite spacing between the
adjacent signals. Thus, the vertical size of the readout region is ≥ 2N1d

pixels.
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4.5.3 Dynamic range

This section compares each WFS’s dynamic range characterized by the range
in which the reconstruction equation is applicable. The curvature/slope
sensors’ dynamic ranges can extend to > 1λC . On the other hand, the phase
sensors have relatively small dynamic ranges. In the case of the FPyWFS,
the approximation of sine (Eq. 4.14) is applicable only when |δ| < π/2, i.e.,
peak-to-valley (P-V) value is less than λC/2 [44]. Thus, the dynamic range
is ≲ λC/2. Larger aberrations cause ambiguity. In the case of the ZWFS,
the proposed equations calculate δ from the signal IC or the differential
signal IR − IL. The signal and the differential signal reflect the sine of the
phase aberration δ. Thus, the equations are applicable in |δ| < π/2 without
causing ambiguity; the dynamic range is < λC/2.

4.6 Summary of this chapter

The comparison in this chapter is summarized in Table 4.1. Regarding
efficiency, ExAO favors the phase sensors such as the FPyWFS and ZWFS.
However, the FPyWFS has a relatively high calculation cost and readout
region, which are disadvantageous for high-speed measurement. The ZWFS
has a lower calculation cost and a smaller readout region but has a small
dynamic range. Therefore, there is room for improvement in the dynamic
range and high-speed capabilities of phase sensors.
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Table 4.1: Comparison of existing WFSs. Cp: coefficient of error propagation
from photon noise. βp: sensitivity factor [27]. λC : center of the sens-
ing wavelength band. NSA: number of all the effective subapertures.
N1d: 1-dimensional number of the effective subapertures.

CWFS SHWFS MPyWFS

Type Curvature Slope Slope
Cp N/A N/A N/A
βp ≥ 1 > 2 ≥ 2

Calculation cost O(N2
SA) O(N2

SA) O(N2
SA)

Number of detector pixels (vertical) N1d ≥ 2N1d > 2N1d

Dynamic range > λC
ii > λC

ii > λC
ii

ZWFS FPyWFS

Type Phase Phase

Cp

√
0.5 i N/A

βp 1.0
√
2

Calculation cost O(NSA) O(NSA)−O(N2
SA)

Number of detector pixels (vertical) N1d > 2N1d

Dynamic range < 0.5λC
ii ≲ 0.5λC

ii

i From N’Diaye et al. 2013 [48].
ii The range in which the reconstruction equation is applicable.
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Chapter 5

Principle of the New
Wavefront Sensor

This chapter describes a new phase sensor with a large dynamic range and
high-speed capabilities. The new sensor is named b-PDI (birefringent point-
diffraction interferometer). Table 5.1 shows the target performance. The b-
PDI is based on the PDI (Fig.4.5) to obtain a high efficiency and high-speed
capabilities. In addition, the b-PDI utilizes the phase-shifting interferometry
to obtain a large dynamic range. This method is applicable in P-V < 1λC
without causing ambiguity because it calculates the tangent (sine/cosine) of
the phase aberration.

This chapter is based on Sections 2 and 3 of Tsukui et al. [51], published
in Applied Optics.
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Table 5.1: Target performance of the new phase sensor.
βp: sensitivity factor [27]. N1d: 1-dimensional
number of the effective subapertures. λC : cen-
ter of the sensing wavelength band.

Type Phase sensor
βp ≤ 1.4

Sampling rate 6.5 kHz i

Calculation cost O(NSA)
Number of detector pixels (vertical) N1d

N1d ≥ 24 i

Dynamic range 1λC
λC 800 nm i

i Assuming SEICA instrument [17].

5.1 Principles

This section describes the principles of the b-PDI and formulate a recon-
struction algorithm.

5.1.1 Overview

The b-PDI utilizes a point-diffraction plate made of birefringent crystal (Fig.
5.1). The substrate of the plate (hereafter birefringent point-diffraction
beam-splitter; BPBS) is made of uniaxial birefringent crystal. Its optical
axis is placed parallel to the y-axis in Fig 5.1. With this configuration, the
refractive indices of the crystal are no and ne for linearly polarized beam
parallel to the x and y-axes, respectively. The BPBS has a pinhole of the
radius Rp and depth d on the front surface. The pinhole is filled with non-
birefringent material, whose refractive index is n. The ideal n satisfies the
equation

n =
ne + no

2
. (5.1)

The thickness of the layer of non-birefringent material is the same as the
depth of the pinhole. Thus, the front surface of the BPBS is flat. The width
of the clear aperture of the BPBS is l, which is defined later.

The incident beam is focused on the front surface of the BPBS to form an
Airy disk. The diameter of the Airy disk is set to be larger than the pinhole.
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Figure 5.1: Schematic drawing of the BPBS. (a) Perspective view. The optical
axis of the birefringent crystal is parallel to the y-axis. (b) Sectional
view. the BPBS has a pinhole with the radius Rp and depth d on
the front surface. The pinhole is filled with non-birefringent material.
The width of the clear aperture is l. Reprinted with permission from
[51] ©Optica Publishing Group.

In the transmission path, the beam passing through the inner region of the
pinhole is interpreted as a reference beam with an ideal spherical wavefront,
while the beam passing through the outer region keeps the wavefront infor-
mation of the incident beam and is interpreted as a test beam. The test
and the reference beams interfere with each other and produce an interfero-
gram. The optical path difference (OPD) between the two beams from the
inner and outer regions gives the phase difference between the reference and
test beams. The OPD differs depending on the polarization direction due
to birefringence. The phase differences θo and θe are defined according to
polarization components along the x and y-axes, respectively:

θo =
2π

λC
(n− no)d =

πd(ne − no)

λC
(5.2)

θe =
2π

λC
(n− ne)d = −πd(ne − no)

λC
, (5.3)

where λC denotes the wavelength of the incident beam. We set λC = 800
nm in our design. Choosing d as of

d =
2λC

3(ne − no)
(5.4)

yields θo = 2π/3 rad and θe = −2π/3 rad. In the reflection path, the refer-
ence and test beams are generated with the same manner as the transmitted
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beam. The phase difference between them is 0 rad because the front surface
of the BPBS is flat. To summarize, the BPBS simultaneously provides in-
terferograms of phase differences of 0 and ±2π/3 rad. The system utilizes
all the incident photons except for those diffracted by the pinhole at large
angles and falling outside the interferograms.

The incident beam is split into four interferograms with the optical sys-
tem shown in Fig. 5.2. The optical system consists of a focusing lens L0,
BPBS, collimator lenses L1 and L2, Savart plates SP1 and SP2, and detec-
tors D1 and D2. The BPBS is placed at the focal plane of L0. The axis of
L0 aligns with the center of the pinhole on the BPBS. The angle between
the axis of L0 and the normal of the BPBS is 10 deg. L1, L2, and L0 share
the common focal point. L1 and SP1 form a pair of the exit pupils on D1.
L2 and SP2 form another pair of the exit pupils on D2. The incident beam
is focused with L0 to form an Airy disk of F/31 on the front surface of the
BPBS. The radius of the Airy disk RAiry is 30 µm when the wavelength
λC is 800 nm. The transmitted beam through the BPBS is then collimated
with L1 and split into two orthogonal polarization components with SP1;
one component is parallel to the x-axis and forms interferogram ITo (x, y)
with a phase difference of θo = 2π/3 rad on D1 whereas the other is par-
allel to the y-axis and forms interferogram ITe (x, y) with a phase difference
of θe = −2π/3 rad on D1. The reflected beam on the BPBS is similar;
collimated with L2 and split into two with SP2: one parallel to the x-axis
forming interferogram IRo (x, y) on D2 and the other parallel to the y-axis
forming interferogram IRe (x, y) on D2. Both of them are interferograms with
a phase difference of 0 rad. This configuration makes it easier to formulate
the reconstruction algorithm. These four interferograms are simultaneously
captured with D1 and D2. The diameter of each interferogram is N1d pixels
on D1 and D2. Two interferograms line up horizontally on each detector.
Thus, the size of the readout dregion is N1d in the vertical direction.

We set the half width l/2 of the clear aperture as a function of N1d:

l

2
= FλC × N1d

2
, (5.5)

where F is the F-number of the focused beam with L0. The BPBS with l/2
acts as a spatial filter to filter out wavefront aberrations with higher spatial
frequencies than the Nyquist frequency. This spatial filtering smooths the
interferograms and reduces the effect of position mismatch between them.
When N1d = 24 and F = 31, l is set to 0.6 mm.

In the design, the incident angle of the beam to BPBS is 10 deg. Concerns
might be raised about potentially serious effects of such an oblique incidence
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to the birefringent material on the wavefront shape. However, Mercer et
al. [52] successfully measured the wavefront with a point-diffraction plate
made of birefringent liquid-crystal tilted by as large as 20 deg. Their result
suggests that the oblique incidence in our design should be acceptable.

Figure 5.2: Schematic drawing of the optical system of b-PDI. The angle between
the normal of the BPBS (dashed line) and the axis of L0 is 10 deg.
Solid and dotted lines represent outer edges and the axes of the beams,
respectively. Reprinted with permission from [51] ©Optica Publish-
ing Group.
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5.1.2 Formulation of the four interferograms

We analytically formulate a reconstruction algorithm. In this section, I
formulate the intensity of the four interferograms. Firstly, the complex
amplitude of the incident beam on the input pupil is given by the following
Jones vector:

E1(x, y) =

(
Eo

Ee

)
{1 + α(x, y)} exp{iδ(x, y)}, (5.6)

where Eo and Ee are the mean amplitudes of the incident beam along the x
and y-axes, respectively, (x, y) is the coordinates of the input pupil, α(x, y)
is the deviation of the amplitude at point (x, y) from the mean amplitude,
and phase aberration δ(x, y) is the deviation of the phase at point (x, y)
from the uniform phase distribution. Secondly, the magnification between
the input and exit pupils is 1; this means that L0, L1, and L2 have a common
focal length. Finally, the polarization properties of the BPBS are given by
the following Jones matrices, following the expressions in Imada et al. [53]
(hereafter I15).

T (rB) =



(
T o
in exp(2iπ/3) 0

0 T e
in exp(−2iπ/3)

)
0 ≤ rB ≤ Rp(

T o
out 0

0 T e
out

)
Rp < rB ≤ RB

(5.7)

R(rB) =



(
Ro

in 0

0 Re
in

)
0 ≤ rB ≤ Rp(

Ro
out 0

0 Re
out

)
Rp < rB ≤ RB,

(5.8)

where T (rB) and R(rB) are the transmission and reflection properties, re-
spectively, rB is the distance from the center of the pinhole, and Rp and
RB are the radii of the pinhole and the BPBS, respectively. T b

a and Rb
a

denote the amplitude-transmission coefficient and the amplitude-reflection
coefficient, respectively, where the subscript a indicates the inside (in) or the
outside (out) of the pinhole, and the superscript b indicates the polarizing
direction parallel to the x-axis (o) or parallel to the y-axis (e).

Using Eqs. 21 and 22 in I15, the complex amplitudes of interferograms
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ITo , I
T
e , I

R
o , and I

R
e are respectively described as,

ET
2,o(x, y) = −Eo {[T o

in exp(2iπ/3)− T o
out]f + T o

out(1 + α) exp(iδ)} (5.9)

ET
2,e(x, y) = −Ee {[T e

in exp(−2iπ/3)− T e
out]f + T e

out(1 + α) exp(iδ)} (5.10)

ER
2,o(x, y) = −Eo {(Ro

in −Ro
out)f +Ro

out(1 + α) exp(iδ)} (5.11)

ER
2,e(x, y) = −Ee {(Re

in −Re
out)f +Re

out(1 + α) exp(iδ)} , (5.12)

where f is the normalized amplitude of the reference beam and is a function
of Rp and r2, the latter of which is the distance from the center of each exit
pupil (Fig. 5.2). The function f(Rp; r2) is specified analytically by I15 and
shown in Fig. 5.3.
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Figure 5.3: Function f(Rp; r2) based on Eq. 17 in I15. The horizontal axis is
the distance r2 from the center of an exit pupil normalized by the
radius of the pupil R2 (see Fig. 5.2). The three curves correspond to
Rp/FλC = 0.2, 0.5, 1.0; F is the F-number of the focused beam with
L0. Reprinted with permission from [51] ©Optica Publishing Group.

The new parameters τ, ϕ, and ρ are defined as follows.

τo exp(iϕo) =
T o
in

T o
out

exp(2iπ/3)− 1 (5.13)

τe exp(iϕe) =
T e
in

T e
out

exp(−2iπ/3)− 1 (5.14)

ρo =
Ro

in

Ro
out

− 1 (5.15)

ρe =
Re

in

Re
out

− 1 (5.16)
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The intensity maps of each interferogram are given as follows.

ITo (x, y) = (EoT
o
out)

2
{
τ2o f

2 + (1 + α)2 + 2τof(1 + α) cos(ϕo − δ)
}

(5.17)

ITe (x, y) = (EeT
e
out)

2
{
τ2e f

2 + (1 + α)2 + 2τef(1 + α) cos(ϕe − δ)
}

(5.18)

IRo (x, y) = (EoR
o
out)

2
{
ρ2of

2 + (1 + α)2 + 2ρof(1 + α) cos δ
}

(5.19)

IRe (x, y) = (EeR
e
out)

2
{
ρ2ef

2 + (1 + α)2 + 2ρef(1 + α) cos δ
}

(5.20)

The absolute values of the amplitude reflection coefficients have weak depen-
dence on the polarization direction when the incident angle is small. Hence,
the incident beam with a random polarization direction yields IRo (x, y) ≃
IRe (x, y).

5.1.3 Reconstruction of the phase: normal algorithm

The phase aberration δ(x, y) is reconstructed from the four interferograms,
using the following approximation equations:

Vo(x, y) =
ITo (x, y)

IRo (x, y)

(
Ro

out

T o
out

)2

(1 + ρof)
2 − 1− τ2o f

2 (5.21)

Ve(x, y) =
ITe (x, y)

IRe (x, y)

(
Re

out

T e
out

)2

(1 + ρef)
2 − 1− τ2e f

2 (5.22)

δrec(x, y) = arctan

(
Vo(x, y)τe cosϕe − Ve(x, y)τo cosϕo
Ve(x, y)τo sinϕo − Vo(x, y)τe sinϕe

)
, (5.23)

where the function f and the values of the transmission/reflection properties
are assumed to be known in advance with analytical calculations (Fig. 5.3)
and measurements, respectively, and |α(x, y)| is assumed to be much smaller
than 1 and hence is ignored. The normalized interferograms are denoted as
Vo(x, y) and Ve(x, y). The reconstructed phase is denoted as δrec(x, y). The
arctan function is practically implemented by the atan2 function, which does
not cause ambiguity in the range of |δ| < π (P-V < 1λC). On the basis of
the relation IRo (x, y) ≃ IRe (x, y), I

R
o and IRe are replaced with IRave given by,

IRave(x, y) =
IRo (x, y) + IRe (x, y)

2
. (5.24)

When IRo and IRe contain random noise, the substitution of IRave for them
reduces the noise.
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5.1.4 Reconstruction of the phase: iterative algorithm

The normal algorithm presented in the previous section uses the analytical
f (Fig. 5.3) to represent the amplitude of the reference beam. However,
the amplitude is attenuated in the real PDI when large phase aberrations
degrade the Strehl ratio at the focal plane. The iterative algorithm presented
in this section takes into account this effect.

First, the phase aberration δrec is reconstructed with Eqs. 5.21-5.23.
Then, the Strehl ratio SR is estimated using the standard deviation s [rad]
of the δrec:

SR = exp
(
−s2

)
. (5.25)

Then, the terms f in Eqs. 5.21-5.23 are replaced with the attenuated fSR:

fSR =
√
SR f. (5.26)

Then, δrec is reconstructed again.
Iterating the above procedure yields a more accurate reconstruction of

a large phase aberration δ (∼ π rad).

5.1.5 Calculation cost

The normal algorithm in Section 5.1.3 calculates the phase aberration δrec(x, y)
at each subaperture (x, y). Thus, the calculation cost is proportional to the
total number of the effective subapertures NSA. In other words, the cost is
O(NSA).

The iterative algorithm in Section 5.1.4 calculates δrec(x, y) and its stan-
dard deviation in each iteration step. The calculation cost of each step is
O(NSA). The steps are iterated, but the cost is still proportional to NSA.
Thus, the total cost is O(NSA).

5.2 Extension of the principle

The ideal values for the phase differences (θo and θe) in the b-PDI for the
two axes are ±2π/3 rad (section 5.1.1). However the phase differences in
practice are not limited to these two values. Therefore it is not necessary
for n to satisfy Eq. 5.1. With this less stringent condition, it is easier to
find materials suitable for the b-PDI design. In this section we describe
the values of θo and θe with two candidate materials, which are available
realistically, and redefine the equations for the phase reconstruction.
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5.2. EXTENSION OF THE PRINCIPLE

5.2.1 Material

We list combinations of materials along with their phase differences in Table
5.2. Combination (A) is preferable because of smaller effect of defocus with
smaller d.

Table 5.2: Combinations of materials. The values of refractive indices no, ne and
n are defined at λC = 800 nm

(A) (B)

Birefringent crystal TiO2 (Rutile) YVO4

no 2.52 [54] 1.97 [55]
ne 2.79 [54] 2.19 [55]
Non-birefringent material Nb2O5 Ta2O5

n 2.28 [56] 2.10 [56]
d 1.32λC 2.90λC
θo −0.634π rad 0.754π rad
θe −1.34π rad −0.522π rad

5.2.2 Formulation

Some of the parameters are redefined as, using Eq. 5.13 and Eq. 5.14:

τ ′o exp
(
iϕ′o
)
=

T o
in

T o
out

exp(iθo)− 1 (5.27)

τ ′e exp
(
iϕ′e
)
=

T e
in

T e
out

exp(iθe)− 1. (5.28)

Equations 5.21–5.23 are modified as follows.

Vo(x, y) =
ITo (x, y)

IRo (x, y)

(
Ro

out

T o
out

)2

(1 + ρof)
2 − 1− τ ′2o f

2 (5.29)

Ve(x, y) =
ITe (x, y)

IRe (x, y)

(
Re

out

T e
out

)2

(1 + ρef)
2 − 1− τ ′2e f

2 (5.30)

δrec(x, y) = arctan

(
Vo(x, y)τ

′
e cosϕ

′
e − Ve(x, y)τ

′
o cosϕ

′
o

Ve(x, y)τ ′o sinϕ
′
o − Vo(x, y)τ ′e sinϕ

′
e

)
(5.31)
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5.2.3 Effect of the incident angle

We consider the effect of the incident angle of 10 deg.
First, we consider the lateral displacement of the reference beam to the

test beam. Fig. 5.4 shows the schematic view of the relation between inci-
dent rays and the BPBS. Incident rays 1 and 2 are polarized in the same
direction. Ray 1 enters TiO2 with the incident angle of 10 deg. Its refraction
angle is ϕ1. By the time it crosses the surface at the depth d, it has laterally
displaced by ∆1 from the incident point. Similarly, Ray 2 enters the pinhole
(Nb2O5) with the incident angle of 10 deg and its refraction angle is ϕ2.
By the time it crosses the bottom of the pinhole at the depth of d, it has
laterally displaced by ∆2 from the incident point. Because ∆1 is not equal
to ∆2, the reference beam laterally displaces to the test beam. Calculations
using the values in Table 5.2(A) yield the displacement |∆1 −∆2| to be of
the order of 10 nm. This value is much smaller than the size of the pin-
hole, whose diameter is of the order of 10 µm. Thus, the displacement is
negligible.

Second, we consider the changes in θo and θe. When the incident angle
is 0 deg, they are given by Eqs. 5.2 and 5.3, respectively. When the incident
angle is 10 deg, they are, respectively,

θo =
2π

λC

[(
nd

cosϕ2
− nod

cosϕ1

)
+ (∆1 −∆2)no sinϕ1

]
(5.32)

θe =
2π

λC

[(
nd

cosϕ2
− ned

cosϕ1

)
+ (∆1 −∆2)ne sinϕ1

]
. (5.33)

Calculations using the values in Table 5.2(A) yield the result that the change
in the incident angle by 10 deg deviates θo and θe by 0.3% and 0.2%, re-
spectively. Thus, the changes in θo and θe are negligible.

5.3 Summary of this chapter

This chapter has proposed the new phase sensor, the b-PDI, and determined
its reconstruction equations and algorithms. The calculation cost is O(NSA).
The size of the readout region is N1d pixels in the vertical direction. The
cost and size are the smallest level among existing phase sensors and are
advantageous for high-speed measurement. The reconstruction equation is
applicable without ambiguity in the P-V < 1λC range; it is two times larger
than other phase sensors. The b-PDI is expected to have high efficiency,
which is examined by simulations in the next chapter.
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Figure 5.4: Sectional view of the BPBS with incident rays. Reprinted with per-
mission from [51] ©Optica Publishing Group.
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Chapter 6

Simulations and Optimal
Design

This chapter examines the efficiency and other error sources of the b-PDI.
In addition, this chapter discusses the optimal pinhole size. The simulation
in this chapter uses the normal algorithm (Section 5.1.3).

This chapter is based on Sections 4 and 5 of Tsukui et al. [51], published
in Applied Optics. Note that the simulations after Section 6.1.3 of this thesis
adopt the pinhole radius Rp = 15 µm, whereas Tsukui et al. [51] adopted
Rp = 12 µm. Additionally, the discussion on the sensitivity factor βp in
Section 6.1.2 is revised.

6.1 Simulations

We ran numerical simulations to determine the optimal Rp and to estimate
the expected measurement errors. In addition, we evaluated the Strehl ratio
and contrast achieved with the ExAO that employs the b-PDI. we assumed
combination (A) in Table 5.2 as the materials of the BPBS and used the
custom-developed software utilizing NumPy and SciPy. The four compo-
nents of measurement error were considered, i.e., those originating from

• approximation in Eqs. 5.29–5.31: σrec

• noise: σstat =
√
σ2pn + σ2rn

– photon noise: σpn

– readout noise: σrn
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6.1. SIMULATIONS

• chromatic effect: σchrom.

The total measurement error, σWFS , is described as

σWFS =
√
σ2rec + σ2stat + σ2chrom. (6.1)

6.1.1 Setup

We express the incident wavefront aberrationW (x, y) with the Zernike poly-
nomials Zm

n (x, y). The aberration is converted into the phase aberration
δ(x, y):

δ(x, y) =
2π

λC
W (x, y) (6.2)

=
2π

λC

N∑
n=0

n∑
m=−n

amn Z
m
n (x, y), (6.3)

where amn is the Zernike coefficients. With this, the P-V value of each mode
normalized with λC is 2amn /λC as in Eq. 6.3. Setting the amplitude to 1
across the input pupil, we express the complex amplitude by

E(x, y) = exp{iδ(x, y)}. (6.4)

The complex amplitude is converted into the four interferograms with a nu-
merical model of the b-PDI. The model is based on Fraunhofer diffraction
and includes the following series of calculations (see Fig. 6.1 for summary).
First, the array of the complex amplitude (240-pix diameter) is padded with
zeros [57]. Second, the padded complex amplitude is converted into a com-
plex amplitude at the focal plane with fast Fourier transformation (FFT).
The resolution of the focal plane is sufficiently good (1 pix = 0.5 µm) due
to the zero padding on the pupil plane. Third, the complex amplitude is
multiplied by the transmission properties or the reflection properties of the
BPBS given in Table 6.1. This process simulates the phase shifts and the
transmission/reflection of the BPBS. The four maps of the complex am-
plitude corresponding to e/o and transmission/reflection are generated in
this process. Fourth, and lastly they are converted into four interferograms
(240-pix diameter) with inverse fast Fourier transformation (IFFT) and con-
version to the intensity. The wavefront aberration of the reference beam,
which is related to the fact that the pinhole size is finite, is taken into ac-
count in this calculation. Each interferogram is binned to a resolution of
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24×24. This means that the aperture is resolved into 24 subapertures in
diameter, i.e., N1d = 24. The resultant set of the four interferograms are
ITo (x, y), I

T
e (x, y), I

R
o (x, y), and I

R
e (x, y). The phase is reconstructed from

them with Eqs. 5.29–5.31. The reconstructed phase aberration δrec(x, y)
(24-pix diameter) is converted into the wavefront aberration Wrec(x, y) (24-
pix diameter), and then the measurement error is obtained by comparing
Wrec(x, y) and W (x, y) (binned to a resolution of 24×24).

Figure 6.1: Numerical model of the b-PDI. 1: zero padding, 2: FFT, 3: transmis-
sion (including the phase shift) or reflection, 4: IFFT and conversion
to the itensity. Reprinted with permission from [51] ©Optica Pub-
lishing Group.

Table 6.1: Transmission and reflection properties at the measurement wavelength λC =
800 nm. The values of T/R are the Fresnel coefficients calculated from the
refractive indices in Table 5.2 (A) and the incident angle of 10 deg. The
values of θo and θe are same as those in Table 5.2 (A)

Polarization: Parallel to the x-axis (o) Parallel to the y-axis (e)

Transmission
Inside 1 T o

in exp(iθo) = 0.922 exp(iθo) T e
in exp(iθe) = 0.913 exp(iθe)

Outside 2 T o
out = 0.904 T e

out = 0.879
Reflection
Inside 1 Ro

in = 0.385 Re
in = −0.395

Outside 2 Ro
out = 0.427 Re

out = −0.477

1 Inside of the pinhole
2 Outside of the pinhole
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6.1.2 Effect of pinhole size

The measurement error depends on Rp. We sought the optimal Rp to min-
imize the measurement error with simulations. In the simulations, We as-
sumed monochromatic beams with a wavelength of λC = 800 nm and an
Airy disk with a radius of RAiry = 30 µm. Under these condition, I esti-

mated the measurement errors σrec and
√
σ2rec + σ2pn. The former, σrec, is

a measurement error in a special case in which no noise is present. The

latter,
√
σ2rec + σ2pn, is a measurement error in a general case in which the

four interferograms contain photon noise, which was expressed with random
numbers following a Poisson distribution. The number of the incident pho-
tons (Nph) in one subaperture in the simulations was 100, a half of which (50
photons) contributed to ITo or IRo , and the other half of which contributed
to ITe or IRe . Ideal detectors with 100-% QE (quantum efficiency) and no
readout noise were assumed.

Figs. 6.2 and 6.3 show the resultant measurement errors with five Rp.
The first part of the measurement errors, σrec, was an increasing function
of Rp when the incident aberration was larger than 0.2λC . In contrast, the

second part of the measurement errors,
√
σ2rec + σ2pn, was minimized at a

certain value of Rp. We chose 15 µm for Rp to minimize the error for the
incident aberrations with P-V ≤ 0.5λC as shown in Fig. 6.3. The value
corresponds to 50% of the radius of the Airy disk (RAiry). We adopted this
value in the following simulations and discussion.

With this value of Rp, the measurement error
√
σ2rec + σ2pn was 7.7×10−2

rad when the incident aberration was 0.01λC and the number of the incident
photons was 100. Considering σrec = 3.0× 10−3 rad, σpn is estimated to be
7.7 × 10−2 rad. This indicates that the coefficient of the error propagation
Cp (Eq. 4.4) is 0.77. The value is ≃ 1.1 times larger than Cp of the ZWFS
(
√
0.5, Table 4.1). This means that the b-PDI is ≃ 1.1 times more sensitive

to photon noise than the ZWFS. Thus, the sensitivity factor βp of the b-PDI
is estimated to be ≃ 1.1.
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Figure 6.2: Measurement error σrec, plotted against the P-V value of the incident
wavefront aberration expressed with the Zernile polynomial with n =
3,m = 1 (Coma X). Reprinted with permission from [51] ©Optica
Publishing Group.
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Figure 6.3: Measurement error
√
σ2
rec + σ2

pn (median of 1000 trials), plotted in

the same way as in Fig. 6.2. Reprinted with permission from [51]
©Optica Publishing Group.

6.1.3 Effect of Misalignment

We evaluated the effect of misalignment of the BPBS. We considered the
cases with the decenter values of 2, 4, and 6 µm or the defocus of 300 µm

for the misalignment and estimated the measurement error
√
σ2rec + σ2pn.

Note that the decenter is a misalignment perpendicular to the axis of L0
(Fig. 5.2), and the defocus is a misalignment along the axis. In the cases
of decenter, the reconstructed wavefront Wrec(x, y) contained a false tilt
aberration, while in the case of defocus, Wrec(x, y) contained a false defo-
cus aberration. We subtracted these aberrations and then evaluated the
measurement error, assuming the same wavelength and the same number of
photons as in the previous simulations. The incident wavefront aberration
was expressed with the Zernike polynomial of coma (n = 3, m = 1), which
is orthogonal to the tilt (n = 1, m = 1) or defocus (n = 2, m = 0).

Fig.6.4 shows the derived measurement errors for the decentered posi-
tions for the BPBS. The BPBS decenter by 2, 4, and 6 µm increased the
error by 13, 38, and 62 %, respectively. Thus, to maintain the measure-
ment accuracy, the decenter must be kept smaller than a few microns. To
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achieve this, the temperature of this system must be stabilized to avoid
lateral misalignment due to thermal expansion.

Fig.6.5 shows the measurement error for the defocused position for the
BPBS. The BPBS defocus by 300 µm increased the error by 13 %. Though
the amount of defocus is much larger than that of the decenters examined
above, the defocus has a smaller effect on the measurement accuracy. Thus,
an acceptable amount of defocus is about 100 times larger than that of
decenter.
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Figure 6.4: Measurement error
√
σ2
rec + σ2

pn (median of 1000 trials) with the

BPBS decentered for 3 positions, plotted in the same way as in
Fig. 6.2.
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Figure 6.5: Measurement error
√
σ2
rec + σ2

pn (median of 1000 trials) with the de-

focused BPBS, plotted in the same way as in Fig. 6.2.

6.1.4 Chromatic Effect

The incident beam in real observation has a finite bandwidth to secure the
number of photons under the low photon flux from guide stars. We evaluated
the chromatic effect caused by the bandwidth ∆λ of the incident beam. As-
suming the central wavelength λC = 800 nm and a flat spectrum over ∆λ =
200 nm, We executed the following simulation. First, five sets of interfero-
grams were generated independently with the numerical model of the b-PDI
and wavefront aberration W (x, y). The five sets of interferograms were
monochromatic and corresponded to wavelengths of 700, 750, 800, 850, and
900 nm. In this process, We considered chromatic effects such as difference
in the Airy radius and transmission/reflection properties. Second, the inter-
ferograms of the different wavelengths were averaged with equal weighting to
generate a set of polychromatic interferograms: ITo (x, y), I

T
e (x, y), I

R
o (x, y)

and IRe (x, y). Then, the phase was reconstructed from the polychromatic in-
terferograms. Finally, the phase aberration was converted to the wavefront
aberration Wrec as

Wrec(x, y) =
λC
2π
δrec(x, y) (6.5)

and the measurement error
√
σ2rec + σ2chrom was calculated.

The measurement error is compared in Fig. 6.6 with the errors σrec,
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√
σ2rec + σ2pn and

√
σ2rec + σ2stat. The error

√
σ2rec + σ2pn was evaluated with

the photon noise, the QE of an ideal detector (= 1.0), and Nph = 100. The

error
√
σ2rec + σ2stat was evaluated with the photon noise, the readout noise

(1.6 electrons RMS), the QE of a real detector (= 0.5) [36], and Nph = 100.
These errors are decomposed into each component in Fig. 6.7. When Nph =
100, σ2chrom ≪ σ2rec + σ2pn and σ2chrom ≪ σ2rec + σ2stat . Therefore, σchrom is
negligible in this case.
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Figure 6.6: (a)Measurement errors σrec (dashed line),
√
σ2
rec + σ2

pn (median of

1000 trials, dotted line), and
√
σ2
rec + σ2

chrom (solid line), plot-
ted in the same way as in Fig. 6.2. (b)Measurement errors σrec
(dashed line),

√
σ2
rec + σ2

stat (median of 1000 trials, dotted line), and√
σ2
rec + σ2

chrom (solid line), plotted in the same way as in Fig. 6.2.
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Figure 6.7: (a)Comparison of each component of the measurement errors σrec
(dashed line), σpn (dotted line), and σchrom (solid line), plotted as in
Fig.6.6. (b)Comparison of each component of the measurement errors
σrec (dashed line), σstat (dotted line), and σchrom (solid line), plotted
as in Fig.6.6.
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6.1.5 Simulation of ExAO

We simulated a closed-loop ExAO on a 3.8-m telescope that contains the
b-PDI to evaluate the achievable Strehl ratio and contrast. We supposed an
ExAO consisting of two AO systems connected in series: a Woofer AO and
a Tweeter AO. The Woofer AO contained a SHWFS with 8×8 subapertures
and corrected low-order wavefront aberrations. The Tweeter AO contained
the b-PDI with 24 × 24 subapertures and corrected the residual wavefront
aberrations of the Woofer AO.

The aberration of the incident wavefront for the Tweeter AO was 1200
nm (P-V), under an assumption that the wavefront was corrected in advance
with the Woofer AO. The incident wavefront was generated with power-
spectrum-based simulations by Yamamoto. Details of the wavefront and
the Woofer AO are listed in Table 6.2.

We used a Tweeter AO model, which consisted of a wavefront sensor
model and a deformable mirror (DM) model. As for the former (wavefront
sensor model), we used the numerical model of the b-PDI described in Sec-
tion 6.1.1 and considered a single wavelength of λC = 800 nm on the basis
of the result in Section 6.1.4. Photon noise and/or readout noise were added
to the four interferograms. Some peaks and valleys in the incident wave-
front exceeded the range of λC . However, such regions were smaller than a
subaperture of the wavefront sensor. Therefore, we did not execute phase-
unwrapping in the measurement with the b-PDI. As for the latter (DM
model), the figure of the continuous surface of a DM was modeled using
spline interpolation of a stroke map, whose resolution was 24×24. Detailed
conditions are summarized in Table 6.3.

The i-th AO loop included the following operations. First, the incident
wavefrontWInc240,i (240-pix diameter) was corrected by the DM model with
the surface WDM240,i−1 (240-pix diameter), which had been determined in
the previous (i − 1)-th loop. The corrected wavefront WCor240,i (240-pix
diameter) was expressed as:

WCor240,i =WInc240,i −WDM240,i−1. (6.6)

Then, the corrected wavefront was measured by the b-PDI as Wrec24,i (24-
pix diameter). Then, the stroke map of the DM actuators U24,i (24-pix
diameter) was updated with the following integral controller:

U24,i = U24,i−1 +KIWrec24,i, (6.7)

where KI (a integral gain) was set to 0.3. Finally, the updated DM surface
WDM240,i (240-pix diameter) was determined using spline interpolation of
the stroke map U24,i.
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We assumed a high loop-speed of 6.5 kHz and considered the lateral
drift of the incident wavefront Winc240,i due to assumed 10-m/s wind. At-
mospheric chromaticity was ignored to evaluate the effect of the errors in
wavefront sensing, i.e., the WFS noise error, temporal error and aliasing
error.

The loop was successfully closed on the incident wavefront with 15 iter-
ations. The aberration of the corrected wavefront was ≲ 80 nm RMS, which
corresponds to an H-band Strehl ratio of 90%. The corrected wavefront at
the central region with a diameter of 3.5 m was extracted with a Lyot stop
and was converted into an H-band (λi = 1650 nm) PSF with FFT. Fig. 6.8
shows the resultant wavefront maps and PSFs. Figs. 6.9 and 6.10 show
the averaged contrast as a function of the angular separation. Contrasts of
∼ 10−5 with an angular separation of 0.2 arcseconds was achieved.

Table 6.2: Details of the incident wavefront and the Woofer AO

Fried parameter r0 (wavelength: 600 nm) 0.15 m
Wind speed v 10 m/s
Woofer AO
Number of subapertures/actuators 8× 8
Wavefront sensor type SHWFS
Frame rate 1 kHz
Wavefront error before the Tweeter AO 1200 nm P-V, 150 nm RMS
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Table 6.3: Details of the Tweeter AO model. Real or ideal detectors were as-
sumed. The values of the real detectors’ QE and readout noise are
based on Hamamatsu ORCA-Flash 4.0v2 sCMOS camera [36].

Telescope diameter 3.8 m
Throughput of the optics before Tweeter WFS 0.24
Magnitude of the guide star 4.8 mag (Ic-band)
Integral controller’s gain KI 0.3
Wavefront sensor model (b-PDI)
Sensing wavelength λC 800 nm
Radius of the Airy disk RAiry 30 µm
Radius of the pinhole Rp 15 µm
Number of subapertures 24× 24
Frame rate 6.5 kHz
Number of photons per subaperture 100 (50 for each polarization)
Quantum efficiency (QE) of the detectors 1.0 (ideal)/ 0.5 (real)
Readout noise of the detectors 0 e− (ideal)/ 1.6 e− RMS (real)
Deformable mirror model
Number of actuators 24× 24
Maximum stroke 1200 nm
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Figure 6.8: Wavefront maps with a diameter of 3.8 m and PSFs with a 3×3 arcsec
region. Left column: no Tweeter correction is applied. Center col-
umn: the Tweeter correction with the ideal WFS detectors is applied.
Right column: the Tweeter correction with the real WFS detectors is
applied.

68



6.1. SIMULATIONS

10-6

10-5

10-4

10-3

10-2

10-1

100

 0  0.2  0.4  0.6  0.8  1

1 2 3 4 5 6 7 8 9 10

C
on

tr
as

t

Separation (arcsec)

Separation (λi/D)

Diffraction limited
Before the correction with Tweeter AO

After the correction with Tweeter AO

Figure 6.9: Averaged contrast of the PSF, which is the azimuthally averaged in-
tensity normalized by the peak intensity of the diffraction-limited
PSF, before and after the correction with the Tweeter AO (with the
ideal WFS detectors), as a function of the angular separation from
the peak. The profile of the diffraction-limited PSF (dotted line) is
shown for reference.
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Figure 6.10: Averaged contrast of the PSF, which is the azimuthally averaged
intensity normalized by the peak intensity of the diffraction-limited
PSF, before and after the correction with the Tweeter AO (with the
real WFS detectors), as a function of the angular separation from
the peak. The profile of the diffraction-limited PSF (dotted line) is
shown for reference.
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6.2 Discussion on the optimal design

We examine the relation between the pinhole size Rp and the measurement

error
√
σ2rec + σ2pn with numerical simulations. In the simulations, we con-

sidered the change in the amount of the photon noise as a function of Rp.
As a result, a certain value of Rp yielded the minimum measurement error,
balancing the following three factors.

First, aberration of the reference beam is induced at the pinhole. In
the wavefront reconstruction with the PDI, it is assumed that the reference
beam is not aberrated. This assumption holds only when the pinhole radius
is infinitely small. In reality, however, an actual pinhole has a finite radius.
Thus, it extracts components with non-zero spatial frequencies in addition
to that with zero spatial frequency from the incident beam. As a result, the
reference beam is aberrated and deviates from the assumed non-aberrated
beam. This contributes to the measurement error. Larger the pinhole is,
more components with higher spatial frequencies contaminate the reference
beam, thus resulting in a larger aberration of the reference beam. Conse-
quently, the measurement error σrec is an increasing function of Rp.

Second, the contrast of the interferograms varies, depending on the con-
ditions. The contrast is maximum (= 1) when Rp ∼ 0.5FλC , where the
energy of the beams inside the pinhole is equal to that outside. When the
interferograms contain photon noise, their S/N ratio is an increasing function
of the contrast, whereas the measurement error σpn is a decreasing function
of the S/N ratio. Hence, at Rp ∼ 0.5FλC , the S/N ratio is maximized and
the measurement error σnoise is minimized.

The third factor is attributed to Eq. 5.24. Smaller the Rp is, a wider
region on the outside of the pinhole contributes to the interferograms. The
difference in reflectance between the two polarization directions on the out-
side of the pinhole is larger than that inside. Thus, a smaller pinhole in-
creases the deviation of IRo from IRe , hence making the assumption of Eq.
5.24 less appropriate and resulting in a larger measurement error σrec. This
effect is apparent in the region with the incident aberration of smaller than
0.2λC in Figure 6.2.

In practice, the measurement error
√
σ2rec + σ2pn is minimized at a certain

value of Rp as a balance between the first and second factors only, because
the contribution of the third factor is negligible being much smaller than
the second factor. The simulations finds that Rp of ≃ 15 µm (≃ 0.5RAiry)
is acceptable with a reasonably small measurement error and that the mea-
surement error rapidly increases for smaller Rp when Rp ≤ 12 µm. Note that
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Rp needs to be fairly precisely controlled when the pinhole is manufactured.

I15 examined the relation between the measurement error of the inter-
ferograms and that of the wavefront by analyzing error propagation and
pointed out that Rp of 0.4 − 0.6RAiry would suppress the error propaga-
tion. Though they did not consider the varying amount of the photon noise
depending on Rp, their result is consistent with ours.

6.3 Summary of this chapter

This chapter has predicted the b-PDI efficiency under the optimum pinhole
radius Rp = 15 µm. This chapter also has examined other error sources such
as chromatic effect. Table 6.4 compares the b-PDI’s simulated performance
and target performance (Table 5.1). Table 6.5 compares the simulated b-
PDI with other phase sensors (Table 4.1).

Table 6.4: Target and simulated performance of the b-PDI. βp: sensitivity
factor [27]. N1d: 1-dimensional number of the effective subaper-
tures. λC : center of the sensing wavelength band. ∆λ: width
of the sensing wavelength band.

Target Simulation

Type Phase sensor Phase sensor
βp ≤ 1.4 ≃ 1.1

Sampling rate 6.5 kHz i 6.5 kHz
Calculation cost O(NSA) O(NSA)

Number of detector pixels (vertical) N1d N1d

N1d ≥ 24 i 24
Dynamic range 1λC 1λC

ii

λC 800 nm i 800 nm

i Assuming the SEICA instrument [17].
ii The range in which the reconstruction equation is applicable with-
out ambiguity.
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Table 6.5: Comparison of existing WFSs. Cp: coefficient of error propagation from photon
noise. βp: sensitivity factor [27]. λC : center of the sensing wavelength band.
NSA: number of all the effective subapertures. N1d: 1-dimensional number of the
effective subapertures.

ZWFS FPyWFS b-PDI
(simulated)

Type Phase Phase Phase

Cp

√
0.5 i N/A 0.77

βp 1.0
√
2 ≃1.1

Calculation cost O(NSA) O(NSA)−O(N2
SA) O(NSA)

Number of detector pixels (vertical) N1d > 2N1d N1d

Dynamic range < 0.5λC
ii ≲ 0.5λC

ii 1λC
ii

i From N’Diaye et al. 2013 [48].
ii The range in which the reconstruction equation is applicable without ambiguity.
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Chapter 7

Manufacturing

This chapter describes the manufacturing of the BPBS and b-PDI. The
BPBS was manufactured under the design in Chapters 5 and 6. This chap-
ter is based on Section 3 of Tsukui et al. [58], to be published in Optics
Continuum.

7.1 BPBS

We manufactured the BPBS. Based on Tsukui et al. [51], the pinhole was
designed with a depth of d = 1.32λC = 1.06 µm and a radius of Rp =
15 µm. This Rp is 0.5 times the Airy disk radius at an F-number of 31 and
a central wavelength of λC = 800 nm. We made another pinhole of radius
200 µm filled with Nb2O5 to measure the parameters T andR. Hereafter, the
pinholes of radii 15 µm and 200 µm are called Pinholes A and B, respectively.
We manufactured 24 Pinholes A and 24 Pinholes B on the front surface of
a 20-mm square, 0.5-mm thick TiO2 substrate. The back of the substrate is
AR-coated; the reflectance is less than 1%. We processed eight substrates
to select the best Pinhole A from 192 samples.

Figure 7.1 shows an example of the manufacturing process. In the pro-
cess, the pinholes are first manufactured on the front surface of the TiO2

substrate by SF6-based reactive ion etching (RIE) [59]. The etching mask
consists of two layers: photoresist (AZ5214E) and Cr. Then, the mask is
removed by wet etching with acetone and nitric-acid-based etchant. Then,
Nb2O5 is deposited on the front surface by an RF sputtering method. Fi-
nally, the front surface is manually polished, leaving the Nb2O5 film only
inside the pinholes. Most parts of the process were performed in the clean
room (Mechano-Microprocess Room) at Tokyo Institute of Technology by
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the author and the collaborators. The photographs taken in the process are
shown as Fig. 7.2(a) and (b).

Figure 7.1: Schematic drawing of the manufacturing process. RIE: Reactive Ion
Etching. Reprinted with permission from [58] ©Optica Publishing
Group.

Figure 7.2: (a) Ryo Tsukui operating a mask aligner in the clean room to form the
etching mask. (b) Ryo Tsukui conducting an experimental manual
polishing. (c) The BPBS set in the stylus profilometer. (d) The
manufactured BPBS set on a custom-made holder.

After the process, the shape of the front surface was measured with
a stylus profilometer (Bruker DektakXT, Fig. 7.2(c)) at Tokyo Institute
of Technology. The thickness t and refractive index n of the Nb2O5 film
were measured with a microscopic spectrophotometer (JASCO MSV-5200)
at Kyoto Prefectural Technology Center. Based on these measurements, We
selected several Pinholes A with a shape close to the designed value.

The selected multiple Pinholes A were set into the optical system de-
scribed in Section 7.2. A tilted flat wavefront was injected into the optical
system, and the contrast of the interferograms was evaluated. We selected
Pinhole A (#03-40), which produced the best contrast.

Figure 7.3 and Table 7.1 show the shape and phase shifts of Pinhole A
(#03-40). The surface of the Nb2O5 film is concave by 25 nm relative to the
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TiO2 surface. This concavity causes a phase shift of 0.1π in the reflection
path, which is acceptable. The phase shifts in the transmission path are
redefined by considering the concavity h as follows:

θo =
2π

λC
{(n− no)t+ (1− no)h} , (7.1)

θe =
2π

λC
{(n− ne)t+ (1− ne)h} . (7.2)

The term n, t, and h are measured values. The term no and ne are literature
values [54].

Pinhole B (#03-41) adjacent to Pinhole A (#03-40) is also shown in Fig.
7.3 and Table 7.1. The surface of the Nb2O5 film is a loose concave surface
(P-V ∼ 70 nm). The thicknesses of the films in Pinholes A and B are greater
than the coherent length of the light used for the measurement of R and T
(wavelengths of 800±100 nm). Thus, the films do not cause interference in-
side them. Therefore, the transmission and reflection coefficients in Pinhole
B (#03-41) are uniform and equivalent to those in Pinhole A (#03-40).

Figure 7.3: (a) Optical microscopic image of Pinhole A (#03-40). (b) Optical
microscopic image of Pinhole B (#03-41), in which the black areas are
outside the field of view. In (a) and (b), red circles show the size of the
Airy disk with a radius of 30 µm (a diameter of 60µm). The pinholes
are illuminated with a white LED light source (incident type). (c)
Schematic drawing of the cross-section of the manufactured pinhole.
Note that the figure is stretched in the direction of the pinhole depth.
Reprinted with permission from [58] ©Optica Publishing Group.

We show the optical performance of Pinhole A (#03-40). The opti-
cal path difference (OPD) map of the light transmitted through Pinhole
A (#03-40) was captured with a transmitted dual-beam interference mi-
croscope (MIZOJIRI TD-series) at MIZOJIRI OPTICAL CO., LTD. The
wavelength λm of the light used in the evaluation was 546 nm. Figure 7.4
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Table 7.1: Comparison between the manufactured pinholes and the design. PH:
pinhole.

Designed PH A Manufactured PH A Designed PH B Manufactured PH B
(#03-40) (#03-41)

Rp (µm) 15 15 200 200
n 2.28 2.27 2.28 2.27
t (µm) 1.06 0.82 1.06 0.76 (at the center)
h (µm) 0 0.025 0 0.02 to 0.09
θo (rad) −0.634π −0.61π − −
θe (rad) −1.34π −1.2π − −

shows the result. The flatness of the OPD in Pinhole A is 20 nm RMS
(λm/27 ∼ λC/40).

Figure 7.4: OPD maps and their cross-section graphs of Pinhole A (#03-40). (a)
Ordinary ray. (b) Extraordinary ray. Reprinted with permission from
[58] ©Optica Publishing Group.

7.2 Optical system of the b-PDI

Aiming to mount the b-PDI on the ExAO instrument SEICA [17] of the
Seimei Telescope [34], we built an optical system for the b-PDI. The WFS in
SEICA requires ≳ 25 subapertures in the diameter of the telescope aperture
because D/r0 = 25, where D is the diameter of the telescope aperture (=
3.8 m) and r0 is the assumed Fried parameter at the observation site (=
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0.15 m). The WFS also requires as few subapertures as possible (i.e. as
wide subapertures as possible) to collect adequate photons from stars at
each subaperture. Following these requirements, the b-PDI optical system
has 492 (26 × 26) subapertures. The scalability and limiting factor of the
subaperture number are discussed in Section 8.2.5.

The system is a modification of the optical system shown in Chapter
5, which requires two detectors. The proposal to use two detectors is un-
suitable for the target measurement frequency of 6.5 kHz. This is due to
the difficulty of synchronization at the order of 6 kHz with the detectors in
hand. To ensure the four interferograms are captured simultaneously, we
designed the optical system in which the four interferograms appear on an
sCMOS detector (Hamamatsu ORCA-Flash4.0V2). Furthermore, to max-
imize the frame rate (up to > 6.5 kHz), we minimized the vertical size of
the readout region by aligning the four interferograms horizontally on the
sCMOS detector.

The layout of the optical system is shown in Fig. 7.5. In the following,
the x and y axes are perpendicular to the local axis of the beam and are
horizontal and vertical, respectively. The polarization directions of the or-
dinary ray o and the extraordinary ray e are parallel to the x and y axes,
respectively, as shown in Fig. 5.1. The incident beam (6.5-mm diameter) is
focused by L0 and L0’ to create an Airy disk on the BPBS Pinhole A. The
converged beam is F/31, and the Airy disk radius is 30 µm at λC = 800
nm. The BPBS transmits and reflects the beam. The transmitted beam
is bent at M0, collimated at L1, and further bent at M1. L1 creates the
intermediate pupil IP1. On the other hand, the reflected beam is collimated
at L2 and bent at M2. L2 creates the intermediate pupil IP2. The pupils
IP1 and IP2 are at the same distance from L3. The beams from IP1 and
IP2 pass HWP and SP, which separate the polarization directions o and e.
The function of HWP is described in detail later. The separated beams are
relayed onto the detector by L3 and L4, creating four interferograms (Fig.
7.6). Each of the interferograms has a diameter of 26 pix (= 169 µm). Under
these conditions, the Nyquist frequency is 13 cycles/pupil (c/p). The phase
aberrations at > 13 c/p are cut off by a square mask, which is placed in
front of the BPBS and limits its clear aperture to 600×600 µm. The BPBS
Pinhole A is located at the center of the clear aperture. Figure 7.7 is the
photograph of the optical system.

In the optical path, HWP rotates the polarization direction. The polar-
ization direction of the ordinary ray (o) is rotated from 0 deg (parallel to
the x axis) to −45 deg. On the other hand, The polarization direction of
the extraordinary ray (e) is rotated from +90 deg (parallel to the y axis) to
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+45 deg. After this rotation, SP splits o and e horizontally and lines up the
interferograms in the horizontal direction of the detector. Note that the in-
terferograms can be aligned in the horizontal direction without HWP if the
optical axis of the BPBS is in the +45 deg direction. However, prioritizing
the ease of BPBS handling, we set the optical axis of the BPBS in the y
axis direction.

In order to prevent misalignment between the four interferograms and
the detector pixel array, each optical element must have an alignment accu-
racy of a few microns or better. This accuracy is achieved with the custom
parts with leverage mechanisms and the commercial precision feed screws.
The custom parts were manufactured at 3D Model Advanced Processing
Center of Osaka Electro-Communication University.

Since this optical system contains many elements, the throughput is
only about 70%. However, we can apply the original optical system with
a small number of elements proposed in Tsukui+20 if multiple detectors
are synchronized at 6.5 kHz in the future. In this case, the throughput is
expected to be ∼ 90%, assuming a loss of 2% per surface.
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Figure 7.5: Layout of the b-PDI optical system. The x and y axes are perpen-
dicular to the local axis of the beam and are horizontal and vertical,
respectively. The polarization directions of the ordinary ray o and
the extraordinary ray e are parallel to the x and y axes, respectively.
The optical system includes a focusing lens L0, a correction lens L0’,
a square mask, the BPBS, a flat mirror M0, collimator lenses L1 and
L2, flat mirrors M1 and M2, a half-wavelength plate HWP, a Savart
plate SP, relay lenses L3 and L4, and a detector (Hamamatsu ORCA-
Flash4.0V2). All are arranged in the horizontal plane. The BPBS
is placed on the focal plane of L0. The center of the BPBS Pinhole
A is on the axis of L0. The normal of the BPBS is inclined by 10
degrees to the axis of L0 in the x − z plane. The inclination axis
of the BPBS is parallel to the optical axis of TiO2, which is parallel
to the y-axis. The system from L0 to L4 fits on about the size of
an A4 sheet of paper. Reprinted with permission from [58] ©Optica
Publishing Group.
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Figure 7.6: Examples of the interferograms captured with the manufactured b-
PDI. (a) A tilted flat wavefront with P-V = 1.6 rad (200 nm). (b)
A sinusoidal wavefront with 2 c/p and P-V = 1.2 rad (150 nm).
(c) The figure “SEICA” generated with a deformable mirror whose
stroke is ∼ 2 rad (250 nm). The interferograms in each image are
ITo (x, y), I

T
e (x, y), I

R
o (x, y), and IRe (x, y) from left to right. Reprinted

with permission from [58] ©Optica Publishing Group.

Figure 7.7: Photograph of the manufactured b-PDI optical system.
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7.3 Summary of this chapter

This chapter has described the manufactured BPBS and b-PDI optical sys-
tem. Among 192 manufactured BPBS samples, the one that produced inter-
ferograms with the best contrast was selected. The b-PDI with the BPBS
sample (#03-40) is tested in detail in the next chapter.
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Chapter 8

Laboratory Test and
Discussion

This chapter describes the laboratory test of the b-PDI with the BPBS
sample (#03-40). The test includes the evaluation of the systematic error

σsys (=
√
σ2rec + σ2chrom), the statistical error σstat (=

√
σ2pn + σ2rn), and the

dynamic range. This chapter then discusses the b-PDI’s properties including
the efficiency based on the evaluated σstat.

This chapter is based on Sections 4 and 5 of Tsukui et al. [58], to be
published in Optics Continuum.

8.1 Laboratory test

8.1.1 Setup

We built a test bench (Fig. 8.1) to evaluate the b-PDI. In the test bench,
the beam from the fiber source is collimated by CL and passes through the
iris (6.5-mm diameter). RL1 and RL2 project the image of the iris onto the
deformable mirror (DM; BMC 492-DM) at a magnification ratio of 1:1. The
DM introduces phase aberrations to the beam. Then, the retractable FM1
switches the beam direction. When FM1 is moved out of the optical path,
the beam directly enters the b-PDI. When FM1 is inserted into the optical
path, the beam is reflected and enters the Shack-Hartmann WFS (SHWFS).
In the SHWFS, RL3 and RL4 relay the beam to the WFS150-5C sensor
head (Thorlabs), which contains a microlens array with 29 × 29 effective
elements. The SHWFS is calibrated with FM2 (λ/20), which replace the
DM. The microlens array, the detector of the b-PDI, and the DM are in the
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conjugate plane.
We use two different fiber sources. For the SHWFS, a bright diode laser

(Thorlabs CPS808S) with a wavelength of 800 nm is applied to reduce noise.
The measurement error of the SHWFS with this source is 5×10−2 rad (7 nm)
RMS, which is determined by measuring a spherical wavefront with a known
radius of curvature. This error is primarily systematic. For the b-PDI, on
the other hand, a tungsten-halogen lamp (Thorlabs SLS201L/M) is applied
to simulate the weak stellar flux with a low coherency. The band-pass filters
in the lamp unit limit the wavelengths to 800±100 nm.

When we inspect the point spread functions (PSFs) at the focal plane,
we replace the SHWFS with a focal plane imager. The imager consists of an
F/31 imaging lens and an sCMOS camera (Hamamatsu ORCA-Flash4.0V3).
The configuration yields a PSF sampling of FWHM = 3.8 pix.

Figure 8.1: (a) Layout of the test bench. The size is 1.5 × 0.8 m. The test bench
consists of a fiber source, a collimator lens CL, an iris (6.5-mm di-
ameter), relay lenses RL1 and RL2, a deformable mirror (DM; BMC
492-DM), the b-PDI, a retractable flat mirror FM1 (λ/20), a flat mir-
ror FM2 (λ/20), and a Shack-Hartmann wavefront sensor (SHWFS).
The SHWFS consists of relay lenses RL3 and RL4, and a Thorlabs
WFS150-5C sensor head with 29×29 subapertures. The DM has 492
(24 × 24) actuators. The b-PDI has 26 × 26 subapertures. (b) Pho-
tograph of the test bench viewed from the SHWFS side. Reprinted
with permission from [58] ©Optica Publishing Group.

8.1.2 Measurement of the transmission/reflection coefficients

The phase reconstruction algorithms (Eqs. 5.21-5.23) requires the param-
eters expressed as the ratios of the transmission and reflection coefficients.
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These parameters must be measured before the calculation. Specifically, the
parameters in the Table 8.1 are to be measured.

In the measurement, a collimated beam with wavelengths of 800±100
nm was injected into the b-PDI. The BPBS was displaced laterally and
placed so that Pinhole B or the bare TiO2 crystal surface overlapped the
Airy disk. The resulting pupil images were captured with the detector and
photometrically measured. The parameters were calcurated by the ratio of
the photometric values, as shown in the third row of Table 8.1. The IB
and IC are the photometric values of the pupil images produced by Pinhole
B and the bare TiO2 crystal surface, respectively. The subscripts o and e
denote the polarization direction, and the superscripts T and R denote the
transmission and reflection path, respectively. The fourth row of Table 8.1
summarizes the results.

Table 8.1: Required parameters.

Parameter to te ro re so se

Definition T o
in/T

o
out T e

in/T
e
out Ro

in/R
o
out Re

in/R
e
out (Ro

out/T
o
out)

2
(Re

out/T
e
out)

2

Calculation
√
IBT

o /IC
T
o

√
IBT

e /IC
T
e

√
IBR

o /IC
R
o

√
IBR

e /IC
R
e IC

R
o /IC

T
o ICR

e /IC
T
e

Measured value 1.01 1.03 0.89 0.84 0.22 0.30

8.1.3 Systematic error

We evaluated the systematic error σsys of the b-PDI by measuring known
wavefronts. The systematic error was calculated from the difference between
the known phase δ0(x, y) and the phase δrec,av(x, y) measured by the b-PDI
under a high S/N condition.

The wavefront under test was a sinusoidal wavefront with a spatial fre-
quency of 8 c/p. The sinusoidal wavefront was generated with the DM and
measured with the SHWFS to determine the phase. The tip/tilt compo-
nents were removed from each of the 10 measured frames. The 10 frames
were then converted to 26×26 pixels and averaged to be δ0(x, y). The mea-
sured amplitude was ≃ 0.24 rad (≃ 30 nm), which means P-V ≃ 0.48 rad
(≃ 60 nm). As mentioned earlier, the SHWFS has the systematic error of
about 5× 10−2 rad (7 nm) RMS.

We measured the wavefront with the b-PDI under the following condi-
tions. By adjusting the integration time of the detector, the interferograms
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with a high S/N ratio were captured. The average number of photons inci-
dent on one subaperture was 2.3×104 in the number of photo-electrons; the
details of the photometry are described below. Ten frames of interferograms
were converted to the phase δrec(x, y) with Eqs. 5.29-5.31 (the normal al-
gorithm). The tip/tilt components were removed from each frame. The 10
frames of the phase were then averaged to be δrec,av(x, y). We evaluated
the RMS value of the difference between δrec,av(x, y) and δ0(x, y). Here, 21
subapertures were affected by a dead actuator on the DM and thus excluded.

Figure 8.2 shows the measured results and the difference. For the sinu-
soidal wavefront (8 c/p, P-V ≃ 0.47 rad), the RMS value of the difference
was 8.4 × 10−2 rad (11 nm). This RMS value is the root-sum-square of
the systematic errors of the SHWFS and the b-PDI. Considering that the
SHWFS has a systematic error of ∼ 5× 10−2 rad (7 nm) RMS, the system-
atic error of the b-PDI is ∼ 7× 10−2 rad (9 nm) RMS. The systematic error
could be reduced by a calibration with a flat wavefront.

The average photon number was estimated by the following photometry.
By shifting the PSF core onto the bare TiO2 crystal surface ∼ 150 µm away
from Pinhole A, we obtained the pupil images at the reflection path with less
interference effect. The pupil images were captured at the same integration
time as the above interferograms. The photometry of these images yielded
the average number of photons (in the number of photo-electrons) in the
reflection path. The average number of photons in the transmission path
was estimated using the parameters so and se (Table 8.1). The sum of these
numbers is the average number of photons in all the paths. Dividing this
sum by the area ratio of the subaperture to the incident pupil, we got the
above value (2.3× 104 electrons). This value equals the average number of
incident photons per subaperture when the throughput of the b-PDI optics
(including the quantum efficiency of the detector) is 100%.

8.1.4 Statistical error

We evaluated the statistical error of the b-PDI by measuring sinusoidal
wavefronts. Noise propagation theory predicts that the statistical error σstat
[rad] of the b-PDI is expressed by the following equation:

σ2stat = σ2pn + σ2rn (8.1)

=
C2
p

Ne
+
C2
rN

2
r

N2
e

. (8.2)

In the case of the zonal reconstruction in the b-PDI, Ne is the average
number of photons (in the number of photo-electrons) incident on one sub-
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Figure 8.2: Comparison between δrec,av(x, y) and δ0(x, y). The map δrec,av(x, y)
is the average of the 10 frames of the phase, which are measured
with the b-PDI under a high S/N condition. The map δ0(x, y) is the
average of the 10 frames of the phase, which are measured with the
SHWFS under a high S/N condition. Reprinted with permission from
[58] ©Optica Publishing Group.

aperture. The terms Cp and Cr are the coefficients of error propagation from
photon noise and readout noise, respectively. The term Nr is the readout
noise; Nr = 1.6 electrons RMS in this experiment [36].

As the prediction, we ran simulations using the numerical model (Section
6.1.1), which reflected the actual Pinhole A (#03-40) geometry shown in
Table 7.1. The values of Cp and Cr were predicted from the simulations
with photon noise or readout noise at Ne > 300. Table 8.2 shows the result
with sinusoidal wavefronts. The spatial frequencies of the wavefronts were
2, 4, and 8 c/p. The amplitudes of the wavefronts were 0.16 rad (20 nm),
which means P-V = 0.32 rad (40 nm).

Table 8.2: Predicted Cp and Cr from the simulations.

Spatial frequency of wavefront Cp Cr

2 c/p 1.0 3.1
4 c/p 1.0 3.1
8 c/p 1.0 3.0

In the experiment, the sinusoidal wavefronts are shaped with the DM.
We measured the wavefronts with the b-PDI under the following conditions.
By adjusting the integration time of the detector, Ne was set in a range
of 24 − 2.4 × 104. The Ne was estimated in the same way as in Section
8.1.3 and scaled by the integration time. At each integration time, 100
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frames of interferograms were captured. However, 10 frames were captured
at Ne = 2.4×104 electrons. The phase δrec(x, y) was calculated at each sub-
aperture (x, y) with Eqs. 5.29-5.31 (the normal algorithm). This calculation
used two types of numerical masks: fixed and low-count masks. The fixed
masks excluded the eight subapertures that hit the beam’s edges and the
12 subapertures that overlap the dead actuator on the DM. The low-count
masks excluded subapertures with

IRo (x, y) + IRe (x, y)

2
< 2 ADU (≃ 1 electron). (8.3)

This operation excludes physically meaningless count values. The tip/tilt
components were subtracted from the calculated phase δrec(x, y).

The experimental values of the statistical error σexp were calculated from
δrec(x, y). First, δrec(x, y) at Ne = 2.4× 104 electrons was averaged over 10
frames and defined as the reference phase δRef (x, y). Next, the difference
between δRef (x, y) and δrec(x, y) at Ne < 2.4 × 104 electrons was taken,
and its RMS value was calculated. This RMS value is σexp. Note that
σexp contains only the statistical errors because the difference canceled the
systematic errors. The median, maximum and minimum values of σexp were
selected from the 100 frames at each integration time.

We compared the experimental results σexp with its predicted value σstat
(Eq. 8.2). Figure 8.3 shows the results. The experimental σexp and its
predicted value σstat are consistent in the region Ne ≳ 100. At Ne = 60,
the experimental σexp exceeded the predicted σstat. This implies nonlinear
error propagation, with effective Cp and Cr being larger than the values
in Table 8.2, respectively. These elevated values were also observed in the
simulations. For example, for the 4 c/p sinusoidal wavefront, the simulated
effective Cp and Cr are 1.4 and 4.1 at Ne = 60, respectively. These simulated
values are consistent with the experimental value σexp at Ne = 60. On
the other hand, the experimental value σexp was lower than the predicted
value σstat at Ne = 24. This is because the low-count masks eliminated
the subapertures with large noise and small count values below 1 electron,
suppressing the overall error (see Fig. 8.3 (d)). In this region, the effective
Cp and Cr are smaller than the values in Table8.2, respectively. The low-
count masks removed ∼ 30% of the subapertures at Ne = 24 and ∼ 5% at
Ne = 60.
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Figure 8.3: (a)(b)(c) Comparison of the experimental value σexp of the statisti-
cal error with its predicted value σstat. The horizontal axis is the
average number of photons per subaperture Ne (in the number of
photo-electrons). The graphs show results with the sinusoidal wave-
fronts (2, 4, and 8 c/p), as noted in each panel. The gray dashed
line represents the predicted σstat, the black dots are the median of
σexp, and the error bars are their maximum and minimum values.
The Nr represents the readout noise; Nr = 1.6 electrons RMS in this
experiment. (d) Experimental values σexp of the statistical error with
different thresholds for the low-count masks. For the black dots, the
low-count masks are applied at < 2 ADU (≃ 1 electron). For the gray
dots, the low-count masks are applied at < 1 ADU (≃ 0.5 electron).
Reprinted with permission from [58] ©Optica Publishing Group.

8.1.5 Limit of dynamic range

We evaluated the dynamic range of the b-PDI, using the sinusoidal wave-
fronts generated with the DM. The spacial frequency was 1, 2, and 4 c/p.

First, we measured the wavefronts with the SHWFS. Ten frames were
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measured. The tip/tilt components were removed from each frame. The 10
frames were then converted to 26 × 26 pixels. The measured phase of the
SHWFS at frame number j was defined as δSH,j(x, y).

We then measured the wavefronts with the b-PDI. By adjusting the
integration time, the number of photons was set to Ne ≳ 1.2×104 electrons.
Ten frames of interferograms were captured. The phase was calculated at
each subaperture with Eqs. 5.29-5.31 (the normal algorithm). The measured
phase of the b-PDI at frame number j was defined as δrec,j(x, y).

We then calculated the magnification factor Mj of the b-PDI relative to
the SHWFS at frame number j. The optimal value as Mj minimizes the
following evaluation function D(m):

D(m) = Σx,y {δrec,j(x, y)−mδSH,j(x, y)}2 . (8.4)

In other words, Mj satisfies the following equation:

∂D(m)

∂m

∣∣∣∣
m=Mj

= 0. (8.5)

Therefore, Mj is defined as

Mj =
Σx,y δrec,j(x, y) δSH,j(x, y)

Σx,y δSH,j(x, y)2
. (8.6)

The 16 or 25 subapertures were affected by the dead actuator of the DM
and thus numerically masked. The median, maximum and minimum values
of Mj were selected from the 10 frames.

Finally, we captured the PSF with the focal plane imager to calculate
the Strehl ratio. The calculation was based on Method Six described by
Roberts et al. [60].

Figures 8.4 and 8.5 show the result with the normal and iterative al-
gorithms, respectively. Since the arctangent function atan2 does not cause
ambiguity in the range of 1λC in P-V, Mj > 0 was expected in the same
range. However, we observed Mj = 0 at P-V < 1λC , and the measured
phase was almost flat. The Mj = 0 occurred when the Strehl ratio was
∼ 0 at any spatial frequency. This is because the reference beam disap-
pears, and the contrast of the interferogram takes ∼ 0 at the Strehl ratio
∼ 0. At this point, interferometry can not be performed. This effect sets
a practical upper limit of the dynamic range. Thus, the dynamic range is
P-V < 0.6λC − 1.0λC for the sinusoidal wavefronts with 4 − 1 c/p. In the
dynamic range, the wavefront phase is calculated without being affected by
the ambiguity of the equation.
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Figure 8.4: (a) Magnification factor Mj of the b-PDI with the normal algorithm,
plotted against the P-V value of the phase measured with the SHWFS.
(b) Magnification factor Mj plotted against the Strehl ratio of the
PSF. In each panel, the black dots represent the median of Mj , and
the error bars are their maximum and minimum values. The line
types identify the spatial frequency of the wavefronts: solid line for
1 c/p, dashed line for 2 c/p, and dashed-and-dotted line for 4 c/p.
Reprinted with permission from [58] ©Optica Publishing Group.

Figure 8.5: (a) Magnification factor Mj of the b-PDI with the iterative algorithm
(five iterations), plotted against the P-V value of the phase measured
with the SHWFS. (b) Magnification factor Mj plotted against the
Strehl ratio of the PSF.

8.1.6 Linearity in practical cases

For a more practical evaluation, the dynamic range characterized by linear-
ity is worth investigating. Natural atmospheric wavefronts in practical use
are less prone to degrade the Strehl ratio than sinusoidal wavefronts because
natural ones include multiple spatial frequencies. Thus, non-sinusoidal wave-
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fronts are more suitable for evaluating the b-PDI behavior with large aberra-
tions. We evaluated the linearity within P-V < 1λC , using a non-sinusoidal
wavefront shaped by the DM. The wavefront under test was expressed by
the Zernike polynomial Z20 (pentafoil), which does not yield SR = 0 within
the range (P-V < 1λC).

First, we measured the wavefront with the SHWFS in the same way
as the previous section to obtain δSH,j(x, y) (26 × 26 pixels). The RMS
values of δSH,j(x, y) were calculated, and the median value was selected to
be RMSinput. This was regarded as the RMS value of the input wavefront
phase. Note that RMSinput ≃ 0.7 rad corresponds to P-V = 1λC .

We then measured the wavefront with the b-PDI. We used two fiber
sources: the tungsten-halogen lamp (800 ± 100 nm) and the diode laser
(800 nm). The latter was used to evaluate the effect of coherency and
to compare the b-PDI linearity with the FPyWFS evaluated with a laser
source [61]. The number of photons was set to Ne ≳ 1.2 × 104 electrons.
With each fiber source, ten frames of interferograms were captured, and
δrec,j(x, y) were calculated with both the normal and iterative algorithms.
The iterative algorithm required five iterations to converge the calculated
phase. The RMS values of δrec,j(x, y) were calculated, and the median values
were selected to be RMSoutput.

Finally, we compared RMSoutput with RMSinput. Figure 8.6 shows the
result.

The normal algorithm lets the b-PDI behave linearly within RMSinput ≲
0.4 rad. The algorithm underestimated the input phase aberrations with
RMSinput ≳ 0.4 rad. This is partially due to the mismatch of the assumed
f in the calculation and the attenuated reference beam. The iterative algo-
rithm improved the linearity by compensating for the mismatch.

The diode laser (800 nm) yielded better linearity compared to the tungsten-
halogen lamp (800 ± 100 nm). This reflects the improved contrasts of the
interferograms due to better coherency. With the iterative algorithm, the
b-PDI is close to linear within RMSinput ≲ 0.5 rad. In contrast, the simula-
tion shown in Appendix A predicted linear response within RMSinput ≲ 0.7
rad (P-V ≤ 1λC) with a single wavelength (800 nm). The difference between
the experimental and simulated results is due to factors not considered in
the simulation, such as scattered light, stray light, and vibration.

The experimental result with the diode laser can be compared with the
FPyWFS performance evaluated with a 635-nm laser source [61], shown in
Fig. 8.7. The response curve of the FPyWFS with an MVM-like algorithm
deviates from linear at RMSinput ≃ 0.3 rad (P-V≃ λC/2). This reflects the
limit of the approximation: sin x = x (Eq. 4.14). With RMSinput ≳ 0.3
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rad, RMSoutput is underestimated and saturates. Thus, the dynamic range
with a linear response is RMSinput ≲ 0.3 rad. On the other hand, the b-
PDI’s response with the iterative algorithm (Fig. 8.6(b)) is close to linear
in RMSinput ≲ 0.5 rad.
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Figure 8.6: The response of RMSoutput against RMSinput with (a) the tungsten-
harogen lamp (800± 100 nm) and (b) the diode laser (800 nm).

Figure 8.7: The response curves of FPyWFS, evaluated with a 635-nm laser
source and an MVM-like algorithm. The figure is cited from Ger-
ard et al. (2022) [61]. The purple solid line represents the response
curve for Z20 wavefront. 0.20 µm rms corresponds to 2.0 rad RMS.
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8.2 Discussion

8.2.1 Statistical error and efficiency

The coefficient Cp describes the contribution of photon noise to the statis-
tical error. The experiments showed that the manufactured b-PDI has Cp

of ≳ 1.0, which is ≳ 1.4 times larger than that of a Zernike WFS [48]. This
means that the b-PDI is ≳ 1.4 times more sensitive to photon noise than a
Zernike WFS. Thus, the sensitivity factor βp of the manufactured b-PDI is
≳ 1.4. In other words, the efficiency of the b-PDI is comparable to that of
a fixed pyramid WFS.

The further enhancement of the b-PDI efficiency is one of the future
works, considering the simulated efficiency in Section 6.1.2. For example,
the following are to be investigated. (1) Further optimization of the pinhole
depth d under chromatic effects. (2) Modifying the reconstruction algorithm
to avoid the strong error propagation at Ne ∼ 60. (3) Investigating other
limiting factors such as scattered light.

8.2.2 High-speed capabilities

The high-speed capabilities include a low calculation cost and a small read-
out region.

The calculation cost of the b-PDI is relatively low. The cost is O(NSA),
where NSA is the total number of the subapertures. This is as low as the
cost of a Zernike WFS, and that of the fastest algorithm of a fixed pyramid
WFS [43].

The b-PDI has a relatively small readout region in the vertical direc-
tion on a detector. The size in the direction is N1d pixels, where N1d is
the number of subapertures filling the aperture diameter. A Zernike WFS
and a fixed pyramid WFS require N1d and > 2N1d pixels in the direction,
respectively. The fewer pixels in the vertical direction of sCMOS detectors
reduce the time for readout and yield a higher frame rate.

8.2.3 Dynamic range

The b-PDI has a relatively large dynamic range in two ways of character-
izations: (1) the range in which the reconstruction equation is applicable
and (2) the range in which the WFS responds linearly. As for (1), the
b-PDI’s reconstruction equations (Eqs. 5.29-5.31) calculates the tangent
(sine/cosine) of the phase aberration δ. Thus the equation does not cause
ambiguity in the range |δ| < π, which corresponds to P-V < 1λC . This is
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about two times larger than the range of other phase sensors (ZWFS and
FPyWFS). We do not willingly use phase unwrapping algorithms to reduce
the calculation cost. However, if the cost is not an issue, there is room to
use the algorithms to overcome the limitation of the atan2 function. As for
(2), the b-PDI responded linearly in RMSinput ≲ 0.5 rad with the iterative
reconstruction algorithm and the coherent beam. This is larger than the
range of FPyWFS evaluated by Gerard et al. [61] with a coherent beam.

Note that the b-PDI also has upper limit of the dynamic range set by the
Strehl ratio, as described in Section 8.1.5. This is because the reference beam
disappears at a Strehl ratio of ∼ 0, resulting in unsuccessful interferometry.
This effect is inevitable and limits the dynamic range of any PDI.

8.2.4 Low-count masks

The numerical low-count masks reduce the statistical errors when the b-
PDI captures a low number of incident photons (Ne ∼ 24 electrons). In the
experiment, the subapertures with signals equivalent to ≲ 1 electron were
masked. The masked subapertures were ∼ 30% of the total at Ne = 24
electrons. In the future, detectors with smaller readout noise (< 1 electron)
will reduce the number of the masked subapertures. Simulations predict that
the fraction of the subapertures masked when the readout noise is 0.3 and 0
electrons is 21% and 12%, respectively. In the practical use in a closed-loop
ExAO, the unmeasurable phase values in the masked subaperture can be
compensated for by the phase values measured at the previous loop.

8.2.5 Scalability and limiting factor

ExAO in a larger telescope requires more subapertures and higher resolution
of the interferograms because D/r0 increases. The scalability of the b-PDI
resolution is limited by the detector size; the diameter of each interferogram
must be smaller than a quarter of the detector width.

8.3 Summary of this chapter

This chapter has described the result of the laboratory test and discussed
the properties of the b-PDI. Table 8.3 compares the manufactured b-PDI’s
performance with the simulated and target performance (Table 5.1). Table
8.4 compares the manufactured b-PDI with other phase sensors (Table 4.1).

95



8.3. SUMMARY OF THIS CHAPTER

Table 8.3: Comparison of the manufactured b-PDI’s performace with the target and simu-
lated performance. βp: sensitivity factor [27]. N1d: 1-dimensional number of the
effective subapertures. λC : center of the sensing wavelength band. ∆λ: width of
the sensing wavelength band.

Target Simulated Manufactured

Type Phase sensor Phase sensor Phase sensor
βp ≤ 1.4 ≃ 1.1 ≳1.4

Sampling rate 6.5 kHz i 6.5 kHz 7.9 kHz iii

Calculation cost O(NSA) O(NSA) O(NSA)
Number of detector pixels (vertical) N1d N1d N1d

N1d ≥ 24 i 24 26
Dynamic range 1λC 1λC

ii 1λC
ii

λC 800 nm i 800 nm 800 nm

i Assuming the SEICA instrument [17].
ii The range in which the reconstruction equation is applicable without ambiguity.
iii Maximum frame rate of ORCA-Flash 4.0V2 CMOS camera (free running mode)
with 26 vertical pixels [36].

Table 8.4: Comparison of WFSs. Cp: coefficient of error propagation from photon noise. βp: sensitivity
factor [27]. λC : center of the sensing wavelength band. NSA: number of all the effective
subapertures. N1d: 1-dimensional number of the effective subapertures.

ZWFS FPyWFS b-PDI b-PDI
(simulated) (Manufactured)

Type Phase Phase Phase phase

Cp

√
0.5 i N/A 0.77 ≳ 1.0

βp 1.0
√
2 ≃1.1 ≳1.4

Calculation cost O(NSA) O(NSA)−O(N2
SA) O(NSA) O(NSA)

Number of detector
pixels (vertical)

N1d > 2N1d N1d N1d

Dynamic range < 0.5λC
ii ≲ 0.5λC

ii/ 1λC
ii/ 1λC

ii/
≲ 0.3 rad RMS iii ≲ 0.7 rad RMS iii ≲ 0.5 rad RMS iii

i From N’Diaye et al. 2013 [48].
ii The range in which the reconstruction equation is applicable without ambiguity.
iii The range in which the WFS responds linearly with the Z20 wavefront and coherent beams.
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Chapter 9

Conclusion

Direct observation of exoplanets is crucial for solving the following two prob-
lems: clarifying the mechanisms of planet formation and searching for ex-
traterrestrial biological activities. Potential targets have small angular sep-
arations (∼ 0.01− 0.1 arcsec) from their host stars and small planet-to-star
contrasts (∼ 10−7). Thus, direct observation requires a high angular res-
olution and high contrast. Such observation with ground-based telescopes
is affected by the Earth’s atmospheric turbulence. This is because the tur-
bulence causes wavefront aberrations, which scatter the host star’s light to
degrade the angular resolution and contrast.

Therefore, a highly accurate wavefront correction is required to obtain
a 10−7-level final contrast. Such correction can be achieved with extreme
adaptive optics (ExAO), which has ∼ 40000 measurement/correction points
in a 30-m telescope aperture and runs at ∼ 5 kHz. ExAO requires a high-
performance WFS with the following properties:

• high efficiency: a small measurement error with a limited number of
photons,

• high-speed capabilities: low calculation cost and a small readout region
for wavefront sensing,

• a large dynamic range.

As for high efficiency, ExAO favors phase sensors, such as a fixed pyramid
WFS and a Zernike WFS. However, These current phase sensors have room
to improve high-speed capabilities and dynamic ranges.

This thesis has described the development of a new phase sensor named
b-PDI. The b-PDI utilizes birefringent crystal (TiO2 in this thesis) as its key
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optical element: the BPBS. The presented simulations determined the opti-
mal design of the BPBS. The BPBS and optical systems were manufactured
and tested in the laboratory. The following properties were achieved.

• high efficiency (the sensitivity factor βp ≳ 1.4) comparable to other
phase sensors,

• high-speed capabilities with lowest level of calculation cost and small-
est level of readout region (in the vertical direction) for wavefront
sensing,

• a larger dynamic range in two ways of characterizations: (1) the range
in which the reconstruction equation is applicable without ambiguity
and (2) the range in which the WFS responds linearly.

Table 8.4 shows the detailed comparison.
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Chapter 10

Ongoing and Future Works

10.1 ExAO experiment

As a part of the development of SEICA instrument, the laboratory demon-
stration of ExAO based on the b-PDI is currently in progress. The experi-
ment utilizes the ExAO (only Tweeter) testbed consisting of:

• WFS: b-PDI,

• DM: BMC 492-DM,

• RTC: Xilinx Zynq UltraScale+ MPSoC ZCU102 (Field programmable
gate array; FPGA).

The following operation has been established so far.

• The RTC receives the signal from the b-PDI and calculates the wave-
front aberration.

• An arbitrary actuator of the DM moves by the commands from the
RTC.

Further debug and optical alignment are required to establish the closed-
loop ExAO operation. The FPGA-based high-speed RTC is expected to
yield FAO ∼ 7 kHz.

10.2 Contribution to TMT

The experimental results of the b-PDI was introduced in “TMTの次期装置
実現に向けた開発ロードマップ” (The development roadmap for realization of
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TMT’s next instruments) [62] as an achievement in the development of the
high contrast instrument of TMT. Further contribution to TMT is expected.
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Appendix A

Simulation: linearity in
practical cases

The linearity of the b-PDI, which was tested in Section 8.1.6, was also sim-
ulated. The simulation assumed a single wavelength of 800 nm and used
the numerical model (Section 6.1.1), which reflected the actual Pinhole A
(#03-40) geometry shown in Table 7.1. Assuming the input phase aberra-
tion expressed by the Zernike polynomial Z20, the simulation generated the
interferograms without any noise and reconstructed the phase δrec. Then,
the RMS values RMSinput of the input phase and RMSoutput of the recon-
structed phase were compared in the same way as Section 8.1.6.

Figure A.1 shows the simulated result; the iterative algorithm enabled
the linear response within RMSinput ≲ 0.7 rad (P-V ≤ 1λC).
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Figure A.1: Simulated response of RMSoutput against RMSinput with a single
wavelength of 800 nm.
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Appendix B

Estimation of the number of
photons

This chapter estimates the number of photons collected by a subaperture of
a Tweeter WFS, assuming the parameters in Table B.1. The flux density
f(m) [erg sec−1 cm−2 µm−1] from a m-th magnitude guide star is given by:

f(m) = 10a−0.4m. (B.1)

Here, a is a correction term; a = −4.947 at Ic-band (calculated with the
values in Tamura [63]). At the loop speed FAO, the Tweeter WFS’s integra-
tion time is 1/FAO. In the integration time, the number of photons Nph(m)
collected by a subaperture is expressed as:

Nph(m) =
f(m) L2 ∆λ λC P

FAO h c
. (B.2)

Here, h is Plack’s constant and c is light speed. Figure B.1 shows the values
of Nph(m) at various values of FAO.
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Table B.1: Parameters used in the estimation.

Parameter Notation Value

Central wavelength λC 0.8 µm
Band width ∆λ 0.2 µm
Size of the subaperture L 14.6 cm (= 380/26)
Throughput of the optics before Tweeter WFS P 0.24

Figure B.1: The number of photons per subaperture Nph(m) plotted against the
Ic-band magnitude m of a guide star. The assumed loop speed FAO

is 1.0 kHz (purple), 3.0 kHz (green), and 6.5 kHz (blue).
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