
RIGHT:

URL:

CITATION:

AUTHOR(S):

ISSUE DATE:

TITLE:

Seismic damage identification of
cable-stayed bridge in near-real-
time using unsupervised deep
neural network

Kim, Minkyu; Song, Junho

Kim, Minkyu ...[et al]. Seismic damage identification of cable-stayed bridge in near-real-time using unsupervised deep
neural network. Proceedings of the 20th working conference of the IFIP WG 7.5 on Reliability and Optimization of
Structural Systems 2022: 1-10: 2.

2022-09

https://doi.org/10.14989/ifipwg75_2022_2

1

IFIP WG7.5 working group conference
19-21 September 2022, Kyoto University, JAPAN

1. INTRODUCTION

Structural Health Monitoring (SHM), utilizing numerous sensor data and measurements, has

arisen as an alternative for traditional inspection methods. SHM can handle a variety of important

tasks related to the infrastructure systems, including post-disaster damage identification. Gener-

ally, SHM processes are categorized into long-term and short-term SHM (Dawson, 1976). The

long-term SHM utilizes periodically updated information about the ability to perform its intended

function. On the other hand, the short-term SHM aims to rapidly identify structural condition

changes and provide information on the structural integrity in near-real-time.

Recently, pattern recognition methods combined with vibration-based damage identification

are considered particularly suitable for the short-term SHM. This is because such methods can

utilize the pre-trained model, such as a Deep Neural Network (DNN), using the features extracted

from the vibration signals (Pathirage et al., 2018). Therefore, it requires low computational effort

to recognize the changes in vibration characteristics. This paper focuses on developing a near-

real-time damage identification method under earthquakes using DNN-based pattern recognition.

Nonetheless, identifying damage from the raw vibration signals is generally challenging be-

cause of its insensitivity to structural damage. Furthermore, massive infrastructure systems, such

as cable bridges, are more challenging to identify structural damage because they have a high

level of structural complexity, and the dominant natural frequencies are in the narrow range. By

contrast, the structural response characteristics, which can be obtained by post-processing the raw

vibration signals, are relatively sensitive to structural damage. In this paper, the sample covariance

Seismic damage identification of cable-stayed bridge in near-real-
time using unsupervised deep neural network

Minkyu Kim

Department of Civil & Environmental Engineering, Seoul National University

Junho Song

Department of Civil & Environmental Engineering, Seoul National University

ABSTRACT: Prompt damage identification of infrastructure systems is essential for effective
post-disaster responses. However, most infrastructure systems have a high level of structural com-
plexity, making damage identification extremely difficult. To overcome the challenge, the authors
recently proposed a deep neural network (DNN) based framework for identifying the seismic
damage based on the structural response data recorded during an earthquake event (Kim and Song,
2022). The DNN of the proposed framework is constructed by a Variational Autoencoder, one of
the self-supervised DNNs capable of constructing a continuous latent space of input data by learn-
ing probabilistic characteristics. The DNN model is trained using the covariance matrices of the
snapshot of the response data obtained from the undamaged structure. To consider the load-de-
pendency, the undamaged state of the structure is represented by the covariance matrix, which is
closest to that obtained from the measured seismic response in the latent space. To identify the
severity of the structural damage, a structural damage index based on the difference in the covar-
iance matrices is introduced. This paper improves the DNN-based framework to facilitate its ap-
plications to complex structural systems such as the Incheon Grand Bridge, a reinforced concrete
cable-stayed bridge in South Korea. To generate train, validation, and test datasets, structural
analyses are first performed under the ground motions from the PEER-NGA strong motion data-
base. The proposed framework is verified with near-real-time simulations using ground motions
with various time steps from the test dataset. The example shows that the proposed framework
can accurately identify seismic damage of the complex structural system in near-real-time.

2

matrix of the raw signals is utilized as the response characteristics.

Response characteristics, however, tend to show more variability under seismic load condi-

tions. This makes it difficult to identify structural damage by comparing response characteristics

during an earthquake event. To address this issue, this study adopts a variational autoencoder

(VAE) (Kingma and Welling 2013), an autoencoder (AE) with probabilistic learning. VAE learns

how to encode input data into a distribution over the continuous latent space. Because of this

continuity, the distance between two points in the latent space can be utilized to measure the

similarity of corresponding input data. Therefore, the latent variables should be clustered in terms

of the load conditions because uncertain characteristics are significantly affected by those. In ad-

dition, since local damage does not drastically change the response characteristics, the response

characteristics in a damaged state are located around a latent cluster with the most similar load

condition. Therefore, it is possible to find the undamaged structural response characteristic under

the most similar load condition to the damaged one, based on the distance in the latent space.

The authors recently proposed a DNN-based framework for near-real-time damage identifi-

cation under the seismic load condition (Kim and Song, 2022). In this paper, the DNN-based

framework is improved to deal with complex structural systems. The proposed framework con-

sists of four steps: (1) structural analyses of the target structure at an undamaged state are first

performed under the ground motions from the PEER-NGA strong motion database (Chiou et al.

2008), and covariance matrices are prepared as input dataset; (2) the DNN model is trained to

learn the latent space and fine-tuned using the validation dataset; (3) real-time simulations are

performed with the test dataset for various damage conditions to verify the pre-trained network;

and (4) the SDIs are calculated in near-real-time. A structural damage index (SDI) based on the

difference in the covariance matrices is introduced. As the DNN model, convolutional VAE

(CVAE; Goodfellow et al., 2016) is selected. As a numerical example of the proposed framework,

the Incheon Grand Bridge, the reinforced concrete cable-stayed bridge in South Korea, is inves-

tigated under seismic load conditions.

2. THEORETICAL BACKGROUND FOR DEEP NEURAL NETWORK

2.1. Autoencoder

The aim of Autoencoder (AE) is to learn patterns hidden in a set of data by finding a DNN struc-

ture that can reconstruct the input data by going through the mapping functions called encoder

and decoder sequentially. A classical AE consists of an encoder and decoder with a single hidden

layer (Vincent et al. 2010). One can construct a deep AE by introducing multiple hidden layers.

A conceptual illustration of deep AE is shown in Figure 1.

Figure 1 Conceptual illustration of AE.

3

Encoder: The mapping function 𝑓(𝐱), which transforms a 𝑑-dimensional input vector 𝐱 ∈

ℝ𝑑 into an 𝑟-dimensional latent variable 𝐳 ∈ ℝ𝑟, in which 𝑑 > 𝑟, is called an encoder. 𝒇(𝐱)

is usually described as a nonlinear transformation

𝐳 = 𝒇(𝐱) = 𝝈(𝐖𝐱 + 𝐛) (1)

where 𝐖 ∈ ℝ𝑟×𝑑 denotes the mapping weight matrix of the encoder; 𝐛 ∈ ℝ𝑟 is the bias vector;

and 𝝈 is the activation function, which is usually a nonlinear function such as sigmoid, tangent

hyperbolic, rectified linear unit (ReLU), and exponential linear unit (ELU) function.

Decoder: The mapping function 𝒈(𝐳), which transforms the latent variable 𝐳 back into a

reconstructed vector 𝐱′ ∈ ℝ𝑑, is called a decoder. Usually, 𝒈(𝐳) is described as

𝐱′ = 𝒈(𝐳) = 𝝈(�̂�𝐡 + �̂�) (2)

where �̂� ∈ ℝ𝑑×𝑟 denotes the mapping weight matrix of the decoder; �̂� ∈ ℝ𝑑 is the bias vector;

and 𝜎 is the activation function described above.

To estimate the optimal parameters of AE model 𝛉 = [𝐖, 𝐛, �̂�, �̂�] based on the training data,

AE algorithms aim to minimize the loss function ℒ𝐴𝐸(𝐱) often defined as the mean squared error

(MSE)

ℒ𝐴𝐸(𝐱) =
1

𝑚
∑

1

2
‖𝒙(𝑖) − 𝒈 (𝒇(𝒙(𝑖)))‖

2
𝑚

𝑖=1

 (3)

where 𝑚 is the number of training samples; and 𝒙(𝑖) is the 𝑖-th input. ℒ𝐴𝐸(𝐱) is generally dif-

ficult to minimize due to its non-linearity, gradient descent-based optimizers, such as Adam

(Kingma and Ba, 2014), are commonly used.

2.2. Variational autoencoder

A variational autoencoder (VAE) is also composed of both an encoder and a decoder, but the

VAE encodes the input data as a probabilistic distribution over the latent space by introducing the

regularization term. The VAE uses a variational inference approach to learn latent representation,

which results in a loss function with a regularization term, termed the Stochastic Gradient Varia-

tional Bayes (SGVB) estimator (Kingma and Welling, 2013).

VAE assumes that the data is generated from the decoder 𝑝𝜃(𝐱|𝐳), and the encoder learns an

approximation of the true posterior distribution 𝑝𝜃(𝐳|𝐱), denoted by 𝑞𝜙(𝐳|𝐱) where 𝜙 and 𝜃

are the parameters of the encoder and decoder respectively. The loss function of VAE is given as

ℒ𝑉𝐴𝐸(𝒙; 𝜙, 𝜃) = 𝐷𝐾𝐿 (𝑞𝜙(𝒛|𝒙) ∥ 𝑝𝜃(𝒛)) − 𝐸𝑞𝜙(𝒛|𝒙)(𝑙𝑜𝑔 𝑝𝜃(𝒙|𝒛)) (4)

where 𝐷𝐾𝐿 stands for the Kullback–Leibler divergence (KL divergence); 𝑝𝜃(𝐳) is the true prior

distribution over the latent variables; and 𝑞𝜙(𝐳|𝐱) is the variational distribution. Note that the

first term in the loss function makes 𝑞𝜙(𝐳|𝐱) similar to 𝑝𝜃(𝐳), i.e., the regularization term, and

the second term is the reconstruction error. Introducing the regularization term to the loss function

makes the latent space have the following two main properties: (1) continuity; and (2) complete-

ness, which respectively mean that close points in the latent space should give similar output once

decoded, and a point sampled from the latent space should give meaningful outputs.

Figure 2 provides a conceptual illustration of VAE. The training process of the VAE model

consists of the following four steps: (1) the input is encoded as a probabilistic distribution over

the latent space (characterized by 𝜇𝐳 and log 𝜎𝐳
2 if the latent variables are assumed to follow a

multivariate Gaussian distribution); (2) the latent variable 𝐳 is sampled in the latent space ac-

cording to the encoded distribution; (3) the sampled variable is decoded through 𝑝𝜃(𝐱|𝐳); and (4)

the loss value is calculated, and the parameters of VAE is updated by back-propagation through

the network.

4

Figure 2 Conceptual illustration of VAE.

3. PROPOSED DNN-BASED DAMAGE IDENTIFICATION FRAMEWORK

A DNN-based damage identification framework recently proposed by the authors (Kim and Song,

2022) is improved in this paper, as described below. Figure 3 illustrates the proposed framework

divided into two main parts: (1) offline, and (2) online processes.

Figure 3 Process of proposed DNN-based damage identification framework.

3.1. Offline process

Before the near-real-time damage identification by the online process, the data processing and

network training should first be performed in the offline process. The offline process has two

steps: (1) data collection from structural analyses to obtain sample covariance matrices at the

undamaged state; and (2) training the DNN model using the dataset from the first step. The offline

process is illustrated in the upper part of Figure 3.

5

3.1.1. Structural analysis and database generation

To obtain training data of structural responses under seismic ground motions, structural analyses

are performed using the model of the undamaged target structure. Live loads are applied before

the earthquake event to simulate the normal operational circumstance. After the data collection,

the sample covariance matrices 𝐂 are calculated as

𝐂 =
1

𝑇 − 1
𝐔T𝐔 (5)

where 𝐔 is a snapshot matrix of recorded response at certain time point; and 𝑇 is the number

of the time samples in 𝐔. Lastly, the collected covariance matrices are shuffled and split into the

train, validation, and test dataset following a pre-defined ratio.

In the previous study (Kim and Song, 2022), the approximated flexibility matrix, which re-

quires the additional modal analysis process to obtain accurate modal characteristics and struc-

tural information, is used as the input data. In contrast, in this paper, the sample covariance matrix

is only calculated from the raw response data, which requires no further post-processing and in-

formation. Therefore, the proposed framework is more robust to variability of earthquake ground

motions than the framework of the previous study.

3.1.2. Network training

After database generation, the DNN model is trained using the covariance matrices from the un-

damaged structure as input data. Convolutional VAE (CVAE), which is suitable to learn features

from two-dimensional data, is selected as the DNN model to construct the disentangled latent

space of 𝐂. The network is trained to minimize the reconstruction error between the input and

decoded data, as well as to establish the meaningful latent space of given input data. To utilize

the pre-established latent space in the online damage identification process, the decoder is re-

moved from the network after training, and every point of the entire dataset in the latent space is

stored in the database.

3.2. Online process

The online process for the near-real-time damage identification is performed using the trained

DNN model and the pre-established latent space obtained from the offline process. The online

damage identification process has two steps: (1) searching the latent space for the covariance

matrix representing the undamaged state, which is closest to the current data; and (2) calculating

the structural damage index (SDI) based on the difference between the undamaged and current

covariance matrix. These two steps are performed at every time step. The conceptual illustration

of the online process is shown in the lower part of Figure 3.

3.2.1. Searching DB for covariance matrix representing undamaged state

In the online process, structural responses are obtained from sensors in real-time while the actual

state of the structure is unknown. Using Eq. (5), the covariance matrix at the unknown state 𝐂𝑢

is obtained from the snapshot of recorded responses with a certain length of the time window.

Here, the superscript ‘𝑢’ stands for ‘unknown.’ Note that additional post-processing, such as

modal analysis, is not required to obtain 𝐂𝑢 from the measured response data, as mentioned.

Then, as with the method used by Kim and Song (2022), the corresponding point in the latent

space can be obtained through the encoder of the pre-established DNN. The similarity can be

quantified by measuring the distance between the current (unknown) and pre-stored (undamaged)

data. Since the network training or any computationally intensive calculations are not included in

this step, the entire process can be finished in a second. As a result, the pair of the matrices, i.e.,

6

the covariance matrix representing the undamaged state, 𝐂 and the current matrix 𝐂𝑢 , is

obtained in near-real-time for the next step.

3.2.2. Calculation of structural damage index

The SDI is then calculated based on the difference between 𝐂 and 𝐂𝑢. In this paper, the SDI is

defined as the mean squared error (MSE) between 𝐂 and 𝐂𝑢 as follows:

𝑆𝐷𝐼𝑖 =
1

𝑁
∑(𝐂𝑖𝑗 − 𝐂𝑖𝑗

𝑢)
2

𝑁

𝑗=1

 (6)

where 𝑆𝐷𝐼𝑖 is the SDI of 𝑖-th sensor; 𝑁 is the number of sensors; and 𝐂𝑖𝑗 and 𝐂𝑖𝑗
𝑢 are ele-

ments of 𝐂 and 𝐂𝑢, respectively. Since this step includes just a few matrix calculations, 𝑆𝐷𝐼𝑖

can also be obtained rapidly. As a result, the near-real-time damage identification can be per-

formed by repeating the online process at every time step.

4. NUMERICAL INVESTIGATION

4.1. Target structure: Incheon Grand Bridge

As a target structure, the Incheon Grand Bridge in Figure 4(a) is selected (Kim et al., 2021). The

total bridge length is 1,480 m, with a main span of 800 m. The bridge is supported by two pylons

(Py-L and Py-R) and four piers (Pi-L1, Pi-L2, Pi-Rl, and Pi-R2). The original nonlinear finite

element (FE) model was constructed by Kim et al. (2021) using OpenSees (Mckenna et al., 2010).

In this paper, the FE model is reconstructed using OpenSeesPy (Zhu et al., 2018), presented in

Figure 4(b), to utilize the libraries and applications in Python. At the undamaged state, the modal

periods of the first six modes are 7.169, 5.457, 4.529, 3.677, 3.030, and 2.852 sec, respectively.

Figure 4 (a) Configuration; and (b) OpenSeesPy model of the Incheon Grand Bridge.

7

4.2. Data generation and pre-processing

Structural analyses are performed using seismic ground motions from the PEER-NGA strong

motion database (Chiou et al. 2008). A total of 3,512 ground motions are used and split into train,

validation, and test datasets with a ratio of 9:0.5:0.5. In addition, random excitations simulating

live loads are applied to the deck before an earthquake event. To capture the response properties

effectively, the time window of the snapshot matrix should be set long enough. To this end, the

length of the time window is set to 60 sec, and the time interval of the time window is set to 2 sec.

It is assumed that a total of 33 dual-axis accelerometers are installed on the bridge to record

the x- and y-axis responses. After the data collection, the covariance matrices 𝐂 are calculated

using Eq. (5). Note that the dimension of the covariance matrix 𝐂 is 66×66 since there are 33

measured responses for the x- and y-axis respectively. Finally, the datasets are scaled to the range

of [−1, 1], normalized by the largest or smallest value.

4.3. Network training

CVAE is then trained to construct the disentangled latent space of the undamaged covariance

matrix. The architecture of CVAE is proposed as illustrated in Figure 5. CVAE generally consists

of three main parts: (1) the convolutional encoder, (2) latent space; and (3) the convolutional

decoder. After convolutional operations, the output of the last convolutional layer is reshaped into

the one-dimensional vector by Flatten layer, which is followed by two Dense layers with 16 nodes

representing 𝜇𝑧 and log 𝜎𝑧
2 of the latent distribution, respectively. In general, the decoder has

the inverse architecture of the encoder and uses the same hyper-parameters as the encoder (Kim

and Song, 2022). In contrast, this paper adopts the skip connection (He et al., 2016) for the decoder

to directly utilize more information from the latent space for reconstructing the input data. As

shown in Figure 5, a total of three skip connection blocks are used to construct the decoder. The

value of the loss function ℒ𝑉𝐴𝐸(∙) is calculated using the SGVB estimator at the last step of the

forward-propagation, and the value is back-propagated through the network to optimize network

parameters.

Figure 5 Architecture of CVAE proposed in this study.

8

CVAE is constructed using the Python deep learning library Keras with the Tensorflow

backend and trained on a server with 2x Intel(R) Xeon(R) Gold 6126 2.60GHz, two NVIDIA

TITAN RTX graphics cards, and 128GB RAM. The numbers of epochs and batch size are set to

500 and 32, respectively. The Adam optimizer (Kingma and Ba, 2014) with a learning rate of

0.001 is used for minimizing the loss function. The training process takes about 24 hours while

the loss function converges fast and stably without overfitting or explosion of the validation loss.

4.4. Near-real-time damage identification

To verify the performance of the pre-trained CVAE, real-time test simulations are performed with

a test ground motion randomly selected from the test dataset. The records of x- and y-axis com-

ponent of the test ground motion are shown in Figure 6(a) and (b), respectively. The total length

is 40.0 s with 200 Hz of the sampling frequency, and the peak ground acceleration (PGA) occurs

at 5.41 s with a value of 0.0436 g. Random excitations are also applied to the deck before the

earthquake event to simulate the operational situation. The covariance matrix is obtained at every

time step, and 𝑆𝐷𝐼𝑖 (𝑖 = 1, ⋯ ,66) are calculated simultaneously through the pre-trained network.

Figure 6 Ground acceleration records of the test ground motion in (a) x-axis; and (b) y-axis.

To verify the identification performance, three damage cases are investigated: (1) Case 1: the

lower part of Py-L is damaged; (2) Case 2: the lower parts of Py-L and Py-R are damaged; and

(3) Case 3: a single cable is damaged. Damages are simulated by 50% degradation in Young’s

modulus, occurring at the time of PGA. The total duration of the simulation is set to 130.0 s to

verify the stable performance over a long period of time. The near-real-time identification results

for the three cases in Figure 7 show that the proposed method successfully identifies structural

damage under an earthquake event in near-real-time.

In Case 1, the SDIs of Py-L and cables attached to Py-L increase as the damage occurs. The

SDI of Py-L is estimated as around 0.9 × 10−6 at the simulation end time. Furthermore, it only

takes less than a second to obtain the SDIs for every time step, which is much shorter than the

pre-set time interval. The damage can be readily located since only the SDIs of cables attached to

Py-L are inaccurately identified as damaged because of their high correlation.

In Case 2, the SDIs of Py-L, Py-R, and cables increase as the damage occurs. The SDIs of Py-

L and Py-R are estimated as around 1.2 × 10−6 and 1.0 × 10−6, respectively. As with Case 1,

only the SDIs of cables attached to pylons are falsely identified as damaged.

In Case 3, only the SDIs of cables increase as the damage occurs. The SDI of the damaged

cable is estimated as around 1.0 × 10−5, which is much higher than the result in previous cases

because of its higher flexibility than other elements. It is noted that only the SDIs of cables close

to the damaged cable are inaccurately identified as damaged.

9

Figure 7 Results of near-real-time damage identification with damage on (a) Py-L; (b) Py-L and

Py-R; and (c) a single cable.

5. CONCLUSIONS

This paper proposed a new DNN-based framework for identifying near-real-time seismic damage

of complex infrastructure systems. The CVAE model was trained to construct a disentangled la-

tent space of the sample covariance matrix of the measured structural responses identified from

the undamaged structure. In near-real-time identification, the undamaged covariance matrix,

which is the most similar to the seismic response data, is extracted from the database by measuring

the distance in the latent space. The SDI based on the difference in covariance matrices was in-

troduced, and the damage was identified by the SDI in near-real-time. A numerical example of

the real-time simulation was provided to test and demonstrate the proposed framework. We se-

lected the Incheon Grand Bridge as the target structure to verify the proposed framework. The

10

framework successfully identified damage under seismic load conditions in near-real-time. The

robust performance of the proposed method under seismic load conditions is expected to help

reduce the time required for the post-disaster decision-making process. Eventually, the proposed

framework will be utilized to prepare effective post-disaster operational and maintenance strate-

gies.

ACKNOWLEDGEMENTS

The authors are supported by the project “Deep Learning Technologies for Assessment of Seismic

Responses and Damage of Nuclear Power Plant Structures and Equipment” of the Ministry of

Science and ICT (MSIT) of the Korean Government (Grant No. RS-2022-00144434).

REFERENCES

Chiou, B., Darragh, R., Gregor, N. and Silva, W. 2008. NGA project strong-motion database.

Earthquake Spectra, 24(1): 23-44.

Dawson, B. 1976. “Vibration condition monitoring techniques for rotating machinery.” The shock

and vibration digest, 8(12): 3.

Goodfellow, I., Bengio, Y. and Courville, A. 2016. Deep learning. Cambridge: MIT press.

He, K., Zhang, X., Ren, S. and Sun, J. 2016. Deep residual learning for image recognition. In Pro-

ceedings of the IEEE conference on computer vision and pattern recognition, 770-778.

Kim, M. and Song, J. 2022. Near-real-time identification of seismic damage using unsupervised

deep neural network. Journal of Engineering Mechanics, 148(3): 04022006.

Kim, T., Kwon, O. S. and Song, J. 2021. Seismic performance of a Long-Span Cable-stayed

bridge under spatially varying bidirectional spectrum-compatible ground motions. Journal of

Structural Engineering, 147(4): 04021015.

Kingma, D.P. and Welling, M. 2013. “Auto-encoding variational bayes.” arXiv preprint

arXiv:1312.6114.

Kingma, D.P. and Ba, J. 2014. “Adam: A method for stochastic optimization.” arXiv preprint

arXiv:1412.6980.

McKenna, F., Scott, M. H. and Fenves, G. L. 2010. Nonlinear finite-element analysis software

architecture using object composition. Journal of Computing in Civil Engineering, 24(1): 95-

107.

Pathirage, C.S.N., Li, J., Li, L., Hao, H., Liu, W. and Ni, P. 2018. “Structural damage identification

based on autoencoder neural networks and deep learning.” Engineering Structures, 172: 13-

28.

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y. and Manzagol, P.A. 2010. “Stacked denoising

autoencoders: Learning useful representations in a deep network with a local denoising

criterion.” Journal of machine learning research, 11(Dec): 3371-3408.

Zhu, M., McKenna, F. and Scott, M. H. 2018. OpenSeesPy: Python library for the OpenSees finite

element framework. SoftwareX, 7: 6-11.

