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Abstract

In this thesis, we study the birational types of modular varieties, their several com-
pactifications, and the modularity of the generating series of special cycles on Shimura
varieties. In particular, we focus on ball quotients and orthogonal modular varieties in
terms of modular forms.

First, we consider when ball quotients are of general type. To prove that they are of
general type, there are three types of obstructions: reflective, cusp and elliptic obstruc-
tions. We give a tool, which is a criterion called low slope cusp form trick, to study cusp
obstructions. Moreover, we prove that reflective obstructions are small enough in higher
dimensions and as a byproduct, the finiteness of reflective modular forms. We remark that
elliptic obstructions were already resolved by Behrens. These results are the unitary analog
of the work by Gritsenko-Hulek-Sankaran and Ma on orthogonal modular varieties.

Second, we work on the birational classification of modular varieties in terms of reflec-
tive modular form. As a consequence, we show that the Baily-Borel compactification of
certain modular varieties are Fano varieties, Calabi-Yau varieties or have ample canonical
divisors with mild singularities. This includes important examples in algebraic geometry,
for instance, the moduli space of (log) Enriques surfaces.

Third, we consider a particular ball quotient, which is the moduli space of 8 points
on P!, a so-called ancestral Deligne-Mostow space. We prove that the Deligne-Mostow
isomorphism does not lift to a morphism between the Kirwan blow-up of the GIT quotient
and the unique toroidal compactification of the corresponding ball quotient. In addition,
we show that these spaces are not K-equivalent, even though they are natural blow-ups
at the unique cusps and have the same cohomology. This is analogous to the work of
Casalaina-Martin-Grushevsky-Hulek-Laza on the moduli space of cubic surfaces.

Finally, we prove that the generating series of special cycles on orthogonal or unitary
Shimura varieties has certain modularity under the Beilinson-Bloch conjecture. Histori-
cally, Hirzebruch-Zagier observed that the intersection numbers of Heegner divisors on a
Hilbert modular surface generate a certain weight 2 elliptic modular form, and Kudla-
Millson generalized this to orthogonal or unitary Shimura varieties with the cohomological
coefficients. We work on the Chow group coefficients, hence our results are the generaliza-
tion of Kudla’s modularity conjecture treated by Borcherds, Bruinier, Kudla, Liu, Millson,
Raum and Yuan-Zhang-Zhang.
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CHAPTER 1

Introduction

1.1. Outline of this thesis

Modular varieties play an important role in a wide range. On the one side, they have
aspects such as moduli spaces. In this thesis, for example, the modular varieties realized
as moduli spaces of K3 surfaces, (log) Enriques surfaces, and points on P! are treated. On
the other hand, their birational properties are closely related to modular forms. We can
apply the number theoretic methods such as the Borcherds lift to describe their geometry
based on the celebrated work of Baily-Borel [7] and Mumford [120].

In this thesis, we study the birational geometric properties and several compactifica-
tions of ball quotients and orthogonal modular varieties in terms of modular forms, and
modularity of the generating series of special cycles on Shimura varieties. The contents are
as follows.

(1)

(2)

(3)

To prove that a modular variety is of general type, there are three types of ob-
structions: reflective, cusp and elliptic obstructions. We show that low slope cusp
form trick, a criterion to show that modular varieties are of general type in terms
of cusp forms, holds for ball quotients. This gives a tool to study cusp obstruc-
tions. This is proved by classifying irregular cusps. In addition, we determine
the relationship between irregular cusps of ball quotients and ones of orthogonal
modular varieties, studied by Ma [109]. See Chapter 2 for details. This result is
based on [112].

We prove that reflective obstructions are small enough in higher dimensions in
the case of ball quotients. Our result reduces the study of the Kodaira dimension
of unitary modular varieties to the construction of a cusp form of small weight
in a quantitative manner. As a byproduct, we formulate and partially prove the
finiteness of Hermitian lattices admitting reflective modular forms, which is a
unitary analog of the conjecture by Gritsenko-Nikulin in the orthogonal case. See
Chapter 3 for details. This result is based on the preprint [114].

We prove that the Baily-Borel compactification of certain modular varieties are
Fano varieties, Calabi-Yau varieties or have ample canonical divisors with mild sin-
gularities. We also prove some variants statements, give applications and discuss
various examples including new ones, for instance, the moduli spaces of unpolar-
ized (log) Enriques surfaces. See Chapter 4 for details. This result is based on the
joint work [115] with Yuji Odaka.

The moduli space of 8 points on P!, a so-called ancestral Deligne-Mostow space, is,
by work of Kondo, also a moduli space of K3 surfaces. We prove that the Deligne-
Mostow isomorphism does not lift to a morphism between the Kirwan blow-up
of the GIT quotient and the unique toroidal compactification of the correspond-
ing ball quotient. Moreover, we show that these spaces are not K-equivalent, even
though they are natural blow-ups at the unique cusps and have the same cohomol-
ogy. This is analogous to the work of Casalaina-Martin-Grushevsky-Hulek-Laza
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2 1. INTRODUCTION

on the moduli space of cubic surfaces. We further briefly discuss other cases of
moduli space of points in P! where a similar behavior can be observed, hinting at
a more general, but not yet fully understood phenomenon. The moduli spaces of
ordinary stable maps, that is the Fulton-MacPherson compactification of the con-
figuration space of points in P!, play an important role in the proof. See Chapter
5 for details. This result is based on the joint work [69] with Klaus Hulek.

(5) We prove the modularity of the generating series of special cycles on orthogonal
and unitary Shimura varieties under the Beilinson-Bloch conjecture. We work on
the Chow group coefficients, hence our results are the generalization of Kudla’s
modularity conjecture treated by Borcherds, Bruinier, Kudla, Liu, Millson, Raum
and Yuan-Zhang-Zhang. See Chapter 6 and 7 for details. These are based on
111, 113].

The outline of this thesis is as follows. In Chapter 2, we study irregular cusps of ball
quotients. This is used to measure the order of modular forms at the boundary of toroidal
compactifications and prove low slope cusp form trick, a criterion asserting that ball quo-
tients are of general type. In Chapter 3, we estimate the dimension of modular forms
vanishing on branch divisors. This implies that reflective obstructions of ball quotients do
not affect to prove that they are of general type if their dimension is sufficiently large, say
greater than 138. In Chapter 4, we introduce a certain class of modular forms, which is
called “special reflective modular forms”. By using this notion, we prove a criterion, claim-
ing some modular varieties are Fano varieties, Calabi-Yau varieties or have ample canonical
divisors. In Chapter 5, we study the moduli space of 8 points on P!, classically treated
in the Deligne-Mostow theory [32] and by Kondo [88]. We show the Deligne-Mostow iso-
morphism does not lift between the Kirwan blow-up and the toroidal compactification,
compute their cohomology and prove that they are not K-equivalent. In Chapter 6 (resp.
Chapter 7), we introduce the notion of the generating series, constructed geometrically in
terms of Shimura varieties, and prove that they are certain modular forms for orthogonal
Shimura varieties over totally real fields (resp. unitary Shimura varieties over CM-fields)
under the Beilinson-Bloch conjecture. Our main results show their modularity with Chow
group coefficients, which is a generalization of Kudla-Millson [96] and Yuan-Zhang-Zhang
[151].

In the rest of this chapter, we shall introduce the notion of modular varieties and give
precise statements of our results, although a more detailed introduction will be provided
at the beginning of each chapter.

1.2. Notation

1.2.1. Modular varieties (Chapter 2, 3, 4, 5). In Chapter 2, 3, 4, 5, we study
the birational geometry of ball quotients. Let us introduce their notion. The following
notation in this section will be used in the above Chapters.

Let F = Q(\/c_l) be an imaginary quadratic field where d is a square-free negative
integer. Let —D be its discriminant and O ring of integers. Let (L, (, )) be a Hermitian
lattice over O of signature (1,n) with n > 1. Here, Hermitian forms are complex linear
in the first argument and complex conjugate linear in the second argument, and take value
in a finite free Op-module M of rank 1. Below, we take

M- \/Lﬁﬁp (Chapter 2,4)
Op (Chapter 3,5).
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Accordingly, we have the unitary group U(L) over Z. Let Dy be the Hermitian symmetric
domain associated with U(L ®z R):

Dy :={veVarC\{0}| (v,v) >0}/C".
Then, for a finite index subgroup I' C U(L)(Z), we define
F.(T) := Dy T

This is a quasi-projective variety over C and called a unitary modular variety or a ball
quotient.

We call L primitive if there does not exist Hermitian lattice L' C L of the same rank
as L so that the quotient L/L’ is a non-trivial torsion &p-module. We also define the dual
lattice LY of L:

LY :={v e L®g, F|{v,w) €M for any w € L}.
This lattice contains L as a finite index lattice, so the discriminant group Ay := LY /L is
a finite Op-module. We call L is unimodular if L = LY. As an important example of an
arithmetic group, the discriminant kernel U(L) is defined by

U(L) = {g € U(L)(2Z) | gla, = id}.

On the other hand, in Chapter 2, 4, we also study orthogonal modular varieties. Now,
as above, let us prepare some notions. For a quadratic form (A, (, )) of signature (2, m)
over Z with m > 1, we realize the Hermitian symmetric domain associated to O (A)(R)
as Y, which is defined as one of the connected components of

{veP(A®C) | (v,v) =0, (v,7) > 0}.

Throughout this thesis, we denote by .Z the automorphic line bundle of weight 1 on unitary
or orthogonal modular varieties.

In this thesis, we usually study the relationship between ball quotients and orthogonal
modular varieties in terms of the following embedding, studied in [68]. For a Hermitian
lattice (L, ( , )) of signature (1,n), we define the associated quadratic lattice (Lg,( , ))
over Z of signature (2,2n), where Lg := L as a Z-module and ( , ) := Trg/g(, ). Then,
we obtain embeddings

(1.2.1) t:U(L) = O*(Lg),

and Dy — P, In this embedding, we identify the unitary group U(L) with a subgroup
of O+(LQ)

1.2.2. Orthogonal Shimura varieties (Chapter 6). Let us recall the setting of
Kudla [92], [95] and Rosu-Yott [131] to define orthogonal Shimura varieties and special
cycles.

Let d and e be positive integers satisfying 1 < e < d. Let Ej be a totally real field of
degree d with real embeddings o4,...,04. Let V be a non-degenerate quadratic space of
dimension n+2 over Ey whose signature is (n,2) at o1, ...,0. and (n+2,0) at oeyq,...,04.
We put V,,c ==V ®p,, C and P(V;, ¢) == (Vo,c\{0})/C*. Let D; C P(V,,¢c) be the
Hermitian symmetric domain defined as follows:

D;:={v e V,,c\{0} | (v,v) =0, (v,0) <0}/C* (1<i<e).

We put D := Dy x -+ x D,. Let GSpin(V') be the general spin group of V' over Ej, which
is a connected reductive group over Ey. We put G := Resp/g GSpin(V) and consider the
Shimura varieties associated with (G, D). Then, for any open compact subgroup K; C
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G(Ay), the Shimura datum (G,D) gives a orthogonal Shimura variety My, over C, whose
C-valued points are given as follows:

M, (C) = GQN(D x G(Ay))/ K.

Here Ay is the ring of finite adeles of Q. We remark that My, has a canonical model over
a number field called the reflex field. Hence M, is canonically defined over Q. In this
subsection, @Q is an algebraic closure of Q embedded in C. By abuse of notation, in this
chapter, the canonical model of Mg, over Q is also denoted by the same symbol Mg, .
Then the Shimura variety M, is a projective variety over Q since 1 < e < d. It is a

smooth variety over Q if K is sufficiently small.

For i = 1,...,e, let & € Pic(D;) be the line bundle which is the restriction of
Op(v,, )(—1) to D;. By pulling back to D, we get p;.Z; € Pic(D), where p;: D — D;
are the projection maps. These line bundles descend to .,E”KN- € Pic(M Kf) ®7 Q and thus
we obtain & 1= L, 1 @ @ Lk, on M,.

We shall define special cycles following Kudla [92], [95] and Rosu-Yott [131]. Let
W C V be a totally positive subspace over Ey. We denote Gy := Resp/g GSpin(W). Let
Dy := Dy x -+ X Dy be the Hermitian symmetric domain associated with Gy, where

Dy, ={w e D; |Yv e W,,, (v,w)=0} (1<i<e).

Then we have an embedding of Shimura data (Gy, Dw) < (G, D). For any open compact
subgroup Ky C G(Ay) and g € G(Ay), we have an associated Shimura variety Mg -1 w
over C:

Myic;q-1,w(C) = Gw (QN(Dw x Gw (Ay))/ (9K g~ N Gw (Af).

Assume that K is neat so that the following morphism

Mk ;q-1,w(C) = M, (C)
[7,h] — [T, hg]

is a closed embedding [95, Lemma 4.3]. Let Z(W, g)k, be the image of this morphism. We
consider Z(W, g)r, as an algebraic cycle of codimension edimg, W on Mg, defined over

Q.
For any positive integer r and = (z1,...,x,) € V", let U(z) be the Ey-subspace of V'
spanned by z1,...,x,. We define the special cycle in the Chow group

Z(%Q)Kf S CHer(MKf)C — CHer(MKf) Q4 C
by
Z(x,9)k, = Z(U(2),9)k, (1 (LR 1) -+ ea (L))~ U@

if U(x) is totally positive. Otherwise, we put Z(z,g)x, := 0.
For a Bruhat-Schwartz function ¢; € S(V(A;)")%7, Kudla’s generating function is
defined to be the following formal power series with coefficients in CH® (Mg, )c in the

variable 7 = (74, ..., 74) € (J4)%

Z¢f(7) = Z Z qbf(g_lx)Z(x,g)Kqu(x).

zEG(Q\VT g€G.(Ap)\G(Af)/ K
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Here G, C G is the stabilizer of x, 7. is the Siegel upper half plane of genus r, T'(x) is the
moment matrix 1 ((z;,;));;, and

d
qT(x) = exp(QW\/—_lz Tr TZ'T($)Ui).
=1

For a C-linear map ¢: CH* (Mg, )c — C, we put

UZo)(T) = ) > 65(g~ " 2)U(Z(x, 9)xe,)a",

zeG(Q\V" g€ (Af)\G(Ay) /Ky

which is a formal power series with complex coefficients in the variable 7 € ()%

1.2.3. Unitary Shimura varieties (Chapter 7). Let d, e, and n be positive integers
such that e < d. Let Ej be a totally real field of degree d with real embeddings oy, ...,04
and E be a CM extension of Ey. We write Jg, for the different ideal of Ey. Let (Vg, (, ))
be a non-degenerate Hermitian space of dimension n + 1 over £ whose signature is (n, 1)
at 01,...,0. and (n+1,0) at gey1,...,04.

For i = 1,...,¢, let Vgo,c = Vg ®g,,, C and DF C P(Vg,,c) be the Hermitian
symmetric domain defined as:

DF := {v € Vrc\{0} | {v,0) > 0}/C*.

We use

Dg:=DF x ... x DE.
Let U(VE) be the unitary group of Vg over Ey, which is also a reductive group over Fy. We
put H := Resp/g U(VE) and consider the Shimura varieties associated with the Shimura
datum (H, Dg). Then, for any open compact subgroup K}“‘ C H(Ay), we obtain a unitary

Shimura variety M K§ Over C, which is a projective variety over Q as in Section 1.2.2. In

this thesis, as above, we assume that K}{ is sufficiently small.

In Chapter 7, we solve a modularity problem on unitary Shimura varieties by using
orthogonal Shimura varieties defined in Section 1.2.2. Here, we use a slightly different
notation (but objects are the same) from Chapter 6, thus let us introduce them.

We define Vg, := Vg, considered as an [Ey-vector space and ( , ) = Trg/g(, ).
Then, (Vg,,(, )) is a quadratic space of dimension 2n + 2 over E, whose signature is
(2n,2) at 01,...,0. and (2n+2,0) at 0e11,...,04. We define D, similarly. We put G :=
Resg, /o GSpin(Vg,) and define N K9 similarly for an open compact subgroup ng C G(Ay).
Let L C Vg, be a lattice, and L’ denotes the dual lattice. Now, we get a group embedding,
H — G. From here, we assume that K} = G(A;) N K? so that

(1.2.2) t: My = Nyo.

In this thesis, we also assume that K? is sufficiently small.

We will also work on the modularity constructed by unitary Shimura varieties as above.
However, their notation of special cycles is similar to Subsection 1.2.2, hence we omit the
details. For any positive integer r, we define the special cycle in the Chow group

ZH(x, 9k € CH (Mgr)e = CHY (M) @2 C

as the orthogonal case in Section 1.2.2. Then, for a Bruhat-Schwartz function ¢; €
S(VE(Af)T)K}{, Kudla’s generating function is defined to be the following formal power
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series with coefficients in CH6T<MK}-L>(C in the variable 7 = (71,...,74) € (J4)%

Zim = Y S bl 2 ) end" .

seH(Q\VE geHa (Ap)\H(As)/ K}
We define ng (7) similarly.

Remark 1.2.1. We explain that ng (7) is an analog of a theta function. For a totally
real definite matrix § € M, (F), let Qg = {x € Vg | T(z) = }, and we consider
the Fourier expansion with respect to 5. Now we choose § such that {23 # @ and fix
zo € Qp(Ep). For & € G(Ay), we have

Supp(¢y) N Qp(Af) = HK &+ o,
and we put
14
Z9(B.¢p)kg =Y or(& - 20) 2% (w0, &) kg
j=1

Then, Z}! (1) becomes
’
=> Z9(B,¢5)knd”

820
and by adding Kudla-Millson forms and Gaussian functions, this is exactly a theta function
in the cohomology group. For details, see [92].

In Chapter 6 and 7, we will prove that the generating series is a certain modular form
with its coefficients in the Chow groups. To clarify the notion of “modular”, we introduce
it.

Definition 1.2.2. Let V be a vector space over C and f be a formal power series with

coefficients in V. We say f is modular if for any C-linear map ¢: V' — C such that ¢(f) is
absolutely convergent, ¢(f) is modular.

1.3. Low slope cusp form trick

We will introduce the notion “irregular cusps” of ball quotients and study them in
Chapter 2. Here, let us state the main application of the study of irregular cusps. The
following is a unitary analog of [56, Theorem 1.1] or [109, Theorem 8.9]. For the definition
of (semi-)irregular cusps, see Chapter 2.

Theorem 1.3.1 (Low slope cusp form trick, Theorem 2.6.3). Let F' be an imag-
inary quadratic field and L be a Hermitian lattice of signature (1,n) over Op. For a finite
index subgroup I' C U(L)(Z), we assume that there is a non-zero cusp form ¥ of weight k
with respect to I' on Dy. In addition, we make the following assumptions.

(1) ver(V)/k > (r; —1)/(n+ 1) for every irreducible component R; of the ramification
divisors Dy, — Z (') with ramification index r;.

(2) vi(V)/k > 1/(n+ 1) for every regular isotropic sublattice I C L.

(3) vi(V)/k > my/(n+ 1) for every (semi-)irregular isotropic sublattice I C L with
ndexr my.

(4) n > max; {r; — 2,m; — 1}.

(5) ZL(I') has at worst canonical singularities.
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Then the ball quotient F(I") is of general type.

The last condition on canonical singularities has been solved by Behrens when the
dimension is sufficiently large, thus the question comes down to whether there exists a cusp
form with a low slope that vanishes on the branch divisors. In addition, this observation
suggests that if the dimension of ball quotients is sufficiently large, they are of general
type. In Chapter 3, we will show the existence of modular forms, not necessarily cusp
forms, vanishing on branch divisors for higher dimensional ball quotients. More strongly,
we will prove that there exist many enough of them.

1.4. Reflective obstructions of ball quotients

1.4.1. The toroidal compactification of ball quotients. The canonical bundle of
KT(F) is described as

di—1
(1.4.1) K 7 ~o (n+1)$—z 7 B;— A

in Pic(ZL (")) ®z Q, where .Z is the Hodge bundle and B; C .% (") is the branch divisor
of the map Dy, — % (') with branch index d; and A is the boundary. Note the difference
of the notation of B; in Section 1.5.

One strategy to prove that % (I") is of general type is to rewrite (1.4.1) as

K ~a Mr(o)+{(n+1 - a)2 - A},

for some positive integer a > 0, where

d; — 1
Mr(a) == a? — Z ) B;,

and show that

(A) (Reflective obstructions) Mr(a) is big,
(B) (Cusp obstructions) (n+ 1 —a).Z — A is effective.

Combined with the result of [9], this would imply that % (I") is of general type. In this
chapter, we give a solution to (A) in a quantitative manner with respect to a. Note that
if (A) and (B) hold, then Kz is big. The remaining problem, namely the effectiveness
of (n+1—a)Z — A, is the same as the construction of a non-zero cusp form on Dy, of
weight n+1—a < n+1; we do not consider this (see Remark 3.1.5 and Subsection 3.1.2).

1.4.2. Main results. Let Xy := F,(U(L)(Z)), M(a) := My)(a) and S :== [ p
where p runs over any prime number which divides D and det(L). Let us introduce an
important assumption.

(V) SU(L') and SU(¢*NL) are principal for any [(] € Ry (F), where L' := (0@ ((+NL) C L.
The definition of “principal” is given in Subsection 3.1.4. A vector [¢] € R (F') defines a

branch divisor; for the definition of the set Ry (F'), see Section 3.3. The main theorem in
Chapter 3 is as follows.

Theorem 1.4.1 (Theorem 3.8.1). Let L be a primitive Hermitian lattice over Op of
signature (1,n) with n > 2. Assume (V). Then, for a positive integer a, the line bundle
M(a) is big if dim X, = n or S is sufficiently large.
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It follows that the reflective obstructions can be resolved for .Z,(I") with sufficiently
large n or S. We will prove that specific lattices, called “unramified square-free” lattices
below, satisfy (©). Note that a lower bound for n and S in Theorem 3.1.1 can be easily
computed.

1.4.3. Application I: Kodaira dimension. In this subsection, we assume n > 13
and F # Q(v/-1),Q(v/-2),Q(v/—3). These assumptions come from [9, Theorem 4],
which asserts that .Z(I") has at worst canonical singularities and branch divisors of the
map Dy, — .%.(I') do not exist at the boundary. Note that X contains no irregular cusps
[112]. Under (B), we state an application to the birational type of X

Theorem 1.4.2 (Corollary 3.8.2, Theorem 3.8.3). Assume that (V) holds and
there exists a non-zero cusp form of weight lower than n + 1 with respect to U(L). Then,
Xy 1s of general type if dim X =n or S is sufficiently large.

1.4.4. Application II: Reflective modular forms. Next, let us consider reflective
modular forms. Let f be a modular form of some weight and character with respect to
[ on Dy. We say that f is reflective if the divisor of L is set-theoretically contained in
the ramification divisors of D — %1 (I'). Reflective modular forms appear in many fields
of mathematics; see [52, 54, 61]. Gritsenko-Nikulin [61, Conjecture 2.5.5] conjectured
finiteness of quadratic lattices admitting a non-zero reflective modular form, and Ma [107,
Corollary 1.9] proved it. Here, we consider an analogous problem for Hermitian lattices.
We say that L is reflective with slope r for r > 0 if there exists a reflective modular form on
Dy, with its slope r; for the definition of the slope of a modular form, see [107, Subsection
1.3].

Conjecture 1.4.3 (Finiteness of Hermitian lattices admitting reflective mod-
ular forms). For anr > 0 and a fized F,

{Hermitian reflective lattices with slope less than r}/ ~

s a finite set.

We can partially prove Conjecture 1.4.3 from a computation of the Hirzebruch-Mumford
volumes.

Corollary 1.4.4 (Corollary 3.8.4). For anr > 0 and a fized Fy,
{Unramified square-free reflective lattices with slope less than r | n > 2}/ ~

is a finite set.

For the definition of unramified square-free lattices and Fj, see Chapter 3.

1.5. Fano modular varieties with mostly branched cusps

In this section, let us introduce a general theorem. In the later Section 4.3, we apply
them to various concrete examples. First, we introduce some notations.

1.5.1. Convention and Notation. In Chapter 4, we discuss the linear equivalence
class of a Cartier divisor and the corresponding holomorphic line bundle interchangeably.
Similarly, we do not distinguish the Q-linear equivalence class of a Q-Cartier divisor and
the corresponding Q-line bundle. We use the following notations throughout.

e G is a simple algebraic group over Q, not isogenous to SL(2).
e ( is the identity component of G(R), which we assume to be a simple Lie group.
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e K is a maximal compact subgroup of G.

e The corresponding Hermitian symmetric domain is G/ K.

e Take an arithmetic subgroup I' C G(Q) i.e., commensurable to G(Z). By abuse
of notation, we omit the notation of Z-valued points in this chapter.

e X :=I'\G/K and its Baily-Borel compactification X ([133, 7]).

e H denotes the upper half plane (which is an example of X).

e X" denotes the boundary of the Baily-Borel compactification, i.e., X" \ X.
e Denote a toroidal compactification of X in the sense of [6], with an arbitrary fixed

cone decomposition, simply as X wr (The choice of cone decompositions do not
affect the following discussions. )

e Denote the boundary divisor X = \ X as A (with coefficients 1).
e Denote the branch divisor of G/K — I'\G/K to be U;B;(C X) with prime divisors

B; and branch (or ramification) degree d;. By abuse of notation, we denote by
—-tor

Emr (resp. EBB) the closure of B; in X or X0,
e X°:=X \ UzBl

o =Ky + A+, d"d:lgzor € Pic(ytor) ® Q and its descended (automorphic)

Q-line bundle on YBB, iLe., Kgns + ), dzl—_ilEBB.

e Recall from [7] and [120, 3.4, 4.2 (also see 1.3)] that £ is ample (resp. semiample)
on X0 (resp. ytor) and a meromorphic section of Z®* for t € Z~ corresponds
to a meromorphic automorphic form of arithmetic weight ct for some ¢ € Z.
Throughout this thesis, a weight always simply refers to the arithmetic weight (in
the sense of e.g., [58]) and call ¢ the canonical weight, following e.g., [58]. See also
Lemma 4.2.4 for the calculation of c.

1.5.2. Special reflective modular forms. Recall that reflective modular forms are
the concept originally formulated in [52] for orthogonal case, which means that their divisor
is defined by reflections. In this chapter, we consider the following stronger properties, or
proper subclass of reflective modular forms. The upshot of our general observation is
that the existence of such special reflective modular forms give strong implications on the
birational properties of modular varieties (see Theorem 1.5.3). These modular forms are
rare, but luckily still various interesting examples are known (cf. [52], Section 4.3). We
also construct new examples in Section 4.3.

Assumption 1.5.1 (Special reflective modular forms - General case). Consider
the following subclasses of reflective modular forms.

(1) A non-vanishing holomorphic section f of

I A G =)

i

for some N € Z~q, s(X) € Qs with s(X)N, dﬂi € Zy.
(2) A non-vanishing holomorphic section f of Ox(N(s(X).Z — >, ¢;B;)) for some
N € Z, s(X) € Qup, and ¢; € Q with 0 < ¢ < 42! for all i, such that
s(X)N,N¢; € Z. Z
We follow the same convention below.

Assumption 1.5.2 (Special reflective modular forms - orthogonal case). For
n > 2, assume that there is a quadratic lattice A of signature (2,n) such that G =
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Of(A ® Q) with I' € Of(A). In this situation, we consider the following subclasses of
reflective modular forms.

(1) A non-vanishing holomorphic section f of Ox(N(s(X)Z — >, B;)) for some
N € Zo, s(X) € Qs with s(X)N, & € Z,.

Indeed, for the above G and I', Gritsenko-Hulek-Sankaran showed that every branch divisor
arises from reflections (of order 2) [58, 2.12, 2.13], i.e., the ramification degrees d; are all
2. Note that N is unessential as it gets multiplied when replacing f by its power, while
the quantity s(X) is more essential and sometimes called a slope in the literature.

Below, we discuss various modular varieties X which can be roughly divided into two
types, i.e., those with modular forms satisfying Assumption 1.5.1 (1), and those with
modular forms satisfying Assumption 1.5.1 (2). The former is discussed in Subsection
4.2.1, with examples given in Section 4.3, and the latter is discussed in Subsection 4.2.2
while some examples are given in [55, 110].

1.5.3. Main general results. Here is our first general theorem.

Theorem 1.5.3 (Birational properties). We follow the notation as above. If there
is a reflective modular form that satisfies Assumption 1.5.1 (1) with some s(X) € Qso,
then the Baily-Borel compactification xX° of X =T'\D only has log canonical singularities
and X° is quasi-affine. In addition,

(1) if s(X) > 1, then X% is a Fano variety i.e., —Kyus is ample (Q-Cartier),

(2) if s(X) =1, then X s a Calabi- Yau variety i.e., Kyus ~q 0, or
(3) if s(X) <1, then Kyss is ample.

The quantity s(X) in Theorem 1.5.3 is the (arithmetic) weight of the modular form s
divided by such canonical weight ¢ and some constant; see Remark 4.3.8 and 4.3.27. As
an application of Theorem 1.5.3, we will prove that the moduli space of (log-)Enriques
surfaces are Fano; see Example 4.3.13, 4.3.17.

1.6. Revisiting the moduli space of 8 points on P!

The Deligne-Mostow theory [32] gives us an isomorphism between MYT which is
the moduli space of unordered 8 points on P! and the Baily-Borel compactification of an

———BB
appropriate 5-dimensional ball quotient B>/T" . We are interested in the lifting of the
Deligne-Mostow isomorphism to the unique toroidal compactification. There exist two
natural blow-ups, playing important roles here: the Kirwan blow-up f : M¥X — MST and

————tor ———BB
the toroidal compactification 7 : B5 /T " B /T . Here, the Kirwan blow-up M¥ is the
partial desingularization of MYT whose center is located in the polystable orbits (which

——t
is a unique point {cs4} in our case). The toroidal compactification B?/I" * is a blow-up

———BB
of B5/T"  at the point {£}, which is the unique cusp, i.e., the Baily-Borel boundary. The
above Deligne-Mostow isomoropshim sends c44 to &, thus restricting to an isomorphism

MEN 7 eyy) & IB%5/FtOr \ 771(¢). In this setting, our first main result asserts that the
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—t
birational map g : MY --» B5/T" * does not extend to a morphism.

Theorem 1.6.1 (Theorem 5.3.15). Neither the Deligne-Mostow isomorphism ¢ :
MEIT IB5/FBB nor its inverse ¢~ lift to a morphism between the Kirwan blow-up MX

——t
and the unique toroidal compactification B® /T’ ”

This result still leaves the possibility open that the Kirwan blow-up and the toroidal
compactification are isomorphic as abstract varieties. One obstruction to this could be
that the varieties are topologically different. Indeed, the topology of these varieties is of
independent interest (and indeed this was the starting point of [27] and [28] in the case
of cubic threefolds and cubic surfaces). We compute the cohomology of these varieties,
according to the Kirwan method [79, 76, 77] and Casalaina-Martin-Grushevsky-Hulek-
Laza [27]. Wherever a space X has at most finite quotient singularities, we work with
singular cohomology with rational coefficients and denote this by H*(X). In the other
cases, notably the GIT quotient and the Baily-Borel compactification of ball quotients,
we work with intersection cohomology (of middle perversity) and denote this by I H*(X).
Note that for spaces with finite quotient singularities singular cohomology and intersection
cohomology coincide. The cohomology groups of the varieties under consideration are given
as follows.

Theorem 1.6.2 (Theorem 5.5.1, 5.5.2, 5.5.6, 5.5.8). All the odd degree cohomology
of the following projective varieties vanishes. In even degrees, their Betti numbers are given

by:

j 02 4 6 8 10
dim H(MX) 1 2 3 3 2 1
dmIH/BT0) (11 2 2 1 1
dim H7 (B3 /T 1 2 3 3 2 1
dim HI (MK) 1 43 99 99 43 1
dim TH (BT )1 8 29 20 8 1
dim IH/(B5 /Ty ") |1 43 99 99 43 1

thus, all the Betti numbers of M® and ]B%5/Ftor are the same.

Here, B5/ FordBB denotes the Baily-Borel compactification of a 5-dimensional ball quo-

——BB
tient, which is an Gg-cover of B5/I"  and isomorphic to MSLL | the moduli space of ordered
tor

8 points on PL. Also, we denote by ME , the Kirwan blow-up of MSI and by B5 /T4
—— BB

the toroidal blow-up of B5/T',,q . For more precise descriptions of these varieties, as well

as the bounded symmetric domain and arithmetic subgroups, see Section 5.2.

———tor
Again, this result leaves the possibility that M¥ and B5 /T’ * are isomorphic as abstract
varieties. We rule this out by showing that these spaces are not K-equivalent. Recall that
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two projective normal Q-Gorenstein varieties X and Y are called K -equivalent if there is
a common resolution of singularities Z dominating X and Y birationally

Z
5N
Xeoomoo ~Y

such that fyKx ~q fyKy. For K-equivalent varieties, the top intersection numbers are
equal: K% = K3, where n is the dimension of X and Y. We shall use this property to

———=tor
show that MX and B®/T * are not K -equivalent. Thus, these varieties are in particular
not isomorphic as abstract varieties, even though they are the blow-ups at the same points

of MGIT ~ g5/ T and have the same Betti numbers.

Theorem 1.6.3 (Theorem 5.4.6). The Kirwan blow-up MY and the toroidal com-

pactification IB%E’/FtOr are not K-equivalent and hence, in particular, not isomorphic as ab-
stract varieties.
As we shall see later, the situation is in contrast to the case of moduli of ordered points,

. . ———tor
where we have an isomorphism ME =~ B5/T,.4

1.7. Modularity of the generating series: the case of orthogonal Shimura
varieties

Let notation be as in Section 1.2.2. Our main result in Chapter 6 is below.

Theorem 1.7.1 (Theorem 6.1.5). Assume n > 3 and Conjecture 6.1.3 for the
Shimura variety My, for m =e. Let v > 1 be a positive integer.

(1) If £: CH" (Mk,)c — C is a linear map over C such that ((Z,,)(7) is absolutely
convergent, then ((Zy,)(7) defines a Hilbert-Siegel modular form of genus r and
weight 1 +n/2.

(2) If r = 1, for any linear map ¢: CH*(Mg,)c — C, the formal power series
U(Zy,)(T) is absolutely convergent and we get a Hilbert modular form of weight
14+ n/2.

For the case of n < 2, see Theorem 6.1.6. There we will use “an embedding trick”.

Remark 1.7.2. (1) If £ factors through a linear map ¢': H**" (M, C) — C, The-
orem 1.7.1 and Theorem 6.1.6 were proved unconditionally by Kudla [95, Section
5.3] and Rosu-Yott [131, Theorem 1.1].

(2) When e = 1, we recover the results of Yuan-Zhang-Zhang. (Note that Conjec-
ture 6.1.3 is true when m = 1. See Remark 6.1.4.) This case is called Kudla’s
modularity conjecture, stated by Kudla in [94, Section 3.2, Problem 1] and proved
unconditionally by Yuan-Zhang-Zhang in [151, Theorem 1.2]. However, they also
assumed the absolute convergence of the generating series for r > 1.

(3) We do not know the absolute convergence of the generating series £(Zg,)(7). When
F = Q and d = e = 1, Bruinier and Westerholt-Raum proved unconditionally that
U(Zg4,)(7) is absolutely convergent for any ¢ in [26, Corollary 1.4].

(4) Kudla [95] proved the absolute convergence and the modularity of generating
series in the same setting as ours, assuming Conjecture 6.1.3 for Shimura varieties
associated with quadratic spaces of sufficiently large rank.
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1.8. Modularity of the generating series: the case of unitary Shimura varieties

We also work on the modularity of the generating series on unitary Shimura varieties.
For notations, see Subsection 1.2.3. In the context of Kudla’s modularity conjecture, our
problem is as follows.

Conjecture 1.8.1. The generating series ZZ;Lf(T) is a Hilbert-Hermaitian modular form
of weight n + 1 and genus r.

Here, the precise definition of the notion “modular”, see Definition 1.2.2. We give two
partial solutions to this problem in this chapter. See Corollary 1.8.3 and Theorem 1.8.4.

First, we can prove the modularity of the generating series of special divisors by using
the regularized theta lift on orthogonal groups.

Theorem 1.8.2 (Theorem 7.3.1). Assume that e =1 and r = 1. Then, ZZ;? (1) is a

Hermitian modular form for SU(1,1) of weight n+ 1 under the assumption that the series
converges absolutely.

This implies the case of higher codimensional cycles.

Corollary 1.8.3 (Corollary 7.3.2). Assume e = 1. Then, fo(T) is a Hilbert-

Hermitian modular form for U(r,r) of weight n + 1 under the assumption that the series
converges absolutely.

This gives another proof of Theorem 1.8.4 for the e = 1 case and [103, Theorem 3.5].
This is shown unconditionally differently from Theorem 1.8.4. Now, we state the theorem
for e > 1.

Theorem 1.8.4 (Theorem 7.4.1). Z;'? (1) is a Hilbert-Hermitian modular form for

U(r,r) of weight n+1 under Conjecture 6.1.3 for m = e with respect to orthogonal Shimura
varieties and the assumption that the series converges absolutely for e > 1.

Remark 1.8.5. Kudla [95] and the author [111] proved the modularity of the gen-
erating series associated with orthogonal Shimura varieties for e > 1. Their results are
shown by using the Kudla-Millson’s cohomological coefficient result [97] and reducing the
problem to this cohomological case under the Beilinson-Bloch conjecture for orthogonal
Shimura varieties. Therefore one might think that the modularity of the generating series
associated with unitary Shimura varieties would also be proved in the same way, but the
Hodge numbers appearing in the cohomology of unitary Shimura varieties do not seem to
vanish [95, Remark 1.2].

Historically, for unitary Shimura varieties, Kudla-Millson [97] studied the cohomolog-
ical coefficients case. In the Chow group, Hofmann [68] showed the SLo(= SU(1,1))-
modularity of the generating series over imaginary quadratic fields for the r = 1,e = 1
case, and Liu [103] showed Hermitian modularity for the e = 1 case, assuming the absolute
convergence of the generating series. Therefore we give a generalization of their work. On
the other hand, Xia [148] showed Liu’s result, not assuming the absolute convergence of
the generating series. He uses the formal Fourier-Jacobi series method similar to the work
over Q of Bruinier-Westerholt-Raum [26].

Theorem 1.8.2 and Corollary 1.8.3 are included in Theorem 1.8.4 under the Beilinson-
Bloch conjecture, but we give another proof only working for » = 1, using regularized theta
lifts.






CHAPTER 2

Irregular cusps of ball quotients

2.1. Introduction

When calculating the order of modular forms on modular curves at cusps, we need to
consider whether the cusp is regular or not. If it is irregular, then the order of the modular
forms is defined as half the order determined by its Fourier expansion at the cusp. More
precisely, irregular cusps of modular curves are cusps whose widths are strictly smaller
than the period for Fourier expansion; this is explained in detail in [33]. In the case of
orthogonal modular varieties, Ma [109] defined and studied irregular cusps. He classified
the structures of discriminant groups for the case of discriminant kernel when irregular
cusps may exist on the orthogonal modular varieties and constructed examples. Finally,
he proved the low slope cusp form trick, which is a modification of the low weight cusp
form trick [56, Theorem 1.1] when the irregular cusps arise, and used it to show that some
orthogonal modular varieties are of general type.

In this chapter, we work on ball quotients. First, we define irregular cusps on them.
Unlike the case of orthogonal modular varieties, in our situation, there may exist branch
divisors with branch indices 2,3,4 or 6 as explained in Section 2.3. Considering the effects of
these cusps, as a main result, we give a sufficient condition for a ball quotient to be of general
type in terms of modular forms, called the low slope cusp form trick. On the other hand,
we shall give an example of a ball quotient of non-negative Kodaira dimension in Section
2.7. This is done by constructing a cusp form, satisfying a weaker condition appearing
in this trick. Second, we consider the relationship between regular/irregular cusps on ball
quotients and regular/irregular cusps on orthogonal modular varieties when a Hermitian
symmetric domain of type I is embedded into one of type IV. In this situation, we prove
that regular cusps map to regular cusps and determine whether irregular cusps map to
regular or irregular cusps. Third, we classify the structures of the discriminant group when
the discriminant kernel may have irregular cusps in Section 2.4 and Appendix 2.A. Finally,
we construct concrete examples of irregular cusps of any index for any imaginary quadratic
field with class number 1 in Section 2.8. Before stating our results, we should summarize
our settings.

Now, let us introduce the notion of irregular cusps. Let I be a rank 1 primitive isotropic
sublattice of L and I'(I)g be the stabilizer of I ®g, F'. We denote by W (I)q its unipotent
part and Z(I)g the center of W(I)g. We say [ is irreqular with (at least) index 2 if
Z()oNT # Z(I)gN (I, —id) holds. We have to consider whether the cusp corresponding
to I branches with a higher index or not for F' = Q(y/—1) or Q(y/—3), but for simplicity,
we only concern ourselves with this case here. At irregular cusps, we have to pay attention
to the vanishing order of modular forms and related pluricanonical forms.

Here, we shall state our main result, which is a unitary analog of [56, Theorem 1.1] or
[109, Theorem 8.9)].

Theorem 2.1.1 (Low slope cusp form trick, Theorem 2.6.3). Let F' be an imag-
inary quadratic field and L be a Hermitian lattice of signature (1,n) over Op. For a finite

15
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indez subgroup I' C U(L)(Z), we assume that there is a non-zero cusp form ¥ of weight k
with respect to I' on Dy. In addition, we make the following assumptions.

(1) vr(V)/k > (r; —1)/(n+1) for every irreducible component R; of the ramification
divisors Dy, — Z(I') with ramification indez r;.

(2) vi(¥)/k > 1/(n+ 1) for every reqular isotropic sublattice I C L.

(3) vi(V)/k > m;/(n+ 1) for every (semi-)irregular isotropic sublattice I C L with
index my.

(4) n > max; {r; — 2,m; — 1}.

(5) ZL(I') has at worst canonical singularities.
Then the ball quotient F(1") is of general type.

Remark 2.1.2. Assumptions (4) and (5) are satisfied if n > 13 and d < —3 by 9,
Theorem 4].

Here, #L(I") is the canonical toroidal compactification of .Z#.(I'). For the notion
of “semi-irregular”, see Section 2.3. We also consider the relationship between regu-
lar /irregular cusps on Dy, and regular/irregular cusps on Zr,,. Note that irregular cusps
on 9, have been studied by Ma [109]. Let I'o C O (Lg)(Z) be a finite index subgroup
and I'y € U(L)(Z) be its restriction to the unitary group. In the following proposition,
regular /irregular cusps on Dy, (resp. Zpr,) mean regular/irregular cusps with respect to
Iy (resp. o).

Proposition 2.1.3. (1) For any imaginary quadratic field F', reqular cusps on Dy,
map to regular cusps on 9, .

(2) For F # Q(v/—1),Q(v/=3), irreqular cusps on Dy, map to irreqular cusps on Dro-

(3) For F = Q(\/—1), irreqular cusps with index 2 or 4 on Dy, map to irreqular cusps
with index 2 on 91, and semi-irreqular cusps with index 2 on Dy, map to reqular
cusps on D,

(4) For F = Q(v/=3), irregular cusps with index 2 or 6 and semi-irregular cusps with
index 2 on Dr, map to irreqular cusps with index 2 on D, and irregular cusps
with index 3 and semi-irreqular cusps with index 3 on Dy map to reqular cusps on

D,
For the case of discriminant kernel, we completely classify discriminant groups when
the lattice may have irregular cusps.

Proposition 2.1.4. If F is an imaginary quadratic field of class number 1, and the
discriminant kernel of a unitary group has an irreqular cusp, then the discriminant group
of an even Hermitian lattice is one of those listed in Appendiz 2.A.

2.2. 0-dimensional cusps

Now, let us recall the toroidal compactification of .#,(I") and its cusps. For a rank
1 primitive isotropic sublattice I C L, let I'(I)qg := Stabyyq)(Ir) be the stabilizer of
Ir =1 ®g, F. Here, we review the structure of I'(1)g; see [9] and [105] for details. Let

W(I)g :=Ker(I'(I)g — U(I*/Ir) x GL(If))
be the unipotent radical of I'()g and
Z(I)q := Ker(I'(I)g — GL(I"))
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be its center. We fix a generator e of I. By [105], we define
1
T€®U(2) =zt <Za €>U - <Z,’U>6 - §<U7U><Z, 6>€

for v € I+ and z € V. Then, the following properties hold:

Te®uv = Tﬁ€®v ('u € F>
Te®)\e - ldV ()\ E Q)
Teswlegu = Te@(v+u+%(vm6)'

Thus, it follows that T,g, depends only on I ® I*+/(I ® I)(Q). Here,
I )Q):={\e®e)| X €Q}.
From the definition of Tig,, it follows T,g, = id;1 for e ® v € Ip ® I so that
Ir®Ip/Ie Q) =VdIe Q) = Z()
V(e ® e) = T anese)-

More directly, by choosing a basis {e, b1, ...,b,_1,€'} of V such that {e, by, ...
basis of I+ and (e, e’) = 1, the Hermitian form is given by

(2.2.1)

0011
0/ B0
11010
for some Hermitian matrix B, and the center of W (I)q is given by
1] 0 |\d
ZMNe =4 | 0[T, 2] 0 AeQ
0 O 1

This gives the isomorphism (2.2.1) more explicitly,

Ir@1p/(I®1)(Q) =VdI&I)(Q) = Z(I)g
1] 0 |[2a/4d

V(e ®e) — | 0[] 0

0] 0 1

17

b1} is a

(See [9, Lemma 12] for a description.) Now, I'(I)g acts on both sides of the equation. The

natural action on the left-hand side coincides with the adjoint action on the
side.

T\/ﬁ)@(e@e) = Py_lT\/E)\(e@Je)Py (7 € F(I)@)
We also have the following isomorphism,

V(g2 Tr®It)Ip

right-hand

by [105]. Here, V' (I)q is defined in (2.2.4). For a finite index subgroup I' C U(L)(Z), we

introduce the following notation from [6] and [109]:
F([)Z = F(I)Q ﬂF, W(I)Z = W(])Q N F, Z(I)Z = Z(I)Q NI
L)y :=T(1)z/Z(1)z, V(I)z = W(1)z/Z(D)z, T :=T(1)z/W(I)z

T(D)g :=T(o/Z(1)z, W()gyz == W()g/Z()z, Z()gyz = Z(I)g/Z(I)z.

Now we have the following exact sequences:

(2.2.2) 0—=-V({U),—>T{), =T =1
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(2.2.3) 0— W(l)gz—T(I)g — U(I*/Ip) x GL(Ir)

Note that Z(I)g,z is a torsion subgroup of T'(I) := Z(I)c/Z(I)z. Let ¢; :== P(I ®¢, C)
be the cusp corresponding to I. We need a representation of D, as a Siegel domain of the
third kind. We define D(I) := Z(I)cDy. Then, we obtain the following fibration by [6]:

D)= Z(I)ex V(e xc; 2 DI := D(I)/Z(I)¢c =3 ¢;.
Moreover, from this fibration, we have
Dy = {(zu) € D) | () — hu,u} € C(1)}

for a cone C(I) in Z(I)g and some real-bilinear quadratic form h : C"~! x C"! — Z(I)g.
Accordingly, we have

X(I):=D/Z(I); c D(I)/Z(I); 5 D(I)'.
Here, the quotient fiber bundle 7; is a principal fiber bundle under the algebraic torus
T(I) == Z(I)c/Z(I)z. Since dimg(Z(I)gr) = 1, there exists a natural toric embedding
T(I) = T(I). In accordance with [6], we define X(I) as the interior of closure of X' (I) in
X (1) xq T(I).
Finally, the toroidal compactification of .Z(I") is defined by taking the canonical cone
decomposition:

Z.0) = (D, U | XD/ ~,
ICL
where [ is a rank 1 primitive isotropic sublattice of L and the equivalence relation is defined
in [6].

———BB
Remark 2.2.1. We can also construct the Baily-Borel compactification .7, (I') ~ of a
ball quotient .#(T") as follows. We define the rational completion DB as the union of Dy,
and 0-dimensional cusps:
DEB = DL U U Cr.
ICL

——— BB
Here, I C L runs over the rank 1 primitive isotropic sublattices. Now we define Z(I') =

DEBT.

2.3. Irregular cusps

2.3.1. Case of Q(v/—1). Throughout this subsection, we assume F' = Q(y/—1). Let

us define irregular cusps.

Proposition 2.3.1. The following are equivalent.

(1) 2(1)s = 2(1)g 0 (T, ~id) # Z(I)g N (T, V=Tid).

(2) —id el V=1id ¢ T, and vV=1T =159y € T(1)z for some vV=IXe®e) €
V1T 1)(Q). -

(3) —id € T, v/—1id € T, and there exists an element v € T'(I), of order 4, acting on
Z(I)z and V(I)¢c trivially and X (I) non-trivially, and whose image in U(I*) x
GL(Ip) is (V—=1idrs,1,,vV/—1idy,). Moreover, the order of this non-trivial action
on X(I) is 2.
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PROOF. (1) = (2) Since v/—1id ¢ T, there exists an element T, =gy € Z(I)g N
(T, v/=1id)\ Z(I)z for some v/ =1\ (e®e) € vV/—1(I®1)(Q). Now (I',y/—1id) = T'Uy/—1T"
so that T/ =1y(egey € vV —1I. Combining this with the condition —id € I, it follows
\% _1T\/j1)\(e®e) € F([)Z

(2) = (1) Since —id € I', we have Z(I)z = Z(I)g N (I', —id). On the other hand,
V1T /yegey € T(I)z and v/—1id ¢ T' together shows that T\ /—7\.e. € Z(I)g N
(T)v/—1id) \ Z(I)z.

(2) = (3) Let v := v/=1T/=1)c@pe be an order 4 element in ['(I),. The element ~
acts on I as —y/—1-times and I*/I as /—1-times. Hence, v acts on V(I)c trivially. By
definition, /—1id and T T=ix(ewe) act on Z(I)z trivially, so the same holds for v. We also
have the image of v € ['(I)z in U(I*) x GL(Ip) is (vV—1idss ., vV—1idp,).

On the other hand, under the assumption /—1 ¢ T, it follows T V=xeze) E Z)z-
This means that v acts on X (I) non-trivially. Note that Z(I)g acts on X(I) C T(I) :=
Z(I)c/Z(I)z as a translation, so the above action is a non-trivial translation.

(3) = (2) From (2.2.3), we have v = (v/=1ids1,1,,v/—1idy,., @) for some o € W ([I)gz.
Since vy acts on V()¢ trivially, it follows that the image of a in V(I)g is 0 in (2.2.4), so
a € Z(I)gz Hence, v = (V=1ids1,,., vV=1ids,, T/ —1r(eme)) for some V=IA(e® e) €
V—1(I ® I(Q). Now, we have v/—1id; = (\/—_11dIJ_/]F, v/—1idy,.,0), so combining this
with v = (V=1ids1,,., V=1id1,., Tyreme))» it follows /=1y = =T /7y (cge) € . Since
we have assumed —id € I' so that \/—_1T\/jl/\(e®e) el.

U

Geometrically, the existence of such a cusp corresponds to the existence of a branch
divisor on the boundary of a ball quotient with branch index 2. We can show the following
propositions in the same way as Proposition 2.3.1.

Definition 2.3.2. We say that [ is semi-irregular with index 2 if the conditions in
Proposition 2.3.1 are satisfied. Here, we define Z(1)!, := Z(I)oN (', v/—1id) and I'(1)’, :=

(I'(1)z,v/—1id)/{(/—1id).
Now, let us treat the index 4 case.

Proposition 2.3.3. The following statements are equivalent.

(1) Z(I)z # Z(I)g N (T, —id) # Z(I)g N (T, +/—=1id), that is, all three are different.

(2) —id,/—1id €T, and \/_T\ﬁ,\ ewey € I'(I)z for some \/_)\(e®e) evV-1(I®
)

(3) V=1id ¢ T, and there exists an element v € T(I), of order 4 acting on Z(I)
and V (I)¢ trivially and X (I) non-trivially, and whose image in U(I+) x GL(Ip) is
(\/—_11d1¢/[F, V—1idy,.). Moreover, the order of this non-trivial action on X (I)
s 4.

ProoOF. This can be proven in the same way as Proposition 2.3.1. 0

Definition 2.3.4. We say that [ is irregular with index 4 if the conditions in Propo-
sition 2.3.3 are satisfied. Here, we define Z (1)}, := Z(I)g N (I';,v/—1id) and I'(1)/,
(I'(Iz,v—1id) /{(/—1id).
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2.3.2. Case of Q(v/—3). Throughout this subsection, we assume F' = Q(y/—3). Let
w be a primitive root of unity.

Proposition 2.3.5. The following statements are equivalent.

(1) Z(I)z = Z(1)g N (T, wid) £ Z(I)g N (T, —id).

(2) wid €T, —id € I, and =T /=35 (eee) € D(1)z for some V/=3X\(e ®e) € V=3(I ®
1.

(3) wid € T, —id ¢ T, and there exists an element v € T'(I) ), of order 6, acting on
Z(I)z and V(I)¢ trivially and X (I) non-trivially, and whose image in U(I*) x
GL(Ir) is (—idjs,p,, —idg,). Moreover, the order of this non-trivial action on
X(I) is 2.

ProoF. This can be proven in the same way as Proposition 2.3.1. U

Definition 2.3.6. We say that [ is semi-irreqular with index 2 if the conditions in
Proposition 2.3.5 are satisfied. Here, we define Z(I);, := Z(I)g N (I',wid) and I'(1), :=
(I'(1)z,wid) /{wid).

Proposition 2.3.7. The following statements are equivalent.
(1) Z(1)z = Z(1)o N (T, —id) # Z(I)e N (T, —wid).
(2) —id €T, wid € L', and =T /=3 (.0e) € D(1)z for some V/=3X\(e @ €) € V=3(I ®
1)(Q).
(3) —id € T, wid ¢ T, and there exists an element v € T'(I) ), of order 6, acting on
Z(I)z and V(I)¢ trivially and X (I) non-trivially, and whose image in U(I*) x
GL(Ip) is (widjr)p,,widr.). Moreover, the order of this non-trivial action on

X(I) is 3.
ProoFr. This can be proven in the same way as Proposition 2.3.1. U

Definition 2.3.8. We say that [ is semi-irreqular with index 3 if the conditions in
Proposition 2.3.5 are satisfied. Here, we define Z(I);, := Z(I)g N (I',wid) and I'(1)}, :=
(I'(1)z,wid) /{wid).

Proposition 2.3.9. The following statements are equivalent.
(1) Z(1)z = Z(I)g N (T, —id) # Z(I)g N (T, wid). _
(2) —id € T, wid € T, and WT /=5)(c0e) € L'(I)z for some /=3A\e®e) € V-3(I ®
1)(Q).
(3) —id € T, wid ¢ T, and there exists an element v € T'(I) ), of order 3, acting on
Z(I)z and V(I)¢ trivially and X (I) non-trivially, and whose image in U(I*) x
GL(Ip) is (widjr)p,,widr.). Moreover, the order of this non-trivial action on

X(I) is 3.
ProoFr. This can be proven in the same way as Proposition 2.3.1. U

Definition 2.3.10. We say that [ is irreqular with index 3 if the conditions in Propo-
sition 2.3.9 are satisfied. Here, we define Z(I)}, := Z(I)p N (I',wid) and I'({)}, =
(I'(1)z,wid) /{wid).

Proposition 2.3.11. The following statements are equivalent.
(1) Z(1)z # Z(I1)o N (I, —id) # Z(I)g N ([, w), that is, all three are different.
(2) —id,wid €T, and —wT /=3yege) € T(1)z for some /=3 (e®e) € V=3(I®1)(Q).
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(3) —id,wid € T, and there exists an element v € T(I), of order 6, acting on Z(I)z
and V(I)@ trivially and X (I) non-trivially, and whose image in U(I+) x GL(Ir)

is (—widyLp,., —widy,). Moreover, the order of this non-trivial action on X (I) is
6.

ProoF. This can be proven in the same way as Proposition 2.3.1. U

Definition 2.3.12. We say that [ is irreqular with index 6 if the conditions in Propo-
sition 2.3.11 are satisfied. Here, we define Z(I)), := Z(I)g N (', —id,wid) and I'(I), :=
(I'(I)z, —id, wid) /{—id, wid).

2.3.3. Other cases. Let F' be any imaginary quadratic field.

Proposition 2.3.13. The following statements are equivalent.
(1) Z(Dz # Z(1)g N (', —id). _
(2) —id ¢ I, and =T, /gy ey € T'(L)z for some Vdie®e) € VAT @ I)(Q).
(3) —id €T, and there exists an element v € T(I), of order 2, acting on Z(I)z and

V(D¢ trivially and X (I) non-trivially, and whose image in U(I*) x GL(Ir) is
(—idss /gy, —idg,). Moreover, the order of this non-trivial action on X (I) is 2.

Proor. This can be proven in the same way as Proposition 2.3.1. 0

Definition 2.3.14. We say that [ is irreqular with index 2 if the following holds. If F' #
Q(v/—1),Q(+v/=3), then the conditions in Proposition 2.3.13 are satisfied. If F = Q(v/—1),
then the conditions in Proposition 2.3.13 are satisfied and the conditions in Proposition
2.3.3 are not satisfied. If I = Q(y/—3), then the conditions in Proposition 2.3.13 are
satisfied and the conditions in Proposition 2.3.5 and Proposition 2.3.11 are not satisfied.
In these cases, we define Z(1)), := Z(I)o N(I', —id) and I'(1)}, := (I'({)z, —id) /(—id).

Definition 2.3.15. We say that [ is regular if I is not irregular or semi-irregular in
the sense of the above definitions.

2.3.4. Relation with irregular cusps on orthogonal modular varieties. Now,
let us give another description of regular or irregular cusps. We define

{£L+V/-1}Z(I)g) T (F=Q(V-1))
Z(1)5 = ({£], fw, 20} Z(I)g) NT (F = Q(V-3))
({£1}Z(I)g)NT (F #Q(v-1,Q(v/-3))).

We can classify irregular cusps according to the structure of Z(1)%/Z(1)z.

For F = Q(v=1),

(1 (type Ry)

(—id) = Z/27Z (type Ry)

. <\/_ d) = Z/AZ (type Ry)
PURIZD= oy = 22m (type )

(—id, —V=1T y1ree)) = Z/2L x Z/2Z  (type SIy)

\< \/_TFA (e®e) > - Z/4Z (type [4)
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For ' = Q(\/__3>7

(type R1)
< id) = Z2/27 (type Ry)
(wid) 2 Z/3Z (type R3)
(—wid) = Z/6Z (type Rg)
Z(N)z/ 21z = § (=Ty=3x(ewe)) = /2L (type I2)
(=w, =T =rewe)) EL/3L X L2Z =Z/6Z (type SIy)
<WTWA(e®e ) = 7Z/37 (type I3)
(=id, wT /=35(epe)) 2 L/2Z X /3L = Z[6Z (type SI3)
\< WTFA e®e)> Z/6Z (type [6)

For F # Q(v-1),Q(v=3),

1 (type Ri)
Z(1)3/Z(1)7 = { (—id) 2 Z/2Z (type Ry)
(—Taresey) = Z/2Z (type Iz).

Here, type R, corresponds to regular cusps, and type I, (resp. S1,) corresponds to irregular
(resp. semi-irregular) cusps with index *.

Now, we will explicitly show how the type of cusps varies when arithmetic subgroups
change, and consider the relationship between unitary cusps and orthogonal cusps. Figures
2.3.1, 2.3.2, and 2.3.3 show whether the cusps with respect to finite index subgroups of
U(L)(Z) are regular or irregular according to inclusions. We fix an irregular cusp I. For a
finite index subgroup I' C U(L)(Z), these figures represent the type candidates of another
finite index subgroup IV C U(L)(Z) having the inclusion relationship with I'. If I' € I and
I' is type X, then I" is type located above X in the figures, and if I" C I', then I" is type
located below X in the figures. For example, in Figure 2.3.2, for F' = Q(v/—1), let " be
type Rs. Then IV D I' is type Ry, SIy or Ry. On the other hand if IV C I", then I" is type
Ry, I, or Ry. Circle nodes mean regular cusps and diamond nodes mean irregular cusps.

FIGURE 2.3.1. F # Q(v/-1),Q(v/-3)

Next, let us discuss the relationship between regular/irregular cusps on ball quotients
and regular /irregular cusps on orthogonal modular varieties, as studied in [109].
Specifically, we get

U(V) ={y € O ((Lq)q) | javja = dv},
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S
)

(r 1\
S/

FIGURE 2.3.2. F = Q(v/—1)

FIGURE 2.3.3. F = Q(v/-3)

where jq € O%((Lg)q) satisfies j7 = didy,,. Explicitly,

0 d
(T4) 0 o

Jd = 0 0

0 d
o0 (V5)

We are concerned whether the image of regular/irregular cusps on ball quotients by
(1.2.1) are regular or irregular on orthogonal modular varieties. By [68, Proposition 2], a
0-dimensional cusp on Dy, corresponding to a rank 1 primitive isotropic sublattice I C L
maps to a l-dimensional cusp on %y, corresponding to the rank 2 primitive isotropic
sublattice I C Lg spanned by I and v/dI (or (1 ++/d)/2I for d = 1 mod 4). Ma studied
irregular cusps on orthogonal modular varieties; here, we will review some of his results.
In orthogonal cases, only 2-ramifications may occur; they are classified as follows:
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1 (type (R1)o)
Z(1Q)7/Z(Ig)z =  (=id) = Z/2Z (type (R2)o)

(=T arese) = Z/2Z  (type (I2)o)
where Z(1g)z is the intersection of the center of the unipotent part of the stabilizer of
Io in O7((Lg)g) and a finite index subgroup I'o € O1(Lg)(Z) as in our unitary case.
Type (R1)o and (Rs)o (resp. (I2)o) means that I is regular (resp. irregular with index
2) in Z1,/To. Note that the image of Z([)q is precisely Z(Ig)g and the image of the
discriminant kernel in the unitary group is a subgroup of the discriminant kernel in the
orthogonal group. By [109, Corollary 3.6], we obtain Figure 2.3.4 in the orthogonal case.

©

FiGure 2.3.4. Orthogonal case

Now, let us study the image of regular/irregular cusps on orthogonal modular varieties.
Refer to Figures 2.3.5, 2.3.6, and 2.3.7. By [56, Lemma 2.5], for a 1-dimensional cusp
J C Lg, the center of the unipotent part of its stabilizer in O ((Lg)g) is described as

0 el
Z(J)g = Bl (AO) AeQ
e 0 Ion s 0
0 0 I,

for some e € Q. For a 2-dimensional Q-isotropic subspace Jg C (Lg)g, if we consider
it to be a subset of V| it defines an F-subspace of V if and only if e = d. In that case,
the corresponding subspace I is a 1-dimensional F-isotropic subspace of V' and hence
corresponds to a O-dimensional cusp. This shows that when e = d, «(Z(1)g) = Z(J)g. We
also have ((—id) = —id, «(v/=1id) = j_; and

0 1
(% 4) 0 o

t(wid) = 0 0

0 1
oo ()

In this situation, consider the following problem. Let J C Lg be a 1-dimensional cusp
and e = d as above. Let I C L be the corresponding 0-dimensional cusp. Note that
W(Z(I)g) = Z(J)g holds. We assume J is a regular or an irregular cusp in the sense of
[109, Definition 6.2] with respect to a finite index subgroup I'o C OT(Lg)(Z). We shall
determine whether the corresponding cusp I is regular or irregular in the sense of the above
definitions with respect to I'yy := t7}(To).

If J is irregular, then I'p is type (I3)o. In this case, since —id & ', we have —id & I'y;
moreover, from the fact «(Z(I)g) = Z(J)q, it follows that I is irregular and I'y is type Io,
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Iy, SI5 or Is. On the other hand, if J is irregular, then I'g is type (R1)o or (Rs)o. In the
first case, since —id € I'p, it follows that —id € I'y, so we have that ['y; is type Ry, Rs3, or
I5. In the second case, since —id ¢ I'y, it follows that I'y; is type Rs, R4, SI5 or Sls.

In the following figures, star nodes mean that regular cusps in unitary groups become
irregular cusps in orthogonal groups. These figures show what the type of I'o C O (Lg)(Z)
is when I'yy C U(L)(Z) is a certain type. For example, for F' = Q(v/—1), if I'y C U(L)(Z)
is type Ry, then the corresponding 1-dimensional cusp is type (Rz2)o. Indeed, regular cusps
on D;, map to regular cusps on Zr,,. On the other hand, for FF = Q(v/—=3), if I' € U(L)(Z)
is type SIs, i.e, semi-irregular with index 3, then the corresponding 1-dimensional cusp is
regular (type (R2)o).

From Figures 2.3.5, 2.3.6, and 2.3.7, we obtain the following proposition. Let I'p C
O*(Lg)(Z) be a finite index subgroup and I'y C U(L)(Z) be its restriction. Here, reg-
ular/irregular cusps on Dy (resp. %) mean regular/irregular cusps with respect to I'y

(resp. T'o).

Proposition 2.3.16. (1) For any imaginary quadratic field F, reqular cusps on
Dy, map to reqular cusps on Pt .

(2) For F # Q(v/—1),Q(v/=3), irreqular cusps on Dy, map to irreqular cusps on Drg-

(3) For F = Q(v/—1), irreqular cusps with index 2 or 4 on Dy, map to irreqular cusps
with index 2 on 9y,,, and semi-irreqular cusps with index 2 on Dy, map to reqular
cusps on D,

(4) For F = Q(\/=3), irreqular cusps with index 2 or 6 and semi-irreqular cusps with
index 2 on Dr map to irreqular cusps with index 2 on 9, and irregular cusps
with index 3 and semi-irreqular cusps with index 3 on Dy map to reqular cusps on

DL

Q-

FIGURE 2.3.5. Relationship for F' # Q(v/—1), Q(+/—3)

2.4. Discriminant kernel case

Here, we shall show a structure theorem of the discriminant group when the discrim-
inant kernel may have irregular cusps. In this section, we assume that the class number
of F'is 1. For a rank 1 primitive isotropic sublattice I of L and a generator e of I, the
quantity div(/) denotes a generator of the principal ideal {(¢,e) | ¢ € L}. Note that, unlike
the orthogonal case, there is no canonical choice of this quantity. Let I' C U(L)(Z) be a
finite index subgroup.
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FIGURE 2.3.7. Relationship for F' = Q(1/—3)

In this section and Appendix 2.A, we assume that L is even, that is, (¢,¢) € Z for any
¢ € L in the sense of [68]. Note that this implies that the associated quadratic lattice is
even. This corresponds to the assumption in [109, Subsection 4.1]. Let a,b € Z be integers
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with a # 0 or b # 0. This section uses the following notation:

2a+(1+Vd)b d=1 d4

%ﬁ (d =2,3mod 4).

2.4.1. Preparation.

Lemma 2.4.1 (cf. [109, Lemma 4.1]). Assuming U(L) C T, we have Vd(I®1)(Z) C
Z(I)z. Here,

VAT @ 1)(Z) = {Vd\e®e) | A € Z}.

PROOF. For vd\(e ® e) € Vd(I ® I)(Z), we can show that T /ar(ewe) Preserves the
discriminant group and this gives the inclusion vd(I ® I)(Z) C Z(I)z. O

Lemma 2.4.2 (cf. [109, Lemma 4.3]). Let T' = U(L).

(1) For any imaginary quadratic field F with class number 1, if I is irreqular with
index 2, then 2/div(I) is an element of O.

(2) For F = Q(v/-1), if I is semi-irreqular with index 2 (resp. irreqular index 4),
then (1 —+/=1)/div(I) (resp. (1++/—1)/div(I)) is an element of Op.

(3) For F' = Q(v/=3), if I is semi-irreqular with index 2 (resp. (semi-)irregular
with index 3, irreqular with index 6), then 2/ div(I) (resp. (1 —w)/div(I), (1 +
w)/div(l)) is an element of O.

PROOF. (1) Assume —T /3y, € I' = U(L) for some V(e ® €) € Vd(T ® I)(Q).
Then, for any v € I+ NIV, we have
—Tyarewey(v) = —vEV+ L
because —T Vd(eze) CtS on the discriminant group of L trivially. This implies that 2v € L.
By substituting v = €’/ div([), we find that 2/div(l) € Op. We can prove (2) and (3)
similarly by calculating v/ =17 /=)o) and £wT/=3) (cge)-
O
Lemma 2.4.3 (cf. [109, Lemma 4.2]). Let U(L) C T. Assume that the following holds

for any A € F; if 2v/d - div(I)A is an element of Op, then X is an element of Z. Then, I
1S reqular.

PROOF. For a fixed div([), we take an ¢’ € L such that (e, e’) = div(I). Now, we shall
prove that we can take ¢’ to be an isotropic vector.

For simplicity, we only consider the case of d = 2,3 mod 4. We assume (¢’,¢') # 0. Let
f = (p+qVd)e + ¢ for some integers p, g € Z. Note that (e, f) = div(I). Then, since we

have
a4 bv/d
owd

(e, ey =div(l) =
it follows that (f, f) = 0 holds if and only if
(2.4.1) aq+bp=—(e,¢).

Here, —(¢/,€’) is in Z from the condition that L is even. On the other hand, by our
assumption in lemma, the greatest common divisor of a and b is 1 so that there exist some
integers p’ and ¢’ that make the equation (2.4.1) hold. Hence, it suffices to replace ¢’ with
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(p' + ¢v/d)e + €. The same discussion holds for the case of d = 1 mod 4. Below, we take
¢/ to be an isotropic vector.

First, suppose [ is irregular with index 2. Equivalently, we can assume —id ¢ I' and
T arese) €1 Since T /ir(ewe) Preserves L, we have

T faresey(€) = € + 2Vd(e',e) e € L.

By assumption, A\ € O so that Vd\(e ® ¢) € Vd(I ® I)(Z). By Lemma 2.4.1, T farese) €
U(I)z, so we obtain T, 5,y € I'. This implies —id € I', which is a contradiction.
We can give similar proofs for other irregular lattices I. ([l

For analysis of the structures of discriminant groups, we need some invariant decom-
position theorem of finitely generated modules over a principal ideal domain.

Proposition 2.4.4. Let O be a principal ideal domain, N be a finite module over O

and p # 0 be a prime element in O. We assume that an exact sequence

0— O0/p™ — N — @(ﬁ/p")@“i -0

=1

exists for some non-negative integers m,s,a, . ..,as € Z. Then, the isomorphism class of
N satisfying the above exact sequence corresponds to the pair (ig, ..., ik, Mo,. .., Mg) such
that
(19 < -+ < iy
a;, >0 (0<t<k)
a;, >0 (if ig > 0)
mo+---+mi=m (m; >0 for any 1)
\O<mg<ig+1—ig (0§€<k>
Moreover,
( k
ofyoe @@y e ot e @ @) Go=0)
(=1 JFit
N = i for any t
@{(ﬁ/pie)@(ai,fl) @ ﬁ/pm[Jrie} @ @ (ﬁ/pi)@aj (ig > 0).
£=0 JFu
\ for any t

Below, we especially compute the case of class number 1 and discriminant kernels. In
the rest of this section, let I' = U(L). Combining these calculation, it will be possible
to narrow down the list of candidates of discriminant groups; see Appendix 2.A for the
classification of Ay.

2.4.2. Case of Q(v/—1). Let F'=Q(v—1).
Proposition 2.4.5. (1) If I is irreqular with index 2, then div(l) = £1, £4/—1, £1+

V-1, £2,+2(/-1.
(2) If I is semi-irreqular with index 2, then div(l) = £1 £ /—1.
(3) If I is irreqular with index 4, then div(I) = +£1 +/—1.
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PRrROOF. (1) We have
2 4(b + av/—1)
div(l) a2+
Hence, 2/ div(I) € O implies (a,b) = (£1,0), (0, £1), (£1, £1), (£2, 0),(0, £2), (£2, £2),
(£4,0), (0, £4) and these pairs are the candidates for irregular I with index 2 by Lemma
2.4.2. On the other hand,

2V —1{e/,e)\ = (a + bv/—1)\.

If (a + by/—1)\ € Op implies A € Z, then I is regular by Lemma 2.4.3. In this case,
the pairs (£1,0), (0,%1), (£1, £1) satisfy the condition in Lemma 2.4.3; that is, if (a, b) is
one of these pairs, then [ is regular. Hence, from the above discussion, if [ is irregular,
then (a,b) = (£2,0), (0, £2), (£2,£2), (£4,0), (0, +4) so that div(]) = £1, +v/—1, +1 +
V—1,42, +2/—1.
(2) We have
1—+/—-1 2(a+b)+2(a—b)y/—1

div(l) a? + b2
Hence, (1 — +/—1)/div(I) € Op implies (a,b) = (£1,0),(0,+1), (£1,£1), (£2,£2) and
these pairs are the candidates for semi-irregular [ with index 2 by Lemma 2.4.2. By
performing the same calculation, if [ is irregular, then (a,b) = (£2,+£2) so that div([) =

(£24+2/-1)/2 =1 £ /1.

We can prove (3) in the same way. O

2.4.3. Case of Q(v/—3). Let FF = Q(+/—3). See Subsection 2.4.4 for the (semi-)index
2 case.

Proposition 2.4.6. (1) If I is (semi-)irregular with index 3, then
2 14++v/=3)b
div(r) = 20 (V=)
2v/-3

has the candidates listed in Table 2.4.1.
(2) If I is irregular with index 6, then
~ 2a+(1+/=3)b
B 2v/=3

has the candidates listed in Table 2.4.2.

div(I)

PRrROOF. These also follow from a direct calculation. O

al|l-3|-3|-2|-1|-1|-1/-1} 0|0 |OjO} 1 |1 |1{1] 2|33
b 0|3 1{-10|1 2|3/ -1|1|3|-2-1{0]1|-1|-3]0
TABLE 2.4.1. Candidates for div(/) for (semi-)irregular I with index 3

al|l—-2|-1|-1|-1{-1] 0 (0 1 |1/ 11| 2
bl 1 |-10 1|2 |—-1{1-2—-1|0(1]—-1
TABLE 2.4.2. Candidates for div([) for irregular / with index 6




30 2. IRREGULAR CUSPS OF BALL QUOTIENTS

2.4.4. Other cases. Let ' # Q(v/—1) be an imaginary quadratic field with class

number L, that is, F' = Q(\/__Z)a Q(\/__g)v Q(\/__7)7 Q(V _11)7 Q(\/ _19)7 @(\/ _43)7
Q(v/—67) or Q(v/—163). Then, by performing a similar calculation to the one above, we

can prove the following proposition by using a computer.

Proposition 2.4.7. (1) Let d =1mod 4. If I is irreqular with index 2, then
2 1 d)b
div(1) < 20+ (04 V)
2Vd

has the candidates listed in Table 2.4.3.
(2) Let d = —2. If I is irregular with index 2, then

)
div(I) = arov—s +b
202
has the candidates listed in Table 2.4.4.
PRroor. These also follow from a direct calculation. O
d
3 al—-4|-2(-2|-2|-2|-2|—-1|—-1|-1|-1] 0 0
bl 2 |—-21] 0 1 2 4 |—-110 1 2 | -2] -1
al O 0 1 1 1 1 2 2 2 2 4
b 1 2 | =2]-=1]0 1 | —4|-2|-1] 0 2 | =2
7 al—-4]-3|-2|-2|—-1|-1|-1] 0 0 1 1 1
bl 1 |=1] 0| 4] 0 1 2 | —=1] 1 |=2|-1] 0
al 2 2 3| 4
bl —4| 0 1 | -1
all —2|—-2|—-1|—-1| 1 1 2 2
—11,-19, —43, —67, —163 50 170 5 T=9T 0 =410

TABLE 2.4.3. Candidates for div([) for irregular I with index 2 and d =
1 mod 4

a|2|-214]-4|0] 0 0
bllO 0 |0] 0 |2]-24]|—-4

e}

TABLE 2.4.4. Candidates for div([) for irregular / with index 2 and d = —2

2.5. Ramification divisors and canonical singularities

Now, we consider how irregular cusps affect the geometry of %, (I'). The essence of
this section is due to [109, Section 7].

Corollary 2.5.1. Let I be a rank 1 primitive isotropic sublattice of L. Then, I is an
irreqular with index m if and only if the map X(I) — X (I)/T'(I)z ramifies along the unique
boundary divisor with ramification index m. Moreover, if we take the quotient Z(1)3/Z(I)z,
then D/ Z (1)}, — ZL(I') does not ramify along the unique boundary divisor.
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PRroOOF. The first claim follows from Propositions 2.3.1, 2.3.3, 2.3.5, 2.3.7, 2.3.9 2.3.11
and 2.3.13, and the fact that the unique boundary divisor is V(I)c. The second claim
follows in the same way as [109, Proposition 7.2 (2)]. O

Remark 2.5.2. Note that, in the adjoint case, Ma [108] proved there is no branch
divisor on the boundary of any toroidal compactification of modular varieties.

Now, let us treat the canonical singularities on the boundary divisors on ball quotients.

Proposition 2.5.3. Ifn > 13 and d < —3, then the canonical toroidal compactification
Z1(T) has canonical singularities at the boundary points.

PRrROOF. If there is no irregular primitive isotropic sublattice I C L, then the claim
follows from [9]. Otherwise, in the same way as [109, Proposition 7.4], we have

(D/Z(1)z)/T(1)z = (Dr/Z(1)3)/(T(1)z/Z(1)7)-
The claim is proved combining this with [9]. O

2.6. Low slope cusp form trick

Let . := 0(—1)|p, and x be a character of I'. A ['-invariant section ¥ of Z®* @ y is
called a modular form of weight £ with character y. We consider D;, as a Siegel domain
of the third kind. In our setting, for any rank 1 primitive isotropic sublattice I C L, the
corresponding cusp ¢y is a point, so we will omit this in the Siegel domain of the third kind
and consider D, C D(I) = Z(I)¢ x V(I)c. Here, z and u = (uy, ..., u,_1) denote the local
coordinates of Z(I)c and V (I)c, respectively. We take a nowhere vanishing section s; of
& with respect to I in the same way as in [109]. Then when we write ¥ = fs?* ® 1, the
holomorphic function f on Dy satisfies the following modularity condition:

FO) = x()i(v. W) f(W]) (v €T, [v] € Dy)

where j(7, [v]) is the automorphy factor. We assume x|z, = 1 so that f descends to a
function on Dy, /Z(I)z. Then the Fourier expansion of f is

f(Z7U) = Z SDP(U“) exp(Qﬂ-V _1<p7 Z>)
peZ(I)y
For a generator wy of C(I), we define the vanishing order v;(¥) as
vr(¥) == min{(,wr) | € € Z(I)z,,(¢) # 0}.

Moreover, we define the geometric vanishing order vy geom (V) as

vr(W) (I : regular)
Lur(¥) (I : (semi-)irregular with index m).

'UI,geom(\Ij> = {

Then, we can give these vanishing orders a geometrical interpretation.

Proposition 2.6.1 ([109, Proposition 8.4, 8.5 and 8.6]). (1) vi(V) is the vanish-

ing order of W over X(I) along the unique boundary divisor V(I)c.

(2) If 5?k|Z(1)i =1, then vrgeom (V) is the vanishing order of U over X(I)" along the
unique boundary diwvisor V (I)¢.

(3) LE" @ det = Kz + V(1) over X(I).
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The vanishing orders of canonical forms are measured in .%(I"). Now, the projection
X (1) — Z(I") does not ramify, so we can measure the order of canonical forms by pulling

back to X(I)', i.e., for a modular form ¥ of weight (n+1)k and a corresponding k-canonical
form wy,

Vv (I)c (W\I/) = Vv, (W*(W\Il)) = Ul,geom(\lj) — k.

On the other hand, the projection X(I) — X(I)" ramifies with index m if [ is (semi-
)irregular with index m so that

1
vy(ne(we) = Evf(‘lf) — k.

Proposition 2.6.2. The k-canonical form corresponding to a modular form ¥ of weight
(n+1)k extends holomorphically over the reqular locus of Z1(T') if and only if the following
conditions hold:

(1) vr(W¥) > (r; — 1)k for every irreducible component R; of the ramification divisors
Dy — Z(I') with ramification index r;.

(2) vi(V) > k for every regular isotropic sublattice I C L.

(8) vi(V) > mk for every (semi-)irreqular isotropic sublattice I C L with index my.

PRrROOF. To conclude the proof, combine the above discussion and [109, Corollary 8.8].
O

Theorem 2.6.3 (Low slope cusp form trick). Let F' be an imaginary quadratic
field and L be a Hermitian lattice of signature (1,n) over Or. For a finite index subgroup
I' C U(L)(Z), we assume that there is a non-zero cusp form V¥ of weight k with respect to
I’ on Dy. In addition, we make the following assumptions.

(1) ve(¥)/k > (r;—1)/(n+1) for every irreducible component R; of the ramification
divisors Dy, — Z(I') with ramification index ;.

(2) vi(¥)/k >1/(n+ 1) for every regular isotropic sublattice I C L.

(3) vi(V)/k > m;/(n+ 1) for every (semi-)irreqular isotropic sublattice I C L with
index my.

(4) n > max; {r; — 2,m; — 1}.

(5) Z(I') has at worst canonical singularities.

Then the ball quotient F(1") is of general type.

Remark 2.6.4. By [9, Theorem 4], assumptions (4) and (5) are satisfied if n > 13 and
d < —=3.

PRrROOF. By taking some power of ¥, we may assume that W has trivial character. Note
that r; is at most 6 by [9, Corollary 3]. First, let us assume that k is not divisible by n+ 1.
Let m := max;{m;} < 6 and r := max;{r;} < 6. By taking some power of F, since
n > max{r —2,m — 1}, we may assume that

k k m—1 k k r—2
SR g
n+1 n+1 m n+1 n+1 r—1
Then, for every ramification divisor with ramification index r; and every (semi-)irregular

isotropic sublattice I with index m;, we have
mlk] [ k ] [(ri—l)k} [ k ]
= 1 — | =(r—1 1.
[n—i-l A Prara I R (ri= D7)+
Hence, for Ny := [-£5] 4 1, we have
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(1) vg(¥) > (r; — 1) Ny for every irreducible component R; of the ramification divisors
D — 7, (') with ramification index 7;.

(2) vr(¥) > Ny for every regular isotropic sublattice I C L.

(3) v7(¥) > m Ny for every (semi-)irregular isotropic sublattice I C L with index m;.

Now we have
Ve = U Mriyng-wye (D) = Mipnynoe(I).-
From the above discussion, any element in V;, holomorphically extends the ¢Ny-canonical
form over the regular locus of .Z,(I"). On the other hand, Behrens [9, Theorem 4] showed

the canonical singularities of .#L(I'). Combining this result and Proposition 2.5.3, we
find that ¢ Ny-canonical forms holomorphically extend over the desingularization of % (I');
that is, we can calculate the Kodaira dimension of .7 (I') using some desingularization of
Z1(T). By Hirzebruch’s proportionality principle, the dimension of V; grows like ¢"*! and
hence .7 (I") is of general type.

Second, we assume that k is divisible by n + 1. In this case, we can take Ny in the

above discussion to be k/(n + 1). O

Remark 2.6.5. (1) One can construct a non-zero cusp form for n < 13, which
satisfies (1)-(4) in Theorem 2.6.3, by using a restriction of quasi-pull back of the
Borcherds form for F' = Q(v/—1),Q(v/=3).

(2) It is known that unitary groups of unimodular Hermitian lattices have no reflec-
tions for F' # Q(v/—1),Q(v/—3) [115, 146]. Hence, if there exists a cusp form of
weight less than n + 1 which vanishes on irregular cusps with higher order, then
Z1(I') is of general type in this situation.

2.7. A ball quotient having non-negative Kodaira dimension

To prove that ball quotients are of general type, we need to construct a cusp form of low
weight which vanishes on branch divisors with appropriate order by Theorem 2.6.3. For
the orthogonal modular varieties case, this was done by using Borcherds lift [56, 84, 109].
For the unitary case, it seems to be difficult to construct a low slope cusp form satisfying
Theorem 2.6.3 (5), by using unitary Borcherds lift [68] because the Borcherds form exists
on a 13-dimensional ball. However, the existence of a cusp form with weaker conditions
imposed implies that the Kodaira dimension is non-negative by Freitag’s criterion [40].
In this section, we shall construct a cusp form of canonical weight on a ball quotient and
conclude that it has non-negative Kodaira dimension. Note that in the notation of this
chapter, the canonical weight is n + 1.

Let Lygy be an even unimodular Hermitian lattice of signature (1,1) over g /=
defined by the matrix

eiel)
2y/—2\—-1 0)°
Then its associated quadratic lattice (Lygy)g is U @ U.

Let Lgy(-1) be an even unimodular Hermitian lattice of signature (0,4) over Og, /=
defined by the matrix

2 0 V=241 12
1 0 2 V=2 1-V=2
1— —3v-2 2 0

: V=2
—iV=2 -2+1 0 2
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Then its associated quadratic lattice (Lp,(—1))q is Es(—1).
Let L(_2)g(—ay be an even unimodular Hermitian lattice of signature (0, 1) over ﬁ’(@( Ne)
defined by the matrix
(=1).

Then its associated quadratic lattice (L(_2)@(-4))q 15 (—2)@(—4). We define L _syg (a1 be
the orthogonal complement of L<,2>@<,4> in LE‘g(fl)- Let L := Lygy & LES(fl) @D LES(*l) @D
L(—2y@(—ay)+ be a Hermitian lattice of signature (1,12) over g ,= whose associated
quadratic lattice is U @ U @ Fg(—1) ® Fg(—1) @ ({(—2) @ (—4))*.

For 112’26 =U ©® U ©® E8<_1) D Eg(—l) @D Eg(-l), we embed LQ — 112,26 by Nikulin’s
theorem. On the Hermitian symmetric domain %y, ,,, there exists the Borcherds form
®15, a modular form of weight 12 with respect to O (Il 9) with character det. This is
obtained by using the Borcherds lift of the inverse of Ramanujan’s tau function.

Proposition 2.7.1. There exists a non-zero cusp form W13 of weight 13 with respect
to U(L) with character det.

PRrROOF. Since the complement of Lg in I1596 has exactly two (—2)-vectors, by [60,
Theorem 8.2|, the quasi-pull back fi3 of ®15 is a cusp form of weight 12+2/2=13 with
respect to 6+(LQ) with character det. Then by restricting fi3 to Dy, we obtain a cusp
form W3 := * fi3 of weight 13 with respect to ﬁ(L) with character det on a 12-dimensional
ball Dy,. O

Therefore, since the canonical bundle on Dy, is isomorphic to &(—13), by Freitag’s
criterion [40], we have the following.

Proposition 2.7.2. The ball quotient % (U(L)) has non-negative Kodaira dimension.

2.8. Examples

In this section, we give, as examples, the irregular cusps with any branch indices for
any imaginary quadratic fields with class number 1.

2.8.1. Case of Q(v/—1). Let n:=1+/—1.

Example 2.8.1. Let a = 2b+ 1 be an integer with b > 0 and L be a Hermitian lattice
of signature (1,b+ 1) defined by
0 a
1\ @b n
(—1H)*’ @ (W 0) .

Then, we have

AL = (O /)% & (O /0" )2
We put
(0 7
e (),
We take a generator ey, ..., e, of (—1)® and v,w of M. In other words, (e;, e;) = —d;; and
(v,v) = (w,w) = 0, (v,w) = n* We define A, to be the subgroup of A,; generated by
v/n

Now we take an isotropic vector

C=e1+-+e,+v+w.
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Let

[i=U(L) == {g € U(L)(Z) | gla, = id}.
Then, we have
—idel,/-1idgTl' (a=-1)
—id,v/-1id ¢ T (a>0).

Now for X := 1/2°"! we can show

V=11, /=g €T
by our assumption on a and b, that is,

v v
—V —1TAH(4®6)(W) =

na+2 € Av ?

—V 1T, y=1pen (i) € L, =V =11\ /=100 (W)

e L.
Hence, ¢ defines an irregular sublattice of L with index 4.

Example 2.8.2. Let L be a Hermitian lattice of signature (1,3) defined by

1 0 I
_I\®2 2
=37 (3 8).
Then we have
Ap = (O /m)*>.
We put
1 0 I
M1 = <——>€B2, MQ = ( 2) .
2 2.0

We take a generator e, f of My and v, w of M;. We define A, to be the subgroup of Ay,
generated by v/n.
Now we take an isotropic vector

i=e+ f+v+w.
Let

[':=U(L)" :=={g € UL)(Z) | gla, = id}.
We put X := —1. Then, we have

—ld G F7 V —]_ld g F7 V _]'T—\/TI(K(X)Z) E F
Hence, ¢ defines an semi-irregular sublattice of L with index 2.

2.8.2. Case of Q(v/—3). Let w:= (=14 +/=3)/2.

Example 2.8.3. Let L be a Hermitian lattice of signature (1,2) defined by

0 w
(—1) @ (w o) :
Then we have

AL = (Ogy=s)/V-3).
We take a generator e,v,w of L with (e,e) = —1, (v,v) = (w,w) = 0 and (v, w) = w.

We define A,, to be the subgroup of A; generated by w/+/—3.
Now we take an isotropic vector

{:=e+ v+ w.
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Let

D= U(L)" = {g € U(L)(Z) | gla, = id}.
Then, we have
wid g T
Now for A := —1/2, we can show
Wl y=30en €T —wT\ /=30y €1
Hence, ¢ defines an irregular sublattice of L with index 3.

Example 2.8.4. Let L be a Hermitian lattice of signature (1,4) defined by
&3 0 3+v=3
—1)®3 g 2 _
(1) SN B

AL = (Og(y=5)/V=3)"" & (Og(y=3)/3)**.
We take a generator ey, es, e3,v,w of L with (e;,e;) = —d;5, (v,v) = (w,w) = 0 and
{(v,w) = (3++/=3)/2. We define A, to be the subgroup of A; generated by v/3.
Now we take an isotropic vector

l:=e+eyte3+ f+v+w.

We have

Let

[:=U(L)" :={g € UL)(Z) | gla, = id}.
Then, we have
—id,wid ¢ T.
Now for A := —1/6, we can show
—wT\ /=3usn €T
Hence, ¢ defines an irregular sublattice of L with index 6.

2.8.3. General case. In this subsection, let ' = Q(v/d) be an imaginary quadratic
field with d # —1 and 1 := V/d.

Example 2.8.5. Let L be a Hermitian lattice of signature (1,1) defined by

(57

We take a generator v, w of L. We define A, to be the subgroup of A; generated by

3 (d=2,3mod 4)
7 (d=1mod4).
Now we take an isotropic vector

{=e+ f+v+w.

Let _
[':=U(L)" :=={g € UL)(Z) | gla, = id}.
Then, we have
—idgr

if d £ —1.
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Now for A := —1/d, we can show

~Thviuse €T

Hence, ¢ defines an irregular sublattice of L with index 2.

2.A. Classification of discriminant groups

Below, for simplicity, we use the following concise notation for &r-modules. For 1,7, €
Op and a,b,c,d € Z>(, we write
a- nb ®c- nd
to denote the &p-module
(Or/n")* ® (Or/1")*™.
Here, we give the candidates for discriminant groups when the discriminant kernel may
have irregular cusps, over any imaginary quadratic fields with class number 1. We use the

notations and assumptions in Section 2.4. Below, for each quantity div(I), we list possible
candidates for Ay.

2.A.1. Case of Q(v/—1). Let n:= 14 +/—1 and a, b be non-negative integers.
2.A.1.1. Index 2 case. Let I be an irregular isotropic sublattice of L with index 2

with respect to G(L) Then, by Proposition 2.4.5, we have div(I) = 1, 1 + /=1 or 2
modulo 6’6( )
If div(I) = 1, the candidates are
a-n®b- e, a-n®b-n* et on®

where ¢ = 3,4,5,6, (di,d2) = (3,3), (3,4), (3,5).

If div(/) = 1 + v/—1, the candidates are
an@®bren, an&boyen™ en®
where ¢ = 4,5,6,7,8, (d1,ds) = (1,7),(3,3),(3,4), (3,5), (3,6), (3.7), (4,4), (4,5), (4,6),
(5,5).

If div(]) = 2, the candidates are
a-n®b-P e, an®b-y’en™ en®

where ¢ = 6,7,8,9,10, (dy,d>) = (3,5),(3,6),(3,7),(3,8),(4,4),(4,5),(4,6), (4,7), (4,8),
(5,5), (5,6), (5,7), (6,6).

2.A.1.2. Semi-irregular with index 2 or index 4 case. Let I be a semi-irregular
isotropic sublattice of L with index 2 or irregular with index 4 with respect to G(L) Then,
by Proposition 2.4.5, we have div(I) = 1 + v/—1 modulo =

If div(/) = 1 + /—1, the candidates are
a- @, a-n@n" o
where ¢ = 5,6,7, (d1,ds) = (1,6), (2,4), (2,5), (2,6), (3,3), (3,4), (3,5), (4, 4).
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2.A.2. Case of Q(v/—2). Let n:=+/—2 and a, b be non-negative integers. Let I be an
irregular isotropic sublattice of L with index 2 with respect to U(L). Then, by Proposition
2.4.7 (2), we have div(]) = 1/v/-2, 1, v/—2 or 2 modulo ﬁ&\/j?).

If div(/) = 1/+/—2, the candidates are

a-n®b-n* e, a-n@b-n*®n" ©9"
where ¢ = 3,4,5,6, (di,d2) = (3,3), (3,4), (3,5).

If div(I) = 1, the candidates are
a-n®b- e, a-n®b-n* et @
where ¢ = 4,5,6,7.8, (di,ds) = (2,7),(3,3),(3,4),(3,5), (3,6), (3,7), (4,4), (4,5), (4,6),
(5,5).
If div(]) = /=2, the candidates are
an@b-n*@n, an®b-n’@n" o&n®
where ¢ = 6,7,8,9,10, (di,d2) = (3,5),(3,6),(3,7),(3,8),(4,4), (4,5), (4,6), (4,7), (4,8),
(5,5), (5,6),(5,7),(6,6).
If div(]) = 2, the candidates are
a-n@b-n*en, an®b-n’ @t ®&n®

where ¢ = 6,7,8,9,10,11,12, (d1,d) = (1,11),(3,7),(3,8),(3,9), (3, 10),
(4,7, (4,8), (4,9), (4,10), (5,5), (5,6),(5,7),(5,8),(5,9),(6,6),(6,7),(6,8),(7,7).

2.A.3. Case of Q(v/—3). Let n:=+/=3, § := 2 and a, b be non-negative integers.

2.A.3.1. Index 2 case. Let I be an irregular isotropic sublattice of L with index 2
with respect to U(L). Then, by Proposition 2.4.7 (1), we have div(l) = 1/v/-3, 1, 2/v/=3
or 2 modulo ﬁ&\/—?)'

If div(l) = 1/v/—3, then Ay, is isomorphic to a - § as Og(,/=5)-modules.

If div(/) = 1, the candidates are
a-5®n: a-6@2-m.

If div(l) = 2/+/—3, the candidates are
a- 0@, a-6H2-6°
where ¢ =0, 2, 3.

If div(]) = 2, the candidates are
a- 6@, a-0®2-m%, a-dDDN:, a-6DD®2n, a-dD2-82Dn’, a-dD2-82D2-n

where ¢ = 2, 3.
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2.A.3.2. Index 3 case. Let I be an irregular isotropic sublattice of L with index 3
with respect to U(L). Then, by Proposition 2.4.6 (1), we have div(l) = 1/v/-3, 1, v/—3
modulo ﬁ&\/jg)‘

If div(l) = 1/v/=3, then Ay, is isomorphic to a - § as Og(,/=5)-modules.

If div(I) = 1, the candidates are
a-n®b-’en, an@b-P’®2-n’
where ¢ = 0, 3, 4.
If div(I) = /=3, the candidates are
a-n@b-en, an@b-Pe2-n’, a @b @n en
where ¢ =0,3,4,5,6, d = 4,5.

2.A.3.3. Index 6 case. Let I be an irregular isotropic sublattice of L with index 6
with respect to U(L). Then, by Proposition 2.4.6 (2), we have div(I) = 1/4/=3, 1 modulo
O3y

If div(I) = 1/4/—3, then Ay is trivial, that is, L is unimodular lattice.

If div(I) = /-3, the candidates are

n, 2.7

2.A.4. Case of Q(v/—T7). Let my := (1 +/=7)/2, 2 := (=1 +/=7)/2, 6 :== /=7
and a, b be non-negative integers. Let I be an irregular isotropic sublattice of L with index
2 with respect to U(L). Then, by Proposition 2.4.7 (1), we have div(I) = 1/v/—=7, 1,
m/N=T, 02/ =T, mn2/v/=T, 1, n2 or mne modulo ﬁ&ﬁ).

If div(l) = 1/v/—7, then Ay, is isomorphic to a-m &b -1y as O /=z-modules.

If div(I) = 1, the candidates are
a-m®b-1®, a-m®b-nd2-4.

If div(I) = m/+/—7, the candidates are
(a=2)m@an®2mni, (a—1)m@&acndn, am&amnsdny, (a+2) mea .

If div(I) = n9/+/—7, the candidates are
(a=2)m@am®2m;, (a—1)p@cn®n, andamén, (ae+2) ndan.

If div(I) = m;, the candidates are
(a=2) m@ame2 &, (a=2) m@ame2062:0, (a—1) means&ned,
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(@a=1)-m@®a-non®2-0, a-m@a- RO ®2-5, a-mda-n &1 8%,
(a+2) - m@a-106, (a+2) - mPa-nnd2-0.

If div(I) = 19, the candidates are
(a=2)-m@a-m®&2:-0;80%, (a—2) n®&a-m®2-05;®2-6, (a—1)-nda-m & 667,
(a=1) - m@a-m&np®2-0, a-pda-mdpd2-0, a-nda-ndn o,
(a—|—2)~'r]269a'7}16952, (a+2)«772€Ba~771692~5.

If div(I) = mn2/+/—7, the candidates are
(a—=2)m®(a—2)m@2ni®2-15, (a—2)m®(a—1)n@2-m;@n;, (a—2)-mSa-n@n; 293,
(a=2)m®a-po2-nien, (a=2)-mola+l)@non, (a—2)-n®(a+2)onion,
a—1)m&(a—2)-meni @203, (a—1)m&(a—1)-modnien;, (a—1)-m&a-ndnons,
a-m®(a—=2)-n@ni®d2-n5, a-m®a—2)-02-97@n, a-me(a—1)-p&n &,
a-mEa- 2.0, a-meSa-nd2-n5, a-mda-ndn o,
a-m@(a+1l)-men, a-m®@+2)-pen, a-md(a+2) ndn,
(a+1)-m&(a—2) ndni®n, (a+l)-m&anen, (a+2) mé(a—2) npdnen,
(a+2) m@a-nen, (a+2) - m@a-ndn, (a+2)-m®(a+2): n.

If div(I) = mn9, the candidates are
(@a=2) m®(a—=2)n®2- o258, (a-2)-n®a—2)- 1021762755624,
(a—2) m@®a—1)-m®2-;&05®0°, (a—2)- m®@—1)-m&2-5;&7,®2-6,

(a—2) m@a- @2 -170n o8, Y mBa-102 0O d2-4,

(@a=2) - m®(a+2) - md2-n®, (a—2) - md(a+2) p®2-77H2-4,
(a—1) md(a—2) ey &2-5®6, (a—1) - m®a—2) & &2 75 24,
(a—1) - m@(a—1)-mepenp e, (@—1) - me&(a—1)-mon en&2-9,

(a—1) - m@a-pdpe&nad, (a—1) - mda-mp&n &nod2-0,
(a—1) - m@a+2) - madn®d®, (a—1) mda+2) - padn &2-4,
a-mea—2)mend2-npdd, a-moda—2)-ndn o2 924,
a-m®a—1)-monond®d®, a-mda—1)-ndndn ®2-4,
a-mBa-ndnen®s, a-mBa-pdnon®2-,
a-m®@+2) - penidd, a-m®@a+2) -nengd2-4,

(a+2) md(a—2) md2-m5®6, (a+2) m&a—2) p®&2-75562-4,
(a+2)-m&(a—1)-mpédnp&d, (@+2)-m&a—1)-n&n®2-4,
(a+2) - m@a-pdp&d, (@+2)-m&andn®2-4,

(@a+2) - m@@a+2) 76, (@+2)- med@a+2) ne&2-é.
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2.A.5. Other cases. Let F' = Q(v/d), where d = —11, —19, —43, —67 or —163, 1 :=
Vd, § := 2 and a, b be non-negative integers. Let I be an irregular isotropic sublattice of L
with index 2 with respect to U(L). Then, by Proposition 2.4.7 (1), we have div(]) = 1/V/4,
2/v/d, 1 or 2 modulo 0.

If div(I) = 1/+/d, then Ay is isomorphic to a - § @ 1 as @p-modules.

If div(1) = 2/V/d, the candidates are
a-0®6, a-6®2-6° a-6®n:, a-0®2-7
where ¢ = 0, 2, 3.

If div(/) = 1, the candidates are
a-5®n:, a-6®2-m.

If div(I) = 2, the candidates are
a-0DEDN, a-6BPB2-n, a-0D2-82®n:, a-ID2-2®2-1

where ¢ = 2, 3.






CHAPTER 3

Reflective obstructions of ball quotients

3.1. Introduction

The study of the birational type of modular varieties is an important problem. Tai
[137], Freitag [40] and Mumford [121] showed that the Siegel modular varieties A, are
of general type if g > 7. Gritsenko-Hulek-Sankaran [58] showed that the moduli spaces
of polarized K3 surfaces, which are 19-dimensional orthogonal modular varieties, are of
general type if the polarization degree is sufficiently large. Moreover, Ma [107] proved that
orthogonal modular varieties are of general type if their dimension is sufficiently large. A
common theme in this series of works implies that if the data defining modular varieties is
“sufficiently large”, then the associated modular varieties are of general type.

Motivated by these work, we study an analogous problem for unitary modular varieties.
There exist three types of obstructions to prove that they are of general type, as in the
orthogonal case [58, Theorem 1.1]. They are reflective obstructions, arising from branch
divisors, cusp obstructions, arising from divisors at infinity, and elliptic obstructions, arising
from singularities. Note that the elliptic obstructions were resolved in [9]. In this chapter,
we study the reflective obstructions and prove that they are sufficiently small in higher
dimension. The key to the proof is to apply Prasad’s volume formula to estimate the
dimension of the space of modular forms on ball quotients.

3.1.1. Main results. The main theorem in this chapter is as follows.

Theorem 3.1.1 (Theorem 3.8.1). Let L be a primitive Hermitian lattice over O of
signature (1,n) with n > 2. Assume (V). Then, for a positive integer a, the line bundle
M(a) is big if dim X, = n or S is sufficiently large.

It follows that the reflective obstructions can be resolved for .#.(I') with sufficiently
large n or S. Next, we work on specific lattices. We call L is unramified square-free it
det(L) is odd square-free and any prime divisor p of det(L) is unramified at F. We will
prove that they satisfy (©) and more precise estimate holds (Lemma 3.5.2, Proposition
3.5.4, 3.5.5, Corollary 3.8.4, Subsection 3.8.4 and 3.8.5). Throughout this chapter, we
denote by Fy # Q(+/—3) an imaginary quadratic field, whose discriminant —D is not a
multiple of 4.

Corollary 3.1.2 (Corollary 3.8.2, Subsection 3.8.5). (1) Up to scaling, as-
sume that L is unramified square-free over Op,. If n > 138, or D > 30 and
n is even, then M(1) is big and hence, M(a) is big for any a > 1.
(2) Moreover, for a fized Fy, there are only finitely many unramified square-free lattices
so that M(a) is not big with n > 2, up to scaling.

Remark 3.1.3 (Subsection 3.8.4). Note that a lower bound for n and S in Theorem
3.1.1 can be easily computed. This is essentially done by estimating certain functions fg?

and f§'°" below. For example, we will show that M(1) is big if n > 582 and then, M (a) is
43
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big for any a > 1. In the notation below, this is equivalent to W (L, F,a) < W (L, F,1) <0
for n > 582.

3.1.2. Application I: Kodaira dimension. In this subsection, we assume n > 13
and F # Q(v/-1),Q(v/=2),Q(v/—3). These assumptions come from [9, Theorem 4],
which asserts that .#.(I') has at worst canonical singularities and branch divisors of the
map Dy, — %1(T') do not exist at the boundary. Note that X contains no irregular cusps
[112]. Under (B), we state an application to the birational type of X[,

Theorem 3.1.4 (Corollary 3.8.2, Theorem 3.8.3). Assume that (V) holds and
there exists a non-zero cusp form of weight lower than n + 1 with respect to U(L). Then,
X, is of general type if dim X =n or S is sufficiently large.

Remark 3.1.5. One way to construct a cusp form for U(1,n) is the theta lifting [91].
However, this produces only cusp forms of weight greater than n.

3.1.3. Application II: Reflectifve modular forms. Next, let us consider reflective
modular forms. Let f be a modular form of some weight and character with respect to
[ on Dy. We say that f is reflective if the divisor of L is set-theoretically contained in
the ramification divisors of D, — %L (I'). Reflective modular forms appear in many fields
of mathematics; see [52, 54, 61]. Gritsenko-Nikulin [61, Conjecture 2.5.5] conjectured
finiteness of quadratic lattices admitting a non-zero reflective modular form, and Ma [107,
Corollary 1.9] proved it. Here, we consider an analogous problem for Hermitian lattices.
We say that L is reflective with slope r for r > 0 if there exists a reflective modular form on
Dy, with its slope r; for the definition of the slope of a modular form, see [107, Subsection
1.3].

Conjecture 3.1.6 (Finiteness of Hermitian lattices admitting reflective mod-
ular forms). For anr >0 and a fized F,
{Hermitian reflective lattices with slope less than r}/ ~

s a finite set.

We can partially prove Conjecture 3.1.6 from a computation of the Hirzebruch-Mumford
volumes.

Corollary 3.1.7 (Corollary 3.8.4). For anr > 0 and a fized Fy,
{Unramified square-free reflective lattices with slope less than r | n > 2}/ ~
1S a finite set.

3.1.4. Technical tools. To prove that M(a) is big, we will use the function V (L, F')
(see Definition 3.4.3), which represents the asymptotic growth of the dimension of the space
of modular forms vanishing on the ramification divisors. This function depends only on L
and F. To compute V (L, F'), we use Prasad’s formula [129]. This approach is different
from the one by Gritsenko-Hulek-Sankaran [57] and Ma [107] which use the calculation of
local densities. We define

1+ (P £V D.QV),
W(L,F,a) :=V(L,F) — 2n—a : 2(1 + 2>1_n (F =Q(V-1)),
3(1+2)" (P2,
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for a positive integer a > 0. For the proof of Theorem 3.1.1, we use the following criterion.
This is a unitary analog of [107, Proposition 4.3].

Proposition 3.1.8 (Proposition 3.4.4). The line bundle M(a) is big if
W(L,F,a) < 0.

This criterion reduces the proof of Theorem 3.1.1 to estimating V (L, F') which occupies
the bulk of this chapter. We define functions on m by

(1 + 24m+1 + 28m+2) (F ?é @

2(3 + 3. 24m+1 + 28m+2) (F — @

3(5+2- 34t 4 98m+2) (P = Q(y/—3
£

22m+5/2 3. (27‘[‘)2m (1 + 24m—1 + 28m—2) (F

even = . . 24m—1 28m—2 F
Fm = Dy (B3 2

(5_|_2‘34m—1+28m—2) (F:@

Theorem 3.1.9 (Theorem 3.7.5, Theorem 3.7.6). Let L be a primitive Hermitian
lattice over Op of signature (1,2m) (resp. (1,2m — 1)) with m > 1. Assume (©). Then,
we obtain the following:

3. 25 . (27.‘,)2m+1

#m) = @m) - L2m+1)

V(L,F) < # <resp. V(L,F) < %W)

Moreover, if L satisfies P(M) (see Section 3.7) for some M > 0, we have

odd (17 ven(m)
V(L,F) < DL - S (resp. V(L,F) < m)

where D(L) be the exponent of the discriminant group LY /L.

Note that growth of f2%(m) and fg"(m) with respect to m is O(1/m!). This implies
that for a fixed a, the inequality W (L, F\,a) < 0 always holds for every pair (L, F') if n is
sufficiently large, hence M (a) is big in that range of n.

Remark 3.1.10. We will discuss how large values of m, in Theorem 3.1.1, Corollary
3.1.2 and Theorem 3.1.9, we need to take to satisfy W (L, F,a) < 0 in Subsection 3.8.4 and
3.8.5.

Finally, we shall define the notion “principal” and prepare to discuss (©). Below, we
use the special unitary group G' := SU(L), group scheme over Z. To estimate V (L, F),
we need to compute the Hirzebruch-Mumford volume of G'(Z). Since G' is semi-simple
and simply connected, we can use Prasad’s formula [129, Theorem 3.7]. Prasad’s theorem
requires an arithmetic subgroup to be principal for some coherent parahoric family, so we
consider when our arithmetic subgroups satisfy this condition. Below, v denotes a finite
place. Let P, be a parahoric subgroup of G'(Q,). We call {P,}, a coherent parahoric
family if GY(R)]], P, € G*(A) is an open compact subgroup. We call G'(Z) principal
for a coherent parahoric family {P,}, if GY(Z) = G*(Q) N [], P, and the closure of the
image of G'(Z) by the canonical embedding ¢, : G*(Q) — G'(Q,) is P,. From the strong
approximation theorem and the proof of [132, Proposition 1.6], the closure of «(G'(Z))
is GY(Z,). Moreover, it follows GY(Z) = G*(Q) N[, G*(Z,). Hence, combining these
observations, it follows that G'(Z) is principal with respect to {G'(Z,)}, if GY(Z,) is
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parahoric for any v. Accordingly, we will compute the volume function V (L, F') under (x)
on L.

(x) SU(L ® Z,) is a parahoric subgroup of SU(L ® Q,) for any v t cc.
Condition (x) on L implies that SU(L) is principal. Hence, (©) can be rephrased as follows;
(Op @ ((+ N L) and (*+ N L satisfy (x) for any [(] € Rp(F).

Remark 3.1.11. (1) Hermitian lattice satisfying () and Theorem 3.1.4 (2) exist;
see Proposition 3.5.4 and 3.5.5.

(2) Condition () holds for the special linear group [138, Example 3.2.4], i.e., SL,(Z,)
is parahoric for any v.

(3) From [17, Proposition 1.4 (iv)], if G*(Z) is maximal, then G*(Z,) is parahoric
for any v. Note that the maximal arithmetic subgroups are classified in [132,
Theorem 2.6].

(4) Hijikata [66, Introduction] stated that the maximal compact open subgroups of
an algebraic group over p-adic fields can be obtained from the stabilizer of a
maximal lattice. Bruhat [20, Section 5] proved it for unitary groups. On the other
hand, Gan-Hanke-Yu [49, Introduction| stated that the stabilizer of any maximal
Hermitian lattice in a unitary group over p-adic fields is a maximal parahoric
subgroup except when the field extension is split.

Remark 3.1.12. We refer to the relationship between modular varieties of non-general
type and reflective modular forms, and moduli representations of ball quotients.

(1) Gritsenko [52, 54] constructed reflective modular forms and showed that some
orthogonal modular varieties have negative Kodaira dimension. The author and
Odaka [115] formulated the notion “special reflective modular forms” and proved
that some orthogonal or unitary modular varieties are Fano (e.g., the moduli
space of Enriques surfaces). In these works, reflective modular forms played an
important role. In this chapter, we deal with these modular forms in Subsection
3.8.3, and show a certain finiteness result (Corollary 3.8.4).

(2) Deligne-Mostow [32] realized some ball quotients as the periods of hypergeometric
forms, and consequently, proved that they are related to moduli spaces of some
weighted points in the projective line. On the other hand, Allcock-Carlson-Toledo
[4, 3] showed that some ball quotients are moduli spaces of cubic surfaces or
threefolds. In this context, Dolgachev-Kondo [37, Section 1] conjectured that all
ball quotients arising from the Deligne-Mostow theory are related to the moduli
spaces of K3 surfaces.

3.1.5. Outline of the proof of Theorem 3.1.1. First, we prove a criterion (Propo-
sition 3.1.8) asserting when the line bundle M(a) is big. Since the branch divisors with
higher branch indices may occur in our setting unlike orthogonal modular varieties, it needs
to classify them in more detail than [107]. Based on the classification, Proposition 3.1.8
follows from the Hirzebruch-Mumford proportionality principle. Second, by using Prasad’s
formula [129, Theorem 3.7], we compute the Hirzebruch-Mumford volume of principal
arithmetic subgroups. The application of Prasad’s volume formula to the birational ge-
ometry seems to be new and is one of the differences from the previous studies on the
geometry of modular varieties. Our work is based on the classification of the maximal
reductive quotient of the reduction of the smooth integral models [29, 30, 49]. Combining
this computation (Theorem 3.1.9) with the above criterion (Proposition 3.1.8), it follows
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that M(a) is big if n is sufficiently large. This implies Theorem 3.1.1. To obtain more
explicit estimate, we will evaluate f2%(m) and f&"(m) in Subsection 3.8.4 and 3.8.5.

3.1.6. Organization of this chapter. In Section 3.2, we describe the asymptotic
behavior of the dimension of modular forms in terms of the Hirzebruch-Mumford volume.
In Section 3.3, we clarify the description of ramification divisors in terms of Hermitian
lattices. In Section 3.4, we show a criterion when the line bundle M(a) is big, by using the
Hirzebruch-Mumford volume. In Section 3.5, we recall Prasad’s formula. In Section 3.6,
we compute the local factors appearing in the Hirzebruch-Mumford volume. In Section
3.7, we prove V (L, F) < S71fedd(m) or S~Lfeve"(m). This calculation shows that M(a)
is big for sufficiently large n. In Section 3.8, we state the main results and estimate the
value of the function V (L, F') explicitly.

3.2. Dimension formula

In this section, we study the dimension formula of the space of modular forms. Gritsenko-
Hulek-Sankaran [57] derived a formula for orthogonal modular forms from Hirzebruch’s
proportionality principle obtained by Mumford [120]. In this chapter, we assume that
3 < n+ 1, which is the rank of a Hermitian lattice L.

Remark 3.2.1. Note that the definitions of “unimodular” considered in this chapter
are Allcock’s one [2], different from [110, 112, 146]; see also [146, Subsection 2.1]. We
can also work on their ones, but for convenience, we restrict our definition.

Let D be the compact dual od Dy,. In other words, Dy, is the n-dimensional complex
ball and Df is the n-dimensional projective space. We recall the definition of modular forms
from Section 2.6. We denote by M (L', x) (resp. Si(I',x)) the set consisting of modular
(resp. cusp) forms of weight k with character x and level I'. Let M (") := My(T',id) and

For an arithmetic subgroup I' C U(L ®7 Q), if I' acts on Dy, freely, the Hirzebruch-
Mumford volume of T is defined by

_ e(DL/T) _ e(Di/T)
If I' does not act freely, we take a finite index normal subgroup I <" which acts on D,
freely and define

VOlHM (F/)
Ol F :: _—’
vl (1) = =
where I is I" modulo center. Note that the Hirzebruch-Mumford volume does not depend
on the choice of I”. Recall the following celebrated result.

Theorem 3.2.2 ([120, Corollary 3.5]). Let & be a Hermitian symmetric domain, ¢
be its compact dual, and " be a neat arithmetic group, acting on 9. We denote by S7<"(I")
the space of cusp forms on 2 of geometric weight k with respect to I'. Then,

dim S{°™(I') = volgpr ()R (D) (wheF) + Py(k),
for some polynomial Py(k) of degree at most dim(Z/I") — 1 with respect to k.

We shall apply this result to unitary groups and obtain a formula for the asymptotic
growth of the dimension of the space of cusp forms.

Proposition 3.2.3. We assume that
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(1) If —id € T, then x(—id) = (—1)*.
(2) If F = Q(v/—1) and v/—1id € T, then x(v/—1id) = \/—_1k
(3) If F = Q(v/-3) and wid € T, then x(wid) = w*.
Then,
dim Sk (T, x) = %VOIHM<F)]€” + O™
for sufficiently divisible k. '

ProOF. We follow the proof of [57, Proposition 1.2] or [137, Proposition 2.1]. By
applying the Lefschetz fixed point theorem [137, Appendix to Section 2], we may assume
that T" is neat. Note that we use the assumption on y here. For sufficiently divisible k, the
asymptotic growth of the dimension of the space of cusp forms of weight k with character
x remains the same even when the character replaced with the trivial character because
Z and £ ® x only differ by torsion, so we also assume that y is trivial.

Note that Si(I') = HO(ZL(T), ,,2”@’“( A)). We calculate the dimension of modular
forms by using the Hrizebruch-Riemann-Roch theorem and Hirzebruch’s proportionality
principle (Theorem 3.2.2). First, since . is big and nef, by the Kawamata-Viehweg van-
ishing theorem, we obtain

(3.2.1) X(Fr(D), £9M(=D)) = h(FL(T), L% (1))
for sufficiently divisible k. When we think of the above as a function of k, the Riemann-
Roch polynomial is given by

(3.2.2) X(FL (D), L% (-A)) = C?("%@j!(_A» "+ O(k™ ).

On the other hand, by Theorem 3.2.2,
W(FL(T), L2 (=A)) = B(FL (D), (L% @ det”) " (- A))
= dim S(p1)k(T, det” )
= dim S7*"(T")
= volga ()R (wpn ™) + O(K™ )

for sufficiently divisible k. Note that the compact dual of Dy is P", so by a standard
calculation, for sufficiently divisible k, gives
X(P",wp*) = hO(P", wpa")
1
(3.2.3) = M/ﬁ” +O(E™)
n!
as a function of k. Hence, from (3.2.2) and (3.2.3), it follows
(L (=A))  (n+1)"

ol = ol VOlHM(F)

This implies
A(L(-A)) _ 1

ol = EVOIHM(F)

Combining this with (3.2.1), we conclude that
dim Sy (1) = h*(FL(T), L5 (-A))

1
= mVOlHM<F)kn + O(k]n_l)
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O

Remark 3.2.4. (1) Gritsenko-Hulek-Sankaran [57, Proposition 1.2] derived a sim-
ilar dimension formula for orthogonal groups.
(2) The asymptotic growth of the dimension of the space of modular forms is the
same as that of cusp forms because only line bundles supported on the boundary
contribute their difference; see [57].

3.3. Ramification divisors

We already know that the canonical divisor K5 o) 1S described as

’<n+1>g_%_A (F # Q(v=1),Q(v=3)),
(n+1)$—%—234—A (F =Q(V/-1)),
((n+ 12 - % - ng - gBa A (F=Q(W-3)),

in Pic(Z.(T) )) ®z Q from [9]. In this section, we shall study the branch divisors B; via
Hermitian lattices. Geometrically, B; is a quotient of Abelian varieties with complex
multiplication by a finite group. Below, we shall mainly work on I' = U(L).
Recall that the reflection oy¢ with respect to a primitive vector ¢ € L with (¢,¢) < 0
and £ € O0p\{1} is defined by
{v,0)
(¢, )
By [9, Proposition 2], the ramification divisors are the union of fixed divisors of reflections:
B,= | H(),
leAs
=JH0O (F=0W-3),
leAs
By=J H(O) (F=QW-1),
leAy

Bo=J H(O) (F=0Q(/3),

leAg

o V-2V, vov—(1-¢) L.

where
Ay = {g €L | gld ‘0p—1 € U(L)
s={leL|¢id oy € U(L) fi Q(W
Ay={teL[¢ido, kEU(L)forsomefeﬁX
Ag ={le L|&id -0y € U(L) for some § € O

r some £ € OF}\ (A4HA6)7

and k € Z\3Z} \ As,

and k € Z\2Z},

and k € Z\(2Z U 3Z)}.

or some £ € O

V=1)

@(W
Here, H(¢) denotes a special divisor on D, with respect to ¢:
H(¢) :={ve Dg| (v,£) =0}.

We say that ¢ is reflective with index ¢ if £ € A;. We will investigate branch divisors
that obstruct the automorphic line bundle with zeros on branch divisors from being big.
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First, we classify them according to [107, Lemma 4.1]. For a primitive vector [ € L with
(0,0) <0, let K, := ¢+ N L be its orthogonal complement, Div(¢) be the ideal generated
by {(v,¢) | v € L}, and
Iy :={{,0) - Div({)™' C OF
be an Op-ideal. Then, we have
L/Opl & K, = Or/I,.
Note that, unlike the case of orthogonal groups, Div(f) is not a principal ideal in general.

Lemma 3.3.1. Let F = Q(v/—1). Then,
(1) E is reflective of index 2 if and only if L D Oy =1¢ ® K, and L/ O /=) & K¢ =
v=1)/20q /=) holds.
(2) E zs reﬂectwe of mdex 4 if and only if one of the following holds:
(a) L = ﬁQ 0l & K.
PROOF. (1) ¢ is reflective with index 2 if and only if
2(v, £)
{¢,0)
for all v € L, and this equals

Eﬁpand(1+\/_)< 2

<’>¢ﬁF

2¢€l, andl—l—\/—lg_i[g.
This shows I, = 204/=1). Thus the isomorphism L/0q ) © K; = O /=1)/20,/=1) 13

proved. The sufficient condltlon can be proved in a similar way as proof of [107, Lemma
4.1].

(2) Asin (1), it suffices to determine an ideal I, containing 1+ +/—1. This holds if and
only if I, = O =1 or (1+v—1)0q /=1 O

Lemma 3.3.2. Let F = Q(\/—3). Then,
(1) ¢ is reflective of index 2 if and only if L D Opl & Ky and L/Opl ® Ky = Op /20
holds.
(2) ¢ is reflective of index 3 if and only if L D Oy =50 © Ky and L] Og =30 © K¢ =
(3) € is reflective of index 6 if and only if L = Oy /=3¢ ® K¢ holds.

Proor. We follow the strategy in the proof of Lemma 3.3.1.

(1) Tt suffices to determine an ideal I, containing 2 and not containing 1 + w = —w?.
This holds if and only if I, = 20y, /=5

(2) It suffices to determine an ideal I, containing 1 — w = y/—3w and not containing
—w?. This holds if and only if [, = V—=30yy=3

(3) Tt suffices to determine an ideal I, containing 1 + w = —w?. This holds if and only

Lemma 3.3.3. We assume that F # Q(v/—1) and the discriminant —D of F is a
multiple of 4. Then, € is reflective of index 2 if and only if one of the following holds:
(1) L =0pl @& K,.
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(8) L D Opl & Ky and L) Opl & Ky = Op/pOr, where p is a prime ideal such that
2 = p2.

Proor. This can be proved in a similar way as Lemma 3.3.1 or Lemma 3.3.2. U

Lemma 3.3.4. We assume that the discriminant —D of F satisfies —D = 1 mod 8.
Let py and po be prime ideals such that (2) = pipa. Then, € is reflective of index 2 if and
only if one of the following holds:

(1) L =0pl ® K,.

(2) LD Ol &Ky and L/ Opl & Ky = Op /20.
(8) LD Ol &Ky and L/Opl & Ky = Op /p10F.
(4)LD@>F€®KZ andL/ﬁFEGBKg ﬁp/pgﬁp

PRroOOF. This can be proved in a similar way as Lemma 3.3.1 or Lemma 3.3.2. U

Lemma 3.3.5. We assume that F' # Q(v/—3) and its discriminant —D of F satisfies
—D =5mod 8. Then, { is reflective of index 2 if and only if one of the following holds:

ProOF. This can be proved in a similar way as Lemma 3.3.1 or Lemma 3.3.2. U

We denote by Ry (F,i) the set of U(L)-equivalent classes of reflective vectors in L of
index ¢ and define the set

For convenience, we will write the imaginary quadratic field F', defining L, explicitly. Note
that any element [¢] € Rp(F,i) corresponds to an irreducible component of the branch
divisors with branch index 7. Moreover, let

RL(Q(W=1),4); :=={[(] € RL(Q(V~1),4) | L = Opl ® K,},
R(Q(V=1),4)1 = {[(] € Re(Q(W—=1),4) | L/ Opl ® K; = Op /(1 +/—1)0F},

and
RL(F,2) :={[{] € R(F,2) | L =0l ® K},
RL(F,Q)][ :{[f GRLF2)|L/ﬁF€@KgNﬁp/QﬁF}
{{{] e RL(F,2) | L/ Okl & Ky = Op/pOr} (D #4 and D =0 mod 4),
RL(F,2)r := )
0 (otherwise),
F2)| L K, =20 =1
Ru(F.2)n = {[{] e Re(F,2) | L/ Opl & Ky = Op/p1 0} (=D mod 8),
0 (otherwise),
RL(F,Q) — { ERL<F 2) ’L/ﬁpﬁ@Kg ﬁp/pgﬁp} ( _1H10d8),
0 (otherwise).
From Lemma 3.3.1, 3.3.2, 3.3.3, 3.3.4 and 3.3.5, we have
Rr(Q(v—-1),4) = R.(Q IHRL )1,

RL(Q(\/__S)7 2) = RL(@(\/__S)v 2)117



52 3. REFLECTIVE OBSTRUCTIONS OF BALL QUOTIENTS

RL<F, 2) - RL(F, 2)IHRL(F’ 2)]1HRL(F, 2)[[[HRL(F, 2>IVHRL(F7 2>V7

for any imaginary quadratic field F'. We call a reflective vector [¢] € R (F) split type if L =
(O & Ky, according to [107]. This means that [¢] is contained in R(F,2);, R(Q(v/—1),4);
or R(Q(v/—3),6). Otherwise, we call [¢] € Rp(F) non-split type.

Lemma 3.3.6. Let I'y C U(Ky) be the stabilizer of a reflective vector [{] € R (F).
(1) For [{] € Rp(F,2);, Rr(Q(v/—1),4)1, R, (Q(v/=3),6), we have 'y = U(K,).
(2) For [(] € Rp(Q(v—1),4)1, we have [U(K,) : T'y] < 2"+v=1, where i, -1 =
f((AKz)H\/—T)-
(3) For[l] € R(Q(v/=3),3), we have [U(K,) : Tg] < 3'v=3, wherer ;=5 := (((Ax,) /=3)-

(4) For [{] € Rr(F,2)1;, we have [U(K,) : Fg] < 4™ where o 1= (((Ak,)2).
(5) For [{]) € Rp(F,2)r11, we have [U(K) : I'y] < 2™, where ry := (((Ag,)p).
(6) For [{] € Rp(F,2)rv, we have [U(K) : T'y] < 2™1, where 1y, := K((AK,)M)
(7) For [{] € RL(F,2)y, we have [U(K) : I'y] < 2™z, where 1y, = (((Ak,)p,)-
PrOOF. This can be proved in the same way as [107, Lemma 4.2]. O

3.4. Reflective obstructions

We shall study when the line bundle M(a) is big in terms of the asymptotic growth of
the dimension of the space of modular forms. The line bundle .Z is big, so the obstruction
for M(a) being big is the branch divisors B;. To estimate this obstruction, we use the
unitary analog of the construction [59, Proposition 4.1].

For F # Q(v/—1),Q(v/=3), {1,...,£, denotes a complete system of representatives
of the set Ry (F,2). For F = Q(v/—1), let loy,...,los, (resp. ly1,...,0ss,) be a com-
plete system of representatives of the set Rp(Q(v/—1),2) (resp. Rp(Q(v/—1),4)). For
F=Q(/=3),let loq,... 0oy, (tesp. l31, ..., 034, loa,---,l6s) be a complete system of
representatives of the set Ry (Q(v/=3),2) (resp. R (Q(v/=3),3), Rr(Q(v/-3),6)).

Lemma 3.4.1. The following inequalities hold.
(1) For F # Q(v/—1)Q(v/—3), when k and ka are even, we have

rok/2—1
(k- M(a)) > dim Mo (U(L)) = ) Y dim Myqio;(T).
i=1 j=0
(2) For F'=Q(v/—1), when k and ka are multiples of 4, we have
sy k/a—1 sy 3k/4—1
h0<l{7 : ./\/l(a)) Z dim Mka(U(L)) - {Z Z dim Mka+4j2(Fi) + Z Z dim Mka+4j4(Fi)}.
i=1 j2=0 =1 ja=0
(8) For F' = Q(v/—3), when k and ka are multiples of 6, we have
to k‘/6—1
hO(k - M(a)) > dim My, (U(L)) — {Z 3" dim Migs5(T0)
i=1 jo=0

ts k/3—1 ts Sk/6—1

+ 30> dim Myareg, (T + > Y dikaaM%@)}-

i=1 j3=0 i=1 je=0
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PROOF. (1) can be shown in a similar way as [107, Lemma 4.4]. For a non-negative j,
there is the quasi-pullback:

H(kal — jBy) — Myai9;(T;)

F
F— —< WAL

Dk,
From this, we derive the exact sequence,

0— H(ka.l — (j + 1)By) — H(ka. — jBs) — @) Myaso;(T:).
i=1

Iteration for j = 0,...,k/2 — 1 yields the desired inequality.
(2) As in [146, Lemma 4.3 (1)], since v/—11id € I';, the vanishing order of F' along Dy,
is a multiple of 4 and M,(T";) = 0 unless 4|¢. From this, we have the quasi-pullback maps:

H(ka.l — 2jBy) — Myay4i(T;)

F
F——F
< v€i>4j DKi7
HO(]CCLD% — jB4) — Mka+4j(Fi)
F
F— —Y .
- < 7£i>4j Dk,
There exist exact sequences:
(3.4.1) 0 — H(ka —2(j2 + 1)By) — H(ka.l — 2j2Bs) — €D Myt (),
i=1
(3.4.2)
0— Ho(kaiﬂ — 532 — (]4 + 1)B4) — Ho(k&g — 532 — j4B4) — @ Mka+4j4(Fi).
i=1

Iteration of (3.4.1) for jo =0,...,k/4—1 and (3.4.2) for j4 = 0,...,3k/4—1 yields the
desired inequality.

(3) As in [146, Lemma 4.3 (2)], since —wid € I';, the vanishing order of F' along Dk,
is a multiple of 6 and M,(I';) = 0 unless 6|¢. From this, we have the quasi-pullback maps:

H°(ka. ¥ — 3jBy) — Myarei(T;)

()% 1Dy
H°(ka.¥ — jBg) — Myay6;(T3)
F

F—s—— .
~ < 7€i>6j Dk
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There exist exact sequences:
)
(3.4.3) 0 — H°(ka — 3(j2 + 1)B) — H(ka.l — 3j2Bs) = P Myares (1),
i=1
(3.4.4)
t3
0 k - 0 k ~
00— H (]{ICLD% — §B2 — 2(]3 —+ ].)B3) — H (kaéf — §B2 — ]3B3) — @Mka+6j3(Fi),
i=1

k 2k 2k
(3.4.5) 0— H(kal — 5B - 333 — (Js + 1)Bg) — H(ka — ?Bg — j6Bs)

te
— @ Miar6js (L)
i=1
Iteration of (3.4.3) for jo = 0,...,k/6 — 1, (3.4.4) for j3 =0,...,k/3 — 1 and (3.4.5)
for j5 =0,...,5k/6 — 1 yields the desired inequality. O

Remark 3.4.2. We cannot evaluate h°(M(a) — A) directly, because we don’t know
how to construct cusp forms vanishing on cusps with high order.

For [{] € RL(F), let

VOIHM(U(KK))
| L Ky = .
volun (L, Ki) volgar (U(L))
Definition 3.4.3. For F # Q(v/—1),Q(v/—3), let
V(L,F):= Y volgu(L, K;) +2" > volga (L, Ky)
[e]GR(F,Q)] [E}ERL(F,Z)[]],RL(F,Z)Iv,RL(F,Q)V

_|_4n Z VOIHM(L, Kg)

[K]ERL (F,Q)[]

For F = Q(v/—1), let

V(L,Q(v—1)):=3 > volgm(L, Ky) +3-2" > volyar (L, Ky)
[(eRL(Q(V=T),4); eRL(Q(W-1)4) 11

+4n > volgn (L, Ky).
UeRL(Q(W=-1),2)rr

For F' = Q(v/-3), let

V(L,Q(V=3)):=5 > volum(LE)+2-3" Y volpu(L, Ky)
[[eR L (Q(vV-3),6) eRL(Q(V-3),3)
+am > volyu(L, Ky).
[(1€RL(Q(V=3).2)
Proposition 3.4.4. Let a be a positive integer.
(1) For F + Q(v=1),Q(v=3), M(a) = a’ — By/2 is big if

(3.4.6) V(L F) < (1+ é)ln 2

n
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(2) For F = Q(v/—1), M(a) = a — By/2 — 3By /4 is big if

55

(3.4.7) V(LQW-T) < (1+ 2)1"%“
(3) For F = Q(v/=3), M(a) = a — By/2 — 2B3/3 — 5B5/6 is big if
(3.4.8) V(LQW3) < (1+ g)”i—a

PRrROOF. (1) We follow the strategy of [107, Proposition 4.3]. We calculate the right
side of the inequality of Lemma 3.4.1 (1) in terms of Proposition 3.2.3.
First, we have

1
dim M, (U(L)) = EVOIHM(U(L)) ca™ - K"+ 0>k,
Second, we have
o k/2—1
D) dim Mygyo(T5)
i=1 j=0
r k/2—1 1
- {—VOIHM(D) (ka +25)"' + 0(/@”*2)}
i=1 j=0 (n—1)!

= , g{ﬁVOh{M(Fi) (a+ 1)n_1 B4 O(k‘”_2)}

a+ 1)t < § .
ﬁ (D volua (1)) - k" + O(k" 1),

=1

Combining the above, we get

RO (k - M(a))
rok/2-1
> dim M, (U(L)) — Z dim Mpq495(1)
> Lol (UE){1 - 5o (1+2)7 S —v;ﬁﬂ{&g)) b+ Ok ).

We need to estimate volg s (I';) /volgas (U(L)), in terms of volg (L, Ky) from Lemma 3.3.6.

% = [U(Ky) : Tilvolga (L, Ko)

:VOIHM<L,K5) ([6] GRL(F,Q)]),

S 4nV01HM(L, Kg) (w] € RL(F, 2)]1),

< 2nV01HM(L, Kg) ([E] € RL(F7 2)]]] H RL(F, 2)]\/ HRL<F7 2)‘/)
Hence, since

Ri(F) = Rp(F,2) = Rp(F.2); [[Ru(F.2)1 [T RL(F.2) 11 [[Re(F.2) v [[ RL(F, 2)v,
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the line bundle M(a) = a.& — By /2 is big if

n 1\n-1
1—%<1+a> { Z VOIHM(L, Kg)
[ERL(F2)1

+4n Z VOIHM(L,KK)+2n Z
[K]ERL(FQ)[]

holds.

(2) Here, We calculate the right side of the inequality of Lemma 3.4.1 (2). As in the
above calculation, we have

VOlHM(L, Kg)} >0
[FeRL(F2)rrr LIRL(F2)rv [I RL(F.2)v

5o kj4—1

sq 3k/4—1
Z Z dim Myq4j, (I) +Z Z dim Mpaq5, (1)
=1 j2=0 i=1 js4=0
< M{i VOIHM(Fz) + 3 iVOIHM(F1>}]{Zn + O(k’n71>
T4 (n-1)N & —
Then,
RO (k - M(a))

a” n 3\ 1 (o~ volya (T) vol " .
zavolHM<U(L)>[1_E(1+a) {ZvolHZM( 3ZVO1HZM )}]k O™,

Moreover, we need to estimate voly s (I';)/volya (U(L)) in terms of volyy (L, Ky) from
Lemma 3.3.6.

VOIHM<F1') - .
S = (U(K) : Dvoluas(L. Ko

:VolHM(L,Kg) ([e] S RL(@(\/__1)74)1)a
S 2nVOlHM(L, Kg) ([é] € RL(Q(\/__l)a 4)11)7
< 4nVOlHM(L, Kg) ([g] € RL<@(\/—_1), 2))

Hence, since

Rr(Q(vV-1)) = RL(Q(\/__l)aQ)HRL( IHRL A,
the line bundle M(a) = a.Z — By/2 — 3B, /4 is big if
3\n—1
1- = C(1+ ) {3 > voluu(LK)
[eRL(QV-T1),4);
43.9n S volgm(L K A4t Y volywl(L, Kg)} >0
[(ERL(QWV=1),4) 11

eRL(Q(W-1),2)
holds.

(3) Here, we calculate the right side of the inequality of Lemma 3.4.1 (3). As in the
above calculation, we have

ty k/6—1 ts k/3—1 te 5k/6—1

Z Z dim Mk:a+6j2 (Fl) + Z Z dim Mka+6j3 (Fl) + Z Z dim Mk’a+6j6 (Fl)

i=1 jo=0 i=1 j3=0 i=1 jg=0
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t3 te
(@ (n5— 0! {Z volga (') + 2 ZVOIHM(Fi) +5 ZVOIHM(Fi)}k‘n + O(k™1).
=1 i=1

Then,
h(k - M(a))

n

a 5\l (o volga(T) 5L voly ()
> ol (U [1 = oo (1+7) {;VOIHM(U(L)) +2;volHM(U(L))

+5Z vol s (T }] K+ O™ ).

VOIHM

We need to estimate volg (I';)/volga (U(L)) in terms of volga (L, Ky) from Lemma 3.3.6.

VOIHM<F1) .
W = [U(Kg) : FZ‘]VOIHM(L, Kg)

= volum (L, K¢)  ([f] € Re(Q(vV=3),6)),

< ?)nVOIHJ\/[(L7 Kg) ([é] € RL(@(\/—_3), 3)),

< 4nVOlHM(L7 Kg) ([@] < RL(@(\/—_g), 2))

Hence, since

R(Q(V=3)) = Re(Q(V-3),2) [ [ Re(Q(vV=3),3) ] [ R(Q(V-3),6),
the line bundle M(a) = a.Z — By/2 — 2B5/3 — 5Bg/6 is big if

5
- 6-@(1 42 )“—1{5 Y voluu(L,Ko)
0eRLQV=3)6)

+23n Z VOIHM(L,Kg) +4n Z VOlHM(L,Kg)} >0
[(IERL(QV=3),3) [eRL(QV-3),2)
holds. U

Next, we estimate the cardinality of the sets of split vectors. Let Rgyit be the subset of
RL(F) consisting of the elements [¢] € R (F) satisfies L = (0 & K,. We divide up Repiit

as
spht H Rspht

w|D(L

As in [107], Rgpiit(w) is canonically identified Wlth the set of isometry classes of Hermitian
lattices K such that K @ (—w) = L. By the cancellation theorem [144, Theorem 10], if

(w) & K = (—w) & K,

it follows K = K’ because K is indefinite of rank greater than or equals 3. Hence, the
following holds.

Proposition 3.4.5.
[ Respiis(w)| < 1.
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3.5. Prasad’s formula

We will apply Prasad’s formula to compute V (L, F'). The purposes in this section are
followings;

(Subsection 3.5.1) to introduce Prasad’s formula,

(Subsection 3.5.2) to show that unramified square-free lattices satisfy (©).

3.5.1. Preparation. Below, let v be a finite place. Let F, be the completion of F" at
v, Or, be a maximal compact subring and p, be a maximal ideal. Let f, := OF,/p, and
Qv = |f»|. If v ramifies, let 7 be a uniformizer of F,. Otherwise, let m be a uniformizer
of Q,. Prasad [129, Theorem 3.7] proved the S-arithmetic volume formula of arithmetic
subgroups. We shall apply it to our special unitary groups.

Now, let us assume that the arithmetic subgroup SU(L) is principal with respect to the
coherent parahoric family {SU(L®Z,)}, in the sense of [129]. By the strong approximation
theorem, it holds that

SU(L) =SU(L® Q)N [[SU(L & Z,).
vfoo

Also, from the proof of [132, Proposition 2.6], the closure of the image of SU(L) in SU(L®
Q) is SU(L ® Z,), so our assumption means that SU(L ® Z,) is a parahoric subgroup for
all v.

By Prasad’s formula, we obtain, for a Hermitian lattice L satisfying (%),

S (27; (LB L+ D[N (2]n),

vol(SU(L) =4 W:l 0 vfoo
H m JLEB)CH) ... ctn+ ][ A (21n).
i=1 vfoo

Here, the local factor AL is defined as follows. By assumption, SU(L ® Z,) is a parahoric
subgroup, so there exists the smooth integral model H in the sense of Bruhat-Tits [140]
up to an isomorphism. Hence, there exists a reduction map H(Op,) — H(f,). Let ML be
the maximal reductive quotient #(f,).

From [130, Subsection 2.4], if v is inert in F', then

n+1

AL = gttt T (6] — (1)),

=2
If v splits in F', then

n+1

N = g{tm M=z Ak =t T (gh — 1)

i=2
If v ramifies in F, then

[n+1/2]
im ML n 7
AL = g MDD A T (g2 - ).

=1
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3.5.2. Local Jordan decomposition. For local Hermitian lattices, there exists the
Jordan decomposition; see [49, Corollary 4.3] or [73, Section 4]:

ky
L&y Zy = P Luy(),
j=1
where L, ; is a unimodular lattice over 0, = Op ® Z, and k, is an integer. The local
Jordan decomposition is unique up to its type in the sense of [29, Remark 2.3]. Let
Ny,j 1= rk(L, ), S0 Z?“Zl n,,; = n+ 1 for all finite places v. Let

(¢.0) =Dy =[] v,
vfoo
kv
K, ®7 72, = @ Koo j(m?) (K : unimodular).
j=1

In this notation, it follows

KE,U,j = Lv,j (] 7é Vv)7
tk(Kyp1,) = N, — 1.

Remark 3.5.1. For a semisimple simply connected algebraic group over Q,, the sta-
bilizer of a point in the affine Bruhat-Tits building is parahoric [21, Proposition 4.6.2],
[140, Subsection 3.5.2]. Hence, if a Hermitian lattice L ® Z, over Z, defines a point in the
affine Bruhat-Tits building, then SU(L ® Z,) is a parahoric subgroup of SU(L ® Q,). We
can interpret a point in the affine Bruhat-Tits building as a lattice chain [21, Théoreme
2.12], [100, Subsection 1.6] for unitary groups if v # 2 or Fy/Q, is unramified; see [21,
Subsection 2.2] or [100, Definition 1.5]. Note that the structure of the reduced building of
a unitary group is the same as that of a special unitary group; see [100, Subsection 1.6].

Let us consider when a Hermitian lattice forms a lattice chain. We call a Hermitian
lattice L over O, primitive if there does not exist a Hermitian lattice L’ of the same rank as
L over Op, and a positive integer 7 satisfying L = L'(7%). A also denotes the discriminant
group. Below, up to scaling, we will mainly consider primitive Hermitian lattices.

Lemma 3.5.2. Let K be a quadratic extension of Q,, or be Q, x Q,. Assume that K
is not a ramified quadratic extension of Qq. Let M be a primitive Hermitian lattice over
Ok. If M satisfies

AM = (ﬁ[{/ﬂ'ﬁ[()k
for some non-negative integer k, then SU(M) is a parahoric subgroup of SU(M ® Q,).
Here, as before, m is a uniformizer of K if K is a ramified extension, and ™ = p if not.

Proor. We denote by
t
M =P M;(x7)  (m; := rank(M,))
j=0

a Jordan decomposition of M for some integer t. First, we assume that K is unramified
over Q, or equals Q, x Q,. Then, from [73, Section 7| or [49, Proposition 4.2, Section 9],
it follows

Mj(ﬂ-j) = <5j,17’(’j> b---D <5j,mj71'j>,
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for some units 9,, € Ok. In this situation, if M satisfies
1 1
Mc =M'c =M,
s s
then it defines a self-dual lattice chain; see [136, Subsection 2.1]. Here

M ={veM®Q,| (v,w) € TOk for any w € M}.

This implies 0 < j < 1, that is, M; = 0 for j > 1. Therefore, if the Jordan decomposition
of M has the form

(3.5.1) M = P M;(=7),

then it defines a point in the affine Bruhat-Tits building. Since the stabilizer of this lattice
chain in SU(M®Q,) is SU(M), from Remark 3.5.1, this finishes the proof for the unramified
or split cases.

Second, let us consider the case that K is a ramified extension of Q, with p # 2.
For odd j, from [73, Proposition 8.1 (b)] and invoking the same discussion as above, the
condition

My(r) € (M ()} © —My()

implies M; = 0 for odd j > 1. Now, let j be even. Then, from [73, Proposition 8.1 (a)], it
follows
M) 2 (8379 @ -+ ® (Gjm, 17%) ® (B, n0),

for some units d;, € Ok. Then, the condition
) 1 ) 1 )
M;(n!) C }{Mg’(ﬂj)}ﬁ C —M;(n’)

implies M; = 0 for even j > 1 through the effect of the last term. Combining these
computation completes the proof for the ramified case. O

Remark 3.5.3. We can prove the above when K is a ramified extension over QQ in a
similar way as in [73, Section 9, 10, 11] or [29, Theorem 2.10]. However, in this case, points
in the building constitute a subset of the set of self-dual lattice chains [100, Subsection
1.6], so more detailed calculation seems to be needed. For our purpose, it suffices to assume
that v = 2 is unramified at F' in the following examples because of the consideration of
reflective vectors. Hence, we will restrict Lemma 3.5.2 to this case, for simplicity.

Below, for a reflective vector ¢ € L, we use the same notation for the local Jordan
decomposition of L' ® Z, of a Hermitian lattice L' := {0r & K, over O as above. First,
we shall explain that unimodular lattices satisfy (©).

Proposition 3.5.4 (Unimodular). A unimodular Hermitian lattice L of signature
(1,n) over Og, satisfy (V).

PROOF. For a reflective vector [(] € Rp(Fy), let L' := (OF, & K, where K, := (+ N L.
Then,
1 ([0l € Re(Fo,2)1),
L)'= Op/20r ([{] € Re(Fo,2)11),
Orp/piOr,  ([0] € Rp(Fo, 2)1v [T RL(F, 2)v),
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from the definition of reflective vectors and
Ri(Fo,2) = Ri(Fo,2)r H Ri(Fo,2)1r H Ri(Fo,2)rv H Ri(Fo,2)v,

under the assumption on Fjp.
If [¢] € Rp(Fo,2);, then K, is also unimodular and local Jordan decompositions of L
and K, have the trivial forms

L® Z’U = Lv,Ou
KZ ® ZU = KK,U,O-
Now, consider the case of non-split vectors. Let ¢ € L be a non-split vector, i.e.,
0] € Rp(Fo,2) 1 [IRL(Fo,2) v [[RL(Fy,2)y. We refer to the proof of [146, Lemma 2.2].
Since L is unimodular, o, _; € U(L) = U(L). Hence,
2(v, l)
(¢,0)
for any v € L = LY. Since / is primitive, it follows ((,£)/2 & Or, \ Of,. Hence if [{] €
Rr(Fy,2)r, then we have (¢,¢) = —2. This means that, since I, = (2), the discriminant
groups of L' =00k, & K, and K, are
AL/ g (ﬁFO/QﬁFO)QJ AKE g ﬁFo/zﬁFo
This concludes that the Jordan decompositions of L' ® Z, and K, ® Z, are

€ Op,

(1
poz - | D =2,
(L0 (otherwise),
(1
B [
(K0 (otherwise),
where
rk(L'zyo) =n—1, rk(L’m) =2,
tk(Ky00) =n—1, tk(K01) = 1.
For [{] € R.(Fy,2) v, from the same discussion as above, we have (¢, ) = —2. This means

that, since I, = pq,
AL’ = ﬁFg/QﬁFm

and K, is unimodular. This concludes that the Jordan decompositions of L’ and K, are
the same as above except v = 2. For v = 2, the local factors Jordan decompositions are

1
L'®Zy =P Lh (),
j=0

Ky ® 72y = Ky,

where
rk(Lyo) = n, tk(L; ;) = L.
In all cases, for any v, the local Jordan decompositions of L' = ¢y & K, and K, have
the form (3.5.1). Hence, by Lemma 3.5.2, SU(L' ®Z,) and SU((¢* N L) ®Z,) are parahoric
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for any v. This implies (%) for L' and K, and from the discussion in Subsection 3.1.4, we

conclude that L satisfies (©).

Second, by generalizing the above proof, we prove that unramified square-free lattices

satisfy (Q).

Proposition 3.5.5 (Unramified square-free). A primitive unramified square-free

lattice L over O, of signature (1,n) satisfy ().

PROOF. Let det(L) = p;...pr be odd square-free. Here, any prime divisor p; is un-

ramified at Fy. For a split reflective vector [¢] € Ry (Fy);, we denote by

k/
.o =110 =11»:
1

vfoo 1=

for some order and &’ < k. Then the local Jordan decomposition of L ® Z, is

1
@Lpi,j<7'rj> (U:pi fOTizl,---7k),
L®7Z, = pard

Lo (otherwise),

where

rk<LPi,0) =n, rk(Lpiyl) =1,
fori=1,...,k .We also have

1

K,Q7, = @K&pm(ﬂj) (v=pifori=F+1,--
14 v —

Ko (otherwise),

where
tk(Kyp0) =n—1, tk(Kyp 1) =1,
fori=k"+1,---,k, Now, We choose an element e € L so that

1
AL = O /p1...p0r, = e)

P1---Pk

holds as @,-modules. If [(] € Ry (Fy,2) s, first, we shall consider the case of o1 € U(L).
This occurs if and only if (e, /) = 0. In this situation, by the same discussion as Proposition

3.5.4, we have (¢, () = —2, and

Ap = (OR,/20,)* X Or,[p1 ... 0k0Ory, Ak, = O, [2p1 ... D10,

This concludes that the Jordan decompositions of L' ® Z, and K, ® Z, are

(1
L, <7TJ> (U:2p p)
/ — @ v, ) 17 Y ]C 9
Lo, ={ W
(L0 (otherwise),
(1
@K&v,y‘(ﬁj) (v=2,p1, k),
Ky Z,={ U
(K0 (otherwise),
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where for v =pq, -+, pg,
rk(Ly,) =n —1, tk(L),) =2,
rk(L;)O) =n, rk(L;J) =1 (v=p1,...,00),
tk(Kyppo) =n—1, tk(Kpp1) =1 (v=2,p1,...,pk).
Second, we consider the case of oy, & U(L), ie., (e,f) # 0. From the definition of e,

an integer p; ...py divides (e, ¢). Also since ¢ is primitive, it follows (e, ¢) = py...px by
replacing e with —e, if necessary. On the other hand, since 2e € L' = (0p, & K, we have

2e = al + bk,

for some a # 0,b € Op, and ky € K,;. Taking an inner product of both sides with ¢, we
have

2(e,l) =2py...px = a(l,{).

Now, the definition of Ry (Fy, 2);; implies that 2 divides (¢, £), so we have (e, ) = 2p; ... pgs
for some integer k£’ < k, by changing the order of py, - - - pg, if necessary. Then, this implies

Ap = Op[2p1 .. .pw X ORy2pis1 - .. 0uOp, = (O, [205,)* X Or) D1 . .. 0k O,
Ak, = Ory/2Dk41 - - - PkORy.
Hence, the Jordan decompositions of L' ® Z, and K, ® Z, are

(1
L .(Wj) (v=2,p1,  ,pr)
! — @ v,J s M1, s Vk )y
L'®7Z, = =
(L0 (otherwise),
(1
@Keﬂ)v](ﬂ—]) (U = 27pk,+17 e 7pk)7
Kf X Zv = =0
(K00 (otherwise),

where
rk(Lyo) =n—1, tk(Ly,) =2,
tk(Kyppo) =n—1, tk(Kpp1) =1 (v=2,pp41," s D),
rk(Lyo) =n, tk(Ly ) =1 (v#2,pe,- - pe).
For [¢] € Rp(Fo,2)1v [[RL(Fo,2)y, we can also calculate the local Jordan decomposi-

tions in the same way, and get

AL’gﬁFo/Zpl--'pkﬁFoa AKlgﬁFo/pl--'pkﬁFm
or
AL/%JﬁFO/Qpl...pkﬁFO, AKZgﬁFO/pk’Jrlw-pkﬁFov

for some integer k’.

In all cases, for any v, the local Jordan decompositions have the form (3.5.1). Hence,
by Lemma 3.5.2, SU(L’' ® Z,) and SU((¢* N L) ® Z,) are parahoric for any v. As before,
it follows that L satisfies (©). O
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3.6. Computation of local factors

Tits [140, Example 3.11] calculated the maximal reductive quotients in the case of
special unitary groups of odd dimension. For unramified v, Gan-Yu [49] determined the
structure of the maximal reductive quotient. For ramified v # 2, they determined the
structure of the maximal reductive quotient. For ramified v = 2, Cho [29, 30] determined
the structure of the maximal reductive quotient for ramified dyadic extension. On the other
hand, Gan-Hanke-Yu [49] classified the maximal reductive quotient in the case of maximal
lattices. As [107], up to scaling, we will mainly treat a primitive L. In the following, we
will omit the notion of f,-valued points and define MX¢ for K, as ML.

3.6.1. Unramified case. Gan-Yu clarified the structure of the maximal reductive
quotient for unramified v.

3.6.1.1. Inert case. By [49, Proposition 6.2.3], according to local Jordan decompo-
sitions, the maximal reductive quotients of the mod p reductions of the smooth integral
models of U(L ® Z,)) and U(K, ® Z,) are

U(nyo) X -+ X Ungy,) X - X U(ng,)
and
U(nvjo) X oo X U(nwjv — 1) X e X U(nukv).
As in [49, Introduction], this also holds for v = 2. Hence, we have
M} = Ker(det : U(nog) X -+ X U(ngw,) X -+ X Ungg,) = f5),
ME = Ker(det : U(nyg) X -+ X U(ng,, — 1) x -+ x Ulngg,) = §L),
where fi denotes the set consisting of the elements of f, whose norm is 1. Note that these
maps are surjective. This implies
My _ (U)X - X [U(no)] X -+ X [U (105,
(M) (U (o0) X - X U (R, = D)X= X U, )|
=gy g — (1))

and
dim MY — dim M5t =n2, — (n,,, —1)* =2n,,, — L.
Then,

)\KIZ . Ky n . .

2o = {m e s T - (-1}

A v v v

v =2
. B n+1 ' ) _1
. {qf]dlva -n)/2 ’MvL‘fl . H(qzz] _ (_1)z>}
i=2

(3:6.1) g — (1)

77}H—1 _ (_1)n+1 ’

3.6.1.2. Split case. As Subsubsection 3.6.1.1, by [49, Proposition 6.2.3], the maximal
reductive quotients of the mod p reductions of the smooth integral models of U(L ® Z,)
and U(K, ® Z,) are

GL(ny0) X -+ X GL(ny,,) X -+ x GL(ny4, )
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and
GL(nyp0) % - -+ x GL(ny,, —1) x -+ x GL(ny4,).
As in [49, Introduction], this also holds for v = 2. Hence, we have surjective maps
M} = Ker(det : GL(n,0) X -+ X GL(n,,,) X - -+ X GL(ny4,) = f1),
ME = Ker(det : GL(n,0) X -+ X GL(1,, — 1) X -+ x GL(ny4,) — fb).
This implies
[My] [ GL(nuo)| X -+ X | GL(nuw, )| X -+ X | GL(nu, )|
M| [GL(nu0)| % -+ X | GL(ny, = 1) X -+ x | GL(ny, )|
= gL (g — 1)

and
dim M} — dim M = niyv — (s, — 1)% =21, — 1.
Then,
\Ke RS o o ntl -1
)\LL _ {quva —n+1)/2 ’Mfzrl X H(q; _ 1)}{q1()d1va -n)/2 ’M’UL|71 . H(qf; . 1)}
v i=2 i=2
(3.6.2)
- qgv,uv _ 1
ot -1

3.6.2. Ramified case: v # 2. Fix a ramified prime v # 2. Recall the classification
of the maximal reductive quotient of the reduction of the integral model by Gan-Yu [49].
For a positive integer z, let

K (x : even),
to} = {x —1 (z:0dd).

Let

Sp({nw.i}) (7:0dd).
Here, 20(i) denotes the quasi-split but nonsplit special orthogonal group if i is even. Note
that O(i) =20(z) is split if 7 is odd.
Accordingly, we obtain the following description of the maximal reductive quotients of
the mod p reduction of the smooth integral models of U(L ®Z,) and U(K, ® Z,) from [49,
Proposition 6.3.9];

H(ny,) = {O(nm) or °O(ny,;) (i:even),

H(nyp) X -+ X H(nyp,) X -+ X Hnyp,)
and
H(nyp) X -+ X H(nyy, — 1) X -+ X H(nypg,).
If (v, 1y, ) = (even,even), then
ME = Ker(det : H(ny) X -+ X Sp(ny,,) X -+ x H(nyg,) — §i),
M = Ker(det : H(n,o) X -+ X Sp(nyp, —2) X -+ X H(nyp,) = f1).
This implies
M [Sp(nuw)
M) T [Sp(now, — 2)]
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— q;bv,uv_l(q;bv,uv _ 1)
and

v,V (ON7 1 v,V -1 (ON7 -2
dime—dimef:n’“(nQ’”Jr ) _ (s, )2(”’” ):27%%—1.

Hence, if n +1 = 2m + 1, then

K, mn m —
e (AR AT § (R P e AR § (T

v i=1 =1
(3.6.3)
< g, (g — 1),

If n+1=2m, then

)\UKZ im Ké—m — - 7 imML-m - M i -
Sk (R LA § (VAR V) S AT § (i)
v =1 =1
(3.6.4)
qq"}’ll’nuv _ 1
gt =1

If (v, npy,) = (even,odd), then
MF = Ker(det : H(ny,) X +++ X Sp(ny,, — 1) X -+ x H(nyg,) = 1),
ME = Ker(det : H(nyo) X -+ X Sp(nyp, — 1) X -+ X H(nyp,) = fL).
Hence, we have ML = MX¢ soif n +1 = 2m + 1, then

K, m m _

i=1 i=1
(3.6.5)
=1.

If n+1=2m, then
A (dim Myt —m+1)/2 Ko|—1 v 2 (dim ME—m)/2 L-1 o 2 -1
T = {gfim v T e = 1 gt gt Tl - )

v i=1 i=1

(3.6.6)

__a”

gt -1

If (v, np,.,) = (0dd, even), then

ME = Ker(det : H(nyg) X - x®@ O(ny,,) X -+ x H(nyg,) = §2),
M =Ker(det : H(nyg) X -+ X O(Mypy, — 1) X - X H(nyp,) = f1).
Here, ®0O(n,,,) denotes O(n,,,) or 20(n,,, ), so
ME _ [P0(n,)
M| ™ 1O (nu, — 1)
< q;‘vwvﬂ—l(qgv,w/? + 1)
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and
v,V v,Vy ]- V,Vy 1 V.l 2
divaL—dimef:n’“(n” ) (Mo = D), = 2) = Ny, — 1.
2 2 ’
Hence, if n +1 = 2m + 1, then
)‘LKZ _ (dim Mt —m) /2 . |MKZ|—1 ﬁ( 2 1) (dim ME-m)/2 |ML|—1 . ﬁ( 2 1) -1
)\L =14 v 4, ay v a,
v i=1 i=1
(3.6.7)
<, (" + 1),
If n+1=2m, then
A (dim M —m+1) /2 Ko—1 = 2% (dim ME—m)/2 L1 TT, 2 -1
2= {d Mt T = o {2 arf - T - 1)}
v i=1 i=1
(3.6.8)
a1
Tyt -1
If (vp,np,,) = (0dd, odd), then
ME = Ker(det : H(nyg) X -+ x O(ny,,) X -+ X H(nyp,) — 1),
ME = Ker(det : H(n,g) x --- x () O(Myy, — 1) X -+ X H(nyp,) = f1).

This implies

| My | 10(nw,,)|
’MJ(‘;’ N |(2)O(nv,w —1)]

< g V(gD 4 1)

and
v,V V,Vy 1 VWV 1 V.V 2
divaL—dimef:n’”(n’” ) _ (o, = D, = 2) = Ny — 1.
2 2 ’
Hence, if n +1 = 2m + 1, then
A (dim Mt —m) /2 Ko -1 5 2 (dim ME—m)/2 Li-1 . 2 -1
T ={d M T = ) etz Tl - 1)}
v i=1 i=1
(3.6.9)
S qz()nUva_l)/Q _.I_ 1
If n+1=2m, then
A (dim Mo —m+1) /2 Ko—1 = 2 (dim ME—m)/2 L1 TT 2 -t
v i=1 i=1
(3.6.10)
(w1, —1)/2
cqp e

gt =1
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3.6.3. Ramified case: v = 2. Cho [29, 30] classified the maximal reductive quotient
of the mod p reduction of the integral models for a ramified quadratic extension F5/Qs.
He divided the problem into Case I and Case II, according to the structure of the lower
ramification groups of the Galois group Gal(F5/Qy); see [29, Introduction|. We also use
his division.

3.6.3.1. Case I. Let

(Sp({n2.}) (i : even and Ly, : type I1),

Sp({na2; —1}) (i :even and Ly, : type I°),

Hi(na;) == Sp({ng; —2}) (i :even and Ly, : type I¢),
@O (ny,) (i : odd and Ly : free),

(

(P SO(ng; +1) (i:odd and Ly; : bounded).

We define H*(ny;) := HF(ny,) if i # vy and

(Sp({na., —1})
Sp({ne., —2}) (v

(v2 : even and Ky, : type 11),
(
HlKe (n2,1/2 - 1) = < Sp({nlm - 3}) (V
(
(

ceven and Kyo,, : type 1°),

[\

ceven and Kyo,, : type I€),
vy :odd and Ky, : free),
vy : odd and Ky ,, : bounded).

9

[\

(Z)O(TZQ,V2 — 1)
@) SO(TLQWQ)

See [29, Definition 2.1, Remark 2.6] for the definitions of the types of lattices. We will
not use these definitions here, except that the type I° (resp. I¢) means the rank is odd
(resp. even) and evaluate the volume independently of the types of lattices. Moreover,
while Cho [29, Remark 4.7] distinguishes between cases that even-dimensional orthogonal
groups are split or non-split, we will not use this description. By [29, Theorem 4.12], we
can determine the structure of the maximal reductive quotient of the mod p reduction of

the smooth integral model of SU(L ® Z,) and SU(K, ® Zs).

M¥ = Ker(det : HE(ngo) x -+ x HE (ngy,) X -+ x HE(ngg,) x (Z)27)° — §1),
M = Ker(det : H (ngg) x -+ x H*(ngy, — 1) X -+ x Hi" (nog,) X (Z/27)PKe — §1).

If (,79,,) = (even, even), then HE(ny,,) = Sp(na,,) or Sp(na,, —2), and Hi* (ng,, —
1) = O(ng,, — 1) = Sp(ng,, — 2), according to the type of Ly,,. The integers (5, and S,
are defined in [29, Lemma 4.6] and satisty 5, Bk, <n+ 1 and 8, < Sk, + 2. Since

Sp(nau)| _ |Sp(nass )|
9dim Sp(n2,u5)/2 — 9dim Sp(n2,,—2)/2

Sp(2)|
9dim Sp(2)/2

(?12’,/2 > 2),
=3.2712
we can bound the ratio of local factors independently of the type of a lattice:

. K i
ME| 2V [Spng,,)| | 20m e 22
2dm My /2 e T 24mSe(n2e)/2 [ Sp(ny,, — 2)|
< 2%(2”27712 — 1) (This also holds for ny,, = 2).

. 9(BL—=PrK,)/2
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Hence, if n +1 =2m + 1, then

2 2i
NT ; [ -1 [T -n
2 _ {Q(dimM2 L — }{Q(dimMQLfm)ﬂ - }
& | M| | MZ|
(3.6.11) < 21/2(2n2,u2 —1).
If n+1=2m, then
m—1 m

. (221' . 1) H(22i - 1)

K
/\2: — {Q(dimMQKZ_m'i‘l)/?. i=1 - }{Q(dimMQL—m)/Q. i=1 _ }—1
& A% M
2”2,1/2 _ 1

If (v5,M,,) = (even,odd), then HE(ny,,) = O(na,,) = Sp(ng,, — 1), and Hi(ny,, —
1) = Sp(na,, — 1) or Sp(ng,, — 3), according to the type of Kys,,. Thus, we can bound
the ratio of local factors independently of the type of a lattice:

| ME| odim My " /2 |Sp(ng,, — 1)]  24imSp(n2.;-3)/2
9dim My /2 |M2Ke| — 9dim Sp(n2,,—1)/2 \Sp(ngm —3)|
< 22(2m2m2 — 1),
Hence, if n +1 = 2m + 1, then

. 9(BL—PK,)/2

2 2i
)\KZ K H(Q B 1) H(2 - 1) -1
o= {Q(dim% f-m)/2 izl—K}{Q(dimM%—m)h - }
& | M| | My |
(3.6.13) < 2V/2(9n2ws 1),
If n+1=2m, then
m—1 m

H (221' _ 1) H<22z _ 1)

K
)\2; _ {Q(dimMQKf_m—l-l)/Q =1 - }{Q(dimMQL—m)/Q =1 ; }—1
Az | M| | M|
2Mvy — 1]

If (13, 19,,) = (0dd, even), then HF(ny,,) = O(ny,,) or SO(ng,,+1), and Hi* (ng,, —
1) = O(ng,, — 1) or ¥ 80(ny,,), according to the type of Ly, and K;5,,. Since

180(1,, + )| . [PO(na,)l . [O(ns,,)

2dimso<n2,1,2+1> = 5dim® O(na,,)/2 = 2dimO(n2,,)/2
2

2
yge_ FOQL_ 1S0B) | [0@)
2dim* O(2)/2 — 2dimSO(3)/2 — 9dim 0(2)/2’
SO (n2ss)| . 10(n2,, —1)|

2dim(2> SO(n2,u,)/2 — 2dimO(n2,y271)/2’

>1 (TLQ’VQ > 2),
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we can bound the ratio of local factors, independently of the type of a lattice:

im = im O(na,p, —
| My | _ 2im My /2 <3.91/2. | SO(n2,, +1)| . 9dim O(n2,1, —1)/2
2dimM2L/2 |M2Kz| - 9dim SO(n2 v, +1)/2 ‘O<n2ﬂ/2 — 1)|

< 3.2(2% —1).

. 9(BL—PK,)/2

Hence, if n +1 = 2m + 1, then

A& . "o . "o -1
)\QL _ {2(d1HlM2I<e—m)/2 i |M21Q|—1 i H(QQZ - 1)}{2((11111]\42[’_7”)/2 . |]\42L|_1 . H(QQZ — ]_)}
2 i=1 i=1
(3.6.15)

< 3.2(2"% —1).

If n+1=2m, then

m—1 m

. (221' _ 1) H(22i - 1)

A K , . | B
2 _ {Q(dlmM2 f-m+1)/2 ’Lzl—K}{2(dlrnM2L—m)/2 =1 . }
. I ]
2”2,1/2 _ 1
.93/2,
(3.6.16) <32

If (3, 15,,) = (0dd, odd), then HE(ny,,) = O(ng,,) or @ SO(ny,,+1), and H{*(ny,, —
1) =@ O(ny,, — 1) or SO(ny,,), according to the type of Ly, and K;5,,. we can bound
the ratio of local factors, independently of the type of a lattice:

|M2L| 2dimM2K‘/2 - |2 SO(n27y2 + 1)’ 2dim0(n2,y2—1)/2
9dim MJ' /2 |M2I(ﬁ‘ = 9dim?SO(n2,u,+1)/2 |O(n2,,,2 _ 1)‘

< 212920 1)/2 o 1) (920, =D/2 4 1)

o(BL—B1c,)/2

Hence, if n +1 = 2m + 1, then

)\KE . m 4 . m ' 1
)\QL _ {Q(dlmMszf—m)/z M H(QQZ - 1)}{2(d1mM2L_m)/2 | MEI H(QQ" — 1)}
2 i=1 i=1
(3.6.17)

< 21/2<2(n2,u2+1)/2 + 1)(2(”2,u2—1)/2 +1).

If n+1=2m, then

A im Myt —m LT i im ME—m L TTo2 -1

)\22]; _ {2(d My —m)/2 |\ et H(22 _ 1)}{2(d Mf-m)/2 | L=t H(22 _ 1)}
i=1 i=1

(3.6.18)

(2(”2,u2+1)/2 + 1)(2(n2,u2—1)/2 +1)

<2 on+l _
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3.6.3.2. Case II. Let

(@0(ny,) (i : even and Ly : type I, free),
@ SO(ng; +1) (i:even and Ly, : type 11, bounded),
HE () = Ez; SO(ng;) (z ceven and Ly, : type I°),
’ SO(ng; — 1) (i:even and Ly, : type I€),
Sp({na.}) (¢ :odd and Ly, : type I1, or type I and bounded),
[ Sp({n2; —2}) (i:odd and Ly, : type I, free).

We define Hy (ny;) := H¥(ny,) if i # vy and

)
((2)0(7127,/2 —1)  (vp:even and Ko, : type I1, free),
@ SO(na,,) (v2 s even and Ky, : type 11, bounded),
HE (ny,,—1) = 2 SO(ng,, — 1) (vp:even and Ky, : type I1°),
2 2 SO(ngy, —2) (o :even and Ky, : type 1¢),
Sp({nau, —1}) (2 :o0dd and Ky, : type 11, or type I and bounded),
[ Sp({n2,, —3})  (v2:odd and Ky, : type I, free).

Although Cho [30, Remark 4.6] distinguishes cases in which the even-dimensional orthogo-
nal groups are split or non-split we will not use this description. From [30, Theorem 4.11],

we can determine the structure of the maximal reductive quotient of the mod , reduction
of the smooth integral model of SU(L ® Z,) and SU(K, ® Z,).

My = Ker(det : Hy (nog) X -+ x Hy(na,,) x -+ x Hy(nay,) % (Z/2Z)°0 — §2),
M;" = Ker(det : Hy*(ng,0) X -+ X Ha (o, — 1) X -+ X Hy (o) X (Z/22)% — §1).
Here, ], and ), are integers defined in [30, Lemma 4.5] and satisfying 37, 8y, < n + 1

and 87 < B, +4.
Moreover, for later, we remark that
| 150G, ~ DI _ [®0(mau)l _ [8O00a + DI __[?S0(na,)
— 2SO(TL2’1/271)/2 — 2dim(2) O(na,,)/2 — Qdinlso(ng,y2+1)/2 — 2(2) diHlSO(nQ’VQ)/Q
ye_ 1S0@) . [SO(] __joe)

(2, # 2 : even),

© 92dimSO(2)/2 — 7 9dimSO(1)/2 — 9dim O(2)/2

[SOB)[ _ PPSO@) _ PORI _ i 4
— 2dimSO(3)/2 ~ 9dim?80(2)/2 — 9dim?0(2)/2 ’
|(2) So(nluz B 1)| < |O(n27V2)| o |So(n27V2)| < |(2) SO(nQ,Vz + 1)| (n ?é 1- Odd)
9dim® SO (ng vy —1)/2 = 2dimO(n2,,)/2 ~ 9dimSO(n2,05)/2 = 9dim® SO(na,u,+1)/2 2,v2 : )

2
pip_ 1S0@1 00 _ SO _ PPSO@)| _, 4
9dim SO(2)/2 9dim O(1)/2 9dim SO(1)/2 9dim? SO(2)/2

If (v, m3,,) = (even, even), then HF(ny,,) =3 O(na,,), SO(ng,, +1) or SO(ny,, — 1),
and Hy " (ng, — 1) = O(na,, — 1), @ S0(na,,) or SO(na,, — 1), according to the type of
Ls,, and K;s,,. Thus, we can bound the ratio of local factors independently of the type
of a lattice:

im Ke im N po —
|M2L| ‘ odim My /2 - |SO(ng,,, + 1) oy 32d SO(n2,v,—1)/2 (BB,
odim M /2 |M2K‘f| — 9dimSO(nz,,+1)/2 |SO(ng,, — 1)

< 2%.3(2"*2 —1) (This also holds for ny,, = 2).
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Hence, if n +1 = 2m + 1, then

e . L. . LS. -1
/\2L _ {Q(dlmM,fLm)/z ) ’M21Q|71 ) H(sz _ 1)}{2(dlmM§*m)/2 CMEE H(Q% _ 1)}
2 i=1 i=1
(3.6.19)
< 27.3(2mv2 — 1),
If n+1=2m, then
Ay (dim M, ~m+1)/2 | g rKe|~1 T /o0 (dim ME—m)/2 L1 TTo2 -
= Mgt TL e - p{eem stz g TTe* - 1)}
i=1 i=1
(3.6.20)
om2v — ]
5/2 9.2~ -~
< 2 3 oan+l _ 1 :

If (15,n9,,) = (even,odd), then H¥(ny,,) = O(na,,), ¥ SO(ny,, + 1) or SO(na,,),
and Hy " (ng,, — 1) = O(ng,, — 1), SO(ny,,) or SO(ny,, — 2), according to the type of
Ly,, and K;2,,. Thus, we can bound the ratio of local factors independently of the type
of a lattice:

im Ke im n. po —
(My| 28T PSO(ngy, +1)| L,y 20800 V2 g
9dim MJ' /2 ‘MQI(Z‘ = 9dim?SO(n2,u,+1)/2 |SO(ng,, — 1)
< 2%/2 . (220212 4 1) (2202 =1)/2 L 1) (This also holds for ny,, = 1).
Hence, if n +1 = 2m + 1, then

A A "o . "o -1
2 = {otmatomrz g T (ex - 1 p{aamatomr gt T - 1)
2 i=1 i=1
(3.6.21)

< 232 (22wt D/2 4 (92— 1/2 4 ),
If n+1=2m, then

)\KZ im M2l —m - = 7 im ML —m — s % -1

/\25 _ {2(d Myt =mt1)/2 g rKe -1 H(22 _1)}{2(d ME-m)/2 | L 1_H<22 _1)}
i=1 1=1

(3.6.22)

(2205 +D/2 4 1) (2(m2.0,=1)/2 1 1)
n il — ] '
If (5, M2,,) = (odd, even), then HE¥(ny,,) = Sp(na,,) or Sp(na,, —2), and Hy ' (ny,, —
1) = Sp(na,, —2) or Sp(ng,, —4), according to the type of Ls,, and K5 ,,. Thus, we can
bound the ratio of local factors independently of the type of a lattice:

§22.3.

. K .
|M2L| . odim M, €/2 | Sp<n27l/2)| . 9dim Sp(n2,u,—4)/2
odim M /2 |M2KZ] — 2dimSp(n2.5)/2 | Sp(ngy,, — 4)|
< 2%2.(2m2ws — 1)(2"2»272 — 1) (This also holds for n,,, = 2,4).

Hence, if n +1 = 2m + 1, then
)\é{l m m 1

im K[—m — 7 im ME—m — 7
v _ {2(d M, )/2,|M2Kz| 1.H(22 _1)}{2((1 M; )/2.|M2L| 1.H(22 _1)}

i=1 i=1

(B —Blc,)/2




3.7. VOLUME ESTIMATION 73

(3.6.23)
< 232 (2r2vr — 1) (2272 — 1),

If n+1=2m, then

MK . i . "o -1
/\2L _ {2(d1mM2K€,m+1)/2 . |M2K£|fl . H(22z _ 1)}{2(d1mM2Lfm)/2 . |M2L|71 . H<221 . 1)}
2 i=1 i=1
(3.6.24)
@ @)

2n+1 -1

If (v3, n2,,) = (0dd, 0dd), then HE(na,,) = Sp(ng.,,—1) or Sp(ng,,—3), and Ha ¢ (ng,,, —
1) = Sp(ng,, — 1) or Sp(ng,, — 3), according to the type of Lo ,, and Ky ,,. Thus, we can
bound the ratio of local factors independently of the type of a lattice:

. K s
M| 20T | Sp(ngy, — 1] 20O IR g
odim Mg /2 \MQK’\ — 9dim Sp(na,u,—1)/2 | Sp(ng,, — 3)|

< 2%2.(2"»2 — 1) (This also holds for ny,, = 1,3).

Hence, if n +1 = 2m + 1, then

K m m _
% _ {Q(dimMZKf—m)/Q M H(22i - 1)}{2(dimM2L_m)/2 | MEIE H(QQi — 1)} '
2 i=1 i=1
(3.6.25)
< 232 (2n2ws 1),
If n+1=2m, then
)\gQ (dim M. —m+1) /2 Ko—1 = 2 (dim ML —m)/2 Lot T o2 -1
T = {2 gt T = oo gkt T - 1)
2 i=1 i=1
(3.6.26)
<2 221
=< Tont1 _ 1

3.7. Volume estimation

In this section, we will prove

V(L,F) < g'dc‘;gm) or f;‘ve;(m)

according to whether n+1 is odd or even. Consequently, this implies that V' (L, F') converges
to 0 faster than the exponential function with respect to m.

Let M > 0 be a fixed positive integer. We say that L satisfies P(M) if any prime
divisor p; of D(L) is unramified and the inequality 2(n +1—n,,,, ) > a;/M holds for any
p; and any [{] € Rgpiit, where a; is defined by the exponent D(L) = [ pf".
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3.7.1. Non-split vectors. Here, we need to prepare some tools to treat the “non-split
case” as in [107] for unitary groups. For more details, see [107, Subsection 6.2].

Let [(] € RL(F,i) be a non-split vector so that it defines the proper sublattice L' :=
(0p & K, C L. From Lemma 3.3.1, 3.3.2, 3.3.3, 3.3.4 and 3.3.5 , [{] € R(F) \ Repit means

RL(F)\ RL(F,2); (F #Q(vV-1),Q(V-3)),
[0l € { RLQ(V=D)\ RL(Q(V-1),4); (F=Q(V-1)),
Rr(Q(W=3)\Rr(Q(V=3),6) (F=Q(V-3)).
We call these vectors non-split type in accordance with [107]. Let
Iy :=U(L)NU(L)

in U(L ®z Q).
On the basis of the definition of R(F,2);s, let

Tr(F,2)rr == {L: sublattice of L | L' = Opl & K, for some [{] € R(F,2)},
TL(F,2)1 == To(F,2)11/U(L).
For L' € Ty,(F,2), define
RIL)(F,2);; :={¢ € L' : primitive in L' | L' = Opl' & ({*+N L)},
RIL|(F,2)1r := R[L'|(F,2)rr/U(L).
In accordance with Ry, (F,2)1r1, Ri(F,2) v, Rr(F,2)v, RL(Q(v~1),4) 1, R.(Q(+v/=3), 3),

for o € {2,3,6} and x € {II,III,IV,V}, define T(F,©)., Tp(F,©)., R[L'|(F,¢). and
RI[L'|(F,©). as above. Note that

Ru(F,2)1 (F #Q(v-1),Q(v=3)),
RIL(F,0) = { Ru(Q(V-1),4) (F=Q((V-1)),
Ry (Q(V=3),6) (F=Q(v=3)).

Lemma 3.7.1 ([107, Lemma 6.5]). Fiz o € {2,3,6} and * € {II,111,IV,V'}. Then
for a possible pair (o,*) that makes sense with Ry (F,©)., we obtain

> volum(L K< > [UL) Tl Y volgm(L, Kp).
eERL(F\0)x« [L'eTL(F0)x« ER[L'|(F\0)«

PROOF. This can be proved in a similar way as [107, Lemma 6.5]. We can embed
Rr(F,¢), into the formal disjoint union

IT Rizyre.

[L']€TL(F,0)«

Then, we have

> volum(LKp) = > Mvolm(ﬂ,m)

[(1ERL(F0)s [(ERL(F,0)- [U(L) T
[U(L)FL/] ’ /
< _— | L' K))).
P> O(L) Tl 2 volm(L, )

[(JeR[L](F.0)«
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Since the number of elements of fibers of the projection R[L'|(F,¢), — R[L'|(F,©). is at
most [U(L') : T'/], we find that

> volum (LK) <[UW):Tw)- Y voluu(L, K)).
[()ER[L'|(F,0)« [ ER[L](F\0)«

Now, [U(L’) : T'1/] equals the cardinality of the U(L)-orbit of L’ in T (F, o)., so
Y. [U@):Ty]

[LeTL(F0)x«
= |TL(F7 O)

i
2L ((F,o,%) = (any, 2, I11), (any, 2, IV), (any, 2, V), (Q(v/—1), 4, IT)),
(3.7.1) <3 ((F,0,%) = (Q(v/-3),3,0)),

47t ((F,0,%) = (any, 2, I1)).

Below, we bound the value
> volyu(L, K))
[ERIL](F0)s

independently of L', K and L. Note that R[L'](F,¢). is the set consisting of split reflective
vectors of L.

Let SU(L) be the subgroup of U(L) consisting of elements whose determinant is 1. An
easy calculation allows us to prove the following propositions.

Proposition 3.7.2. Let F # Q(v/—1),Q(v/=3). If n is even, then
volgar(U(L)) = volya (SU(L)).
If n is odd, then
volgar (SU(L)) < volyar(U(L)) < 2 - volyp (SU(L)).
Proposition 3.7.3. Let F = Q(v/—1). If n is even, then
volya (U(L)) = volga (SU(L)).

Otherwise,

2 -volgp(SU(L)) (n=1mod4),

vola (SU(L)) < volpgn (U(L)) < {4 -volgar(SU(L))  (n =3 mod 4).

Proposition 3.7.4. Let F = Q(v/=3). If n = 0,4 mod 6, then
volgar (U(L)) = volya (SU(L)).
Otherwise,
2 -volyy(SU(L)) (n=1,3mod 6),

6 - volya (SU(L)) (n=>5mod6).
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3.7.2. Odd-dimensional case SU(1,2m). Here, we consider the case of odd-dimensional
unitary groups; i.e., we assume that L is primitive of signature (1,2m) with m > 1. Let

. @ — (=1
Ev,j(1> = q2m+1 _ (_1)2m+1 < 1’

g1
Ev,j(2> = —q2m+1 — 1 S 1,

and

(1) == Z €v,;(1) <1,

ijv,j7£0
(2= > ;)<L
j7Lv,j7£0

Note that since L is primitive, if p does not divide det(L), then n,,,, <2m+1. Form > 1,
from (3.6.1), (3.6.2), (3.6.3), (3.6.5), (3.6.7), (3.6.9), (3.6.11), (3.6.13), (3.6.15), (3.6.17),
(3.6.19), (3.6.21), (3.6.23) and (3.6.25), we have

(27T)2m+1
= D2tz (2m)l- L(2m + 1)

Z { H €vm0, (1) H €omuny (2) -2 H qgv,uu—l/Q. H 22_3'2%2}

[6] 67—\’fsplit

[[]€Rspiit viinert v:split v#£2:ram v=2:ram
3. 24 27.[_ 2m+1
<5 @ reniy. o § L ena® IT an. @]
[Z]ERgpht v:inert v:split
321 (2m)2mtt .
< S @m) LEm+ 1 Z{ H €v,j(v) (1) H ev’j(v)(Z)} (Proposition 3.4.5)
J  w|D(L):inert v|D(L):split
3. 24 . (27T)2m+1
= €(1) H €,(2)
. l.
5 (Qm) L<2m + 1) v|D(L):inert v|D(L):split

(3.7.2)
3. 24 . (27T)2m+1
- S-(2m)! - L(2m+1)
Here, J = (j(v))yp(r) runs through multi-indices such that L, ;) # 0 for every v; see

[107, Definition 5.7].
Besides, if L satisfies P(M), then we have

VOlHM SU Ke
3 (SU(KY))

0 ERopi VOlHM (SU (L) )

3. 24 . (27T)2m+1
S5 @)l LEm 1) I[I et ] @

v|D(L):inert v|D(L):split
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3. 24 . (27T)2m+1

(38.7:3) =S @) L2m+ 1) D)/

We apply these estimates to V (L, F) in Proposition 3.4.4.
3.72.1. F # Q(+/—1),Q(v/—3) case. Let F # Q(v/—1),Q(v/—3). From (3.7.2), we

have

V(L,F)
= Z VOIHM(L7K4) +22m Z VOIHM(L,KZ)
[L]eR(F,2)r [eRL(F2)111,RL(F.2)rv,Rr(F,2)v

_|_42m Z VOIHM(L, KZ)

[(JERL(F2)r1

volan (SU(KY)) 2m volgar(SU(Ky))
<2. me%;,?)l V()IHM(SU(L>) +2.2 Z VOIHM(SU(L))

1 K,
49 42m Z VO 1HM(SS%( LE)) (Proposition 3.7.2)
[eERL(F2) voly (SU(L))

[(JERL(F2)rr1,RL(F.2)1v,Rr(F2)v

3. 24 . (271_)2m+1
S @m)!-L2m+ 1)

325 (2m)2m+l
S-2m)!l-L(2m+1)

< 2(1 4 2% . 22ml yy2m  g2mtly (3.7.2)

— (1 _|_ 24m+1 ‘l’ 28m+2) .

Moreover, if L satisfies P(M), we have

3. 25 X (27T)2m+1

7.4 L, F) < (1428 4 2%m+2).
(3.7.4) VILE) < U274 200 ot L@m + 1) - D)V
by (3.7.3).
3.72.2. F =Q(v/—1) case. Let FF=Q(y/—1). From (3.7.2), we have
V(L,Q(v-1))
=3 Z VOlHM(L,Kg) +322m Z VO]HM(L,KE)
[eRL(Q(WV-T1),4); [ERL(Q(W=T)4)11
+ 42m Z VOIHM(L, Kg)
[eRL(Q(V-1),2)11
S 4.3 Z VOIHM(SU(KZ)) +4.3. 22m Z VOlHM(SU(KZ))

[(JeRL(QAV-1)4) [ERL(Q(V=1),4)1

1 SU(K,
+ 442 Z Yo fM((SIJ((Lg))> (Proposition 3.7.3)
VO
MeRL @2

3. 24 3 (27T)2m+1
S-(@m)-L(2m + 1)
326 (27)2m+l
S @2m)-LE2m+ 1)

< 4(3 4322 22m Al g2 g2mily (3.7.2)

_ (3 + 3 3 24m+1 + 28m+2) X
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Moreover, if L satisfies P(M), we have
3. 26 . (27T)2m+1
S-(2m)!- L(2m + 1) - D(L)V/M

(3.7.5) V(L,F) < (3+3.2'mth 4 o8mt2y.
by (3.7.3).
3.7.2.3. F =Q(y/-3) case. Let F = Q(v/=3). From (3.7.2), we have
V(L,Q(vV=3))
=5 Z VOIHM(L,K4)+2'32m Z VOIHM<L, Kg)

[1ERL(Q(V=3).6) [ERL(Q(V=3)3)

+42m N volg (LK)
[0ERL(Q(V=3).2)
L (SU(K, L (SU(K,
<65 Y fM((SU((LE)? t6o2pm YW ffM((SU((Le))))
VO VO
ferL@VTDE) M herL@V3) M
L (SU(K,
4 6. 42m Z b f{M((SU((LZ)))) (Proposition 3.7.4)
fers@vR2) M
3. 24 . (2 2m+1

< 6(5 4232 . 3T o g2m . g2y (2r) (3.7.2)

S-(2m)!- L(2m + 1)
32.95 . (27)2mH

S-(@2m)!-L(2m+1)

Moreover, if L satisfies P(M), we have

— (5 + 2 . 34m+1 + 28m+2) .

32 . 25 . (27T)2m+1
S (2m)l- L(2m + 1) - D(L)'/M

(3.7.6) V(L,F) < (5+2- 3"t 4 28m+2y.

by (3.7.3).
3.7.2.4. Summary: odd-dimensional case. Upon collecting the above statements,
we can assert as follows.

Theorem 3.7.5. Let L be primitive of signature (1,2m) with m > 1. Assume (Q).
Then, if m or S is sufficiently large, the line bundle M(a) is big. More precisely,

odd(m) .

L F)< 8 V7
V(L.F) < g

Moreover, if L satisfies P(M) for some M > 0, we have
odd(m)

V(L F) < £/

3.7.3. Even-dimensional case SU(1,2m — 1). Let

€ ,.:qg—_l<1
v,] * qgm+1_1— I

and

€y = Z € < 1.

Il 570
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Now, let L be primitive of signature (1,2m) with m > 1. Note that since L is primitive,
if p does not divide det(L), then n,,, < 2m. For m > 1, from (3.6.1), (3.6.2), (3.6.4),
(3.6.6), (3.6.8), (3.6.10), (3.6.12), (3.6.14), (3.6.16), (3.6.18), (3.6.20), (3.6.22), (3.6.24) and
(3.6.26), we have

VOIHM SU Kg
3 (SU (k%))

[Z]G’Rspm VOIHM(SU(L)>
(27T 2m qvv w1 25/2 .3. 22n2
<(2m_1 Z { H Cv,p H _ H 22m _ | }
[Z]ERspht viunram v#2:Tam v=2:ram
22m+5/2 271' 2m
= 8- (2m— 1) Z |

[Z]eRspht U|D(L) unram

22m+5/2 3. 2 2m
SS (2 1)! " Z H €vjw) (Proposition 3.4.5)
m_

J  w|D(L):unram

B 22m+5/2 .3. (27T>2m
TS5 (2m -1 ((2m) II «

v|D(L):unram
22m+5/2 .3. (27T>2m

B77) = S-(2m—1)!-¢(2m)

More strongly, if L satisfies P(M), we have

Z VOIHM(SU<KK))
[Z]ERsplit VOlHM (SU(L))

22m+5/2 .3. (27T)2m
S5"(2771—1)!-((277@) H

€y
v|D(L):unram
22m+5/2 .3. (27T)2m

(3.78) =5 @m— 1) C@m) DL

Below, we apply these estimates to V' (L, F') in Proposition 3.4.4.

3.7.3.1. F # Q(v/-1),Q(v/=3) case. Let F # Q(v/—1),Q(v/=3). From (3.7.7), we

have

V(L F)
= Y volyu(L, Kp) + 22! > volga (L, K)
KER(F,2)1 WERL(F2) 111, RL(F\,2)1v,Rr(F,2)y

+42 N ol (L, K)
[f]ERL(F,Z)][

< Z VOIHM(SU(Kg)) + 22m—1 Z VOIHM(SU(KK))
[(JeR(F2)r voluar (SU(L)) [(ERL(F2)111,RL(F.2)1v,RL(F2)v volun (SU(L))
1 K
+ 42m—1 Z volu (SU(KY)) (Proposition 3.7.2)

eretnay, Yo (SU(L))
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22m+5/2 .3. (27r)2m
S-(2m—1)!-¢(2m)
22m+5/2 .3. (27T)2m
S-(2m—1)!-¢(2m)

Moreover, if L satisfies P(M), we have

S (1 + 22m—1 . 22m + 42m—1 . 42m) . (377)

— (1 4 24m—1 + 28771—2) .

22m+5/2 .3. (27T>2m

(3.7.9) VILF) < (L 20 2 o T C(am) - DL

by (3.7.8).
3.7.3.2. F =Q(y/~1) case. Let F = Q(v/—1). From (3.7.7), we have

V(L,Q(v~-1))
=3 > volgar (L, Kp) + 3 - 221 > volgu (L, K)

[(eRL(Q(V=T)4); ER LQVT) A)11
4 42m=1 > volga (L, K)

[(eRLQV/T).2)
<3 3 VOIIHM((SS%(([ZK)))) 5. g2m-1 3 VOl{IM((SS[[JJ((fZe))))

erL @ D), M erL @D M
L (SU(K,
4 42m—1 > o IHM (( SU(( Le)); (Proposition 3.7.3)
VO
MerL@VT 2
22m+5/2 . 3. (27)2m

< (34322l gIm g g2mml y2my 3 (2r) (3.7.7)

S (2m —1)!-{(2m)
22m+5/2 .3. (27T)2m
S-(2m—1)!-¢(2m)

Moreover, if L satisfies P(M), we have

— (3 +3. 24m71 4 28m72) .

22m+5/2 .3. (27r)2m

3.7.10 V(L,F) < (3+3-2"m"1 4 2%m72) .
(3.7.10) (L.F) = 3+ ) G o ) DI
by (3.7.8).
3.7.3.3. F'=Q(v/—3) case. Let F' = Q(+/—3). From (3.7.7), we have
V(L Q(/73)
=5 Z VOIHM(L,KE)—FQ-BQmil Z VOIHM(L, Kg)
[(J€ERL(QV=3),6) [ERL(Q(V=3),3)
+ 421 Z volga (L, K;)  (Proposition 3.7.4)
[ERL(QV=3),2)

22m+5/2. 3 . (2mr)2m
S-(2m—1)!-¢(2m)

22mH5/2. 3. (2mr)2m
S-(2m—1)!-¢(2m)

< (542-3¥m7l.gm g y2mml . y2my (3.7.7)

— (5 + 9. 34m—1 + 28m—2) .
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Moreover, if L satisfies P(M), we have

22mH5/2. 3. (2mr)2m
S (2m—1)!-¢(2m) - D(L)V/M

(3.7.11) V(L,F) < (5+2- gam—1 28m—2) ‘

by (3.7.8).
3.7.3.4. Summary: even-dimensional case. Upon collecting the above statements,
we obtain the following.

Theorem 3.7.6. Let L be primitive of signature (1,2m — 1) with m > 1. Assume (Q).
Then, if m or S is sufficiently large, the line bundle M(a) is big. More precisely,
V(L,F) < F—(m)
S
Moreover, if L satisfies P(M) for some M > 0, we have
#n(m)

V(LF) S 5o 5

3.8. Conclusion

3.8.1. Main results. We shall restate our main results in this chapter. This gives a
solution to the problem (A) in Section 3.1.

Theorem 3.8.1. Let L be a primitive Hermitian lattice over OF of signature (1,2m)
(resp. (1,2m — 1)) with m > 1. Assume (V). Then, for a positive integer a, if m or S is
sufficiently large, the line bundle M(a) is big. More precisely,

V(L F) < ?d;(m) <resp. V(L,F)g%(m)).

Moreover, if L satisfies P(M) (see Section 3.7) for some M > 0, we have

odd(m) even<m>
V(L F) < JF " ( .VLF<F—).
( Y )— D(L)l/MS reSp ( Y )— D(L)I/MS
Proor. Combine Proposition 3.4.4 with Theorem 3.7.5 and Theorem 3.7.6. 0

For unrmaified square-free lattices, we obtain more strict estimate because one can see
that M5 /XL <1 for v|D and such lattices satisfy P(1). Hence, we have the following:

(3.8.1)

2. (27T)2m+1 ( 5 )
n = 2m),
V(L F) < (1 + 24m+1 + 28m+2) . D2m+l/2 ’ (Qm); L(2m + 1) ' D(L)l/M
> = 9 m
(2n) (n=2m—1).

(2m — 1)1~ C(2m) - D(L)'/M

Corollary 3.8.2 (Unramified square-free case). Up to scaling, assume that L is
unramified square-free over Op,. Then, for a positive integer a, if n is sufficiently large, or
D is sufficiently large and n is even, then the line bundle M(a) is big.

PROOF. Since we obtain stronger estimate (3.8.1), to prove that M(a) is big, it suffices
to show that L and K, satisfy (x) for any [(] € R.(F,2) under the assumption on L and
F'. This was shown in Proposition 3.5.4 and 3.5.5. ([l
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3.8.2. Application I: Unitary modular varieties of general type.

Theorem 3.8.3. Let L be primitive, n > 13 and F # Q(v/—1),Q(v/—2),Q(v/—3).
Assume that (V) holds and there exists a non-zero cusp form of weight lower than n + 1
with respect to U(L). Then, X, is of general type if dim X, = n or S is sufficiently large.

PROOF. The canonical divisor K+ is big by combining Proposition 3.4.4, 3.7.5 and
3.7.6 with the existence of a cusp form. Here, we use the result of Behrens [9, Theorem 4]
which asserts there are no branch divisors at boundary X\ X and the author [112] which
asserts that there are no irregular cusps for U(L). Then, every pluricanonical form on X,
extends to its desingularization since it has at worst canonical singularities [9, Theorem
4]. This means that X is of general type. O

3.8.3. Application II: Finiteness of Hermitian lattices admitting reflective
modular forms. One might expect that there exist only finitely many Hermitian lattices
of signature (1,n) admitting reflective modular forms. We can prove this consideration for
unramified square-free lattices from (3.7.4), (3.7.5), (3.7.6), (3.7.9), (3.7.10) and (3.7.11).

Corollary 3.8.4 (Finitness of Hermitian lattices admitting reflective modular
forms). Up to scaling, the set of reflective lattices with slope less than r, satisfying P(M)
and (), is finite for fired M,r > 0. In particular, the set

{Unramified square-free reflective lattices with slope less than r | n > 2}/ ~
15 finite for a fixved Fy.

PRrROOF. We will only consider the odd-dimensional case of F' # Q(1/—3) because the
other cases can be proved in the same way. Let L be a Hermitian reflective lattice of
signature (1,n) with n > 2, satisfying P(M). We may assume that L is primitive. From
(3.7.3) and the fact that there are only finitely many Hermitian lattices with bounded
discriminant, it follows that the set of Hermitian lattices satisfying P(M) is finite, up to
scaling; see also [107, Proof of Theorem 1.5]. If L is unramified square-free, then the
primitivity implies that L satisfies P(1). Therefore, we also obtain finiteness of unramified
square-free reflective lattices. O

3.8.4. Explicit estimation: General case. In the rest of the chapter, we estimate
V(L,F) and W (L, F, 1) explicitly. We investigate how large values of m we need to take
in Theorem 3.8.3. First, we consider odd-dimensional cases so that assume that L has
signature (1,2m) with m > 1. Then, from Theorem 3.7.5, W (L, F,1) < 0 if

277 (F # Q(v-1),Q(v=3)),
m > < 550 (F =Q(v/-1)),
823 (F =Q(V-3)).
Second, when L has signature (1,2m —1) with m > 1, from Theorem 3.7.5, W (L, F,1) <0
if
390 (F#Q(v-1),Q(v-3)),
m> <776 (F =Q(v/-1)),
1163 (F = Q(v/=3)).
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3.8.5. Explicit estimation: Unramified square-free case. We assume that L is
unramified square-free over Op,. From (3.8.1), we have W (L, F,1) < 0 if n > 138 where
n = dim X, as usual. On the other hand, if D > 30, then for any even n > 4, it follows
W(L,F,1) <0.






CHAPTER 4

Fano modular varieties with mostly branched cusps

4.1. Introduction

We prove that the Baily-Borel compactification of certain modular varieties are Fano
varieties or with ample canonical divisor by means of special modular forms (see Theorem
4.2.1). Their unbranched open subsets are always quasi-affine, and in Fano modular vari-
eties case, we observe that most of the cusps are covered by the closure of branch divisors.
In Section 4.3, we give various concrete examples, which include the moduli of (log) En-
riques surfaces, those corresponding to 11596, and those associated to various Hermitian
lattices which we construct.

The study of birational types of modular varieties is a semi-classical topic; Tai [137],
Freitag [40] and Mumford [121] (resp. Kondo [82, 84|, Gritsenko-Hulek-Sankaran [58]
and Ma [107]) showed some Siegel (resp. orthogonal) modular varieties are of general
type. Recently, the first author studied a similar problem for unitary modular varieties
[114]. On the other hand, in order to prove that modular varieties have negative Kodaira
dimension, one of the powerful tools for it is the use of certain reflective modular forms
[52, 106, 55, 54, 110].

For this recurring theme, our main idea in this chapter is to focus on the Baily-Borel
compactification, study it through modern birational geometry adapted to singular vari-
eties and give applications. In this chapter, we define “special” reflective modular forms,
motivated by the work of Gritsenko-Hulek [55], and show a criterion for proving the Baily-
Borel compactification of modular varieties are Fano varieties. Then, we discuss examples
in Section 4.3, including new ones, to which we apply our criterion. For instance, it follows
that the Baily-Borel compactification of the moduli spaces of unpolarized (log) Enriques
surfaces are Fano varieties; see Example 4.3.13, 4.3.17. We also give some applications to
the understanding of cusps and rationality problems. More precisely, for these Fano-like
modular varieties, all but one compact cusps are shown to be contained in the closure of
branch divisors. In the same setup, we also show that if there are no such compact cusps,
two general points are connected by a rational curve i.e., rationally connected by [153]. See
Corollary 4.2.6 for details. The former uses [5, 43], and in particular it logically relies on a
vanishing theorem proven in loc.cit. We do not know of another proof which does not use a
vanishing theorem (Problem 4.2.12). See Corollaries 4.2.6, 4.2.8, 4.2.10 for the details and
more assertions proved. For instance, the moduli space of (unpolarized) Enriques surface
is shown to be rationally connected, which is a weaker version of a famous result of Kondo
(83].

4.2. Main results and proofs

In this section, we prove general theorems which are mentioned in the introduction. In
the later Section 4.3, we apply them to various concrete examples.

85
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4.2.1. Main general results and proofs. Now, we shall prove the first main theorem
in this chapter. For the notation, see Subsection 1.5.1.

Theorem 4.2.1 (Birational properties). We follow the notation as above. If there
is a reflective modular form which satisfies Assumption 1.5.1 (1) with some s(X) € Qxo,

then the Baily-Borel compactification X" of X =T\D only has log canonical singularities
and X° is quasi-affine. In addition,

(1) if s(X) > 1, then X% is a Fano variety i.e., —Ksus is ample (Q-Cartier),

(2) if s(X) =1, then X% is a Calabi-Yau variety i.e., Ksus ~g 0, or
(3) if s(X) <1, then Kyss is ample.
Terminology. In this chapter, we often say a normal variety is a log canonical model

(resp. canonical model) in the sense that it only has log canonical singularities (resp.
canonical singularities) and the canonical class is ample. Hence, in the case (3) above,

X" isa log canonical model. For the basics of birational geometry, we refer to e.g., [80].

PRrooOF. Note that the codimension of the boundary of the Baily-Borel compactification
oxP .= X" \ X is at least 2, following from our assumption that G is not isogenous to
SL(2). Indeed, for such G, any maximal real parabolic subgroup P has unipotent radical of
dimension at least 2 so that Levi part of P has real codimension at least 3. The existence
of the special reflective modular form implies

(4.2.1) > d - !5, ~g $(X)Z.

d

If we regard the holomorphic section satisfying Assumption 1.5.1 (1) as a section of the
ample line bundle Z®*X)N it follows that the complement of the vanishing locus is affine
but that is nothing but YBB \ UiEBB which includes X°. This proof reflects the idea of
[13].

From (4.2.1) and the definition of .Z it follows that

(4.2.2) — K ~g (s(X) = 1).2

in Pic(YBB) ® Q. Hence, —Kyss is ample Q-Cartier if s(X) > 1. Similarly, Kyss is ample
Q-Cartier (resp. Kyss = 0) if s(X) < 1 (resp. if s(X) = 1). On the other hand, from

(120, 3.4, 4.2 (also see 1.3)], X" is obtained as a projective spectrum of a certain log

did:lEBB) has only log canonical singularity (as a

canonical ring, hence the pair (YBB, >

pair) and Kss + ), d"d:lEBB is ample (see also [1, 3.4, 3.5]). Thus ), d"d:lEBB is also
Q-Cartier so that X itself is also log canonical.

On the other hand, recall that the construction of the Baily-Borel compactification [7]
is a projective spectrum of the graded ring of automorphic forms and . is the ¢ multiple
tensors of its tautological line bundle O(1) in the construction. Hence, it is ample so
that our latter statements of the above theorem all follow from (4.2.2). This fact is more

clarified in [120, Section 3, Section 4]. We complete the proof. O

Remark 4.2.2. The above results are analogous to the Fanoness results in [39], (resp.
[70, Section 2] also [101, Section 4]) in the context of moduli of (semi)stable bundles
over curves (resp. surfaces). For the case over surfaces, the determinant line bundle
which descends to the Donaldson-Uhlenbeck compactification is used in the place of the
automorphic line bundle .Z.
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Remark 4.2.3. Case (3) is a variant of the so-called “low weight cusp form trick” (cf.
e.g., [58]). See also [52], [62, Section 5.5] and references therein.

We review the following well-known fact for convenience.

Lemma 4.2.4 (cf. [40, Hilfsatz 2.1], [58, Section 6.1]). In the orthogonal case G =
O*(2,n) (resp. in the unitary case G = U(1,n)), the canonical weight c in the sense of
Section 1.5.1 is n (resp. n+1).

PROOF. Recall that the compact dual D¢ of D in the orthogonal case G = O*(2,n) is
the n-dimensional quadratic hypersurface (resp. D¢ = P" in the unitary case G = U(1,n)),
its canonical divisor is Kpe = Opn+1(—n)|gn (resp. Kpe = Opn(—n — 1)) so that the
canonical weight ¢ is n (resp. n + 1). O

We introduce the following notion.

Definition 4.2.5. We call a cusp F of X" nakedif it is not contained in Supp(EBB) N
X" for any ¢. Further, we call it minimal naked if it is minimal with respect to the closure
relation among naked cusps, i.e., F'\ F is contained in (UiSupp(EBB)) nox". Also, we
call 9X \ U B:"" the naked locus.

Below, we observe a certain weakening of connected-ness of cusps closure in the case
of s(X) > 1, i.e., Fano case. This follows from [5, 4.4, 6.6 (ii)], [44, Section 3], [43, 8.1],
[46, 1.2] as the proof below, which is essentially just a review to make our logic more
self-contained. Compare with our examples of the modular varieties given in the next
section.

Corollary 4.2.6 (Boundary structure for Fano modular varieties). Let us as-
sume the same assumption of Theorem 4.2.1 and further that s(X) > 1. Then, the naked

locus
aYBB \ U EBB

1s connected and its closure is nothing but the non-log-terminal locus onBB. More strongly,
there is at most one minimal naked cusp with respect to the closure relation.

Furthermore, if we suppose such a minimal naked cusp F exists, there is an effective
Q-divisor Dy such that (F,Dr) has only kit singularities and is a log Fano pair, i.e.,
—Kr — Dp is ample and Q-Cartier. For instance, if F' is a modular curve, it is rational
i.e., F ~P' (with “Hauptmodul”).

PRrROOF. Firstly, we prepare the following general lemma (compare with e.g., [1, Section
3]).

Lemma 4.2.7 (Log canonical centers). (1) Under the notation of Section 1.5.1
for general modular varieties, without the above assumptions in Corollary 4.2.6,

the log canonical centers of (YBB, > d”(ifIEBB) are nothing but cusps of the Baily-

Borel compactification X"

(2) Under the above assumptions in Corollary 4.2.6, the log canonical centers ofyBB
are nothing but cusps of the Baily-Borel compactification X% which are not con-
tained in UiSupp(EBB).
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PROOF OF LEMMA 4.2.7. As in [6, Chapter III, Section 7], we replace the (implicit
dividing) discrete group I' in Section 1.5.1 by its neat subgroup (cf. [6]) of finite index. In

that way, we replace X (and YBB) by its finite cover so that the first desired claim (1) for

di—
e BB

Then, there is a log resolution of (X ,)". d'id—__lBi ) as a toroidal compactificaftion

[6, chapter III], see especially loc.cit 6.2. By its construction in op.cit of toroidal nature

(see again e.g., [1, Section 3]), all the exceptional prime divisors have the discrepancy —1
and hence the claim (1) for the log canonical centers of (YBB, > djd—:lEBB) follows.

For the proof of latter claim (2), note that the existence of special reflective modular
form implies ), %EBB is a Q-Cartier divisor by (4.2.1) of the proof of Theorem 4.2.1.
Hence, the note that log canonical centers of X" form a subset of the lc centers of (1)
which are not contained in the support of the effective Q-Cartier divisor ), d"d:lEBB.
Hence, the claim of Lemma 4.2.7 (2). O

the log canonical centers of (YBB, > 1EBB) is reduced to the case when there is no B;.

Now we start the proof of Corollary 4.2.6. We take the union of the minimal naked cusps

of X°0 as W and put the reduced scheme structure on it. We denote the corresponding
coherent ideal sheaf of Oyss as Iy

From a vanishing theorem of [5, 4.4],[43, 8.1], whose absolute non-log version is enough
for our particular purpose here, we have Hl(YB ,Iw) = 0. Now, HO(YBB,IW) =0
also holds since it is a linear subspace of H(X , Q) which is identified with C because
of the properness of YBB, combined with the fact that W # (). Hence, combined with
standard cohomology exact sequence arguments, H°(Oy,) ~ C follows. Hence, it implies
the connectivity of W, so that there is at most 1 minimal naked cusp F'.

For such F, the existence of Dy on the closure F follows from applying the log canonical

subadjunction [46, Subsection 1.2] to F' C (YBB, 0). O

We make a caution that the above Corollary 4.2.6 does not claim the naked cusp always
has log terminal singularity. Nevertheless, in the QQ-rank 1 case, we have the following.

Corollary 4.2.8 (Q-rank 1 case). Under the same assumptions of Theorem 4.2.1
with > 1, if further Q-rank of G is 1 (e.g., when G ~ U(1,n) for some n so that G/K is
an n-dimensional complex unit ball), only either one of the followings hold.

(1) There is exactly one naked cusp F of X% which is an isolated non-log-terminal
locus but at worst log canonical. Furthermore, there is an effective Q-divisor Dp
such that (F, Dg) is a kit log Fano pair hence in particular, the modular branch
divisor in F' is nonzero effective.

(2) No naked cusp ezists and X is rationally connected, i.e., two general points are
connected by a rational curve and has at worst log terminal singularities. Further-
more, X \ Supp U; B; is affine (not only quasi-affine).

PRroOF. Note that the condition that Q-rank of G is 1 implies that the boundary strata
of the Baily-Borel compactification of X are all compact and do not have closure relations.
Thus, among the above statements, the only assertion which does not follow trivially from
Corollary 4.2.6 is the rationally connected assertion for the latter case (2). We confirm it

as follows: the non-existence of naked cusp means X \ X is included in UiSupp(EBB)
which implies the log terminality of X. Hence, it is rationally connected by a theorem
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of Zhang [153]. Finally, X \ Supp U; B; is affine by the proof of Theorem 4.2.1 and the
assumption that there are no naked cusps. [l

Here is a version of the converse direction of Theorem 4.2.1.

Theorem 4.2.9 (Abstract existence of special modular forms). We follow the
notation of Theorem 4.2.1. If xX°P satisfies either
° BB =0 or
o cither Kyue or —Kme is ample with Picard number 1,

then there are special reflective modular forms satisfying Assumption 1.5.1 (1) for some
s(X) € Qs¢ and sufficiently divisible N € Z~q. Furthermore, if it is of a certain orthogonal
type, i.e., G is isogenous to SOT(A) for A = U U(1)® N with some negative definite lattice
N andl € Z-~q, the modular forms are necessarily Borcherds lift of some nearly holomorphic
elliptic M py(Z)-modular forms of a specific principal part of the Fourier expansion in the
sense of [14], [22, Section 1.3, Section 3.4].

PRrOOF. Given the proof of Theorem 4.2.1, we can almost trace back the arguments
as follows. In either cases, the automorphic line bundle 2 is proportional to Kyss in

Pic(YBB), hence so is it to ). did:lEBB. Therefore, O(N(s(X)Z — >, did:lEBB)) is

trivial for some s(X), N. The last assertion follows from [22, 5.12], [24, 1.2]. O

4.2.2. Modular varieties with big anti-canonical classes. Recall that Gritsenko-
Hulek [55] (resp. Maeda [110]) discuss the classes of reflective orthogonal modular forms
(resp. unitary modular forms) satisfying Assumption 1.5.1 (2) with s(X) > 1 and proved
uniruledness of X and constructs some examples.

This subsection proves the following a slight refinement of their results, which applies
to the examples constructed in loc. cit.

Theorem 4.2.10 (cf. [55, 2.1], [110, 4.1]). We follow the notation of Section 1.5.1,
and discuss modular varieties X = T'\D for a priori general G. If there is a reflective
modular form ® which satisfies Assumption 1.5.1 (2) with some s(X) € Qs1, , we define

Ve :=UpF C X" where F runs through all cusps along which ® does not vanish (as a
function, or a section of L%*N ) Then, the following holds.

(1) The Buaily-Borel compactification X" of X =T\D only has log canonical singu-
larities, X is quasi-affine and —Kss 1s big.

(2) For any two closed points x,y € YBB, there are union of rational curves C' such
that C U Vg is connected (i.e., rationally chain connected modulo Vg cf. [63,

1.1]). In particular, X is uniruled. If G = U(1,n) for some n, then X% is even
rationally chain connected.

(3) If we consider the set of cusps outside Vg, there is at most 1 minimal element
(cusp) with respect to the closure relation.

PROOF. We first consider (i) of the above theorem. From the existence of @, it follows
d; —1

in the same way that
—BB
—Kss ~g (s(X) = 1).2 + Z( - cl)BZ- :

hence it is big. The proofs of the other assertions in (i) are the same as those of Theorem

4.2.1. For (ii), note that the non-klt locus of (YBB, Zi(did:l - ci)EBB) is the union of
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log canonical centers of (YBB7 > did_,IEBB) which are not inside Supp(div(®)). Hence,

the assertion (ii) directly follows from [63, 1.2] for (YBB,ZZ. %EBB). The assertion
for the unitary case holds since the cusps are all 0-dimensional (cf. e.g., [9, Section 4]).
Indeed, it follows since the Levi part of real parabolic subgroup of G corresponding to the

cusps are U(0,n — 1), which is trivial. For (iii), the same arguments as Corollary 4.2.6,
similarly applying [5, 4.4, 6.6(ii)] or [43, 8.1] to the log canonical Fano pair (YBB, (-
—SBB, . '
¢)B; ), give a proof. O

Remark 4.2.11. We can also show a variant of Corollary 4.2.6, Theorem 4.2.10 (iii)
under general meromorphic modular forms if we replace the use of [5, 6.6(ii)] by [5, 4.4]
or [45, 6.1.2]. However, because the obtained statement is rather complicated and no
interesting applications have been found (yet at least), we omit it in this chapter.

We conclude this section by posing a natural problem.

Problem 4.2.12. In specific situations, e.g., when G = SO" (A ® Q) for a quadratic
lattice A, or in the unitary modular case corresponding to a Hermitian lattice as later
subsection 4.3.4, the assertions of Corollaries 4.2.6, 4.2.8, Theorem 4.2.10 (iii) can be
phrased in a purely lattice theoretic manner. Is there a more lattice theoretic or number
theoretic proof without the use of a vanishing theorem in algebraic geometry?

4.3. Examples of Fano and K-ample cases

We provide examples of which Theorems 4.2.1, Corollary 4.2.6, Corollary 4.2.8, Theo-
rem 4.2.9 in Section 4.2.1 apply. In the examples, the compactified modular varieties are
either Fano varieties or with ample canonical classes. There are also some examples with
s(X) = 1, for instance [41] (cf. also earlier [8] with a weaker statement) but we do not
focus such cases in this chapter.

4.3.1. Siegel modular cases. We start by discussing the Baily-Borel compactifica-
tions of some semi-classical modular varieties, which we show to fit our picture. The
examples in this subsection and the next Subsection 4.3.2 do not use explicit modular
forms but they are Fano varieties so that the converse theorem 4.2.9 applies to imply the
(abstract) existence of special reflective modular forms.

The examples with explicit special reflective modular forms, to which we can apply
Theorem 4.2.1 will be discussed from the next Section 4.3.3. Here are two examples of
Siegel modular varieties whose Baily-Borel compactifications are Fano varieties.

Example 4.3.1 ([72]). The Baily-Borel compactification of the moduli of principally

polarized abelian surfaces A_QBB is known to be a weighted projective hypersurface in
P(4,6,10,12,35) of degree 70 with the coarse moduli isomorphic to P(2, 3,5, 6) by relating
to the invariants of genus 2 curves, hence binary sextics. Note that the adjunction does
not work due to non-well-formedness, as indeed one has non-trivial isotropy (u2) along a
divisor in the moduli stack. The reduction of the natural Faltings-Chai model over F, are
also determined (cf. [71, 142]).
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Example 4.3.2 (cf. [141, 5.2] (also [72])). The Baily-Borel compcatification of the
moduli of principally polarized abelian surfaces with level 2 structure I’ (2)\5§BB is known

to be a quartic 3-fold

5 5 5
(4.3.1) > om=0 a4 ) =0,

i=0 i=0 =0
with non-isolated singularities along 15 lines. Since this is a hypersurface, it is clearly
Gorenstein and has ample anticanonical class. It also follows from [120, Section 3, 4] (cf.
also [1, 3.5]) again that it is at least log canonical.

4.3.2. Orthogonal modular cases, Part I. Below, we consider the cases where
G = SO"(A ® Q) for a quadratic lattice (A, ( , )) of signature (2,n) with n € Z-,. We
realize the Hermitian symmetric domain X = G/K as G/K ~ 2, which is defined as one
of (the isomorphic two) connected components of

{veP(A®C) | (v,v) =0, (v,7) > 0}.

We keep this notation throughout in the discussion of orthogonal modular varieties.
Our first two examples in this Part I are understood via moduli-theoretic methods and
GIT as follows.

Example 4.3.3 (Hilbert). The GIT compactification of the moduli of cubic surfaces
([128, Subsection 4.2]) is known to be isomorphic to the Baily-Borel compactification of
the stable locus which admits uniformization of complex ball (cf. [4]). Hilbert’s invariant
calculation in his thesis tells this is P(1, 2, 3,4, 5), hence the only cusp is not naked because
of the log terminality. Obviously, it is also a (Q-)Fano variety. This is also one of the
simplest examples of the K-moduli variety of Fano varieties ([128, Subsection 4.2]).

Given [107], it is reasonable to ask the following problem in general.

Problem 4.3.4. Classify the lattices A of signature (2,n) such that the Baily-Borel
compactification I'\D, are Fano varieties, especially when I' = O*(A) or O1(A).

From what follows, our arithmetic subgroup satisfies I" is either O (A) or the stable
orthogonal group O (A).

Example 4.3.5 (Moduli of elliptic K3 surfaces). We consider the moduli My, of
Weierstrass elliptic K3 surfaces, which is an open subset of OT(A)\D, for A := U @
FEg(—1)%2. We consider its Baily-Borel compactification ([127, Theorem 7.9]), which we

denote MWBB here. Recall from [oc.cit Subsection 7.1 that there are exactly two 1-cusps
intersecting at the only O-cusp. Two 1-cusps are My with canonical Gorenstein singularity

and My ? with toroidal singularity (including the 0-cusp MJPNM;p®) hence M_WBB also only
has log terminal singularity ([126, Part I, Section 2]). The notation of our superscripts
“nn” and “seg” follow that of [127, Chapter 7| where some collapsing of hyperKéhler
metrics to segment i.e., [0,1] is partially observed along M;;®, and also that non-normal
degenerations are parametrized by M.

We recall that M_WBB coincides with a certain GIT quotient of a weighted projective
space ([127, Theorem 7.9]). Using the fact as well as some analysis of singularities along
the 1-cusps in [126, Part I], we prove the following.
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Theorem 4.3.6. MWBB 15 a 18-dimensional log terminal rational Fano variety of Pi-
card rank 1, although not isomorphic to any weighted projective space. Its two 1-cusps My®
and My are both non-naked.

PRrROOF. The description of MWBB as a GIT quotient [127, Theorem 7.9] allows us to
apply [19, Corollary 3] to confirm there is an effective Q-divisor D on MWBB such that

—KmBB — D is ample. Therefore, —KmBB is big. On the other hand, MWBB has Picard

rank 1 because of the same GIT quotient description. Hence, the bigness of —KM—WBB

implies it is actually even ample i.e., MWBB is a Fano variety.

The fact that both 1-cusps are non-naked are follows from Corollary 4.2.6, because
MWBB is log terminal as proven in [126, Part I, Section 2]. (The log terminality also
follows from [19, Theorem1] combined again with the fact that My has Picard rank 1.)
As for the rationality of My, [99] proved it, based on more classical rationality result of
the moduli space of hyperelliptic curves (of genus 5).

The only remained thing to prove in the above theorem is that MWBB is not a weighted
projective space. From the analysis of singularity type along 1-cusp My} in [126, Part I,
Theorem 2.2|, it easily follows that the local fundamental group along the transversal slice
is (Z/27)* hence not cyclic. In particular, MWBB can not be a weighted projective space.
We complete the proof of Theorem 4.3.6. O

As a corollary, we also observe the following.

Corollary 4.3.7. On the orthogonal modular variety MWBB, there are special reflective
modular forms which satisfy Assumption 1.5.2 (1) (of Section 1.5.2) for some s(X) > 1
and sufficiently divisible N € Z~q.

ProoF. By the above theorem 4.3.6, we can apply Theorem 4.2.9 to complete the
proof. O

4.3.3. Orthogonal modular cases, Part II. From here, we use the Borcherds prod-
ucts to show that various Baily-Borel compactifications of orthogonal modular varieties are
Fano varieties or log canonical models.

Notation. Let

H) ={ve D] (v,l)=0}
be the special divisor with respect to ¢ € A with (¢,¢) < 0. For any primitive element
r € A satisfying (r,r) < 0, we define the reflection o, € O1(A)(Q) with respect to r as
follows:

2
)
(r,7)
Then, the union of ramification divisors of 7p: Py — ['\ %, is

U #Ho)

reA/+:primitive
or€l’ or —oel’

by [58] for I' € O*(A) and n > 2. They also showed that the ramification degrees are 2.
We sometimes denote 7 as w. We also define

Ho= | HO

(e, 2=—2

o.(l):="¢
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Moo= | HO

leA, 2=—4

H—4,special—even = U H(ﬁ) .

L€ A:special-even, £2=—4

Here we say a vector r € A is special-even (also called even type e.g., in [86]) if (¢.r) is
even for any ¢ € A, i.e., div(r) is even integer, so that the corresponding reflection lies in
I'. We define div(r) is the positive generator of the ideal

{(t,;r) | L€ A}.

Remark 4.3.8. Below, for orthogonal cases, if f is a modular form corresponding to a
section satisfying Assumption 1.5.2 (i), we can compute s(X) = 52— Here, k is the weight
of f and m is the multiplicity of divf, and n = dimX.

Example 4.3.9. Let 1595 = UGUS Eg(—1)@E Es(—1)® Eg(—1) be an even unimodular
lattice of signature (2,26). We consider the case I' = O*(A). There is the modular form
®15 of weight 12 on 4, ,, by Borcherds [12] with

(432) diV(blg = 7‘[_2.

On the other hand, the ramification divisors of the map 7: 11526 = X := O (I 12,26)\ 211,45
are H_o by the even unimodularity of A and [58].

Now ®35% satisfies Assumption 1.2 (i) with s(X) = % and by Theorem 4.2.1 (iii)

so that the Baily-Borel compactification X7 of the 26-dimensional orthogonal modular
variety X = OF(/1526)\Dy1,,4 is a log canonical model i.e., with ample canonical divisor
Kee and at worst log canonical singularities. Let us specify and study the non-log-
terminal locus or the log canonical center.

First, recall that there are exactly 24 1-cusps, which correspond to Niemeier lattices
and all intersect at a common closed point (cf. e.g., [53, 1.1]). In particular, there is a
1-cusp which is the compactification of the modular curve SL(2,Z)\H corresponding to
the Leech lattice. We denote the particular 1-cusp as Cleech-

For the Harish-Chandra-Borel embedding

DIIQ,QG C D?IQ,QG C IP)([IQ,26 ® C)?

Op(11, 5600 (1) restricts to Opi(1)|g for any 1-cusp H € P'. For instance, by [12, Section
10], [53, 1.2], @y restricts to the Ramanujan cusp form Ais(q) = ¢[[,~,(1 — ¢")** of
weight 12 on Creen. Since the only modular branch divisor is H_s, together with (4.3.2)
and Lemma 4.2.7; it implies that the only log canonical center is the Cpeeen. Recall that
through the well-known isomorphism SL(2,Z)\H ~ A!(C) c P!(C), the elliptic modular
forms of weight 12k can be regarded with a section of Op:(k), at the level of coarse moduli.
In other words, Op: (12k)| descends to a line bundle Opi (k) on P! ~ SL(2,Z)\H where
H denotes the rational closure of H.

In particular, (2s(X)L.Cpeeen) = 1, where L follows the notation of Section 1.5.1. Equiv-
alently (KYBB.CLeeCh) = %, (B.CLeeen) = 1 as s(X) = % We summarize our conclusion in
this case neatly as I 96 attracts special attention.

Corollary 4.3.10 (Ily9 case). The Baily-Borel compactification X of the 26-
dimensional orthogonal modular variety X = OV (I1526)\Dir1y 4 @5 a log canonical model
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i.e., with ample canonical divisor Kgee and at worst log canonical singularities. Further,

the non-log-terminal locus is the single Creen =~ P! in the boundary OXBB which com-
pactifies 1-cusp SL(2,Z)\H and is characterized by that the corresponding isotropic plane
p C Il96 @ R satisfies that (pt N Ily6)/(p N I1596) is the Leech lattice i.e., contains no
roots. Its degree is (KyBB.CLeeC}J = g (resp. (B.Creecn) = 1).

Later in Example 4.3.32, we also construct a 13-dimensional unitary modular subvariety
which also compactifies with ample canonical class as the Baily-Borel compactification.

Example 4.3.11. Let A := U® U @ Eg(—1) be an even unimodular lattice of signature
(2,10). We again consider the case I' = O (A). Borcherds constructed a reflective modular
form on 9,.

Theorem 4.3.12 ([12, 10.1, 16.1]). There is a reflective modular form ®o59 of weight
252 on Yy such that

diV(I)252 = H72 .

Here, by the map 7: 2y — X = OF(A)\ %y, the divisors H_» maps to the unique
branch divisors (cf. [58, Section 2]). Hence ®12 satisfies Assumption 1.5.2 (i) with s(X) =
% for some t € Z, and by Theorem 4.2.1 (i), the compactified modular variety X s a
Fano variety. Actually, [64, 1.1], [34, 4.1] (also attributed to H.Shiga and [104]) shows it
is the weighted projective space P(2,5,6,8,9,11,12,14,15,18,21).

Example 4.3.13 (Moduli of Enriques surfaces). The well-studied moduli space
Mgy, of (unpolarized) Enriques surfaces (cf. e.g., [124, 135, 13, 83]) also fit into our
setting. Let Apy,, := U @& U(2) @& Es(—2) be an even lattice of signature (2,10). Then the
modular variety

Mgy, == o+ (AEnr>\@AEnT

is a 10-dimensional quasi-projective variety. Now we review the ramification divisors of the
natural map 7 : Y, — Mgn, and moduli discription. From [58] and [56], the ramification
divisors are

H72 U Hf4,special-even-
On the other hand, let
MEn'r = O+(AEm")\9LEnT

be a finite cover of Mg,,. Then the following are known.

Proposition 4.3.14. (1) Mgn \m(H_2) is the so-called moduli space of Enriques
surfaces (cf. e.g., [124]). Moreover this is rational (Kondo [83]).
(2) @\W(?‘Lg), which is a finite cover of Mgy, is the moduli space of Enriques
surfaces with a certain level-2 structure. Moreover m and ]\7;;\7?(7{_2) are
of general type (Gritsenko-Hulek cf. [56]).
(3) Mgn\(m(H_2) UT(H_4a,special-even)) 1S the moduli space of non-nodal Enriques sur-
faces.

Going back to our situation, we need special reflective modular forms satisfying As-
sumption 1.5.2 (i). Our input here is the following.
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Lemma 4.3.15 ([13, 86]). There exist two reflective modular forms ®, and ®124 on
D1, of weights 4, 124 respectively such that;

ddi)4 = Hfg 5

div® 124 — H—4,specml— even:

We put Fiag := ®4Pqo4. Then this is a weight 128 modular form on &, and div(Fias)
is exactly the ramification divisors of the map 7 : %, = — Mg, with coefficients 1. Now
Fhg has a trivial character and satisfies Assumption 1.5.2 (i) with s(X) = 2 and by

Theorem 4.2.1 (i), mBB is a log canonical Fano variety.

Actually, it is even log terminal without naked cusps as we confirm in the folowing. By
[135, 3.3, 4.5], there are only two 0-cusps which correspond to an isotropic vector e in the
first summand U and an isotropic vector €’ the second summand U(2) of Ag,,. They belong
to the same 1-cusp which corresponds to isotropic plane Qe ®Qe’. That 1-cusp is contained
in the closure of H_4 speciat-even Since e and €’ are orthogonal to the (norm-doubled) root
of Eg(—2), the third summand of Lg,,. By loc.cit, the only other 1-cusp corresponds to
another isotropic plane

p=Qc ®Q(2e +2f + a)
where e, f is the standard basis of the first summand U and « is norm —8 integral vector
in the third summand Fg(—2). Since p is obviously orthogonal to the —2 vector e — f € U,
the corresponding 1-cusp is also contained in the closure of the Coble locus H_5. Hence
there are no naked cusps so that we conclude the following.

Corollary 4.3.16. The Baily-Borel compactification MEWBB of the moduli of Enriques
surfaces Mgy, is a log terminal Fano variety.

Example 4.3.17 (Moduli of log Enriques surfaces). For each 1 < k < 10 (k # 2),
let Awoghnr s := U(2) @ Ay & A;(—1)®°7% be an even lattice of signature (2,10 — k). Then
the associated modular variety O (Ao, Enr,k)\@Lzog =, 18 a (partial compactification of) the
moduli space of log Enriques surface with k i(l, 1) singularities. For the definition of log
Enriques surfaces with (1, 1) singularities, see [31, Definition 2.1, 2.6]. Yoshikawa [149]
and Ma [106] constructed reflective modular forms on Zr,, . for k <7 which we use.

Theorem 4.3.18 ([149, Theorem 4.2(i)]). There is a reflective modular form ¥, of
weight 4 +k on Dy, .., With
diV\Ij4+k == H_Q.

Theorem 4.3.19 ([106, Appendix by Yoshikawa; A.4, proof of A.5]). There is a
reflective modular form Wiy, of weight —k* — 9k + 124 on D, .., with

diV\If124,k = H_4.

Now, the ramification divisors of the map Zr,, ... — O (Liogmnrk)\PLioypnrs 15 the
union of special divisors with respect to (—2)-vectors and (—4)-vectors by the same dis-
cussion. As (\114%\1/124,;6)“10_’“) with ¢t € Z-, satisfies Assumption 1.5.2 (i) with s(X) =

W for £ <7, by Theorem 1.3 (i), we conclude the following.

Corollary 4.3.20. For the above (partially compactified) moduli spaces of log Enriques
surface with k $(1,1) singularities with 1 < k <7 (k # 2) X = O"(Aiognrk) \ D1,y pnr» the

, . . BB i
Baily-Borel compactifications X~ are Fano varieties.
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Actually, they are also unirational, by [106].

Example 4.3.21 (Simple lattices case). Let A be a quadratic lattice over Z of
signature (2,n). We recall from [25] that A is called simple if the space of cusp forms of
weight 14 % associated with a finite quadratic form AY/A is zero. Then the special divisors
on 9, are all given by the divisors of Borcherds lift, so that we can apply Theorem 4.2.1.

In fact, Wang-Williams [145] showed that for every simple lattice A of signature (2,n)
with 3 < n < 10, the graded algebra of modular forms for certain subgroups of the
orthogonal group is freely generated. From this, we have the associated modular varieties
are weighted projective spaces, in particular, log terminal Q-Fano.

From Theorem 4.2.1, all Borcherds product satisfying Assumption 1.5.2 (i) should have
s(X) > 1. Also from Corollary 4.2.6, the boundary of the Baily-Borel compactification is
in the closure of the branch divisors. See the tables of examples in [145].

We remark that before [145], [25] showed there are only finitely many isometry classes
of even simple lattices A of signature (2,n).

4.3.4. Preparation for unitary case - Hermitian lattice. Here, we recall some
material on Hermitian lattices treated in [68] to prepare for constructing some examples
of unitary modular varieties from the next subsection. There, we similarly apply Theorem
4.2.1 to certain restriction of Borcherds products to explore their birational properties.

Here is the setup. For a Hermitian lattice A, we define A(a) := (A, a(, )) for a € §OF.
Analogously to quadratic forms, we also have the following proposition.

Proposition 4.3.22. There exists a unimodular Hermitian lattice M and an element
b€ Or such that A = M(b) if and only if the ideal {(v,w) € 60F | w € A} with respect to
v € A is equal bOOF for every primitive element v € A.

Let Dy be the Hermitian symmetric domain (complex ball) with respect to U(A)(R),
equivalently,
Dy ={veP(A®C)| (v,v) >0}
and H(v) be the special divisor with respect to v € A. For any element r € A satisfying
(r,ry < 0 and ¢ € 0;\{1}, we define the quasi-reflection o, € U(A)(Q) with respect to
r, & as follows:
(e

ore(l) :=0—(1-¢) o

Note that for £ = —1, we have the usual reflection. See also [4]. We also remark that, for
example, for F' = Q(v/—1), we get 0'3\/_—1 =0, and for F = Q(v/=3), we get O'iw =0,
for any r € A where w is a primitive third root of unity:.

The union of ramification divisors of np: Dy — T'\ Dy is

UH()

by [9, Corollary 3| for I' € U(A) and n > 1. Here, the union runs thorough primitive
elements r € A/Op with (r,r) < 0 such that no,¢ € I' for some n € O and § € O\ {1}.
We consider the natural embedding of the type I domain to the type IV domain

L: DA — .@AQ
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where (Ag,( , )) is the quadratic lattice associated with (A, ( , )), i.e,, Ag := A as a
Z-module and ( , ) := Trp/g(, ). For the analysis of ramification divisors on Dy, we first
prepare the following lemma.

Lemma 4.3.23. For F = Q(\/d), assume d = 2,3 mod 4 or d = —3. Then
o U H(r)) C U H(r) N u(Dy).

r€A/O primitive reAg/+:primitive
nore€U(A) for Inedy, IO i\{1} or€0F(Aq) or —0,€0™(Aq)

PrOOF. For F # Q(v/—1), Q(+/—3), it suffices to show that if
2(0,7)
(r,r)

2(6,r)  2Trp),(L,7)
o= =
(r,7) Trp/q(r,r)

EﬁFv

then
€.

Since (r,r) € Q, we have
o= §R—2<€’ ) .
(r,r)
Hence for d = 2,3 mod 4 with d # —1, this concludes lemma.
For FF = Q(+/—1), it needs to show that if
14 l
(]_ — \/—1)ﬂ € ﬁF or (]. + v —1)m S ﬁF,
(r,r) (r,r)

then o € Z. In the following, let a, b be rational integers. First, we assume

<1_\/_—1)§f>:§ —atv/TTbe Oy

Then @ = a — b € Z. Second, we assume

(1+\/—_1)§f":§ =a+V—1b€ Op.

Then a = a + b € Z. This concludes lemma for F' = Q(v/—1).
For F' = Q(+/—3), assume that one of the following holds.

(4.3.3) (1+w) gﬁ :i € Oy,
(4.3.4) (1+w?) gf :; € Oy,
(4.3.5) AL,

,
Through some simple computation, when (4.3.3) or (4.3.4) hold, then we have o € Z.
Finally, we assume (4.3.5). Let
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2(6,w?r)  a+b
(W?r,w?r) 2
Hence, the assumption a + wb € OF implies one of «; for i = 1,2, 3 is an element of Z. On
the other hand, we have H(r) = H(wr) = H(w?r) and «(H (1)) C H(r), thus this concludes
lemma for F = Q(v/-3). O

For the computation of multiplicities of unitary modular forms later, we need the
following converse to [68, Remark after 6.1].

3 =

Lemma 4.3.24. Let r € A be a primitive element with (r,r) < 0.

1) The special divisor H(r) is contained in exactly #0r special divisors of the form
2
H(r") C Da,, for some primitive ' € Ag.

(2) The restriction of the special divisor H,|p, is H(r) with multiplicity 1 i.e., reduced.

PROOF. We fix v/d € C and the corresponding embedding F' < C. First, we prove
(1). Note H(r)|p, = H(r")|p, if and only if Cr’ = Cr for r,7" € A. This implies r = ar’
for some a € C*. Since r is primitive, we have a € 0. On the other hand, as H(r’) only

*

depends on Ry’ so that H(r') = H(—r'), the number we concern is #fF :

The proof of (2) is as follows. Since (r,r) < 0, H(r) is again an orthogonal symmetric
domain which is an (analytic) open subset of a quadric hypersurface, say Q"' C Q" C
P+, Thus the restriction of the Cartier divisor 7 = 0 to Q" is reduced and H(r) is its
open subset. H(r) is also an open subset of the restriction of » = 0 to the linear subspace,
which is also clearly reduced. Hence the assertion follows. 0

4.3.5. Unramifiedness of unitary modular varieties.

Theorem 4.3.25. Let F = Q(vd) (d # —1) be an imaginary quadratic field and A
be a Hermitian unimodular lattice over Op of signature (1,n) for n > 1. We assume
d =2,3mod 4. Then for any arithmetic subgroup I" C U(A), the canonical map mr: Dy —

I\ Dy does not ramify in codimension 1, so that X isa log canonical model.

Proor. It suffices to show the claim for I' = U(A). The ramification divisors are
defined by o, ¢ for some primitive » € A and £ € 7 \{1} and by Lemma 4.3.23, they are

included in the set
U U H(r).

reAbeZLecOf\{1} reAN/OR
<’r’,7‘>:—%, ore€U(A)
Now )
lr
ope(l) =l — (1= &)7—=r

(r,r)

We assume that » € A is a reflective element, that is, o, € U(A) for some § € Op\{1}.

e (L) 201 -9
lr 21 =&, r
(-0 = - .
(r,r) b
Since 7 is primitive and A is unimodular, by Proposition 4.3.22, there exists an £ € A such
that (¢,r) = ﬁ, so we have




4.3. EXAMPLES OF FANO AND K-AMPLE CASES 99

for FF # Q(v/—1),Q(v/—3). This implies 0,¢ ¢ U(A) and this is contradiction. The last
assertion then follows from [120] (or as a special case of our Theorem 4.2.1 (iii)). O

Note that we can also deduce this result from [146, Lemma 2.2].

Corollary 4.3.26. Let F = Q(vd) (d # —1) be an imaginary quadratic field and
(A, (, )) = M(b) be a Hermitian lattice over O of signature (1,n) for n > 1 where M is
a unimodular Hermitian lattice and b € Or. We assume d = 2,3 mod 4, and \/ig ¢ Op.
Then for any arithmetic subgroup I' C U(A), the canonical map wr: Dy — T'\Dy does not
ramify in codimension 1.

4.3.6. Unitary modular cases, Part I - Fano cases. Below, for the definition of
Hermitian lattices; see Appendix 4.A.

Remark 4.3.27. We can estimate the value s(X) as orthogonal modular varieties and
use it to determine the birational types of ball quotients. Note that the ramification degrees
arising from unitary cases may differ from orthogonal ones [9], so we have to pay attention
to the computation of a; compare with Remark 4.3.8.

For F' = Q(v/—1), let By (resp. B,) be a union of ramification divisor with ramification
degree 2 (resp. 4). If a modular form f of weight k& vanishes on By (resp. By) with order
2m (resp. 3m) for some m € Z, then f satisfies Assumption 1.5.1 (i) and s(X) = =&

 4dmn’

Example 4.3.28. For F = Q(v/—1), let A := Aygy @ Apy—1) be an even unimodular
Hermitian lattice over Oy, =1, of signature (1,5) whose associated quadratic lattice is
Ao =UadU® Es(—1).

The only ramification divisors of the map Dy — X := U(A)\D, are

U H

r€A/O primitive
(ryry=—1

with ramification degree 2. For more details, see Example 4.3.32.
By Example 4.3.11, f := ®o50|p, is a weight 252 modular form with

divf =2 > H(r)

X
r€L/0g =1
(ryr)=-—1

:primitive

whose coefficient comes from Lemma 4.3.24. Therefore applying Theorem 4.2.1 (i) for f'2
with s(X) = £, we have the following.
Corollary 4.3.29. The Baily-Borel compactification X" of the modular variety X =

U(M\Dy is a Fano variety, where A := Aygy ® Agy—1) for F' = Q(v/—1).

Example 4.3.30. For ' = Q(v/—1), let A = Avoue) ® Apg-1)(2) be an even
Hermitian lattice over Oy =) of signature (1,5) whose associated quadratic lattice is
Ao = U@ U(2) @ Eg(—2). The ramification divisors on %y, with respect to O (Ag) is
the union of special divisors with respect to (—2)-vectors and special-even (—4)-vectors, so
the ramification divisors on D, with respect to U(A) are included in the union of special
divisors with respect to (—1)-vectors and special-even (—2)-vectors since (v, v) is real for
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all v € A. Here we say a vector r € A is special-even if R(r,v) € Z for any v € A. The
only ramification divisors of 7 are

U H(r) U U H(r)

x rmit x
TEL//)’@(\/jl).prmutlve TEL//f@(\/jl)
(ryry=—1, op _1€U(A) (ryry=—2, op,—1€U(A)

:special-even, primitive

with ramification degree d; = 2 and

U H(r) U U H(r).

x . x ) . o
TGA/ﬁQ(H).prlmltlve 7"€A/ﬁ@(\/7f1>.speclad—even7 primitive
<T‘,T>=—1, Jr,\/jleU(A) <T,T‘>:—2, 0’7-,\/?1€U(A)

with ramification degree d; = 4. For any primitive element r € A with (r,r) = —1, we

have
or—1(0) =L+ 2(,7)r.

By the description of Hermitian lattices Aygy(2) and AES(il)(g),

2<£, 7’) € ﬁ(@(\/jl)

Hence 0,1 € U(A) for any (—1)-primitive element r € A. For any special-even primitive
element r € A with (r,r) = —2, we have

or—1(0) =L+ (L, r)r.

By the definition of Aygu(e), if R(¢,r) € Z, then I(¢,r) € Z for any £ € A. Also by the
definition of Ag,(—2), we have ({,r) € Og=) for any £ € A. Hence o, ; € U(A) for
any special-even (—2)-primitive vector r € A. Therefore the map Dy — X := U(A)\ Dy

ramifies along
U H(r) U U H(r).

X g e X
TEL/ﬁQ(ﬁ).prlmltlve TEL/ﬁQ(\/Tl)
<Ta7‘>:71 <T7T>:72

:special-even, primitive

For (—1)-primitive vector r € A,
o, 1) =L+ (1 —=~=1){,r)r.

If r € Agg(—1)(2), then by the description of the Hermitian matrix defining Apgy_s), we
have (¢,7) € Og=1), so (1 = V=1)({,1) € Oy =1)- If r € Ayau(2), then the ideal

{{r) [ £ € Avav)}
1+v—-1

is generated by Y= since det(Lyau(z)) = 3, 50 (1—v/=1){{,r) € Oy =) From a similar
discussion as above, we have o, 1 € U(A) for any (—1)-primitive vector r € A.

For special-even (—2)-primitive vector r € A,
(1-v-1)
2
If r € Agy—1)(2), then there exists an ¢ € Ag,—1)(2) such that (¢,7) = 1, so we have
A=V=1){tr)
2

<€7T> = %jla so we have — 5 = % ¢ ﬁ@(\/jl) Thus, we have O'n\/jl ¢ U(A) for

any special-even (—2)-primitive vector r € A.

o, 1) =0+ (€,r)r.

= 1_‘2ﬁ ¢ 6’@(\/_7). If r € Apgu(2), then there exists an ¢ € Aygy(2) such that
(1=v=T)(6r)
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Therefore, the ramification in codimension 1 only occurs along

U H(r)

X i s
rEA/ﬁQ(\/jl).prlmltlve
<T,7’>:— 1

U H(r)
reN/OF :special-even, primitive

Qv=T)
(ryry=—2

with ramification degree 2, and along

with ramification degree 4.
This example implies Theorem 4.3.25 does not hold for non-unimodular lattices and
F =Q(+v/—1). By Example 4.3.13, we have modular forms ®,|p, and ®194|p, such that

divdy|p, =2 Z H(r)
TEA/ﬁS(m):primitive
(ryry=—1
diV(I)124|DA =2 Z H(’I")
T’EA/ﬁ&m):special—even, primitive

(ryr)y=-—2
whose coefficient again comes from Lemma 4.3.24.
Hence, applying Theorem 4.2.1 (i) to (®4]%, P124[},)'* with s(X) = 62, we have the
following.

Corollary 4.3.31. The Baily-Borel compactification X of the modular variety X :=
U(A)\Dy is a Fano variety, where A := Aygu(2) ® Apy—1)(2) for F = Q(v/—1).

4.3.7. Unitary modular cases, Part 1I - with ample canonical class.

Example 4.3.32. For F = Q(y/—1), let A := Aver ® Ay (—1) D Apg(—1) D Apy(—1) be an
even unimodular Hermitian lattice of signature (1,13) whose associated quadratic lattice
is Ag = Il = U ® U @ Eg(—1) ® Eg(—1) @ Eg(—1). The ramification divisors on %y,
with respect to O (Ag) is the union of special divisors with respect to (—2)-vectors, so
the ramification divisors on D, with respect to U(A) are included in the union of special
divisors with respect to (—1)-vectors as (v,v) is real for all v € A. There exist possibly
double ramification divisors i.e., those with d; = 2, and quadruple ramification divisors
i.e., those with d; = 4, of the natural morphism 7: Dy — X := U(A)\D,. It ramifies in
codimension 1 along

U H(r)

x s
TGA/ﬁQ(m).prlmltwe
<T,7‘>=71, 0'7‘7—1€U(A)

U H(r)

x T
TGA/ﬁQ(\/TI).prmntlve
(rr)=-1, o, ,—1€U(A)

with ramification degree 2, and

with ramification degree 4.
For any primitive element r € A with (r,r) = —1, we have

o, 1) =L+ (1~ V=1){, 7,
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but by Proposition 4.3.22 and unimodularity of A, (¢,r) = 2\% for some ¢ € A. Hence

or—1 ¢ U(A) for any (—1)-primitive element r € A, that is, there is no quadruple ramifi-
cation divisors.
For any primitive element r € A with (r,r) = —1, we have

or_1(0) =L+ 2(,7r)r.

Here,
1

) :

2—1 QW-T)

so 2((,r) € Ogyy=1)- Thus, 0,1 € U(A) for any (—1)-primitive element r € A, that is,
there are only double ramification divisors along

U H{(r)

TEA/ﬁ&\/jl):primitive
(ryry=—1
with ramification degree 2. By Example 4.3.9, f := ®15|p, is a weight 12 modular form
whose divisors are equal to double ramification divisors;

divf =2 Z H(r)
r€A/O ) primitive
(ryr)y=—1

(L,7) € 60F =

whose coefficient again comes from Lemma 4.3.24. Therefore applying Theorem 4.2.1 (iii)

to f with s(X) = &, we have the following the following.

Corollary 4.3.33. The Baily-Borel compactification X of the modular variety X :=
U(A)\Dy is a log canonical model, where A = Aygy @ Apy(—1) ® Apy(—1) ® Apgy(—1) for
F =Q(v/-1). Recall from Terminology after Theorem 4.2.1 that a log canonical model in
this chapter means it has only log canonical singularities and ample canonical class.

Example 4.3.34. For ' = Q(v—2), let A := Ay 15y @ Ay, 1)(2) be an even Hermit-
ian lattice over O /=) of signature (1,5). The union of ramification divisors of the map
7w Dy — X := U(A)\D, are the union of special divisors with respect to (—1)-vectors

only, unlike F' = Q(1/—1) case. Of course, these divisors ramify with ramification degree
2, so we can also show X isa log canonical model. (Applying Theorem 4.2.1 (iii) to f!2
with s(X) = %, where f := ®4|p,.) This example implies Theorem 4.3.25 does not hold
for non-unimodular lattices and there exist Hermitian lattices, whose quadratic lattices are
the same, admitting modular varieties with various birational types according to imaginary

quadratic fields.

Corollary 4.3.35. The Baily-Borel compactification X" of the modular variety X :=
U(AM\Dx is a log canonical model, where A := Aj;q;00 @ N 1)(2) for F' = Q(v-2).

Remark 4.3.36. For F' = Q(v/-2), let A := Ayeu ® A’Es(_l) D A’Es(_l) D A’Es(_l) be
an even unimodular Hermitian lattice over 0g /=) of signature (1,13), whose associated
quadratic lattice Ag is U @ U @ Eg(—1) & Es(—1) @ Es(—1).

Now, we know that for any arithmetic subgroup I' C U(A), the map « : Dy — T'\ Dy
does not ramify in codimension 1. This is exactly an example of Theorem 4.3.25. Thus

the Baily-Borel compactification F\DABB is a log canonical model.
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Remark 4.3.37. For any imaginary quadratic field with class number 1, we can con-
struct Aygy and Agg; see [110, Appendix A]. As in Theorem 4.3.25, we can show that the
corresponding map does not ramify in codimension 1 for any arithmetic subgroup so that
the Baily-Borel compactification is log canonical model again.

Remark 4.3.38. By the same reason as Remark 4.3.36, for F' # Q(1/—1), the map
7w : Dy — I'\Dj does not ramify in codimension 1, where A := Aygy ® Apgg(—1) and
I' € U(A) is any arithmetic subgroup. This is also an example of Theorem 4.3.25 and

F\DABB is a log canonical model.

4.3.8. More examples. For F = Q(v/—1), let A_ := Ayay @ Apy—1)(2). Then, the
map 7 : Dy | — U(A_1)\Dj_, ramifies at the union of special divisors with respect to
(—1)-vectors and (—2)-special-even vectors. By [150, Theorem 8.1}, there exists a reflective
modular form ¥y, of weight 12 on @(A—l)Q such that

diV\Il12|DA = 2 Z H(T)

x
reAfl/ﬁ@(ﬁ)
<T7T>:_1

:primitive

whose coefficient again comes from Lemma 4.3.24. Thus, (*Wy = Wys| Da_, is a reflec-

tive modular form on D, _,, but this does not satisfy Assumption 1.5.2 (ii) because the
ramification divisors properly include the divisors of Wy5|p Ays L€

Supp(div¥is|p,) € U H(r) U U H(r),
TGL/ﬁ&\/jl):primitive TGL/ﬁ&\/j):special—even, primitive
<T7T>:71 <r77‘>:72

where the right-hand side is the ramification divisor. Hence, we can not show the Fano-

ness of (U(A_l)\DAfl)BB in this way (but we can show the uniruledness or more strongly,
rationally-chain-connectedness of U(A_1)\Dy_, by [110, Theorem 5.1]).

On the other hand, for FF = Q(v/=2), let A_, be the Herimtian lattice over =)
of signature (1,5) whose associated quadratic lattice is U & U @& Eg(—2). Then the map
7w Dr_, — U(A_2)\Da_, has no ramification divisors, so we can not even show the
uniruledness.

4.A. Definition of matrices

The following matrices are taken from [110, Appendix A].

4.A.1. Q(v/—1) cases. Let Aygy be an even unimodular Hermitian lattice of signa-
ture (1,1) over Oy /=1, defined by the matrix

1 0 1
2¢/-1\—-1 0
whose associated quadratic lattice (Aygr)g is U & U.
Let Aygu(z) be an even Hermitian lattice of signature (1,1) over g, /=) defined by

the matrix
l 0 1++v-1
2\1—-+-1 0

whose associated quadratic lattice (Aygu(2))g is U @ U(2).
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Let Apg—1) be an even unimodular Hermitian lattice of signature (0,4) over Og, /=

defined by the matrix
2 —/-1 —/-1 1
1v-1 2 1 V-1
oVt 2 1
1 -1 1 2
whose associated quadratic lattice (Agy(—1))g is Eg(—1). This matrix is called Iyanaga’s
matrix.

4.A.2. Q(v/—2) cases. Let Ay be an even unimodular Hermitian lattice of signa-
ture (1,1) over Oy/=5) defined by the matrix

1 0 1
=it
whose associated quadratic lattice (Apqy)o is U @ U.
Let Ajrq(2) be a Hermitian lattice of signature (1, 1) over &, /=) defined by the matrix

0%)
(1

whose associated quadratic lattice (Ajrgy0))q is U @ U(2).
Let A% ;) be an even unimodular Hermitian lattice of signature (0,4) over Og,/=
defined by the matrix

2 0 vV=2+1 1iy/=-2
1 0 2 W2 1-y-2
211 2 0

vV—2+1 0 2

whose associated quadratic lattice (Al _))q is Es(—1).



CHAPTER 5

Revisiting the moduli space of 8 points on P!

5.1. Introduction

It was shown by Casalaina-Martin-Grushevsky-Hulek-Laza [28] that the Kirwan blow-
up and the toroidal compactification of the moduli space of (non-marked) smooth cubic
surfaces are not isomorphic. In this chapter, we prove analogous results for the moduli
space of unordered 8 points on P!, denoted by MS™. The proof we give here is inspired
by that of [28], but requires further ideas. As we shall discuss in Section 5.6, the behavior
observed here is shared by other ball quotients as well, thus pointing towards a much more
general, and yet not fully understood, phenomenon.

The case of 8 points on P! is of special interest for more than one reason. One is that it
has more than one modular interpretation. Besides being a moduli space of points, it is, by
work of Kondo [88], also closely related to moduli of K3 surfaces and to automorphic forms.
A further reason is that it is a so-called ancestral Deligne-Mostow variety in the sense of the
discussion by Gallardo-Kerr-Scheffler [48]. This means that any Deligne-Mostow variety
over the Gaussian integers with arithmetic monodromy group, and which has cusps, can
be embedded into this ball quotient. The other ancestral case is that of 12 points on P!,
which plays the same role for the Eisenstein integers. In this chapter, we shall concentrate
on the Gaussian case and only briefly discuss the Eisenstein case, which will be treated in
forthcoming work.

5.1.1. Main results. First, we prove that the Deligne-Mostow isomorphism does not
lift between the Kirwan blow-up and the toroidal compactification.

Theorem 5.1.1 (Theorem 5.3.15). Neither the Deligne-Mostow isomorphism ¢ :
——BB
MY 5 B5 /T nor its inverse ¢~ lift to a morphism between the Kirwan blow-up MX

and the unique toroidal compactification B/ .
Second, we compute the cohomology groups of the varieties appearing in this chapter.

Theorem 5.1.2 (Theorem 5.5.1, 5.5.2, 5.5.6, 5.5.8). All the odd degree cohomology
of the following projective varieties vanishes. In even degrees, their Betti numbers are given

by:

j 02 4 6 8 10
dim H7(M¥) 1 2 3 3 2 1
dimH/BT) |11 2 2 1 1
dim H/ (B3 /T 1 2 3 3 2 1
dim H7(MX ) 1 43 99 99 43 1
dim TH/(B5 Ty ) |1 8 20 20 8 1
dim TH/(B5 Ty ) |1 43 99 99 43 1

105
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thus, all the Betti numbers of M¥ and ]1335/Ft0r are the same.

———tor
These results leave the possibility that the varieties MY and B5/T' s isomorphic, but
finally we show that these are actually not isomorphic as abstract varieties.

Theorem 5.1.3 (Theorem 5.4.6). The Kirwan blow-up M¥ and the toroidal com-

———tor
pactification B /T “ are not K-equivalent and hence, in particular, not isomorphic as ab-
stract varieties.

5.1.2. Outline of the proof of Theorem 5.1.1. The strategy of the proof of The-
orem 5.1.1 is as follows. As in [28] the argument is divided into two steps. We first prove
that the discriminant divisor and the boundary divisor intersect non-transversally in the
Kirwan blow-up. This is done in terms of local computation by using the Luna slice. Sec-
ondly, we show that the corresponding divisors intersect generically transversally in the
toroidal compactification of the 5-dimensional ball quotient. Here is a major difference to
[28]. This is because we cannot use Naruki’s compactification. Instead, we work on a se-
quence of blow-ups of the Baily-Borel compactification of the 5-dimensional ball quotient.
This was studied in detail in [48, 75] and can be described in terms of moduli spaces of
weighted pointed stable curves [75]. The discriminant divisor and boundary divisor ex-
ist as normal crossing divisors in these spaces, thus we can use this to prove the generic
transversality of the divisors in the toroidal compactification.

5.1.3. Organization of this chapter. In Section 5.2, we describe the relationship
between GIT quotients and ball quotients. In Section 5.3, we prove Theorem 5.1.1 through
local computations. In Section 5.4, we compute the top self-intersection number of canon-
ical bundles and deduce Theorem 5.1.3. In Section 5.5, we compute the cohomology by
using the Kirwan method. In Section 5.6, we will briefly discuss other Deligne-Mostow
varieties.

5.2. GIT and ball quotients

Below, we consider the moduli spaces of ordered and unordered 8 points on P!. Through-
out this chapter, the phrase “8 points on P*” will always mean “unordered 8 points on P'”
for simplicity. Let

MGd = (P')*//SLa(C), M :=P*//SLy(C).

Here, the GIT quotients are taken with respect to the symmetric linearisation &'(1,--- ,1)
and 0(1). We also note, see [75, Theorem 1.1}, that
MET /&g =2 MEIT,
We denote by ¢; : ME, — MET and f: MX — MYT the Kirwan blow-ups [76].
As in [88], we consider the free Z[/—1]-module of rank 2 equipped with the Hermitian
form defined by the following matrix

(0 ) (e )

The underlying integral lattices are isomorphic to U @ U(2) and Dy(—1), where U denotes
the hyperbolic plane, U(2) is the hyperbolic plane where the form has been multiplied by
2 and Dy(—1) is the negative D,-lattice. By abuse of notation, we will also denote the
Hermitian lattices by these symbols.
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Here, let L := U @ U(2) ® D4(—1)%? be the Hermitian lattice of signature (1,5) over
Z[v/—1], defined by above Hermitian forms. Let U(L) be the unitary group scheme over Z

and " := U(L)(Z). Now, there is the Hermitian symmetric domain B associated with the
reductive group U(L)(R) = U(1,5) defined by

B :={v € L ®z,— C| (v,0) > 0}/C

which is isomorphic to the 5-dimensional complex ball. Let LY be the dual lattice of L,
which contains L as a finite Z[v/—1]-module, and Ay := LY/L be the discriminant group,
isomorphic to (Z[v/-1]/(1 + \/—_1)Z[\/—_1])6 in this situation. Now, let us introduce an
important arithmetic subgroup I',,q C I', which is called the discriminant kernel:

Foa i ={9g €Tl | g(v) =vmod L (Vv e AL)}.
This data gives us the notion of the ball quotients B® /Tora and BS /T which are quasi-

tor

———BB ———BB —
projective varieties over C. We denote by B®/T'y,q  and B?/I"  (resp. B?/I',,q and

B3/ Ftor) the Baily-Borel compactifications (resp. toroidal compactifications) of the cor-
responding ball quotients. Note that the toroidal compactifications of ball quotients are
canonical as there is no choice of a fan involved. Further, let

H:= |J H@

(0,0)=—2
be the discriminant divisor where
H(l)={veB|(v,() =0}

is the special divisor with respect to a root £ € L, see [88, Subsection 3.4].

Next, we describe the stable, semi-stable and polystable loci on MSIT and MEIT.
This goes back to very classical results of GIT, in fact Mumford’s seminal work, see [122,
Chapter 4, Section 2]. In our cases, this is spelled out as follows. In the ordered case,
8 points define a stable (resp. semi-stable) GIT-point if and only if no 4 points (resp. 5
points) coincide, see also [88, Subsection 4.4] or [38, Example 2, p31]|. Polystable points
(that is, strictly semi-stable points whose orbit is closed) correspond to the points (4,4),
which means that we have two different points, each with multiplicity 4; for the notation,
see [88, Subsection 4.4]. In the unordered case, stable, semi-stable and polystable points
are described in the same way as above, see also [119, Subsection 7.2 (c)].

A crucial result of Kondo, [88, Theorem 4.6], says that there are Gg-equivariant iso-
morphisms

~ ———BB
¢0rd : MsrldT — IBE)/Ford
b2 MO % BT,
where the second isomorphism goes back to [32].

These isomorphisms also allow us to describe the subloci of 8-tuples consisting of dif-
ferent points, the discriminant locus of stable, but not distinct, 8-tuples and the properly
polystable loci. For this, let (MSIT)° ¢ MEIT (vesp. (MT)° ¢ MET) be the moduli
space of distinct ordered 8 points on P! (resp. the moduli space of distinct 8 points on P!).
By [88, Theorem 3.3], the morphisms ¢.,q and ¢ restrict to isomorphisms:

¢ord|(M§rIdT)o : (Mc()}rIdT)o — (B5 \ H)/Tora
¢‘(MGIT)D : (MGIT)O l> (BS \ H)/F
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Also the isomorphisms ¢,.q and ¢ identify the discriminant locus of stable, but not
distinct 8 points on MEIT and MO with H/To.q and H/T respectively. It turns out that
the discriminant divisor H/I'oq has 28 irreducible components, whereas H /T is irreducible.
See also [88, Subsection 4.2], asserting that Aj contains 64 vectors: 1 zero vector, 35
isotropic vectors and 28 non-isotropic vectors.

Finally, the properly polystable points are identified with the cusps of the Borel com-
pactification, namely (B?/Toq)P \ (B?/Tora) and (B5/T)BB \ (B®/T)) respectively. There
are 35 cusps on B®/ FordBB (also corresponding to the 35 isotropic vectors in Ay), but

WBB has a unique cusp. This directly follows from [88, Subsection 4.2, Proposition 4.4],
but we will see this in detail when we study the blow-up sequences.

The moduli spaces under consideration are also closely related to moduli spaces of stable
curves. We do not repeat all details of the general theory here, but recall some notions as
they are relevant for our purposes. Let Movg( 1, be the smooth projective variety which is
the coarse moduli space representing the moduli problem of weighted pointed stable curves
of type (0,8(% +¢€)) with 0 < e < 1 in the sense of [75, Theorem 2.1] or [75, Definition 2.1,
Theorem 2.2], see also [48, Lemma 2.3, Remark 2.4, Remark 2.11, Example 2.12]. This
is also realized as the KSBA compactification [48, Subsection 3.2]. My is defined in the
same way, but in this case, this is exactly the GIT quotient of P![8], the Fulton-Macpherson
compactification of the configuration space of 8 points on P! [47], by SLs; see also [123,
pH5]. More generally, this is interpreted as the wonderful compactification [102, p536,
Subsection 4.2] (or the Deligne-Mumford compactification [48, Remark 2.9]).

Y2
[}@1+6\

tor 1

Miq & Mosgrg = B /To - BT
¥1 Tord
MS v e
fora 2 b2
mBB 3 WBB

FI1GURE 5.2.1. Relationship between several compactifications

We describe the relation of these spaces in Figure 5.2.1.
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(1) 1); is a morphism by the above discussion about stable conditions for i = 1,2, 3.

(2) ¢ is an isomorphism [32].

(3) Pora is an Gg-equivalent isomorphism [88, Theorem 4.6].

(4) @ora is an isomorphism [75, Theorem 1.1].

(5) @ 1 is an isomorphism [48, Theorem 1.1].

(6) pis a morphism [48, Proposition 2.13].

(7) The blow-up sequences @1, @9 are considered in [75, Theorem 4.1 (i), (iii)]. About
the contraction of divisors of these maps, see [75, Proposition 4.5] or [75, p1121].
We study these maps in detail in Subsection 5.3.2.

(8) Mg is a normal crossing compactification of (B®\ H)/T'oa, see [65, p345] or [48,
Proposition 2.13].

(9) ME, = ﬂoyg(%%) is nonsingular [75, Section 4].

ord

We conclude this section with a remark about the toroidal boundary, which is defined by
tor —————<tor
(

Tord == (B°/Tora) \(B®/Torq) and T := (B>/T)  \(B?/T) respectively. The divisor T4 has
35 irreducible components (mapping to the 35 cusps in the Baily-Borel compactification).
We write them as Ty.q, for i = 1,...35. Note that T,q; = P? x P? by [118, Remark 6] or
[48, Example 2.12]. The boundary divisor T is irreducible (and maps to the unique cusp
in the Baily-Borel compactification); see also [88, Proposition 4.7]. We study Tyq and T’
in detail in Lemma 5.3.11.

5.3. (Non-) Extendability of the Deligne-Mostow isomorphism

5.3.1. Non-transversality in the Kirwan blow-up. In this subsection, we show
that the discriminant divisor and the boundary divisor do not intersect transversally in
MX_ To prove this statement, we will need a detailed analysis of stabilizer groups. For
an algebraic group G we will denote the connected component of the identity by G°. The
following two lemmas are modeled on [28, Lemma 2.3] and [28, Lemma 2.4]. Below, we
denote by x,z; the homogeneous coordinate of P!. In this terminology, the polystable

: 4,.4
point ¢4 4 corresponds to zzy.

Lemma 5.3.1. The following equalities hold:

R = Stab(cy) = {<3 ;L) € SLQ((C)} U{ (_g_l g) c SLQ(C)} & B,
R® = Stab(cy4)° & CX.

Now, let us prepare for the local computations. The Luna slice theorem gives us a tool
to study them as handled in the case of the moduli space of cubic threefolds [27, Subsection
4.3.1] or cubic surfaces [28, Lemma 3.4]; see also [152, Subsection 7.1].

Lemma 5.3.2. A Luna slice for cy4, normal to the orbit SLa(C) - {csa} C P, is
isomorphic to C°, spanned by the 6 monomials

8 8 7 7 6,2 2 6
in the tangent space H°(P', Op1(8)). Projectively,
6 _ 8 8 7 7 6,2 2 6 4.4
P® = {agxy + a12] + Boxgrs + fixory + Yorgr] + Nixgry + krgrl}

C PH (P!, 0p:(8)) = PP,
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PrOOF. This can be proven in the same way as [27, Subsection 4.3.1]. We note that
the (affine) tangent space of the orbit is given by the entries of the matrix

4.4 3.5
Tt o
Lol Loy

Let

. _ A0 .1 _ 0 A
diag(\, A7) = (0 )\_1) , antidiag(\, —\7!) := (_)\_1 O) )

Then, the action of an element of Stab(cy4) is given by

(531) dlag(Aa >\_1) . (a0a aq, 507 61) Y0, ’71) = ()\Saoa )\—8041, )\6507 )\_Gﬁb )‘4,}/07 )\_471)
(5.3.2)
antidiag()\, —)\_l) : (040, ay, Bo, 51,70771) = ()\_80% )\80407 —)\_651, —)\6507 )\_4717 )\4%)-

We write the coordinates of the Kirwan blow-up Bl,C® C C°® x P of the Luna slice as
(o, a1, Bo, Br,70,7) and [Sp : Sy 1o Th 2 Uy = Uy

Lemma 5.3.3. The unstable locus of the action of the stabilizer GL(c44) of ca4 in
GL2(C) is the codimension three locus

{SOZT():UO:O}U{Sl:T1:U1:O}C]P)5.
PRrROOF. From (5.3.1), the action of R° = C* is given by
diag(A\, A1) - (So, S1, To, T1, Uy, Ur) = (A3So, X881, ATy, A0y, XUy, A™4U).

Thus, the representation of C* on C® decomposes into 6 characters. By the same discussion
as in the proof of [28, Lemma 3.6], the points in the unstable locus are characterized by the
property that the convex hull spanned by the weights appearing in the above representation
does not contain the origin. This condition holds if and only if {Sy = Ty = Uy = 0} or
{51:T1:U1:0}. ]

We denote by Zoq (resp. 2) the discriminant divisor, corresponding to the closure

——— BB

of H/T4q (resp. H/T), through the isomorphism @oq : MST — B5/Tyq  (resp. ¢ :

MEIT 5 BS /FBB). Let Z be the strict transform of the discriminant divisor 2 in the
blow-up M¥ — MSIT Besides, let Ayq (resp. A) be the union of boundary divisors of
MK | (resp. MK).

ord

Theorem 5.3.4. The strict transform 7 and the boundary divisor A do not meet
generically transversally in MX.

Proor. We work on the local computation via the Luna slice described in Lemma
5.3.2. Before taking the GIT quotient, we have the blow-up

BlgCﬁ — Cﬁ,

where the coordinates of the affine space (the Luna slice) C® are ag, a1, Bo, 81,70, 71 (this
is the first step of the Kirwan blow-up). In this Luna slice, Z locally near the origin, is
given by

disc(z* + apx? + Boz + o) - disc(y* + ary® + By +71)

= (2565 — 1280277 + 144 [3y0 — 2785 + 160570 — 4apB7)
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- (2567 — 128ain7 + 144, i — 276) + 16a4m — 4aifi)

=0.
The reason for this is that we consider the polystable point given by x%y* and that the
versal deformation of the quadruple point 2% = 0 is given by z* + ap2? + Box + 70 = 0. We

write this as V := V; U V5 with &, permuting the two components. We consider the affine
loci
P = (50#0), QI: (T07é0), R = (U[)?é())
First, on P, the proper transform of V' is
ad(256up — 128agu2 + 144aptiug — 27apty 4+ 16aiuy — 4ait?)
- (256u — 128apsiul + 14daps t2u; — 27apt] + 1603sTu; — 4alsit?)
=0,
where
Sy P Ui
81 1= — == U = —
TS So So
and the coordinates of P are («, $1, to, t1, uo, u1). Hence, the strict transform of V' is given
by
(256u — 128cgul + 144aptiug — 2Tapth + 1602uy — 4a2t?)
- (2563 — 128apstul + 14dagstiug — 27agt] + 16a5siu; — 4ajsit])
= ()’
since the exceptional divisor of the blow-up is (ap = 0). The Luna slice for the action
T C R is given by (s; = 1) in P because for any point («, $1, to, t1, g, u1) € P with
51 # 0, there exists a complex number A such that A= = s;. Thus, the intersection of V
with this Luna slice is given by

{256u) — ap(128ug + 144t5ug — 27t; + 16cgug — dagtp)}
{2563 — ap(128u? + 144t3u; — 27t} + 160gu; — dagt?)}
= 0.
This shows that the first (resp. second) factor intersect the exceptional divisor (o = 0)
non-transversally along (uo = 0) (resp. (u; = 0)).
Next, on Q, the proper transform of V' is
BS(256us — 128Bpsqug + 144 8ysoug — 2780 + 1635 seue — 435 50)
- (2563 — 128Bys2u? + 144Fys,t2u; — 27Pot; + 1682sTu; — 4532a3u?)
=0,
where
§i 1= oy, t1i= o, U=
T T
and the coordinates of P is (s, $1, fo, t1, U0, u1). Hence, the strict transform of V' is given
by
(256ug — 128Bpsqug + 14450 — 2760 + 1633 seue — 4/3550)
- (2563 — 1288gs5us + 1446ys1tTuy — 276ot] + 1683s1u; — 4B85aiud)
=0,
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since the exceptional divisor of the blow-up is (fy = 0). The Luna slice for the action
T C R is given by (t; = 1) in P because for any point (s, $1, 5o, t1, uo, u1) € Q with t; # 0,
there exists a complex number X such that A™'2 = ¢;. Thus, the intersection of V' with this
Luna slice is given by

{256’&3 - 60(128831% + 14480’&0 — 27+ 166080’&0 - 46@80)}
{256ud — By(12852u? + 144s,u; — 27 + 168ps1uy — 45paiu?)}
= 0.
This shows that the first (resp. second) factor intersect the exceptional divisor (S, = 0)
non-transversally along (up = 0) (resp. (u; = 0)).
Finally, on R, the proper transform of V' is
78(256 — 128052 + 1447yps0ts — 2T0te + 167755 — 4vyasata)
- (25613 — 128705T + 144781t — 2Tt + 1677s] — 477 sit])
= ()’
where
S T; Uy
S = —, lii=—, U= —
UO U() ! UO
and the coordinates of R are (s, $1, to, t1, 70, u1). Hence the strict transform of V' is given
by
(256 — 128052 + 1447980t2 — 270ty + 167355 — 4yasot?)
- (25613 — 1287952 + 1445112 — 2Tl + 1672s] — 42 s5t2)
= ()’
since the exceptional divisor of the blow-up is (79 = 0). The Luna slice for the action
T C R is given by (¢ = 1) in R because for any point (sq, s1,to,t1,7%,u1) € R with
uy # 0, there exists a complex number A such that A= = ~;. Thus, the intersection of V
with this Luna slice is given by
(256 — 128052 + 1447p80t3 — 2770ty + 167555 — 4y5sots)
{2563 — 40(128s? + 1445t — 27t} + 1675 — 4y055t2)}.
This shows that the first factor has an empty intersection with the exceptional divisor
(70 = 0), whereas the second factor intersects the exceptional divisor non-transversally
along (u; = 0).

Next, we consider the action of the finite quotient & = R/R°. We only consider P
(the other cases being the same). If diag(\, A1) fixes a general point in P N (s; = 1), by
the condition on tg, we have A\* = 1. This implies that diag(\, A™!) is trivial as an element
of PGLy(C).

Thus, finally, let us consider the case of the form antidiag(\, —A~1). For a general point
p = (to, t1,up,u1) € PN (sy = 1), we have

antidiag(k, —>\71) . (t(], tl, Up, U1> = (—>\72t1, —)\l4t0, )\4’&1, )\12U0)

by (5.3.2).
For a point p to be invariant under the above action, one finds the conditions tq =
—A"%t; and t; = —A\""¢,. This implies that t5 = ¢} which is clearly not the case for a

general point p. ([l
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Remark 5.3.5. The situation in the ordered case is different. Indeed, a similar cal-
culation, again using a Luna slice argument, shows that the discriminant divisors and the

boundary divisors meet transversally everywhere on MX .

———tor
Remark 5.3.6. In Theorem 5.5.2, we shall see that ./\/lffrd and B°/Toq ” have the
same cohomology. Note that this proof does not require a priori knowledge that the two
spaces are isomorphic. Using the information of their Betti numbers,, we can give a short

independent proof that ME, =~ B5/ Fordtor which is independent of [48]. This argument
follows a similar argument given by Casalaina-Martin for cubic surfaces. By the Borel
extension theorem [16, Theorem A], the map Myq — B?/Toq extends to a morphism

————tor
./\/lffrd — B /Toq ”_ Since both spaces have the same Betti numbers, this must be an
or

—t
isomorphism or a small contraction. But the latter is impossible since B®/T'oq  is Q-
factorial (and in fact smooth).

In the rest of this subsection, we work on the stabilizers of points in the exceptional
divisor in MX. Let & C M¥ be the exceptional divisor of the Kirwan blow-up. The
following proposition plays a critical role in the proof of Theorem 5.4.6.

Proposition 5.3.7. For any point in x € &, the order of its stabilizer S, := Stabg(x)
s not divisible by 5.

PROOF. Since the order of the finite part of R is not divisible by 5, it is enough to
concentrate on the connected component R°, which is isomorphic to C*. For simplicity,
we will also use S, to denote the stabilizer of  in R°. By the G5 symmetry, it suffices to
show the claim for the affine open sets P, Q and R.

First, let us consider the points («y, $1, to, t1, ug, u1) € P. In this locus, the exceptional
divisor corresponds to (g = 0), and the action of diag(A, A™!) is given by

dlag()\a )\_1) : (07 S1, t07 tla Ug, Ul) = (07 A_16817 )\_QtO; )\_14t17 A_4u07 /\_12u1)'

Since the Kirwan blow-up is completed after one step, it is enough to consider the stable
points after blowing up the orbit SLy(C) - {cs4}. It follows from Lemma 5.3.3 that both
{to #0 or ug # 0} and {s; # 0 or t; # 0 or uy # 0}. If ty # 0, then S, = Z/27. 1f uy # 0,
then
N {Z/4Z (s1 # 0 or uy # 0)
S, =
727 (t1 #0).

The other cases are similar, but we nevertheless state them for completeness, starting

with the points (sg, s1,0,t1,up, u1) € PN (B = 0). The action of diag(\, A™") is given by
diag(A, A™1) - (s0, 51, 0,11, ug, u1) = (A2s0, A" 81, 0, A28, A 2ug, A 0uy).

Again by Lemma 5.3.3, we can assume that {so # 0 or ug # 0} and {s; # 0 or ¢; # 0 or
uy # 0}. In all cases, we obtain S, = Z/27Z. Finally, let (so, s1,%0,t1,0,u1) € PN (7 = 0).
The action of diag(A\, A7) is given by
dlag()\v >‘_1) : (807 81, th tla 07 ul) = (/\4507 )‘_4817 )‘2t07 A_lotla 07 )‘_8u1)'
As above, we study the case holding both of {sy # 0 or tg # 0} and {s; # 0 or ¢; # 0 or
uy # 0}. I tg # 0, then S, = Z/27Z. 1f sy # 0, then
~ JZ/AZ (51 # 0 or uy #0)
Y z)2z (4 #£0).
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This calculation completes the proof.
O

5.3.2. Transversality in the toroidal compactification. In this subsection, we
prove that the discriminant divisors and the boundary divisors intersect generically transver-

————tor
sally in B®/T',;q . We will see that this also implies the transversality at a generic point

in IB%5/Ftor. Throughout this subsection, let Ng := {1,2,--- 8} and I C Ng. As before,
(MEIT)o denotes the set of 8-tuples where all points are different; see Section 5.2. Below,

we shall recall the construction of the blow-up sequence Myg — ME, — MSIT. By the

explicit description of the blow-ups or the interpretation as the configuration space, the

locus (MSIT)° does not meet the centers of each blow-up step. Thus, we consider (MSIT)°

to be also an open subset of Mg and MX, via birational maps.
First, we work on MGIT. The boundary divisor MSE\ (MEL)e i

ord ord
= |J D) = Dora € MG
=
by [75, p1134] (m = 4,k = 0). Here, D" (I) is defined by
DI :={(z1, - ,ws) € (P |a; = a; if i,j € 1}//SLy(C).

The number of such [ is 28. As in Section 5.2, the morphism ¢; : MK — MEIT is the
Kirwan blow-up whose center is the locus of polystable orbits, consisting of 35 orblts (which
in turn correspond to the 35 cusps, see below). We interpret ¢; in terms of configuration
spaces as follows. Let

SO 1YY = (21, - ,28) € (PY)® | 2; = a; if and only if {i,j} C I or I1}//SLy(C)

for |[I| = |I*| = 4 and TUI+ = Ng. We also denote by 2510) their union running through such
I and I*+. Note that there are 35 pairs (I, ) satisfying |I| = |[[+| =4 and T U [+ = Ng.
In this terminology, the center of ¢, is described by

2(0) _ {Cordz 35

GIT
ord

where {cora,i}52, are the polystable points of M
Next, we consider Mg y(= Mog1). Let

corresponding to 35 Baily-Borel cusps.

D) =it (00, 1))

for |I| = 4. Then, the exceptional divisor of ¢ is
b= U DD =t (3) = Ao
|1]=4

Note that each irreducible component of A4 is isomorphic to P? x P? by [75, Proposition
4.5], [118, Remark 6] or [48, Example 2.12]. Besides, let

D(1) = o1 (D) zi‘”)

be the strict transform of DY’ )( I) for |I| = 2, and DV be their union. Then DS is the
strict transform of %4, i.e.,

Dél) - @ord
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and has 28 irreducible components. In this setting, the boundary divisor MX  \ (MELT)e

1S
Dél) UDz(Ll) = -@\o-r/d UAord

by [75, p1134] (m =4,k = 1). o
Next, we describe the center of the blow-up s := 5 0 pora : Mos — M
codimension 2 locus. Let

SO1) == {(zy, - ,as) € (P)® | ;= a; if and only if 4,j € 1}//SLy(C)

2O = et (B =)
for |I| = 3 and

K

ords Where is a

1 1
&= | 2.
|1]=3

Then, the center of the blow up ¢y : Myg — M is Zél).
Finally, we study Mgg. For |I| = 3, let

DP(1) =5 (5(D))

be an irreducible component of the exceptional divisor of ¢5. Then, the variety

2 2 — 1
pf = |J DD = 5" (=)
|1|=3

is exactly the exceptional divisor of the blow-up ¢,. For |I| = 2,4, we denote by DFIQ‘)(I )

the strict transform of D|(]1‘) and define

b - | ). D= | D)

1|=2 |1|=4

Now, the boundary divisor Myg \ (MSIT)? is

bl o

by [75, p1134] (m =4,k = 2).
The boundaries which are contractied through the map ¢ can also be calculated as
follows. By [75, Theorem 4.1], there exists the reduction map

! . AA AA
The map ¢), is a divisorial contraction, more preisely:

Lemma 5.3.8 (cf. [75, Proposition 4.5]). The morphism ¢} contracts the boundary

divisors DéQ) .

ProoOF. By [75, pl1121], the exceptional locus of ¢} is the union of D‘(IQR(I) with [ =

{i1,...,i,} for r > 2 so that
1
TX(Z—FE)Sl

This implies r = 3. ([l
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By construction, D§2) U D:(f) U Df) is normal crossing (since Mg is a normal crossing
compactification of (B> \ H)/Toq). We denote 5,q := H/Tq and 5 := H/T', where
the closures are taken in the respective Baily-Borel compactifications. We further denote

by .q the strict transform of J%.4 under moq @ B /T * B /Tora - Since the

contraction divisor of ¢, is only D§2), we now obtain the following:

Theorem 5.3.9. The boundary %UTOM 15 a normal crossing divisor. In particular,

- ————tor

Hora and Toq intersect transversally everywhere in BS /T .4

Again, by this formulation, we mean that % and T;,q intersect transversally every-
where along any component of their intersection. As a consequence, we obtain the following

—~ t BB
corollary, where .7 is the strict transform of J# under 7 : B5/T" — B5/T .

Corollary 5.3.10. The divisor A UT is a normal crossing divisor, up to finite quo-
tients.

—~ —t
Next, we discuss the generical transversality of the intersection of ¢ and T in B5/T >
Note that I'/Toq = Sg acts on {Tya, )52, transitively and

1— 64 X 64 — Stabe,s (Tord,i) — 62 — 1.

Next, we study the description of the boundary and group actions via the Hermitian
form. The claim of the following lemma is already known in terms of a moduli description
by [118, Remark 6] or [48, Example 2.12], but we need the details in the proof of Theorem
5.3.14.

Lemma 5.3.11. The following holds.
(Z) Tord,z’ = P2 X PQ.
(2) T (P2/64 X ]P)Z/64) /62

PROOF. We orientate ourselves along the strategy of the proof of [27, Proposition 7.8].
First, we take an isotropic vector h = (1,0,0,0,0,0) € L and denote by F the corresponding
cusp. As the unitary group acts transitively on the set of all cusps, this means no loss of
generality. Also, taking h¥ = (0,1,0,0,0,0) as a further basis vector, we can replace our
Hermitian form by

- V=T

B
14++/-1
where
2 144/-1
B |1-V-T -2
T —2 14++v/-1
1—v—1 -2
Then,
su=1, X!BX =B
U ovow o L
N(F) :=Stabp(F) =< g= X vy XtBy+ (1 —+v—=1)vts =0
s

yiBy + (1 +v—1)5w+ (1 —vV=1)sw = 0
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Its unipotent radical is

W(F) P | BV =0
=49= Y —
1 y'By+ (1+v-1w+(1—-v-1w=0
and its center is
1 1 vV-11—-+v-1w

1

We take the partial quotient
B> — C* x C*
(20, 21, 22, 23, 24) +— (t =exp (27rz0/(1 — \/—_1)) V21, 2, 235 24)-
We shall here consider the quotient of C* by W (F). For an element g € W(F), its action
on z 1= (z1, 29, 23, 24) is given by

1
g 2= E(Xzﬂ/)-

A straight forward computation shows that for given y* € Z[v/—1]*, we can find suitable

1 v w
elements w € Z[v/—1] and v € Z[/—1]* such that g = 1 y | € W(F). This implies
1

that
CYYW(F) = (E=)",

where I — is the CM-elliptic curve C/ (Z + \/—IZ). Now, we consider the effect of an
element of the form
u

—_

e N(F).

S

g:

Here, from the above action, s € Z[v/—1]* acts on (E )* diagonally by multiplication

with powers of v/—1. However, this element is already in U(D$?), thus it follows that
T = (E=)*/U(D$?). Here, we note that X = U(D§?). By [35, Table 2], we have

U(D$?) = (Z)27) x &3) x 6,)? x &,.

See also [134, Subsection 6.4]. Since, the action of this group, described in [35, Subsection
3.2, Table 2], gives

(Ey=1)?/U(Dy) = (P1)?/ (G2 % &4) 2 P? /G,
where &, acts on P? by the standard representation, we obtain
(Ey=1)"/U(DF?) = (P*/64)*/6,.

For the ordered case, a straightforward computation shows that U(Dy) & (Z/2Z)% x S,,
thus this gives

Toeas = P? x P2



118 5. REVISITING THE MODULI SPACE OF 8 POINTS ON P!

Remark 5.3.12. This description allows us to describe the geometry of the toroidal
boundary T explicitly. By the above Lemma 5.3.11 we know that T' = (P? /&, xP?/&,) /6,
where &, acts on P? by the standard 3-dimensional representation and &, exchanges
the two factors. We claim that P?/&, = P(1,2,3) where P(1,2,3) denotes the weighted
projective space with weights (1,2, 3). This follows since the invariants are freely generated
by the restriction of the elementary symmetric polynomials of degree 2, 3, 4 on P? restricted
to the hyperplane >  x; = 0. Hence P?/&, = P(2,3,4) = P(1,2,3). In conclusion we
find that T = S?*(PP(1,2,3)).

Before discussing the intersection of divisors on the toroidal compactifications, we recall
the discriminant form, see [88, Subsection 2.2] (where the lattice is called N compared to
our L):

qr, : AL — ]FQ.
Associated with qp, there is an associated bilinear form b.( , ) on Arp. Note that ¢ is
isomorphic to the direct sum of 3 copies of the hyperbolic plane u over 5 by [88, Subsection
2.2] or explicit computation in terms of the concrete form of L. We have to pay attention
to the norm of a vector because our quadratic form exists over Fy. In other words, the
norm is measured by ¢, not by ( , ).

~Y

Lemma 5.3.13. For a given isotropic vector h in the finite quadratic space P(Ap) =
P(FS), the orthogonal complement h* = P(F3) contains 19 isotropic vectors and 12 non-
isotropic vectors. In addition, the stabilizer of Stab(h) in Sg acts on the set consisting of
all 12 non-isotropic vectors transitively.

PROOF. Since the symmetric group &g acts on the set of isotropic vectors transitively,
it suffices to choose one isotropic vector h = (1,0,0,0,0,0) € u®3. Then, the non-isotropic
vectors are given by the

(0,0,1,1,0,0),(0,0,1,1,1,0), (0,0,1,1,0,1),(0,1,1,1,0,0),(0,1,1,1,1,0),(0,1,1,1,0,1)

and the vectors which arise from these by applying the switching to the last two components
of u®3. One can easily obtain a similar result for isotropic vectors. The latter half of the
statement is clear because for any two non-isotropic vectors v; and vs, orthogonal to h, we
can define an element g € Stab(h) permuting v; and vy, and extend it by the identity to
(v1,v9, h)T C TFS. Here, we used the fact that there is no relation such as h = vy + vy, i.e.,
that vy, vy and h are independent. O

The goal of this subsection is the following theorem.

Theorem 5.3.14. The divisors 7 and T meet generically transversally in B/Ftor.
PrOOF. First, we take an irreducible component 75,q; of T4, namely the divisor over
the cusp corresponding to the isotropic vector h = (1,1,0,0,0,0). Then, we choose the

component of .4 N Ty, given by taking the divisor orthogonal to the vector ¢ =
(0,0,1,1,0,0). We can perform both choices without loss of generality due to Lemma

5.3.13, which tells us that the group Gy acts transitively on the components of % NTordi-

Thus, it suffices to consider the component T of J#,q N Tiq,; chosen above. Now, T
is the fixed locus of the reflection with respect to ¢. In addition, through the isomorphism
['/Toa = Sg = O(FS) by [42, Section 3] or [117, Proposition 3.2], the choice of ¢ implies
that this reflection acts on P? x P? by

P? x P? — P? x P?
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([a1 : by : 1], fag = by i ca]) = ([by : ay : 1], [ag = ba @ o).

Also, a straightforward computation shows that 7 is not fixed by any other reflection
with respect to a non-isotropic vector set-theoretically. Hence, we consider a general point
p = (p1,p2) € T C P?xP? where general means the following: the point p; = [1: 1 : ¢] € P?
satisfies Stabg, (p1) = ((1 2)), where (1 2) denotes the transposition in &, of the first two
components, and p, is general in the sense that p; # p, and Stabg,(ps) = 1. Clearly,
the set of these points is non-empty. Here, we have used the fact that &, acts on P? by
the standard representation; see the proof of Lemma 5.3.11 and [35, Subsection 3.2]. By
construction, the stabilizer of p is isomorphic to Z/2Z, generated by a non-trivial involution
in the first factor of &4 x &,.

Using the coordinates taken in the proof of Lemma 5.3.11, by;F\h/eorem 5.3.9, taking
the quotients, we can choose the defining equation of 7,4 (resp. o) as (t = 0) (resp.
(21 = 0)). Then, the non-trivial involution in Stab(p) acts on p as (¢, z1, 22, 23, 24) >
(t, —z1, 22, 23, z4). Hence, we obtain the new coordinates (¢, wy, 22, 23, 24) of B5/Ftor, where
wy = 22. Therefore, the divisors T and ¢, defined by (¢t = 0) and (w; = 0) respectively,
meet transversally.

0

5.3.3. Proof of Theorem 5.1.1. We shall now restate one of the main results in this
chapter. Its proof uses our computation of the Betti numbers of the Kirwan blow-up M

——tor
and the toroidal compactification B®/T" * which we will perform in Section 5.5.

——BB
Theorem 5.3.15. Neither the Deligne-Mostow isomorphism ¢ : MC™T — B3 /T nor
its inverse ¢~ ' lift to a morphism between the Kirwan blow-up MX and the unique toroidal

compactification B5/Ftor.

PRrOOF. We shall prove this for ¢, the argument for ¢—! being the same. By Theorem
5.3.4 and Theorem 5.3.14, the birational map g : M¥ --» IB35/I‘tOr cannot be an isomor-

phism. By Theorems 5.5.6 and 5.5.8 the Betti numbers by(M¥) = bQ(]B%f’/I‘tor) = 2 agree.
Hence g cannot contract a divisor and must thus be a small contraction. This, however,

contradicts the fact that both M and B5/ T are Q-factorial. (See also the proof of [28,
Theorem 1.1]). O

Since the compactifications concerned are Gg-equivariant we obtain as a byproduct
that M(Ifrd/Gg % MK
5.4. Canonical bundles

On the way we shall use a modular form constructed by Kondo, which will be essential
for us. In this section, we focus on the canonical bundles, and as a result, we shall show
Theorem 5.1.3.

5.4.1. Computation involving blow-ups. We first recall some basic facts about
the birational geometry of the relevant moduli spaces and noticeably the maps ¢; and ps.
From [75, Lemma 5.3], in their Q-Picard groups, we obtain

(5.4.1) o (D) = DV + 6D
= Yora + 6Aord~
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Of course, this implies

P

(542) ﬂ-érd(%rd) = %rd + 6T0rd'

Note that this can be obtained from Lemma 5.3.13. For the sake of completeness, though
this will not be used in this thesis, we note that

2 1 P 2 2 1
02.(DS)) = DY = Do, 00 (DS)) =0, 00.(D) = DIV = T,
01.(DV) =DV = 9,4, 0. (DY) =0,

* 1 2 2 * 1 2
es(DSY) = DY +3DY,  ¢3(DY) = DP.

All of these equalities hold in the relevant Q-Picard groups.
Moreover, the canonical divisors are described as

2 1 2
_ 2) (2) (2)
2 2
(5.4.3) Ky, = _?Dgn + §ij)
2

0
K yrr = —?Dg )
where the number 7 in the denominators comes from n — 1 in [75, Proposition 5.4, Lemma
5.5]. It follows that

Ky, = @i (K yerr) +2D5Y
* 2
Ky = 95(Kage,) + DS,

In addition, there is a specific modular form of weight 14 on B® vanishing exactly on H
[88, Theorem 6.2], and hence

1
(5.4.4) 4L = 5 Hna

—— BB
in Pic(B%/Tora ) ® Q. Here Z,,q denotes the automorphic line bundle of weight 1. By
(standard) abuse of notation, we use the same notation for this line bundle on both the
Baily-Borel and toroidal compactifications. Thus,

2
K88 = __gord

B
IBS/Ford 7

= _S%rd'

K

o 1 two ways: the realiza-

Now, we compute the canonical bundles of B?/ Fordmr =~ M
tion as a ball quotient and the blow-up sequence.

Remark 5.4.1. The finite map B* — B3/T',;q (resp. B?/T'y;q — B?/T") branches along
H/Toa (resp. H/I') with branch index 2. We illustrate a sketch of the proof below. First,
for r € L let

{,r)

opc(r) =r+(1— ()T € LeQ(W-1)

where ¢ € L is (—2)-vector and ¢ € {1,/—1}. Then, a straightforward calculation shows
0p-1 € ora and 0,/ € I'\ T'oya. This concludes the claim.
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On the one hand, by Remark 5.4.1, the standard application of Hilzebruch’s propor-
tionality principle gives

1 —_
KBO/FordtOt = 6-=%)rd 2%1@ - Tord
1
= 6«>?i)1rd - 5 {ﬂ-grd(t%%rd) - 6Tord} - Tord (by (542))
= _8$ord + 2T‘ord (by (544))
On the other hand,
2 2
KM(I)(rd = _?@ord -+ ?Aord (by (543))
2 2
== {901( Ord) 6Aord} + ?Aord (by (541))
2 * *
= _?@1¢ord(%)rd) + 2401
= =815 (Lora) + 2804 (by (5.4.4))
=7(—8%ora + 2T ora) (by Figure 5.2.1),
for 7 := <I>; . © ®ora. Thus, this calculation recovers the fact K ME = T*(Kmtor) under

the isomorphism 7 : MX | = B5 /T4 Tora

Remark 5.4.2. The above modular form constructed by Kondo is a “special reflective
modular form” in the sense of [115, Assumption 2.1]. Hence, both MSIT and M are
Fano varieties from the above computation or [115, Theorem 2.4].

Now, we need the description of normal bundles along the toroidal boundary.

Proposition 5.4.3. The normal bundle of Toa,; in 185/1““”r 15 given by
=0(—1,-1).

ord z/BQ/F
ProoOF. First, we obtain

(KIBS5/F tor + Tord z)lT edyi <_8$0rd + 2Crord + Tord,i) |Tord,i-

The left-hand side gives

(K]BS/]_" tor + TOI‘d 'L) |T rd,i KTord i

= 0(-3,-3)
by the adjunction formula. On the other hand, the right-hand side is

(_Sa%rd + 2T‘ord + Tord,i)‘Tord@ = 3T0rd7i’Tord,i
= 3N,

Tord,i/BE)/Ftor

This completes the proof.
O

Remark 5.4.4. This is an analog of Naruki’s result [125, Proposition 12.1] on the
moduli spaces of cubic surfaces. He constructed a cross ratio variety and analyzed its
singularity at the boundary. Later, Gallardo-Kerr-Schaffler [48, Theorem 1.4] showed that
the toroidal compactification and Naruki’s compactification are isomorphic and Casalaina-
Martin-Grushevsky-Hulek-Laza [28, Theorem 1.2] used this to compute the top self-intersection
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number of the canonical bundles. In the case of the moduli spaces of 8 points, there also
exists the cross ratio variety constructed by [42, Theorem 2.4], [88, Theorem 7.2] or [117,

——— BB
Theorem 1.1]. However, these coincide with the Baily-Borel compactification B°/T',q  of
the ball quotient unlike the case of cubic surfaces. This is why we used the results on the
moduli spaces of stable curves in our case.

Now, we study the behavior of the boundary divisors along 1 : B/ Fordtor — Wtor.
We recall that the toroidal compactifications are constructed by taking a “partial compact-
ification in the direction of each cusp” [6, Section III. 5]. Here, this is done by choosing a
polyhedral decomposition of a cone in the center of the unipotent part of the stabilizer of
a cusp (which is canonical in our case). Hence, this group, which is denoted by U(F) in
[6], describes the toroidal boundary.

Lemma 5.4.5. The map 185/I‘0rdt0r — ]B%‘r’/lﬂtor does not branch along T.

PROOF. The quotient I'/To;q & Sg acts on the set {Tord,i}?i1 transitively. Hence, it
suffices to take one component 7,4 ;, corresponding to the following isotropic vector h € L,
and prove that the center, denoted as Z(F') in Lemma 5.3.11, of the unipotent radical of
Stabr(h) and Stabr,__,(h) are equal. Now, we choose an isotropic vector h := (1,0,0,0,0) €
U@ U(2) @ Dy(—1)%2. Then, the corresponding center of the unipotent part of Stabr(h)

is given by

1] V=T = v=Tw
[4 wE 7
1

Then, one can check that each matrix of the above form acts on Ay = (Z/(1 + \/—1)2)6
trivially. This proves the above claim. 0

On the one hand, in a similar way as [28, Proposition 5.8], it follows that

(545) Kmtor = W*KBS/FBB + 7T

by Lemma 5.4.5. On the other hand, we can calculate the canonical bundle of M¥ by
[28, Lemma 6.4], where a general approach to calculating the canonical bundle of Kirwan
blow-ups was developed:

(546) KMK = f*KMGIT + 5(50,

where & is the exceptional divisor of the blow-up f : M¥X — MST. Here, we apply the
method [28, Lemma 6.4] for our case ¢ = 6 (Lemma 5.3.2) and |Gx| = |Gr| = 2 (Lemma
5.3.1) in their notation. Note that there is no divisorial locus having a strictly bigger
stabilizer than Gx.

5.4.2. Proof of Theorem 5.1.3. We can now prove that these two compactifications
are not K-equivalent.

Theorem 5.4.6. The compactifications M¥ and B5/Ftor are not K-equivalent.
PRrROOF. It suffices to show that K} # K> .. By (5.4.5) and (5.4.6), we need to

ES/Ftor .
show that

(56)° # (T
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Now, T.4; = 6 by Proposition 5.4.3. Hence, we have Tj,4 = 210 and
s_ A0 _ 1
8! 192

Here, if (5&)° and (7T)° are equal, then the denominator of &° must be divided by 5
from the above calculation. On the other hand, [28, Proposition 6.10] implies

&° e 1Z,
e

where e is the least common multiple of the orders of S, for any x € &. However, the
quantity e is not divisible by 5 by Proposition 5.3.7. This contradicts to the above. U

5.5. Cohomology

In this section, we compute the cohomology of the varieties appearing in this chapter.

5.5.1. The cohomology of MX ]B%5/FordBB, ]B%5/Fordtor and IB%5/FBB. We first col-

ord?

lect the results due to Kirwan-Lee-Weintraub [78] and Kirwan [77] who determined the
Betti numbers of MY and B>/ FordBB, and MCIT >~ B5/ o respectively. We summarize
this in

Theorem 5.5.1 ([78, Table III, Theorem 8.6], [77, Table, p.40]). All the odd degree

— ———BB
cohomology of ME , B /Toa and B®/T " wanishes. In even degrees, the Betti numbers
are as follows:

j 002 4 6 8 10
dim HI(MK,) 1 43 99 99 43 1
dim TH/(B5 /Ty ) |1 8 20 20 8 1
dim I H (MEIT) 11 2 2 1 1
dmIH/BT) (11 2 2 1 1

By an application of an easy version of the decomposition theorem, we can also compute
———tor
the cohomology of B%/Toq . (without using that this space is isomorphic to MK,).

Theorem 5.5.2. All the odd degree cohomology ofIEBE’/FordtOr vanishes. In even degrees,
the Betti numbers are as follows:

j 002 4 6 8 10
dim H/(B5/Torg ) |1 43 99 99 43 1

PROOF. We use the form of the decomposition theorem as given in [62, Lemma 9.1].
Here we have 35 cusps and the toroidal boundary at each cusp is isomorphic to P? x P2
The even Betti numbers of this space are given by (1,2,3,2,1) and the result then follows

from the Betti numbers of B?/ FordBB together with the fact that there are 35 cusps. ([l
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5.5.2. The cohomology of M¥X. Now, we compute the cohomology of M¥X. This
will be done using the Kirwan method [79, 76, 77], studying the cohomology of the Kirwan
blow-ups. We mainly follow [27, Chapter 3, 4], in particular, the case of cubic threefolds
with precisely 2As-singularities. Let us consider X = P® acted on by G = SLy(C) with
the usual linearization and let Z3; be the fixed locus of the action of R on X*, which is the

semi-stable locus. We denote by X := Bl z::(X) the blow-up whose center is the unique
polystable orbit G - Z5. From [77, Section 3 Eq. 3.2] or [27, Subsection 4.12, (4.22)], the
Poincare series of X* is given by

PE(X*) = PE(X*) + Ag(t),

where Ag(t) is a correction term consisting of a “main term” and an “extra term” with
respect to the unique stabilizer R; see [27, Section 4.1.2] for precise definitions.
This method reduces the computation of H*(MX) to the estimation of

(1) the semi-stable locus (Subsection 5.5.2.1) ,
(2) the main correction term (Subsection 5.5.2.2) and
(3) the extra correction term (Subsection 5.5.2.3).

5.5.2.1. Equivariant cohomology of the semi-stable locus. Here we proceed ac-
cording to [27, Chapter 3]. We can compute the cohomology of the semi-stable locus by
using the stratification introduced by Kirwan. We omit details, but will still need to in-
troduce some notation in order to describe the outline. Let {Ss}sep be the stratification
defined in [79, Theorem 4.16] and d(5) be the codimension of Sz in X*. Here, the index
set B consists of the point which is closest to the origin of the convex hull spanned by some
weights in the closure of a positive Weyl chamber in the Lie algebra of a maximal torus in
SO(2); see [27, Chapter 3] or [79, Definition 3.13] for details.

Proposition 5.5.3.
PE(X™) =1+ + 2t* mod ¢°.

PROOF. We shall prove 2d(5) > 6 for any 0 # 8 € B. This implies

P (X*) = P,(X)P,(BSLy(C)) mod ¢°
=(1—-t*)"'(1—t""" mod ¢°
=1+ t* 4+ 2t* mod #°.

In the same way, as in the proof of [27, Proposition 3.5] we obtain

d(B) = 7—r(p),

where 7(f3) is the number of weights « satisfying 3 - a > ||3]|?. Now, we have
B = {(17 _1)7 (27 _2)7 (3a _3)a (4a _4)}

For each (a, —a) € B, it easily follows

and this implies d(3) > 3.
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5.5.2.2. The main correction term. The following is based on [27, Chapter 4].

Proposition 5.5.4. The main correction term in Ag(t) is given by

(1 —tH7 (2 +t*) =2 + t* mod 5.

PROOF. In the same way as in [27, Proposition B.1 (4)], the normalizer of R is com-
puted to be
N :=N(R) 2T x Z/2Z.
Hence, it follows that

(A3
— (H*(BR) @ H3 nl(Z5)) """
(H*(BR) @ H* ()

— Q[

where * denotes a set of 1 point and the degree of ¢ is 1. The last equation follows from
the discussion in the proof of [27, Proposition 4.4]. Hence,

P (25) = (1 -1
Combining this with [27, (4.24)] completes the proof. O

5.5.2.3. The extra correction term. Let N be the normal bundle to the orbit G-Z%.
Then, for a generic point 2 € Z3%, we have a representation p of R on N,. Let B(p) be the
set consisting of the closest point to 0 of the convex hull of a nonempty set of weights of
the representation p. For ' € B(p), let n(5’) be the number of weights less than f'.

Proposition 5.5.5. The extra correction term vanishes modulo t%, i.e., does not con-
tribute to Ag(t).

PROOF. In our case we have Z5 = {cs4}. Thus, to describe N, we have to compute

(7004(SL2(©) - {ea})

This was calculated in Lemma 5.3.2. Moreover, diag(A, A\™") acts on T, ,
weights

1
CY = CY by the

0,42, +4, 46, +8.

It follows that T.,,(SLa(C) - {cs4}) is generated by the weights {0,42}, and hence we

obtain
B(p) = {£4,+6, £8}.
This shows that

d(|5) = n(18'))

15|
=14 21
+ 2
>3
for 5/ € B(p). This in turn implies that
“extra correction term” = 0 mod ¢°

by [27, (4.25)]. O
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5.5.2.4. Computation of the cohomology of MX. From Propositions 5.5.3, 5.5.4
and 5.5.5, it follows that

Pi(M¥) = PE(X*)
=1+ 4+t + (#* +t*) mod t°
=1+ 2t* + 3t* mod °.
Therefore, we obtain the following:

Theorem 5.5.6. All the odd degree cohomology of MY vanishes. In even degrees, its
Betti numbers are given as follows:
jl0246 8 10
dimH/(M¥)[1 2 3 3 2 1

5.5.3. The cohomology of B°/ T, Now, we compute the cohomology of the toroidal
compactification of the 5-dimensional ball quotient. Our main tool is the decomposition
in the easy form stated in theorem [62, Lemma 9.1], see also [27, chapter 6]. This allows

us to combine the cohomology of B®/ FBB and the toroidal boundary. To do this, we first
study the cohomology of the toroidal boundary.

Proposition 5.5.7. All the odd degree cohomology of the boundary T vanishes. In even
degrees, its Betti numbers are given as follows:
jl0 24 6 8
dimH/(T) [1 1 2 1 1

ProoF. This amounts to the computation of the invariant cohomology of the action of
the stabilizer of a toroidal boundary component as in the proof of [27, Proposition 7.13].
More precisely, we have to determine the cohomology ring

H.(Hﬂ « PQ)(G4><64)>462 _ H.((P2/64)2,Q)62 _ H.((P(l,Q,S)Q,Q)GQ.

Since H*(P?/&,) = H*((P(1,2,3)) = Q[z]/(x?), this is equivalent to compute the Gy-
invariant parts of the tensor product Q[z]/(2*)®Q[y]/(y?®). Hence the invariant cohomology
is given by

P(T) =1+t +2t* 415 + 15,

We can now summarize the above computations in the

Theorem 5.5.8. All the odd degree cohomology of IB%L”/I‘tOr vanishes. In even degrees,
the Betti numbers are given by the following table:

j 02468 10
dmHI(B/T )1 2 3 3 2 1

In particular, all the Betti numbers of MX and IB%5/Ft0r are the same.

PRroOOF. This follows now from an application of the decomposition theorem as stated
in [62, Lemma 9.1], applied to the last line in Theorem 5.5.1 and Proposition 5.5.7. O
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5.6. Other cases of the Deligne-Mostow list

Here we very briefly discuss some further cases of the Deligne-Mostow list where a
similar analysis can be made. More concretely, we consider N points on P! for 5 < N < 12
with symmetric weights; see [32] or [139, Appendix|. Note that the notions of stable and
semi-stable coincide for odd N. Remarkably, the beahviour which was observed for the
moduli spaces of cubic surfaces and 8 points on P!, can also be found in other cases, thus
pointing towards a much more general phenomenon.

5.6.1. 5 points. The moduli space of 5 points on P! is associated with K3 surfaces
with an automorphism of order 5 [87]. In this case, the Deligne-Mostow isomorphism gives

———BB
GIT
Moq = B2/Tq

for the discriminant kernel group I'oq [87, Subsection 6.3, (6.5)]. Here, the weight in the
sense of Deligne-Mostow is
22222
<5’ 555 5)'

This is the quintic del Pezzo surface [85, Proposition 6.2 (2)]. Now, B?/T" is compact ([87,
Subsection 6.5] or [139, Appendix]). Hence, we have

ME = MOT =BT BT

for the full modular unitary group I'.

5.6.2. 7,9, 10 or 11 points. The moduli space of 7 points on P! was studied in [36].
In this chapter, we apply the theory of the moduli spaces of stable curves to analyze the
geometry of our ball quotients. In order to apply the work by Hassett, Kiem-Moon and
others, the weights appearing in the Deligne-Mostow theory, that is the linearization of a
line bundle, must be linearised as &(1,--- ,1); see [75, Section 1]. Thus, in particular, the
case of 7,9, 10 and 11 points are out of scope in this thesis.

5.6.3. 6 points and 12 points. These are Eisenstein cases, which will be treated in
upcoming work.

5.6.3.1. 6 points. The moduli space of 6 points on P! is closely related to the theory
of the Igusa quartic and the Segre cubic [89, 90, 116]. It is known that the Segre cubic
is realised as the Baily-Borel compactification of a 3-dimensional ball quotient. We recall
the setting of [89]. Let A := Z[w]|®* be the Hermitian lattice over Z[w] of signature (1, 3)
equipped with the Hermitian matrix diag(1, —1, —1, —1), where w is a primitive third root
of unity. Let I' := U(A)(Z) and

Lowa :=1{9 €T | glpn/y=3a = id}.

The ball quotient WBB (resp. B3/ FordBB) is isomorphic to the moduli space of unordered
(resp. ordered) 6 points on P'. Here, B? is the 3-dimensional complex ball. The approach
developed in the current thesis can be fully carried over to this case. In particular, the
analogs of Theorems 5.1.1 and 5.1.3 hold unchanged.
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5.6.3.2. 12 points. The moduli space of unordered 12 points on P! is known to be the
moduli space of (non-hyperelliptic) curves of genus 4 [85]. In particular, this moduli space
is the 9-dimensional ball quotient taken by the full unitary group for the Hermitian lattice
with underlying integral lattice U(3) & U & Eg(—1)®2. There is, however, an important
difference here to the cases discussed previously: the arithmetic subgroup defining the
moduli space of ordered 12 points on P! is not known, see [81], although it is expected to
be the discriminant kernel as in the case of 6 or 8 points.

In this case, there is the blow-up sequence

Vi Vi Vi Vi ~ AqK © GIT
Mo12 — M0,12(§+e) - M0,12(§+e) - MO,lQ(%-l—e) = Mg = Mo -

Note that MSIT has 464 cusps. Combining the above observation with modular forms
constructed by Kondo [81, Corollary 2.9] using Borcherds product, we strongly expect
an analog of Theorems 5.1.1 and 5.1.3. This is further confirmed by an observation by
Casalaina-Martin (private communication), who also expects that Theorem 5.1.1 should

hold.



CHAPTER 6

Modularity of the generating series of special cycles on
orthogonal Shimura varieties

6.1. Introduction

We study special cycles on a Shimura variety of orthogonal type over a totally real field
of degree d associated with a quadratic form in n + 2 variables whose signature is (n,2)
at e real places and (n 4 2,0) at the remaining d — e real places for 1 < e < d. Recently,
these cycles were constructed by Kudla and Rosu-Yott and they proved that the generating
series of special cycles in the cohomology group is a Hilbert-Siegel modular form of half
integral weight. We prove that, assuming the Beilinson-Bloch conjecture on the injectivity
of the higher Abel-Jacobi map, the generating series of special cycles of codimension er
in the Chow group is a Hilbert-Siegel modular form of genus r and weight 1+ n/2. Our
result is a generalization of Kudla’s modularity conjecture, solved by Yuan-Zhang-Zhang
unconditionally when e = 1.

In this chapter, we prove that, assuming the Beilinson-Bloch conjecture on the injec-
tivity of the higher Abel-Jacobi map, the generating series of special cycles in the Chow
groups of a Shimura variety of orthogonal type is a Hilbert-Siegel modular form of half
integral weight. These cycles were constructed by Kudla [95] and Rosu-Yott [131].

Historically, Kudla and Millson studied the cohomology groups in [96]. Kudla conjec-
tured the modularity of the generating series of special cycles in the Chow groups in [94]
and he proved it for one-codimensional Chow cycles, using the results of Borcherds [15].
This conjecture is often called Kudla’s modularity conjecture. In his thesis [154], Zhang
proved it for higher codimensional Chow cycles on Shimura varieties of orthogonal type
associated with a quadratic form of signature (n,2) over Q by his modularity criterion.
His criterion works only over Q because its proof depends on the results of Borcherds [14].
Yuan-Zhang-Zhang [151] extended Zhang’s results [154] to totally real fields. Their proof
is similar to Zhang’s proof over QQ in view of using induction on the codimension of Chow
cycles and calculating element-wise modularity.

Recently, Kudla [95] and Rosu-Yott [131] generalized Kudla-Millson’s work by chang-
ing the signature of the quadratic form. Rosu-Yott [131] studied special cycles in the
cohomology groups only, so did not generalize Yuan-Zhang-Zhang’s work. In this chapter,
we shall generalize the results of Yuan-Zhang-Zhang [151] under the Beilinson-Bloch con-
jecture. In the same setting as [95], [131] and assuming the Beilinson-Bloch conjecture on
the injectivity of the higher Abel-Jacobi map, we prove the modularity of the generating
series of special cycles in the Chow groups. (For the precise statement, see Theorem 6.1.5
and Theorem 6.1.6.)

After the first version of the paper [111] was written, the author learned that Kudla
independently obtained similar results in his recent preprint [95]. His results and proof are
different from ours. More precisely, in [95], he assumed the Beilinson-Bloch conjecture for
Chow cycles of codimension er, and proved the absolute convergence and the modularity of
the generating series. In contrast, even if » > 2, we assume the Beilinson-Bloch conjecture

129



130 6. MODULARITY OF GENERATING SERIES ON ORTHOGONAL SHIMURA VARIETIES

for Chow cycles of codimension e only. However, we cannot prove the absolute convergence.
Assuming the absolute convergence, we prove the modularity by induction on r by the
methods of [151]. (For details, see Remark 1.7.2 (4).)

6.1.1. Beilinson-Bloch conjecture. In the 1980s, Beilinson and Bloch formulated
a series of influential conjectures on algebraic cycles. We review the statement of a part of
the Beilinson-Bloch conjecture which is needed in the main theorem of this chapter. Our
main reference is [10]. More generally, the Beilinson-Bloch conjecture is formulated in the
theory of mixed motives, but we do not need the full version and need only a part of it
for smooth projective varieties over number fields. We recommend [74] to the readers who
want to know the Beilinson-Bloch conjecture in the theory of mixed motives.

In this subsection, let k be a field of characteristic 0 embedded in C. Let X be a smooth
projective variety over k. Let

d™: CH™(X) — H™(X,Q) := H>™(X(C),Q)

be the cycle map. We put CHp, (X)) := Ker(cl™).
The following is a generalization of the Birch and Swinnerton-Dyer conjecture.

Conjecture 6.1.1. (Beilinson-Bloch conjecture [10, Conjecture 5.0]) Assume that k is
a number field. Then the group CHy, (X) is finitely generated and the rank of CHy,  (X)
is equal to the order of zero of the Hasse-Weil L-function L(HZ" (X @1k, Qy),s) at s =m
for any prime (.

We recall another conjecture which is also considered as a part of the Beilinson-Bloch
conjecture. By Hodge theory, we have the Hodge decomposition

H'(X,C) @ HP4,
p+q=m

where HP? := H9(X, Q) and a Hodge filtration {FiHm}ZO on H™ is defined by
Fsz - @ HP™m P

j 2

The the m-th intermediate Jacobian of X (or the Griffiths Jacobian of X) is defined by
JHX) = H™ (X, C)/(F"H*"1(X,C) @ H™ (X, Z(m))).
Then we have the m-th higher Abel-Jacobi map:
AJ™: CHYL L (X)g = CH L (X) @2 Q = JP™H(X)g == J*" (X)) @2 Q.

Here we can state another conjecture which is a part of a version of the Beilinson-Bloch
conjecture.

Conjecture 6.1.2. (Beilinson-Bloch conjecture [10, Lemma 5.6]) The m-th higher
Abel-Jacobi map AJ™ is injective.

Conjecture 6.1.1 or Conjecture 6.1.2 suggests the following is true. Recall that Q is an
algebraic closure of Q embedded in C.

Conjecture 6.1.3. Let X be a smooth projective variety over Q. If H*™1(X,Q) = 0,
then CHp,  (X)o = 0. In particular, the cycle map tensored with Q

clF: CH™(X)g == CH™(X) ©2 Q — H*™(X,Q)

1S injective.
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Remark 6.1.4. When m = 1 and X is a smooth projective curve over C, the map
AJ' is the usual Abel-Jacobi map, so we get an isomorphism between the Picard group
and the Jacobian. See [74, Section 1.4]. From this, it is easy to see that Conjecture 6.1.2
and Conjecture 6.1.3 are true when m = 1.

6.1.2. Main results. Let notation be as in Section 1.2.2. If n > 3, our main results
in this chapter are below.

Theorem 6.1.5. Assume n > 3 and Conjecture 6.1.3 for the Shimura variety Mg, for
m =-e. Let r > 1 be a positive integer.

(1) If £: CH" (Mg, )c — C is a linear map over C such that {(Zy,)(7) is absolutely
convergent, then ((Zy,)(7) defines a Hilbert-Siegel modular form of genus r and
weight 1 4+ n/2.

(2) If r = 1, for any linear map €: CH*(Mg,)c — C, the formal power series
U(Zy,)(T) is absolutely convergent and we get a Hilbert modular form of weight
1+n/2.

If n < 2, we need to embed M, into a larger Shimura variety. Let W be a totally
positive quadratic space of dimension > 3 over £, and we put G’ := Resg, o GSpin(VeW).
We may assume there is an open compact subgroup K} C G’ (Ay) such that Ky = K PN

G(Ay). Let M }(} be the Shimura variety associated with G’ and K’ defined over Q. Then

we have an embedding of Shimura varieties My, — M k} defined over Q.

Theorem 6.1.6. Assume n < 2 and Conjecture 6.1.3 for the larger Shimura variety
M}(} form =e. Let r > 1 be a positive integer.

(1) If £: CH" (Mg, )c — C is a linear map over C such that ((Zy,)(7) is absolutely
convergent, then ((Zy,)(T) defines a Hilbert-Siegel modular form of genus v and
weight 1 4+ n/2.

(2) If r = 1, for any linear map €: CH*(Mg,)c — C, the formal power series
U(Zy,)(7) is absolutely convergent and we get a Hilbert modular form of weight
14+n/2.

6.1.3. Outline of the proof of Theorem 6.1.5 and Theorem 6.1.6. We mostly
follow the strategy of Yuan-Zhang-Zhang [151]. However, we have to treat higher codi-
mensional cycles rather than 1 even in the case of r = 1 different from [151], so we need
algebraic geometrical consideration, such as the Beilinson-Bloch conjecture.

First, we shall prove Theorem 6.1.5 (2). To prove Theorem 6.1.5 (2), we calculate the
cohomology of the Shimura variety My,. By the Matsushima formula, we conclude

H?*7'(Mg,,C) = 0.
Since we are assuming Conjecture 6.1.3 holds for M, and m = e, the cycle map tensored
with C
clg: CHY (Mg, )ec — H**(Mg,,C)
is injective. Hence every C-linear map CH®(Mx,)c — C is extended to a C-linear map
H?**(Mg,;,C) — C. We can deduce Theorem 6.1.5 (2) from the results of Kudla [95,
Section 5.3] and Rosu-Yott [131, Theorem 1.1].

Then we shall prove Theorem 6.1.6 (2) by the intersection formula [151, Proposition
2.6] and the pull-back formula [151, Proposition 3.1].
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Finally, we deduce Theorem 6.1.5 (1) from Theorem 6.1.5 (2) and deduce Theorem
6.1.6 (1) from Theorem 6.1.6 (2). When r > 2, we prove Theorem 6.1.5 (1) and Theorem

6.1.6 (1) by induction on r. We put J := <0 -1

L0 T) € GLa,(Fp). The symplectic group

Sps,(Ep) := {g € GLy,.(Ep) ’ fgJg = J}

is generated by the Siegel parabolic subgroup P(FEj) and an element wy € Sp,, (Ep). Here

Pey={ (5 1) €seaten)

and w; is the image of <(1) _01) by the injection

a 0

a b N Olr—l
c d c 0

0 0 0 I,

QUL O o
oo O

We consider a function Zy, (g') on the metaplectic group Mp,, (A g,) which is a lift of Z, (7).
It suffices to prove that the function Zg,(¢') is invariant under the action of P(Ejp) and
wy. A direct calculation shows the invariance under the action of an element of P(Ej).
To prove the invariance under w,, we use the Poisson summation formula to reduce to the
case r = 1.

6.1.4. Organization of this chapter. In Section 6.2, we recall some facts about
special cycles and Weil representations. In Section 6.3, we calculate the cohomology of a
Shimura variety and prove Theorem 6.1.5 (2) and Theorem 6.1.6 (2). Finally, in Section
6.4, we complete a proof of Theorem 6.1.5 and Theorem 6.1.6.

6.2. Special cycles and Weil representations

In this section, we recall and extend some properties of special cycles in Chow groups.
We also note about Weil representations since in the proof of our main results, we use
the function on Mp,, (Ag,), the metaplectic double cover of Sp,,.(Ag,), lifting Z;, (7). For
more details, see [151].

6.2.1. Special cycles. Let W be an Ejy-vector subspace of
‘7 = V ®Q Af.

We say W is admaissible if the restriction of the inner product to W' is Ep-valued and totally
positive. We say an element x = (xq,...,2,) € V7 is admissible if the Ey-subspace of v
spanned by x1,...,x, is admissible. The following lemma shows admissibility is useful for
description of special cycles.

Lemma 6.2.1. An Ey-subspace W of V is admissible if and only if there exists an
Ey-subspace W' of V and g € G(Ay) such that W = gW".

PROOF. See [151, Lemma 2.1]. O
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By the above lemma, for an admissible subspace W = ¢~ 'W’, we define Z(W)g ;=
Z(W', g)k,. In the same way, for an admissible element r = g ', we write Z(7)g; =
Z(2',9) K, Moreover, for 7 € ()% and ¢ € Mp,,(Ag,), we get the following descriptions:

Zos(r)= Y 6s(@)Z(2)x,q"

xer \‘7T
admissible

Zogg) = Y wilgp)dr(@)Z(x) i, Wi (9h).

zeK f \‘77‘
admissible

By [151, Proposition 2.2], the scheme-theoretic intersection of two cycles Z(W))g, and
Z (W), is the union of Z(W) indexed by admissible classes W in

K \(KWh + K W),
We shall investigate the intersection of two cycles in the Chow group.

Proposition 6.2.2. The intersection of two cycles Z(Wh)x, and Z(Ws)k, in the Chow
group are proper if and only kyWi1 N koW = 0 for all admissible classes kiWy + koW

PROOF. We recall that dim Z(W;)k, = e(n — dim W;). The intersection is proper if
and only if the following inequality holds:

dlm(Z(Wl)Kf N Z(WZ)Kf) S dim Z(Wl)Kf + dim Z(WQ)Kf — dim MKf
= e(n — (dim W + dim W3))
On the other hand,

Z(Wl)](f ﬂZ(Wz)Kf = Z Z(W)Kf

WEKf\(KfW1+KfW2)
admissible

and
dim Z(k1W1 -+ kQWQ)Kf = e(n — (dlm ]€1W1 + dim kQWQ) -+ d1m(k1W1 N kQWQ))

Therefore the above inequality holds if and only if kW7 N kW, = 0 for all admissible
classes ki Wy + koW,
O

Proposition 6.2.3. The intersection of two cycles Z(Wh)k, and Z(Ws) g, in the Chow
group 1is given by the sum of Z(W)Kf indezed by admissible classes W in

K \(KWh + KWo).

PROOF. In the same way as the proof of [151, Proposition 2.6], we have to check that
if dim W2 = 1, Z(Wl)[(f C Z(WQ)Kf, then Z(Wl)}(f Z(Wg)Kf = Z(W1>Kf 'Cl(f). Let A
be the restriction of the normal bundle Ji/Z(WQ)Kf (Mg,) to Z(Ws)k,. Now,

Z(Wl)}(f . Z(WQ)KJ, = Ce(JV) N Z(WQ)Kf
and by the calculation of normal bundles in [95, Chapter 4], we have
Ce(c/V) N Z(WQ)Kf = Z(Wl)Kf . Cl(f).
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6.2.2. The pull-back formula. Here we study the behavior of special cycles under
the pull-back map. Let W C V be a totally positive Ey-vector subspace. There exists a
natural morphism

iwi MKf7W — MKf,
which is a closed embedding if K is sufficiently small. Therefore we get a pull-back map
of Chow groups:
iy o CHY (Mg,) — CH" (Mg, w).
For g/ = (g}ag/oo> S Mp2r<AEO) = MpZT(‘AEO,f) X Mp27‘<EOoo)7 we define

G (Zs)g) = Y wilg)ds(@)isy (Z(x) k) W (95)-

CEEKf \‘7T
admissible

For a Bruhat-Schwartz function ¢, 5 € S((I/I//\i)r), the theta function is defined by
Op,,(9) =Y walg)(dos @ 91)(2).
zeWr
Proposition 6.2.4. For a K-invariant Bruhat-Schwartz function

b7 = b1y © oy € S(VT) = S(WT) @c S(WL)),
we have
i5(Z5,(9)) = Zs, (0 )06,.,(d).

PROOF. Proposition 6.2.3 implies that the assertion is proved by the same way as [151,
Proposition 3.1]. O

6.2.3. Weil representations. Let ¢: Ey\Ag, — C* be the composite of the trace
map Fo\Ar — Q\A and the usual additive character

Q\A — C~
(2)y > exp(2mV/—1(200 — Z Ty))s

v<oo
where 7, is the class of z, in Q,/Z,.

Let W be a symplectic vector space of dimension 2r over Ey. We consider a reductive
dual pair (O(V'),Sp(W)) in Sp(V ®p, W). Then we get a Weil representation w which
is the action of Mp,,(Ag,) x O(V(Ag,)) on S(V(Ag,)"). Let wy; and wy the action of
Mp,, (Ag, ¢) on S(V(Ag, r)") and Mp,,(Ag,) on S(V(Ag,)") respectively. Here we put
Eo. = FEy®gR=[[L, R.

Now, we introduce the degenerate Whittaker function. We shall use the same notation

as in [92]. Let (V4,(, )+) be a positive definite quadratic space of dimension n + 2 over
R and w4 be an action of Mp,,.(R) to S(V]). Let ¢, € S(V) be the Gaussian defined by

p+(@) == exp(—m((z1, 1)1 + - + (@, 2)1)) (2= (21,...,2,) € V).
Let

-q p
be the maximal compact subgroup in Sp,,(R) and Ko be the inverse image of K in

Mp,, (R). Then the function ¢, is an eigenvector with respect to the Weil representation
Wy

Ky = { (p q) € Spy,(R) ‘ P+ V=19 (p - V-1¢) = 17«}.

w+(/{:)g0+ = det(k’)("+2)/2g0+ (k & KOO>
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For a symmetric matrix 7" € Sym,.(R) of size r x r, we take an element x € V[ satisfying

t(z, ) =T. For go € Mp,,(R), we define the degenerate Whittaker function by
Wr(goo) = Wi (goo) P4 (2).

For T' € Sym, (Ey) and

gloo = (9/00,17 Tt 7goo d) € Mp2'r Eooo H Mp2’r

we set
Wr(gh) = Wrer (g 1) -+ Wrea (9o a)-
For g/ = (g}ag:)o) € Mer(AEO) = Mp2r(AEOaf) X MPQT(Eooo)7 we pUt
Zy,(g) = >y wr(g7) (g~ w) Z (2, 9) i, W) (gh)-
z€G(Q\V™ geGo(Af)\G(Af) /Ky

By the Fourier expansion, we consider Zs (g') as a formal power series with coefficients
in CH* (Mk,)c. Therefore, the modularity of the generating series Z,,(7) is equivalent to
the left Sp,, (Ep)-invariance of the function Zg,(g') on Mpy, (Ag,).

6.3. Proof for the case of r =1

6.3.1. Cohomology of Shimura varieties of orthogonal type. In this subsection,
we shall prove if n > 3, then

Recall that we have
Mg, (C) = ][ Xr,

where Xpr = I'\D and T" is a cocompact congruence subgroup of
SOo(V ®g R) = SOy(n,2)¢ x SO(n + 2)47°.

Here SO (V ®g R),SO¢(n,2) denote the identity components of SO(V ®¢ R),SO(n,2),
respectively. Therefore, it is enough to show H?*~!(Xp, C) = 0.
We put G := (Resg, /g SO(V))(R) and g’ := (LieG’) ®@r C. We put

g SOo(n,2) (1<i<e)
YISO +2) (e41<i<d),

and g; := Lie(G}) ®r C. We also put

i

SO(n) x SO(2) (1<i<e)
SO(n +2) (e+1<i<d)

and K" := K} x --- x K. By the Matsushima formula, we can write the cohomology of Xr
as follows:

H** (X1, ) @ Intp(7) @c H* g, K'; 7).

WGQI(R)
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Here G'(R) is the set of irreducible unitary representations of G'(R), Intp(7) is the one
appearing in the decomposition

L*(T\G'(R)) = ® Intr (7

Since 7 is an irreducible unitary representation, m decomposes as m = ®?:17Tz'- See [51,
Theorem 1.2].
Then by the Kiinneth formula [18, Section 1.3], we have

d
(6.3.1) B Mg, Kim) 2 P Q) H (g Kii )

i1+ tig=2e—1 k=1

For e +1 < i < d, we have H/ (g}, K;m) = 0 for any j > 1 since SO(n + 2) is compact.
Therefore (6.3.1) can be written as follows:

(6.3.2) H* (g, K';7)
e d
~ ( D RH"q, ;;m) e R Hg, Ky,
11+-+te=2e—1 k=1 k=e+1

Lemma 6.3.1. Assume n > 3. For 1 <i <e, if m; is non-trivial, then we have
H(g;, Kj;mi) =0
for 7 =0,1.

PROOF. See [143, Theorem 8.1] and the Kumaresan vanishing theorem [98, Section
3). 0

In the rest of this subsection, we assume n > 3. Then, by Lemma 6.3.1, we can write
(6.3.2) as follows:

(6.3.3) H* g K';7)

e d
( B RQH* ﬁmk)) @c Q) HO(gh. Kis ).

i1t Fie=2e—1 k=1 k=e+1
1<3j<e, m;:trivial

1%

Here we need the following lemma.

Lemma 6.3.2. Let L be a totally real number field, V' a non-degenerate quadratic space
of dimension n+ 2 over L, and 1 = ®,m, an automorphic representation of SO(V)(Ar).
If there exists an archimedean place w such that SO(V')(L,,) = SO(n,2) and the restriction
of Ty to the identity component of SO(V)(Ly) is the trivial representation, then m, is a
character for any places v.

PROOF. See [50, Lemma 3.24]. O

The connected Lie group SOg(n,2) is semisimple and has no compact factor. Hence ;
is the trivial representation for every 1 < i <e. See [147, Section 4.3.2, Example 4].
Then (6.3.3) becomes as follows:

(6.3.4) H* (g, K';7)
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( D (é)Hik(g;, ;;1)> ®c éHO(g;, ).

i1+ +ie=2e—1 k=1 k=e+1

Finally by [11, Section 5.10], for 1 < i < e, we have H*(g,K};1) = 0 if s is odd.
Thus,

12

H* (g, K';7) =0.
Combining the above results, we get the following theorem.
Theorem 6.3.3. Assume n > 3. Then we have
Hze*l(MKf,(C) =0.

Corollary 6.3.4. Assume n > 3. Assume moreover that Conjecture 6.1.3 holds for
My, and m = e. Then the cycle map tensored with C

Cléi CHE(MKf)(C — HQe(MKf,C)

f

1S 1njective.
6.3.2. Proof of Theorem 6.1.5 (2) and Theorem 6.1.6 (2). If n > 3, by Corollary
6.3.4, the assertion follows from the results of Kudla [95, Section 5.3] and Rosu-Yott [131,

Theorem 1.1].
If n < 2, we take a totally positive quadratic space W of dimension > 3 over F. We

~

embed V into V @ W. For any K -invariant Bruhat-Schwartz functions ¢ € S(V') and
¢’y € S(W), using the pull-back formula (Proposition 6.2.4), we get

(Zosee )9) = Zs,(9)04,(d)

for any ¢ € Mp,(Ag,). Since Z, 8 (¢') and Oy, (¢') are absolutely convergent and left

SLy(FEp)-invariant, we conclude that Z, (¢') is absolutely convergent and left SLy(Ep)-
invariant.
The proof of Theorem 6.1.5 (2) and Theorem 6.1.6 (2) is complete.

6.4. Proof for the case of r > 1

6.4.1. Invariance under the Siegel parabolic subgroup. For a € GL,(Ey) and

u € Sym, (Fy), we put m(a) := g taql and n(u) : L u) The elements m(a) and

—\o 1
n(u) generate the Siegel parabolic subgroup P(Ey) C Spy, (Ep).

For g’ € Mpy,(Ag,), its infinity component in Mp,, (Eo_) = ], Mp,,(R) is denoted
by i = (9hots -+ 5 Jooq)- For 1 <i < d, we consider the Iwasawa decomposition of g._

For T' € Sym, (R), the degenerate Whittaker function satisfies the following formula:

o
Wr(gh) = | det(s;)| /% exp(2nv/—1(Tr(1;T))) det (k;) "2/

where T, = 8; + Ztlttz
By [93, Part I, Section 1], n(u) acts as follows:

wi(n(u)p)op(x) =Y (Tr(upT(x))) ().
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Thus, we have

wi(n(w)rgs)(d5) (@ KfHWm) Wooifne i)
= ¢f(Tf(ufT(ﬂff)))wf(g})¢f($)Z(I)Kf¢m(Z Tr(ti 00T () c0,i)) H W2y (9hei)
. =1 =1
= (Tl (@)ws(gp) (@) 2 (@), ][ Wre (9.
= wi(gp)(op)(x)Z KfHWT (ghos)-

Therefore, we have the term-wise invariance under n(u):

wy(n(u) ;g 5)(05)(2) 2 (2) 1 Wr(ay (n()scgie) = wi(97)(05)(2) Z(2) i, W (a) (95)-

By the same way, we have

wy(m(a)rg5) (D7) (@) Z () 1k Wiy (m(a)segie) = wi(g7)(05)(20) Z (%) 5, Wrza) (950)

for any a € GL,(F).
On the other hand, we have U(r) = U(xa), so Zy,(x) = Zs,(va). Therefore, combining
the above calculation and the fact Zy,(r) = Zy,(va), we conclude that

Zoy(wr(mla))g) = Y wildp)ds(xa)Z(xa) i, Wria) (95

xer\‘/}r
admissible

= Z wi(g7) o5 (2) Z(2) K, Wr(2) (9n)

:L‘EKf \‘7T
admissible

= Z¢f(g/)'

This shows Z,(g') is invariant under the action of the Siegel parabolic subgroup P(F).

6.4.2. Invariance under w;. By Proposition 6.2.4, we get the following expression.
(For details, see [151].)

Zgy (1) = Z Z Z df(z + JcQ,y)Z(xl)Kf’qu(mez,y)

yEK\‘/}Tfl z2€E0y 1€ K, \y*t
admissible admissible

Thus we have

Zogd) = D D D wilgpds(a +way)Z(wa)we,, Wil + 22,y)(gh)

yGKf\\?'T_l 2€FE0y 21 EKf’y\yJ-
admissible admissible

= Y Y @)@ @) + a9 Z (a1,

yeK\V—1 22€E0y 21 €Ky \yt
admissible admissible

Here ¢*(x,y) is the partial Fourier transformation with respect to the first coordinate.
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Now, by Theorem 6.1.5 (2) and Theorem 6.1.6 (2), we have
Zg,(wrg') = Z Z Z wa(g) (¢ ® ‘Pi)m (1 + 22,y) Z(21) K/, -

yEKf\\?'T_l z2€Eoy xler’y\yJ-
admissible admissible

Here we use the fact that

By the Poisson summation formula, this equals to

Z Z Z wa(9) (9 ® o) (w1 + 22, 9) Z (1)K,

yEKf\‘/}T*1 z2€EY EKf’y\yJ‘
admissible admissible

which coincides with the definition of Zy,(g'). Therefore, we get

Zo;(w19g") = Zs,(9)-
This shows the function Zg,(g') is invariant under w.
The proof of Theorem 6.1.5 and Theorem 6.1.6 is complete.






CHAPTER 7

Modularity of the generating series of special cycles on unitary
Shimura varieties

7.1. Introduction

We study the modularity of the generating series of special cycles on unitary Shimura
varieties over CM-fields of degree 2d associated with a Hermitian form in n + 1 variables
whose signature is (n,1) at e real places and (n + 1,0) at the remaining d — e real places
for 1 < e < d. For e = 1, Liu proved the modularity, and Xia showed the absolute
convergence of the generating series. On the other hand, Bruinier constructed regularized
theta lifts on orthogonal groups over totally real fields and proved the modularity of special
divisors on orthogonal Shimura varieties. By using Bruinier’s result, we work on the
problem for e = 1 and give another proof of Liu’s theorem [103, Theorem 3.5]. For
e > 1, we prove that the generating series of special cycles of codimension er in the
Chow group is a Hermitian modular form of weight n + 1 and genus r, assuming the
Beilinson-Bloch conjecture for orthogonal Shimura varieties. Our result is a generalization
of Kudla’s modularity conjecture, solved by Liu unconditionally when e = 1.

Hirzebruch-Zagier [67] observed that the intersection number of special divisors on
Hilbert modular surfaces generates a certain weight 2 elliptic modular form. Kudla-Millson
generalized this work in [97], and they proved that special cycles on orthogonal (resp. uni-
tary) Shimura varieties generate Siegel (resp. Hermitian) modular forms with coefficients
in the cohomology group. Yuan-Zhang-Zhang [151] and Zhang [154] treated this problem
in the Chow group in the case of orthogonal Shimura varieties and proved the modularity
under a convergence assumption. Bruinier-Raum [26] showed the convergence. Kudla [95]
and the author [111] generalized this problem for a certain orthogonal Shimura variety
under the Beilinson-Bloch conjecture.

In this chapter, we shall work on the unitary case in the Chow group. Our problem
is Conjecture 1.8.1. We give two solutions to this problem (Corollary 7.1.2 and Theorem
7.1.3). First, we prove Conjecture 1.8.1 for e = 1 unconditionally by using Bruinier’s result
[23]. On the other hand, for e = 1, Liu [103] solved Conjecture 1.8.1, i.e., proved the
modularity of special cycles on unitary Shimura varieties in the Chow group, assuming the
absolute convergence of the generating series. Recently, Xia [148] showed the modularity
and absolute convergence of the generating series for e = 1. Our result in this chapter gives
another proof of Liu’s result [103, Theorem 3.5]. For e = 1 and r = 1, the modularity
of special divisors is proved in Theorem 7.1.1. To treat higher codimensional cycles, we
adopt the induction method [151]. Second, for e > 1, we show Conjecture 1.8.1 under
the Beilinson-Bloch conjecture for orthogonal Shimura varieties. We reduce the problem
to the orthogonal case ([95] and [111]), so we also need the Beilinson-Bloch conjecture for
orthogonal Shimura varieties. We remark that we do not prove the absolute convergence
of the generating series in this chapter.

141
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7.1.1. Main results. For notations, see Subsection 1.2.3. We give two partial solu-
tions to Conjecture 1.8.1 in this chapter.

Theorem 7.1.1 (Theorem 7.3.1). Assume that e =1 and r = 1. Then, Z;'i, (1) is a

Hermitian modular form for SU(1,1) of weight n+ 1 under the assumption that the series
converges absolutely.

Theorem 7.1.1 generalizes [68, Theorem 10.1]. We can prove a stronger result by induc-
tion on r [151]. See Corollary 7.1.2. It does not follow immediately from [68] or Theorem
7.1.1 that Zfo(T) is a Hermitian modular form for U(1, 1), i.e., Theorem 7.1.1 shows only
the SU(1, 1)-modularity of Z;’:fc (7). However, we can show the U(1, 1)-modularity of Zfo (1)
by proving term-wise modularity. This means that we can show the modularity of Zfo(T)
for the parabolic subgroup P; and a specific element w; defined in section 7.3. On the other
hand, P, and w; generate U(1, 1), and we already know the modularity for w; € SU(1,1)
from Theorem 7.1.1, so the problem reduces to proving the modularity for P;. For the proof
of the modularity for the parabolic subgroup Pj, see [103], [111], and [151]. By combining
the above modularity and induction on r, we can prove the modularity of special cycles of
a higher codimension.

Corollary 7.1.2 (Corollary 7.3.2). Assume e = 1. Then, szf(T) is a Hilbert-

Hermitian modular form for U(r,r) of weight n + 1 under the assumption that the series
converges absolutely.

This gives another proof of Theorem 7.1.3 for the e = 1 case and [103, Theorem 3.5].
This is shown unconditionally differently from Theorem 7.1.3.

Now, we state the theorem for e > 1. Recall that H := Resg,,o U(Vg) is the unitary
group associated with a Hermitian space Vg over a CM field E, and for a Bruhat-Schwartz

function ¢, € S(VE(Af)T)K}{ , our generating series Zfo (1) is defined as follows with coef-
ficients in CH” (M )c in the variable 7= (r1,...,7) € ()%

ZR(r) = ) > 05(g~"2) 2" (w, 9) kna" .

reH(Q\Vg geHa (Ap)\H(Ap)/ K}
Our main result in this chapter is as follows.

Theorem 7.1.3 (Theorem 7.4.1). Z;fc (1) is a Hilbert-Hermitian modular form for
U(r,r) of weight n + 1 under the Beilinson-Bloch conjecture for m = e with respect to
orthogonal Shimura varieties and the assumption that the series converges absolutely for
e > 1.

Remark 7.1.4. We assume the Beilinson-Bloch conjecture for m = e for N K9 when
2n > 3,1i.e., n > 1. When n = 1, we need to assume the Beilinson-Bloch conjecture for
m = e for a larger orthogonal Shimura variety N }(? including N K9} See [111, Theorem 1.6].

For the precise statement of the Beilinson-Bloch conjecture, see [111, Section 1.2].

We can also restate the result using Kudla’s modularity conjecture for orthogonal
Shimura varieties as follows.

Corollary 7.1.5. Zfo(T) is a Hilbert-Hermitian modular form for U(r,r) of weight
n + 1, assuming the modularity of the generating series of special cycles on orthogonal
Shimura varieties for r = 1 and absolute convergence of the series Z(Z (1) fore>1.
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We explain in section 7.4.4, why we only assume the modularity for » = 1 on orthogonal
Shimura varieties.

7.1.2. Outline of the proof of Theorem 7.1.1 and Theorem 7.1.3. As an appli-
cation of the modularity of special cycles on orthogonal Shimura varieties proved by using
regularized theta lifts, we can prove Theorem 7.1.1 and Corollary 7.1.2. This is another
proof of [103, Theorem 3.5] for the special divisors case. Theorem 7.1.3 is reduced to the
orthogonal case, [95] and [111], so we have to assume the Beilinson-Bloch conjecture for
orthogonal Shimura varieties, and this is our solution to Conjecture 1.8.1.

7.1.3. Organization of this chapter. In section 2, we review the modularity of the
generating series of special cycles on orthogonal Shimura varieties. In section 3, we prove
the modularity for the e = 1 case. In section 4, we give the Hermitian modularity of special
cycles for e > 1 under the Beilinson-Bloch conjecture for orthogonal Shimura varieties.

7.2. Modularity on orthogonal groups

In this section, we shall recall Bruinier’s work [23]. He constructed regularized theta
lifts on orthogonal groups and showed the modularity of special cycles on orthogonal
Shimura varieties.

Throughout this section, let L C Vg, be an even Op,-lattice and LY be the Z-dual

lattice of L with respect to Trpg,,q( , ). Let 7 = [1)<o0 Zp, and we define L:=L®7Z We
have LY/L = LV/L, so for € LV/L, let 1, € S(Vi,(Ag,,r)) be the characteristic function
associated with u + L. In the current section, we assume that »r =1 and n > 2.

7.2.1. Regularized theta lifts on orthogonal groups. We review the results of
[23]. Let

ko= (ki ko . k))=(1—n,1+n,....14n) ez’
and sg := 1 — k; = n. We call k£ weight and define the dual weight s to be
ki=(2—kyky... kg) =0 +n1+n,...,14+n)cZ%

We use Kummer’s confluent hypergeometric function

= (a), 2" I'la+n
M(a,b,z) = go ((bgnn! (@), = %

for a,b, z € C. and Whittaker functions
M, (2) == e # 2P M1 /24t —v, 14+ 2t,2) (t,v e C),
Mi(v1) = o] 2 Mgnony j2.52(Jo1))e™2 (s € C o1 € R).
Now, we shall define the Whittaker forms
Fp(T,8) 1= C(m, k, s) M(—dmmyv,) exp(=27v =1 Tr(m7))1,  (m; = oi(m)),

where € LV/L = LY / Land1 u 1s the characteristic function associated with p + L.
Here, C(m, k, s) is a normalizing factor
(4rmg)k2=L . (4rmyg)ka=t
I(s+D(ky—1)...T(kg— 1)
We define for 7 € (5#)?, the function

C(m,k,s) =
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Smu(T) = fimu(7, 50)

F(l — k:1,47rm1v1)

= C(m,k, s0)['(2—Fk)(1—
(m7 ’80) ( 1)( F(]_ — kl)

Here, for m € Ey, m >> 0 means m; := o;(m) > 0 for all 4, and 0g, denotes the different
ideal of a totally real field Ey. Note that we consider a finite &g ,-module LY /L equipped
with a quadratic form ( , )/2 which takes values in Fy/0~' O, since we assume that L is
even.

Definition 7.2.1. A Whittaker form of weight k is a finite linear combination of the
functions fp, (7, s) for pw € LY/L,m € (u,p)/2 + 010k, and m >> 0. A harmonic
Whittaker form of weight k is a Whittaker form with s = sg, i.e., a function which has the

form
S elmp) fnn(7)

peLY /L m>>0

for ¢(m,p) € C. Here, the second sum runs m € (u,u)/2 + 0 'O0g,. Let Hy,r be the
C-vector space consisting of harmonic Whittaker forms of weight k.

)647rm1v1 eXp(_Qﬂ'\/—_l Tl"(m?)) L

Note that in the above definition, the weight k is used in the definition of the normalizing
factor C'(m, k,s) and sg :=1 — k;.

Remark 7.2.2. Here, py, is a lattice model of the Weil representation of the metaplectic
group Mp,(Opg,), and f,,, satisfies a certain modularity condition on p; and a certain
differential equation. For details, see [23, Chapter 4].

Under our assumption on n > 2 and x; > 2 for all j, there is a surjective map
§e: Hipr — Sk, [23, Proposition 4.3]. Here, S, ,, is the space of Hilbert modular forms
of weight x and type pr. Let M — be the kernel of this map, and we call elements of this
space weakly holomorphic Whlttaker forms of weight k.

Hence, there is an exact sequence,

§k

0—>Mka — Hyop = Skpp — 0.

This exact sequence and the following are analogs of classical ones. See Borcherds [14].
This pairing is non-degenerate, so a non-degenerate pairing is induced between Hy, /M, kT

and Sy ,, defined by
{gv f} = (g7€k(f))Pet

for the Petersson inner product on Sy ,,. We recall the result [23, Proposition 4.5] that
provides an explicit formula for the above non-degenerate pairing { , }.

Proposition 7.2.3 ([23, Proposition 4.5]). For g € S, ,, and f € Hy 5 with Fourier
eTpansions

Z Z b(n, v) exp(2my/—1 Tr(n1))1,,

veLV /L n>>0

> D clm)fmu(r),

peLY /L m>>0

{9.fY= "> D clm, w)b(m, p).

peLY /L m>>0

we have
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We remark that Whittaker forms are analogs of Maass forms. See [23, Section 4.1].
For f = ZH Yo C(m, ) fnu(7) € Hi 5, we define

= Z Z c(m, 1) Z9 (m, N)ng

Let I := Resg,/q SL2 and xy be a quadratic character of Ag /Eg associated with V' given
by

xv(z) = (z, (=1 V2 det(V)) g, (£:=2n+2).
We review the definition of the Eisenstein series [23, Section 6.2]. Let Q C H be the

parabolic subgroup consisting of upper triangular matrices, and let s € C. We take a
standard section ® € I(s, x) := Indg xv| - |*. Now we have the Eisenstein series

E(g,5®):= Y 2(y9).
YEI(E0)\G(Eo)
E(r,5,6;®5) == v~ E(gr, 5, B5 @ ®L),

where g, € Mpy(R)? satisfies g,(v/—1,...,v/—1) = 7 € 2 and ®_ is defined in [23,
Chapter 6]. Let 1, be the characteristic function associated with p + L for p € LY/L =

LY / L. Here, the Weil representation gives an intertwining operator between the space of
Bruhat-Schwartz functions and the space of standard sections at s = sq:

A=A® A S(V(Ag,)) — I(s0, xv)-
We obtain a vector-valued Eisenstein series of weight ¢ with respect to pp by taking

Ep(r,s,0) = Z E(1,s,0;X¢(1,))1,

neLY /L

Recall that 1, € S(Vp(Ag, ) is the characteristic function associated with u 4 L for
LY/L = LY/L. We get the Fourier expansion of the Eisenstein series at oo:

Ep(r, k) == EL(T,80,k) = 1o+ Z Z (m, ) exp(2nv/—1Tr(m))1,.

peELY /L m>>0

> > clm,u)B(m, )

peLY /L m>>0

for a harmonic Whittaker form f =3" > c(m,p)fmy. Note that B(f) = {EL(r,x), f}.
The following theorem is the regularized theta lift over totally real fields, proved by
Bruinier [23, Theorem 1.3].

We define

Theorem 7.2.4 ([23, Theorem 6.8]). Let f € My 5 be a weakly holomorphic Whit-
taker form of weight k for I' = SLy(Og,) C I(R) = Resg, g SL2(R) whose coefficients
c(m, p) are integral. Then, there exists a meromorphic modular form V(r, g) for G(Q) of
level K? satisfying

(1) The weight of ¥ is —B(f),
(2) divV = Z(f).
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7.2.2. Modularity of special divisors on orthogonal groups. Now, we review
the modularity of special divisors on orthogonal Shimura varieties. To state the theorem,
we need to prepare the generating series for orthogonal Shimura varieties. From [23], recall
that for xy taken in Remark 1.2.1 and for a totally real element m = (z¢,x¢)/2 >> 0 in
Ey, we define

Zg(m7¢f)K? = Z ¢f(h_1x0)Zg(x07h)’
h€Gzo\G(Amy,r)/K§

Ary= ) —a( @+ ) Z(Zg(m>1u)xg+B(m>u)01($))qm1m

pneLY /L peLY /L m>>0
A(T7 ¢f) = _Cl("g) + Z Zg(ma ¢f)K?qm7
m>>0
A(r) = ZA(Ta 1)1, = Z —ci (L)1, + Z Z Zg(m, 1#)ngqm1u'
K neLY/L peLY /L m>>0

Note that since we treat the r = 1 case, x is an element of Vg, so that the notion “m is
totally real” makes sense and corresponds to # > 0 in Remark 1.2.1.
We want to show the modularity of Z;, (7), but first, we will prove the modularity of

A%(7). See Remark 7.2.6. We remark that A(r,¢;) = ng(r). The following theorem was
proved by Bruinier [23].

Theorem 7.2.5 ([23, Theorem 7.1, Proposition 7.3]). For any n > 0,
A7) € Sy p, ® CHl(NK};).
Remark 7.2.6. We know
A7) = A(T) + 1 (L) EL(T, k)
by [23, Remark 6.5]. Hence, combining with Theorem 7.2.5, we also get
A(T) € Sip, ® CHl(NKJg).

7.3. Modularity of special cycles on unitary groups for e =1 case
7.3.1. Divisors case.

Theorem 7.3.1. Assume thate =1 andr =1. Then, Z;'ff (1) is a Hermitian modular
form for SU(1,1) of weight n+ 1 under the assumption that the series converges absolutely.

PROOF. First, we want to show the modularity of Z;Li (7). Now, ¢y is a locally constant,

compactly supported function, so we can factorize this as ¢ = Zue v/ eulp for some
e, € Cand p € LY/L. Recall that

Spi= P Cl, CS(V(Ag,y)),

so that we define the map
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Then we have

5 S @ CH(Nyeo)ellal] € St © CH! (Nyeg)ellal] — CHY (N )c[la]

SN b )1y ® Zonpg™ = D> D b(m, 1)y Zm g™
nweLV /L m nweLV/L m
where > ;v p >0, 00m, 1)1,4™ € S.,, and Zyy,, € CHY( K?)C- Note that we consider

these two spaces as formally defined, not assuming absolute convergence. Then, §(A(T)) =
ng (7) because from the definition of the generating series and Remark 1.2.1,

Z Zg Qbf Kgq 9

m>>0

where ¢ := exp(2my/—1Tr(m7)) Hence, this is formally modular in the sense of Definition
1.2.2 for Theorem 7.2.5 and Remark 7.2.6. See also [23, Section 2.3].
On the other hand, [103, Corollary 3.4], we have L*ng (1) = Z;—';(T). Therefore, by

the modularity of ng (1), the generating series szf(T) is a Hermitian modular form for

SU(1,1) under the assumption that the series converges absolutely. Since the weight of
Zg (7) is n + 1, this finishes the proof. O

This gives proof of Theorem 7.1.1. Note that to prove the modularity of Z;fc (1) for
n > 1, we use the perfect pairing presented in Proposition 7.2.3. For n = 1, we use an
embedding trick. For more details, see [23] or [111].

7.3.2. General r case. To show the Hermitian modularity, we reduce the problem to
the generators of the associated unitary group. Now, the indefinite unitary group U(r,r)
is generated by the parabolic subgroup P.(Ey) = M, (Ey)N,(Ey) and w,,_1, where

a

My (Bn) = ) = (o) € GL(E)

Ny (Ep) := {n(u (T 1, | u € Her,(E)}

17‘71 0 Or 1 0
w0 0 01
preb e Orfl 0 17"71 0

0O -1 0 0

See [103, Proof of Theorem 3.5]. We put w; := w;. By induction on r, we get the
following result.

Corollary 7.3.2. Assume e = 1. Then Zfbfc (1) is a Hilbert-Hermitian modular form
for U(r,r) of weight n + 1 under the assumption that the series converges absolutely.

PRrROOF. To prove that the generating series Z;{f(T) is a Hermitian modular form for
r = 1, we already know the modularity for SU(1,1) from Theorem 7.3.1. Therefore, in
particular, we know the modularity for the element w; € SU(1,1). Hence, it suffices to
prove the modularity for the parabolic subgroup P; C U(1, 1) because U(1,1) is generated
by P, and wy = w;o. We can prove the invariance under P; in the same way as [103]



148 7. MODULARITY OF THE GENERATING SERIES ON UNITARY SHIMURA VARIETIES

or [111]. This finishes the proof of the corollary for the » = 1 case. For r > 1, we use
induction on r. More specifically, for any r, we can prove the modularity for P,, i.e.,

w95 (65 @ 94) () 27 ()

wr(gy)(6r ® ¢4)(2) 27 () e

wi(n(w)1g7) (05 ® 1) () Z7 (@)
wr(m(a)rg}) (65 ® P{)(@) 27 (x)

hold for any w € Her,(F) and a € GL,.(F"). This will also be done in more detail in section
7.4.2. By using the modularity for w; in the r = 1 case, we can prove the modularity
for w,,_; when r > 1 in the same way as in section 7.4.3, and we already know the
wi-modularity. We will show the induction step in section 7.4.3. U

This shows the modularity of special cycles on a unitary Shimura variety for e = 1
(Theorem 7.1.2) and gives another proof of Liu’s theorem [103, Theorem 3.5].

7.4. General e case

7.4.1. Weil representations. Let ¢: E\Ar — C* be the composite of the trace
map E\Agr — Q\A and the usual additive character

Q\A — C~
(y)y — exp(27r\/—_1(:coo — Z Tv)),

v<o0o

where 7, is the class of z, in Q,/Z,.

Let (W, (, )) be a Hermitian space of dimension 2r over E whose signature is (r,r) so
that U(W) = U(r,r). Then, we get a symplectic vector space W := Resg/g,(Ve @ W)
with the skew-symmetric form Trg g, ((, ) ® (1, )). Let Sp(W) be the symplectic group
and Mp(WW) be its metaplectic C* covering group. Then, we get the Weil representation
wy and wy, the action of Mp(W)(Ay) to S(V(Ag,s)") and Mp(W)(A) to S(V(Ag,)").

Now, we state the second solution to Conjecture 1.8.1.

Theorem 7.4.1. Assuming absolute convergence fore > 1, Z;ff(r) is a Hilbert-Hermitian
modular form for U(r,r) of weight n+ 1 under the Beilinson-Bloch conjecture for orthogo-
nal Shimura varieties for m = e and the assumption that the series in the orthogonal case
converges absolutely.

We reduce Theorem 7.4.1 to the orthogonal case, so we have to assume the Beilinson-
Bloch conjecture for orthogonal Shimura varieties. The strategy is as follows. For the
general e case, we can prove the modularity for P, for any r by direct calculation. We can
also show the modularity for w,,_; when r > 1, assuming the modularity for w; = wy g
in the » = 1 case. Hence, the problem is the modularity for w; for » = 1 and general e.
We treat this problem by embedding unitary Shimura varieties into orthogonal varieties,
studied in [68]. In the orthogonal cases, the modularity of the generating series is proved
by [95] or [111] under the Beilinson-Bloch conjecture. We remark that when e = 1, the
modularity for w; is solved by Corollary 7.3.2, followed by the modularity for SU(1, 1) using
the regularized theta lifts. For the precise statement of the Beilinson-Bloch conjecture, see
[111, Section 1.2].
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From [151], we get the following expression for the generating series for the unitary
group H.

ZZs{f(T) = Z Z Z Or(z,yi + yz)ZG(yl)Kf,qu(x’yﬁyQ)7
xGK}ﬁ\\'}bﬁ—l Y2ELT 4y GK}{’x\xl
admissible admissible
where K}fz is the stabilizer of z and let Vg = Vp ® As, ¢"(x). Here, for the notion
“admissible” and the definition of the special cycles Z*(z)g,, see [103, Lemma 3.1], [111,

Lemma 2.1], or [151, Lemma 2.1]. Let ¢, (x) = exp(—n TrT(x)) be the Gaussian. We
extend the definition of ZJ (7) for 7 € (4)" to ZJ.(¢) for ¢’ € U(r,7)(Ag,) defined by

Z5) = ) Y. wl@)ér @) e )2 (@, g)kp

e€H(Q)\Vp 9€Ha (Ap)\H(As)/KF

= > Y > wl@)@r @@y + ) Z¥ )k
reK\VE ! v2€ET y e K7 \at
admissible admissible
Remark 7.4.2. The modularity of the generating series Z;{f (7) is equivalent to the left
U(r, r)(Ep)-invariance of the function Zfo (¢') on U(r,r)(A).

Hence, in the following, we show the left U(r,r)-invariance of Z;ic (¢'). First, we show
the P,.-invariance of Z;’ﬁ? (¢') for any r. Second, for r > 1, we show the w, ,_j-invariance
of Z}'(¢g), assuming wi-invariance for the r = 1 case. Finally, we show that Z}!(¢) is
wy-invariant for the » = 1 case.

7.4.2. Invariance under the parabolic subgroup P,. The elements m(a) and n(u)
generate the parabolic subgroup P,(Ey) C U(r,7)(Ep).

In the same way [103, Theorem 3.5 (1)] or [111, Section 4.1], we can show the following
invariance under n(u); and m(a);:

wi(n(u)sgy) (6 ® 1) () 27 (@) ke = wy(9}) (65 @ 91 (2) 27 ()
wr(m(a)rg) (65 ® $E)(@) 27 (x) kn = wilgy) (b @ ¢5) (wa) Z7 () e

for any u € Her,(Ey) and a € GL,.(Ep). The first equation shows the n(u)-invariance
of Z;’:? (¢'). We shall prove that Z;ff (¢') is m(a)-invariant as follows. We have U(z) =

U(za), so Z;;; () = Z;f[(xa). Therefore, combining the above calculation and the fact that
ZZ)‘; () = Z;{f(:m), we conclude that

Z§ (wim()g) = Y wilgp) ey ® ¢} (wa)Z* (za)
zeKT\Vj
admissible

= Y wilgp(dr @ eP)(@) 2 (@) kp
xEK}"\\A/ET
admissible

= Z} ().

This shows that Z;fc (¢') is invariant under the action of the parabolic subgroup P,.
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7.4.3. Invariance under w,,_; for » > 1. For the following discussion, we use an
induction method used in [103, Proof of Theorem 3.5] and [151, Section 4.2]. Recall that

ZH) = Y Y S wld)6r @ e ) 2 ) g

.tEK}"\‘/}E_l y2€Ew yIEK}%x\:):L
admissible admissible

Hence,

Z;-fc (wm“—lg,) = Z Z Z WA(wnr—l)(wA(g,)(st ® goi))(x, Y1+ y2)ZH(yl)K}ffz~

eeKP\VE—t v2€ET y e KT \at
admissible admissible

Now, from the definition of the Weil representation, we have

wa(Wrr—1) (0 ® ©1)(2,y) = (¢ ® p1)! (2, y),

where ¢Y(x,y) is the partial Fourier transformation with respect to the second coordinate.
Applying this,

Zh(weag) = 3 3 Y (wald)ér @ @) + u2) 2 )
seK\VE "t 12€BT y e K \at
admissible admissible

For fixed z, applying the r = 1 case (modularity of the generating series constructed
by special divisors) to the special divisors Z7(y,) K, We have

Z wa(9) (05 ® @)% (2, 51 + y2)ZH(y1)K}fx
y1eK i \at
admissible
= Y w6 @)@+ ) Z ()

yieKH \zt

admissible
as a function of y,. Note that w; o = w;, and here we can use the w;-modularity for the
r = 1 case. Thus,

Z(wead) = Y D D> wald) @) @y +y2) 2 () -
eeK\Vp 2€BT yre KT \at
admissible admissible

Here, for fixed x and y,, by the Poisson summation formula for the function ws(¢")(¢; ®
@i)(% Y1 +y2) on yo € Fx C Ax, we have

Z wa(g)(dr @ 0% (2,31 + y2)ZH(yl)K}‘fx

y2ElbT

= D w6 @ Dy )2 W)y

y2 LT

This leads to
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Zhwneag) = Do D Y wald)er @)@y ) 2 )k

ee KVt v2€ET y e K7L \at
admissible admissible

which coincides with the definition of Zij (¢'). Therefore, we get

Z;—lf (wr,r—lg,) = ZZS-[f (g,)'
This shows that the function Z;{f (¢') is invariant under the action of the element w;, ,_;.

7.4.4. Invariance under w; for r = 1. We use Liu’s proof [103, Theorem 3.5].
Now, U(1) x U(1) is the maximal compact subgroup of U(1,1), and SLay(Ag, ;)(U(1) X
U(1))(Aps) = U(1,1)(Ag, s). Therefore, we reduce the problem to proving that ZZ;? (ung') =
Z;? (¢') for all ¢’ € SLa(Ag,). By [103, Corollary 3.4] and the proof of [103, Lemma 3.6],

it suffices to prove ng(wlg’ ) = ng (¢'). However, this follows from [95] or [111] under

the Beilinson-Bloch conjecture for orthogonal Shimura varieties. This finishes the proof of
Theorem 7.4.1.
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