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Distributed Dynamic Pricing for Car-sharing Systems with Stochastic
Demand Shift

Kazunori Sakurama and Takanori Aoki

Abstract— This study investigated one-way car-sharing sys-
tems under dynamic pricing. Despite their convenience, one-
way car-sharing systems have the limitation that vehicles can
be unevenly parked according to the demand of customers. To
distribute car parking, we consider introducing dynamic pricing
in which customers can shift their demand (i.e., change origins
and destinations by walking) according to usage prices. A model
of this system is developed with consideration of stochastic
processes representing human behavior in the demand shift.
Furthermore, we develop a common, distributed dynamic
pricing policy to minimize the unevenness of the vehicles
according to the network topology representing the layout of
stations. Numerical examples using a realistic traffic simulator
demonstrate the effectiveness of the developed method.

I. INTRODUCTION

Car-sharing services have become popular as a new trans-
portation form due to several advantages, including low cost
and traffic reduction. In particular, in a station-based one-
way car-sharing service, customers can return the vehicle to
any available station. This service is promising in urban areas
because normal parking slots can be utilized as stations. This
service has rapidly spread in Europe and the U.S. In Japan,
the round-trip model was initially employed due to legal
restrictions, but one-way service has been legally allowed
since 2014. Therefore, one-way car sharing is currently being
developed, and many field trials are underway [1], including
Ha:mo Ride Toyota [2].

One-way car-sharing services have been eagerly inves-
tigated, as reviewed in [3]. Despite the convenience, this
service has the critical limitation that vehicles become un-
evenly distributed among stations due to customer demand,
which causes the problem that no vehicles are parked in some
stations, while no parking slots are available in other stations.
To solve this problem, vehicles must be redeployed to
maintain an even distribution. This redeployment is generally
performed by the service staff driving the vehicles one at
a time, which involves significant labor costs. Hence, an
inexpensive redeployment strategy is indispensable to the
practical implementation of the one-way car-sharing service.
Previous studies have considered the problem of reducing the
cost of redeployment. In [4], the model predictive control
method was employed to minimize the cost. In [5], a
model was developed in which the behavior of staff for

This work was partially supported by the joint project of Kyoto University
and Toyota Motor Corporation, titled “Advanced Mathematical Science for
Mobility Society”.

Kazunori Sakurama and Takanori Aoki are with Grad-
uate School of Informatics, Kyoto University, Yoshida-
honmachi, Kyoto, Japan sakurama@i.kyoto-u.ac.jp,
aoki.takanori.35z@st.kyoto-u.ac.jp.

redeployment was considered. In [6], a simulation-based
study was conducted to investigate a car-sharing system in
a resort area in Southern California to minimize the number
of redeployments.

Another solution is to introduce dynamic pricing, which
can naturally encourage customers to evenly distribute vehi-
cles by adjusting prices appropriately at every time interval.
In [7], a model was developed in which the price was
determined to maximize both the customers’ and operating
company’s profits. The model developed in [8] aimed at
maximizing profits with consideration of the allocation of re-
deployment staff. In [9], optimal pricing and charge schedul-
ing of an electric vehicle sharing system were investigated.
Additionally, [10] and [11] investigated pricing policies for
the one-way car sharing service. In most models presented
in these papers, only the increases/decreases in demand were
considered. In contrast, the authors considered a model with
demand shift [13], which represents the customer behavior
of shifting links (i.e., changing origins and destinations by
walking) to cheaper ones. This scenario was first adopted
for bike sharing systems [12], while it is also feasible in car-
sharing systems in urban areas because numerous stations
are located within walking distance of each other.

In this paper, a one-way car sharing system with dy-
namic pricing is theoretically analyzed with consideration
of demand shift. First, this system is modeled with four
components: parking-slot, reservation, demand, and demand-
shift models. In particular, a demand-shift model, which
represents the voluntary behavior of shifting to other links
according to prices, is introduced with stochastic processes to
describe the uncertain behavior of customers. Subsequently,
based on the models, the best common, distributed dynamic
pricing policy is designed to minimize the unevenness of
occupied parking slots. Finally, the effectiveness of the
developed method is illustrated through numerical examples
using the realistic traffic simulator, Simulation On Urban
road Network with Dynamic route choice (SOUND) [14].

The differences from the previous papers [12], [13] con-
sidering demand shift are as follows. First, this paper theo-
retically analyzes the system and designs the best distributed
dynamic pricing policy, while [12], [13] did not provide any
theoretical results. In particular, by simplifying the models
in this paper, the essence of the dynamics of the target
system is revealed such that the dynamics are equivalent to
a consensus control system with external disturbance, which
has been well-studied in the field of control engineering
[15]. Second, we design a common, distributed dynamic
pricing policy, which is advantageous for large-scale systems
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because the price of each link can be easily computed
with the information on neighboring stations. This contrasts
with other centralized optimization-based methods, including
[12]. Third, this paper verifies the validity of the models
through a realistic traffic simulator, while [12], [13] did not
conduct such simulations.

The remainder of this paper is organized as follows.
Section 2 describes models in the target system and provides
a control objective. In Section 3, as a main result, the best
distributed dynamic pricing policy is developed. Section 4
presents simulation results. Finally, Section 5 concludes the
paper.

II. PROBLEM FORMULATION

A. Notation

Let R, R+, Z, and Z+ be the sets of real num-
bers, non-negative real numbers, integers, and non-negative
integers, respectively. For κ ∈ R, define κZ =
{. . . ,−2κ,−κ, 0, κ, 2κ, . . .}. The floor and ceiling functions
with respect κ are defined for x ∈ R as follows:

⌊x⌋κ = max{y ∈ κZ : y ≤ x},
⌈x⌉κ = min{y ∈ κZ : y ≥ x}.

The identity matrix is denoted by I ∈ Rn×n, the unit vector
with the ith entry 1 is denoted by ei ∈ Rn, and 1 =
[1 · · · 1]⊤. For a1, . . . , an ∈ R, diag(a1, . . . , an) represents
the diagonal matrix whose ith diagonal entry is ai. For a
vector a = [a1 · · · an]⊤ ∈ Rn, diag(a) = diag(a1, . . . , an).

Let x : Z+ → Z+ be a stochastic variable of time t ∈ Z+

with a domain of non-negative integers. The probability that
x(t) takes the value x ∈ Z+ is represented as Pr(x(t) =
x) ∈ [0, 1]. For a function f : Z+ → R of x(t), the
expectation of f(x(t)) is defined as

E[f(x(t))] =

∞∑

x=0

f(x)Pr(x(t) = x).

For random variables x, y : Z+ → Z+ of time t, Pr(x(t) =
x, y(t) = y) ∈ [0, 1] represents the joint probability that
x(t), y(t) take the values of x, y ∈ Z+, respectively. Let
Pr(x(t) = x|y(t) = y) represent the conditional probability
that x(t) takes the value of x ∈ Z+ under the condition that
y(t) takes the value of y ∈ Z+, which is given as follows:

Pr(x(t) = x|y(t) = y) =
Pr(x(t) = x, y(t) = y)

Pr(y(t) = y)
.

For a function f : Z+ → R of x(t), the conditional
expectation of f(x(t)) under the condition that y(t) takes
the value of y ∈ Z+ is defined as

E[f(x(t))|y(t) = y] =

∞∑

x=0

f(x)Pr(x(t) = x|y(t) = y).
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1X

x=0
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Pr(x(t) = x|y(t) = y) =
Pr(x(t) = x, y(t) = y)

Pr(y(t) = y)
.

For a function f : Z+ ! R of x(t), the conditional
expectation and the conditional variance of f(x(t)) under the
condition that y(t) takes the value of y 2 Z+ are respectively
defined as

E[f(x(t))|y(t) = y] =

1X

x=0

f(x)Pr(x(t) = x|y(t) = y),

Var[f(x(t))|y(t) = y]

= E[(f(x(t)) � E[f(x(t))|y(t) = y])2|y(t) = y].

II. PROBLEM FORMULATION

A. System models

The car-sharing system considered in this paper consists
of n 2 Z+ stations. Let N = {1, 2, . . . , n} be the index set
of the stations. A specific station is called station i 2 N ,
and the travel from station j to i is called link ij that is,
the origin and the destination of link ij are station j and i,
respectively. Let m 2 Z+ be the number of the vehicles.

Traffic model: Let xi(t) 2 Z+ be the number of vehicles
at station i 2 N at time t. Each customer reserves a vehicle
with the origin and destination. Let rij(t) 2 Z+ be the
number of customers reserving vehicles for link ij (i, j 2 N )
at time t. At the next time, the customers travel according
to their reservations, and the number of vehicles at station i
varies as

xi(t + 1) = xi(t) +
X

j2N
(rij(t) � rji(t)), (1)

where rij(t) represents the number of customers who arrive
at station i from other stations, while rji(t) represents the
number of customers who depart from station i to other
stations. Note that the number m of the vehicles is equal
to the sum of the numbers xi(t) of the vehicles, i.e.,

X

i2N
xi(t) = m (2)

holds.
Pricing rule model: The operator can adjust the price of

each link at each time. Let pij(t) 2 Z be the price of
link ij, where a constant  2 Z+ ( > 0) represents the
unit of the price in the car-sharing service. We consider
designing a common pricing rule for adjusting pij(t) using
only local information on stations i, j, which is said to be
distributed. A distributed pricing rule is advantageous for
large-scale systems because we do not need to collect the
information of all the stations to compute appropriate prices.
Let p̂ 2 Z be a standard price in the car-sharing service,
and let ⇡ : Z2

+ ! Z be a distributed rule to adjust the price
according to

pij(t) = p̂ + ⇡(xi(t), xj(t)). (3)

The distributed pricing rule ⇡ can be designed by the
operator. We assume that ⇡ is continuously differentiable.

Demand model: Let dij(t) 2 Z+ be the number of the
customers who want to use link ji when the prices of the
links are all the same as p̂. We assume that dij(t) follows
the Poisson distribution

Pr(dij(t) = dij) =
�

dij

ij e��ij

dij !
(4)

with a constant expectation and variance �ij > 0. Accord-
ingly,

E[dij(t)] = �ij , Var[dij(t)] = �ij (5)

hold. Assume that dij(t) are independent for any i, j 2 N
and t 2 Z+.

Demand shift model: We assume that customers shift the
origins and destinations of links by walk according to the
prices of links and the easiness of changing the origins
and destinations. Let sij,k`(t) 2 Z+ be the number of the
customers who shift links from k` to ij, that is, the origin
changes from ` to j and the destination changes from k
to i. Let �ik = �ki � 0 denote the easiness of changing
stations from k to i, and from i to k, by walk. In general,
as farther stations i and k are, as larger the easiness �ik is.
The customers are informed of two pieces of information by
the operator: (i) the difference pk`(t) � pij(t) of the prices
of links (the benefit received from shifting links) and (ii) the
easiest �ik, �k` for changing stations by walk, which can be
determined according to the distance between stations. The
shift sij(t) from k` to ij is assumed to occur according to
the Poisson distribution with the expectation and variance

�ik�j`�(pij(t) � pk`(t)) (6)

when the prices pk`(t) and pij(t) are given. Here, the
function � : Z ! R+ represents the sensitivity to the price,
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Fig. 1: Layout of n = 25 stations.

IV. SIMULATION

To verify the effectiveness of the developed method,
simulations are conducted as a discrete-time system with
sampling time 1 min. There are n = 25 stations scattered
over an area of approximately 6 km ⇥ 8 km as shown in
Figure 1. Let m = 164 be the number of the vehicles. We
consider the system model consisting of (1), (2), (3), (4),
(6), (7), (10), (14), and (15). The system parameters are
given as follows: the price elasticity of demand is given as
�̂ = 2.5⇥10�5; the expectation �ij of the demand takes value
from 0.005⇥ 60�1 to 3⇥ 60�1; the easiness �ij of shifting
stations from k to i depends on the distance between the
stations and is determined according to �ik = e�⌘k⇢i�⇢kk,
where ⇢i 2 R is the position of station i in Figure 1 and
⌘ = 4.5 ⇥ 10�4. According to Theorem 1, the distributed
pricing policy ⇡ in (14) is designed with ⌫ = 0.01 and
 = 1. Then, the parameters ⇡̂a = �⇡̂b = 1 and ⇡̂c = 0
are designed according to (16), (17), and (18) so as to solve
the optimization problem (13).

Simulations are executed under two conditions: with dy-
namic pricing and without dynamic pricing (with a fixed
price). Figures 2 and 3 show how the number of vehicles
xi(t) at each station changes over time with and without
dynamic pricing, respectively. As shown in Figure 2, the un-
evenness in xi(t) is reduced with dynamic pricing, whereas
Figure 3 shows that the unevenness increases without dy-
namic pricing. Figure 4 shows the sample variance of the
numbers of the vehicles with respect to the stations, defined
as Vv(x(t)) in (11), which indicates the evenness of the
vehicles. The value decreases to a certain value with dynamic
pricing (solid line), while that without dynamic pricing is
increasing over time (dashed line). This result demonstrates
that the unevenness of the vehicles is reduced by dynamic
pricing with the developed pricing rule.

V. CONCLUSIONS

This study investigated the potential of dynamic pricing
to solve the problem of uneven distribution of vehicles in a

x
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it

Time t hour

Fig. 2: Number xi(t) of vehicles at each station with dy-
namic pricing.

x
i
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)
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Fig. 3: Number xi(t) of vehicles at each station without
dynamic pricing.

one-way car-sharing system. To design a distributed pricing
rule, first, this system was modeled. Especially, the voluntary
demand shift of customers was modeled with the Poisson
processes. Then, the distributed pricing rule was derived,
which minimizes the unevenness of the vehicles and the price
discrepancy. The effectiveness of the developed method was
illustrated through simulations by comparing the results with
and without dynamic pricing. As future work, there is room
for verification of the customer behavior model.
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unit of the price in the car-sharing service. We consider
designing a common pricing rule for adjusting pij(t) using
only local information on stations i, j, which is said to be
distributed. A distributed pricing rule is advantageous for
large-scale systems because we do not need to collect the
information of all the stations to compute appropriate prices.
Let p̂ 2 Z be a standard price in the car-sharing service,
and let ⇡ : Z2

+ ! Z be a distributed rule to adjust the price
according to

pij(t) = p̂ + ⇡(xi(t), xj(t)). (3)

The distributed pricing rule ⇡ can be designed by the
operator. We assume that ⇡ is continuously differentiable.

Demand model: Let dij(t) 2 Z+ be the number of the
customers who want to use link ji when the prices of the
links are all the same as p̂. We assume that dij(t) follows
the Poisson distribution

Pr(dij(t) = dij) =
�

dij

ij e��ij

dij !
(4)

with a constant expectation and variance �ij > 0. Accord-
ingly,

E[dij(t)] = �ij , Var[dij(t)] = �ij (5)

hold. Assume that dij(t) are independent for any i, j 2 N
and t 2 Z+.

Demand shift model: We assume that customers shift the
origins and destinations of links by walk according to the
prices of links and the easiness of changing the origins
and destinations. Let sij,k`(t) 2 Z+ be the number of the
customers who shift links from k` to ij, that is, the origin
changes from ` to j and the destination changes from k
to i. Let �ik = �ki � 0 denote the easiness of changing
stations from k to i, and from i to k, by walk. In general,
as farther stations i and k are, as larger the easiness �ik is.
The customers are informed of two pieces of information by
the operator: (i) the difference pk`(t) � pij(t) of the prices
of links (the benefit received from shifting links) and (ii) the
easiest �ik, �k` for changing stations by walk, which can be
determined according to the distance between stations. The
shift sij(t) from k` to ij is assumed to occur according to
the Poisson distribution with the expectation and variance

�ik�j`�(pij(t) � pk`(t)) (6)

when the prices pk`(t) and pij(t) are given. Here, the
function � : Z ! R+ represents the sensitivity to the price,

functions with respect  are defined for x 2 R as follows:

bxc = max{y 2 Z : y  x},

dxe = min{y 2 Z : y � x}.

The identity matrix is denoted by I 2 Rn⇥n, the unit vector
with the ith entry 1 is denoted by ei 2 Rn, and 1 =
[1 · · · 1]>. For a1, . . . , an 2 R, diag(a1, . . . , an) represents
the diagonal matrix of which ith diagonal entry is ai. For a
vector a = [a1 · · · an]> 2 Rn, diag(a) = diag(a1, . . . , an).

Let x : Z+ ! Z+ be a stochastic variable of time t 2 Z+

with domain of non-negative integers. The probability that
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x) 2 [0, 1]. For a function f : Z+ ! R of x(t), the
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defined as
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at time t. At the next time, the customers travel according
to their reservations, and the number of vehicles at station i
varies as
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where rij(t) represents the number of customers who arrive
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X

i2N
xi(t) = m (2)

holds.
Pricing rule model: The operator can adjust the price of

each link at each time. Let pij(t) 2 Z be the price of
link ij, where a constant  2 Z+ ( > 0) represents the
unit of the price in the car-sharing service. We consider
designing a common pricing rule for adjusting pij(t) using
only local information on stations i, j, which is said to be
distributed. A distributed pricing rule is advantageous for
large-scale systems because we do not need to collect the
information of all the stations to compute appropriate prices.
Let p̂ 2 Z be a standard price in the car-sharing service,
and let ⇡ : Z2

+ ! Z be a distributed rule to adjust the price
according to

pij(t) = p̂ + ⇡(xi(t), xj(t)). (3)

The distributed pricing rule ⇡ can be designed by the
operator. We assume that ⇡ is continuously differentiable.

Demand model: Let dij(t) 2 Z+ be the number of the
customers who want to use link ji when the prices of the
links are all the same as p̂. We assume that dij(t) follows
the Poisson distribution

Pr(dij(t) = dij) =
�

dij

ij e��ij

dij !
(4)

with a constant expectation and variance �ij > 0. Accord-
ingly,

E[dij(t)] = �ij , Var[dij(t)] = �ij (5)

hold. Assume that dij(t) are independent for any i, j 2 N
and t 2 Z+.

Demand shift model: We assume that customers shift the
origins and destinations of links by walk according to the
prices of links and the easiness of changing the origins
and destinations. Let sij,k`(t) 2 Z+ be the number of the
customers who shift links from k` to ij, that is, the origin
changes from ` to j and the destination changes from k
to i. Let �ik = �ki � 0 denote the easiness of changing
stations from k to i, and from i to k, by walk. In general,
as farther stations i and k are, as larger the easiness �ik is.
The customers are informed of two pieces of information by
the operator: (i) the difference pk`(t) � pij(t) of the prices
of links (the benefit received from shifting links) and (ii) the
easiest �ik, �k` for changing stations by walk, which can be
determined according to the distance between stations. The
shift sij(t) from k` to ij is assumed to occur according to
the Poisson distribution with the expectation and variance

�ik�j`�(pij(t) � pk`(t)) (6)

when the prices pk`(t) and pij(t) are given. Here, the
function � : Z ! R+ represents the sensitivity to the price,

Demand
Reservation
Price

functions with respect  are defined for x 2 R as follows:

bxc = max{y 2 Z : y  x},

dxe = min{y 2 Z : y � x}.

The identity matrix is denoted by I 2 Rn⇥n, the unit vector
with the ith entry 1 is denoted by ei 2 Rn, and 1 =
[1 · · · 1]>. For a1, . . . , an 2 R, diag(a1, . . . , an) represents
the diagonal matrix of which ith diagonal entry is ai. For a
vector a = [a1 · · · an]> 2 Rn, diag(a) = diag(a1, . . . , an).

Let x : Z+ ! Z+ be a stochastic variable of time t 2 Z+

with domain of non-negative integers. The probability that
x(t) takes the value x 2 Z+ is represented as Pr(x(t) =
x) 2 [0, 1]. For a function f : Z+ ! R of x(t), the
expectation and the variance of f(x(t)) are respectively
defined as

E[f(x(t))] =
1X

x=0

f(x)Pr(x(t) = x),

Var[f(x(t))] = E[(f(x(t)) � E[f(x(t))])2].

For random variables x, y : Z+ ! Z+ of time t, Pr(x(t) =
x, y(t) = y) 2 [0, 1] represents the joint probability that
x(t), y(t) take the values of x, y 2 Z+, respectively. Let
Pr(x(t) = x|y(t) = y) represent the conditional probability
that x(t) takes the value of x 2 Z+ under the condition that
y(t) takes the value of y 2 Z+, which is given as follows:

Pr(x(t) = x|y(t) = y) =
Pr(x(t) = x, y(t) = y)

Pr(y(t) = y)
.

For a function f : Z+ ! R of x(t), the conditional
expectation and the conditional variance of f(x(t)) under the
condition that y(t) takes the value of y 2 Z+ are respectively
defined as

E[f(x(t))|y(t) = y] =

1X

x=0

f(x)Pr(x(t) = x|y(t) = y),

Var[f(x(t))|y(t) = y]

= E[(f(x(t)) � E[f(x(t))|y(t) = y])2|y(t) = y].

II. PROBLEM FORMULATION

A. System models

The car-sharing system considered in this paper consists
of n 2 Z+ stations. Let N = {1, 2, . . . , n} be the index set
of the stations. A specific station is called station i 2 N ,
and the travel from station j to i is called link ij that is,
the origin and the destination of link ij are station j and i,
respectively. Let m 2 Z+ be the number of the vehicles.

Traffic model: Let xi(t) 2 Z+ be the number of vehicles
at station i 2 N at time t. Each customer reserves a vehicle
with the origin and destination. Let rij(t) 2 Z+ be the
number of customers reserving vehicles for link ij (i, j 2 N )
at time t. At the next time, the customers travel according
to their reservations, and the number of vehicles at station i
varies as

xi(t + 1) = xi(t) +
X

j2N
(rij(t) � rji(t)), (1)

where rij(t) represents the number of customers who arrive
at station i from other stations, while rji(t) represents the
number of customers who depart from station i to other
stations. Note that the number m of the vehicles is equal
to the sum of the numbers xi(t) of the vehicles, i.e.,

X

i2N
xi(t) = m (2)

holds.
Pricing rule model: The operator can adjust the price of

each link at each time. Let pij(t) 2 Z be the price of
link ij, where a constant  2 Z+ ( > 0) represents the
unit of the price in the car-sharing service. We consider
designing a common pricing rule for adjusting pij(t) using
only local information on stations i, j, which is said to be
distributed. A distributed pricing rule is advantageous for
large-scale systems because we do not need to collect the
information of all the stations to compute appropriate prices.
Let p̂ 2 Z be a standard price in the car-sharing service,
and let ⇡ : Z2

+ ! Z be a distributed rule to adjust the price
according to

pij(t) = p̂ + ⇡(xi(t), xj(t)). (3)

The distributed pricing rule ⇡ can be designed by the
operator. We assume that ⇡ is continuously differentiable.

Demand model: Let dij(t) 2 Z+ be the number of the
customers who want to use link ji when the prices of the
links are all the same as p̂. We assume that dij(t) follows
the Poisson distribution

Pr(dij(t) = dij) =
�

dij

ij e��ij

dij !
(4)

with a constant expectation and variance �ij > 0. Accord-
ingly,

E[dij(t)] = �ij , Var[dij(t)] = �ij (5)

hold. Assume that dij(t) are independent for any i, j 2 N
and t 2 Z+.

Demand shift model: We assume that customers shift the
origins and destinations of links by walk according to the
prices of links and the easiness of changing the origins
and destinations. Let sij,k`(t) 2 Z+ be the number of the
customers who shift links from k` to ij, that is, the origin
changes from ` to j and the destination changes from k
to i. Let �ik = �ki � 0 denote the easiness of changing
stations from k to i, and from i to k, by walk. In general,
as farther stations i and k are, as larger the easiness �ik is.
The customers are informed of two pieces of information by
the operator: (i) the difference pk`(t) � pij(t) of the prices
of links (the benefit received from shifting links) and (ii) the
easiest �ik, �k` for changing stations by walk, which can be
determined according to the distance between stations. The
shift sij(t) from k` to ij is assumed to occur according to
the Poisson distribution with the expectation and variance

�ik�j`�(pij(t) � pk`(t)) (6)

when the prices pk`(t) and pij(t) are given. Here, the
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Fig. 1: Sketch of the target car-sharing system.

TABLE I: Variables and constants in the models.

xi(t) # of occupied and reserved parking slots at station i
xmax
i capacity of the parking slots at station i

x+
i (t) expected next number of xi(t) for demands dij(t)

rij(t) # of reservations of vehicles for link ij
dij(t) # of demands for link ij

d̂ij(t) # of original demands for link ij
pij(t) price of link ij
p̂ij standard price of link ij

uij(t) # of unfulfilled demands for link ij

δij expectation of the original demand number d̂ij(t)
γik ease of changing stations from k to i by walking

sij,kℓ(t) # of demand shifts from link kℓ to ij
cij,kℓ(t) credible # of demand shifts from link kℓ to ij

n # of stations
m total # of vehicles

mmax sum of all capacities
κ unit of price in the car-sharing service

ϕ(·) sensitivity of customers to prices

B. System models
The car-sharing system considered in this paper consists

of n ∈ Z+ stations. Let N = {1, 2, . . . , n} be the index set
of stations. A specific station is denoted as i ∈ N , and the
travel from station j to i is called link ij, that is, the origin
and destination of link ij are stations j and i, respectively.
The sampling time of the system is determined from the time
interval of changing prices, corresponding to the discrete
time t ∈ Z+.

This system consists of four models: parking-slot, reser-
vation, demand, and demand-shift models. Figure 1 shows
a sketch of the system. The variables and constants in the
models are summarized in Table I.

1) Parking-slot model: First, we model the number of
occupied and reserved parking slots at station i ∈ N , denoted
by xi(t) ∈ Z+.

For capacity xmax
i ∈ Z+ of the parking slots at station i,

xi(t) must satisfy

0 ≤ xi(t) ≤ xmax
i ∀t ∈ Z+. (1)

The sum of the numbers xi(t) is preserved, i.e.,
∑

i∈N
xi(t) = m (2)

always holds, where m ∈ Z+ is the total number of vehicles.
For the sum of capacities of the stations

mmax =
∑

i∈N
xmax
i , (3)
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m is assumed to be considerably smaller than mmax.
Let rij(t) ∈ Z+ be the number of reservations of the

vehicles for link ij. Parking slots are reserved according to
rij(t), and xi(t) varies as

xi(t+ 1) = xi(t) +
∑

j∈N
(rij(t)− rji(t)), (4)

where rij(t) (rji(t)) represents the number of reservations
of vehicles entering station i (j) from station j (i).

2) Reservation model: Next, we consider the number of
reservations rij(t), which is determined according to three
rules: (i) the reservations must be less than the demands,
i.e., rij(t) ≤ dij(t), where dij(t) ∈ Z+ is the number
of demands for link ij, (ii) xi(t + 1) in (4) must satisfy
the capacity restriction of (1), (iii) the unfulfilled demand
uij(t) = dij(t)− rij(t) ∈ Z+ must be minimized.

The service is usually conducted according to the first-
come-first-served rule, so (iii) cannot be strictly satisfied.
However, uij(t) can be zero, i.e., rij(t) = dij(t), as long as
the capacities of the stations are satisfied with the demands,
i.e.,

0 ≤ x+
i (t) ≤ xmax

i , 0 ≤ x+
j (t) ≤ xmax

j (5)

hold for

x+
i (t) = xi(t) +

∑

j∈N
(dij(t)− dji(t)). (6)

Under this condition, we can assign rij(t) = dij(t), and
xi(t+ 1) in (4), equal to x+

i (t), satisfies (1).
From this viewpoint, to fulfill (iii), we must simply control

x+
i (t) to satisfy (5) for all i, j ∈ N .
3) Demand model: Next, we model dij(t), the number of

demands for vehicles for link ij, which is changed according
to the prices of links.

Let d̂ij(t) ∈ Z+ be the number of original demands for
link ij with a standard price. We assume that the original
demand number d̂ij(t) follows a random variance with
expectation δij > 0, i.e.,

E[d̂ij(t)] = δij . (7)

A typical example of such a random variance is the Poisson
distribution. We assume that d̂ij(t) are independent for any
i, j ∈ N and t ∈ Z+.

Customers shift the origins and destinations of links by
walking according to the prices of links if changing the
origins and destinations is easy. Let sij,kℓ(t) ∈ Z+ be the
number of customers who shift links from kℓ to ij, that is,
the origin changes from ℓ to j and the destination changes
from k to i. Thus, the demand number dij(t) is changed
from the original one d̂ij(t) by the demand shifts sij,kℓ(t)
as follows:

dij(t) = d̂ij(t) +
∑

kℓ∈N 2

(sij,kℓ(t)− skℓ,ij(t)), (8)

where sij,kℓ(t) (skℓ,ij(t)) represents the number of customers
who shift into link ij from other links (who shift away from
link ij to other links).

4) Demand-shift model: Next, we model the demand shift
number sij,kℓ(t), which is determined from the prices of
links and ease of changing links.

Let pij(t) ∈ κZ be the price of link ij, where a positive
integer κ ∈ Z+ (κ > 0) represents the unit of price in the
car-sharing service (e.g., one dollar or ten yen). The ease
of walking between stations i and k is described by γik(=
γki) ≥ 0, which can be evaluated according to the distance
between stations. In general, the farther apart stations i and
k are, the smaller the ease γik is. Customers are informed of
two pieces of information by the operator: (i) the difference
pkℓ(t) − pij(t) of prices of links (the benefit received from
shifting links) and (ii) the ease γik, γjℓ of changing stations
by walking (the cost of shifting links). The shift is assumed
to randomly occur with expectation as

E[sij,kℓ(t)|P (t) = P ] = γikγjℓϕ(pij − pkℓ), (9)

where P (t) ∈ Zn×n represents a matrix whose (i, j)-entry
is pij(t), and similarly P ∈ Zn×n has (i, j)-entry pij . Here,
the function ϕ : Z → R+ is a monotonically non-increasing
function satisfying ϕ(p) = 0 for p ≥ 0, which implies that
customers tend to shift to cheaper links and do not shift to
more expensive ones.

C. Control objective

The control objective is to distribute car parking to reduce
the unfulfilled demands. As discussed at the end of Section
II-B.2, this is achieved by controlling x+

i (t) to satisfy the
inequality condition of (5) for all i ∈ N . Here, we employ a
soft constraint to solve (5) by considering the discrepancy
x̄+
i (t) = x+

i (t) − xmax
i /2 of the occupied and reserved

parking slots from the desired number (half the capacity)
as a penalty. Our goal is to achieve an even distribution of
penalties across all stations, which can be evaluated with the
sample variance of the penalties, defined as

Vx(x(t)) =
1

n

∑

i∈N
E

[
x̄+
i (t)−

1

n

∑

i∈N
x̄+
i (t)

]2

, (10)

where x(t) = [x1(t) x2(t) · · · xn(t)]
⊤.

To maintain the even distribution, we employ a common,
distributed dynamic pricing policy, which is advantageous
for large-scale systems because the price of each link can
be easily computed with the information on neighboring
stations. Let p̂ij = p̂ji ∈ κZ be the standard price between
stations i and j in the car-sharing service, and the price pij(t)
is adjusted on the common, distributed dynamic pricing
policy

pij(t) = p̂ij + π(x̄i(t), x̄j(t)) (11)

with a function π : Z2
+ → κZ, where x̄i(t) = xi(t)−xmax

i /2.
Then, π is common among links and is distributed. The
discrepancy of the price pij(t) from the standard price p̂ij
is preferably small for customer convenience. From (11), the
squared discrepancy is evaluated according to

Vp(x(t)) =
1

n2

∑

i,j∈N
E[π(x̄i(t), x̄j(t))]

2, (12)
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which should be minimized. For simplicity, π : Z2
+ → κZ is

assumed to be an affine function given as

π(x̄i, x̄j) = π̂ax̄i + π̂bx̄j + π̂c, π̂a, π̂b, π̂c ∈ κZ, (13)

where π̂a, π̂b, π̂c ∈ κZ are design parameters.
We expect to design a common, distributed dynamic

pricing policy to minimize Vx(x(t)) and Vp(x(t)). Here, we
evaluate the terminal value of the sum of these values, i.e.,

V (π̂a, π̂b, π̂c) = max
m∈Z

lim
t→∞

(Vx(x̄(t)) + µVp(x(t)))

+ ν(π̂2
a + π̂2

b + π̂2
c ) (14)

with constants µ, ν > 0, where the last term is a regulariza-
tion term. The maximum with respect to m ∈ Z is used in
(14) to design a scalable dynamic pricing policy π, which is
valid regardless of the number of vehicles m.

The target problem in this paper is summarized as follows.
Problem 1: Design a common, distributed dynamic pric-

ing policy of (11) with a function π : Z2
+ → κZ of the form

(13) that is the solution to the optimization problem

min
π̂a,π̂b,π̂c∈κZ

V (π̂a, π̂b, π̂c) (15)

for the system consisting of the models of (1)–(9).

III. MAIN RESULT

To obtain an analytic solution to Problem 1, we consider
the linearized system valid in the neighborhood of the
equilibrium point, and derive the following theorem.

Theorem 1: Let xi(t) ∈ Z+, i ∈ N be the solution of
the linearized system of (1)–(9), where dϕ/dp(p∗) = −ϕ̂
for some constant ϕ̂ > 0 at the equilibrium point p∗ < 0.
Let ∆,Γ ∈ Rn×n be the matrices whose (i, j)-entries are
δij , γij , respectively. For L = diag(Γ1) − Γ ∈ Rn×n, let
λ2, . . . , λn(λ2 ≤ · · · ≤ λn) be the positive eigenvalues of L
with corresponding eigenvectors given by v2, . . . , vn ∈ Rn.
Assume that the graph with adjacency matrix Γ is connected.
Subsequently, the solution to the optimization problem of (15)
is obtained for π : Z2

+ → κZ in (11) of the form (13) only
if π̂a, π̂b, π̂c ∈ κZ satisfy

π̂a ∈ {
⌊√

∥h∥
2
√
2nν

⌋

κ

,

⌈√
∥h∥

2
√
2nν

⌉

κ

,


1

λn

∑

i,j∈N
γij



κ

},

(16)

π̂a ≤


1

λn

∑

i,j∈N
γij



κ

, (17)

π̂b = −π̂a, (18)
π̂c = 0, (19)

where

h =

∑

i∈{2,...,n}
λ−1
i viv

⊤
i (∆−∆⊤)1

ϕ̂
∑

i,j∈N
γij

. (20)

The minimum in (15) is derived as follows:

min
π̂a,π̂b,π̂c∈κZ

V (π̂a, π̂b, π̂c) =
1

n

∥h∥2
4π̂2

a

+ 2νπ̂2
a . (21)

Three candidates for solution π̂a are given in (16). If one
of the first two terms is less than the last one, it is the
solution. If both the first two terms are less than the last
one, we can verify which term is the solution by computing
the value of (21). Otherwise, the last term in (16) is the
solution. Equations (18) and (19) show that the dynamic
pricing policy π in (13) should be skew-symmetrical, i.e.,
π(x̄i, x̄j) = −π(x̄j , x̄i), for effective pricing.

Proof: Due to the limitation of space, a brief proof is
given. From (4), (7), (8), (11), and (13), the expectation of
the discrepancy x̄i(t) = xi(t)− xmax

i /2 is governed around
the equilibrium point by the following equation:

E[x̄(t+ 1)]

= (I − (π̂a − π̂b)ϕ̂1
⊤Γ1L)E[x̄(t)] + (∆−∆⊤)1,

(22)

where x̄(t) = [x̄1(t) · · · x̄n(t)]
⊤ ∈ Rn. From the eigenvalue

analysis, the stability condition of (22) is derived as

(π̂a − π̂b)λn

∑

i,j∈N
γij < 2. (23)

Under this condition, The limit limt→∞ E[x̄(t)] exists and

lim
t→∞

E[x̄(t)] =

∑

i∈{2,...,n}
λ−1
i viv

⊤
i (∆−∆⊤)1

(π̂a − π̂b)ϕ̂
∑

i,j∈N
γij

+
m̄1

n

(24)

holds, where m̄ = m−mmax/2.
We assume that the solution to the optimization problem

of (15) is achieved for π : Z2
+ → κZ in (11) of the form

(13) with some π̂a, π̂b, π̂c ∈ κZ. Therefore, limt→∞ E[x̄(t)]
exists, and thus (23) holds. Furthermore, the limit is given
as (24), which can be rewritten with h in (20) as

lim
t→∞

E[x̄(t)] =
h

π̂a − π̂b
+

m̄1

n
. (25)

From (13), (12), and (25),

lim
t→∞

Vp(x(t))

=
1

n2

∑

i,j∈N

(
(π̂aei + π̂bej)

⊤h
π̂a − π̂b

+
(π̂a + π̂b)m̄

n
+ π̂c

)2

(26)

is derived. Because maxm∈Z+ limt→∞ Vp(x(t)) is bounded,
π̂a + π̂b = 0 holds from (26) and m̄ = m −mmax/2. This
yields (18), and

lim
t→∞

Vp(x(t)) =
1

n2

∑

i,j∈N

(
(ei − ej)

⊤h
2

+ π̂c

)2

(27)
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Fig. 2: Scene of simulation using SOUND: n = 25 stations
(blue squares), sharing cars (solid black squares), and
regular cars (solid red squares).

is obtained from (26). Note that x+
i (t) = xi(t + 1) holds

from (4) and (6) because rij(t) = dij(t) holds around the
equilibrium point. Subsequently, from (10) and (25),

lim
t→∞

Vx(x(t)) = lim
t→∞

1

n
∥E[Cx̄+(t)]∥2 =

1

n

∥h∥2
4π̂2

a

(28)

is derived, where C = I−11⊤/n and the facts that Ch = h
and C1 = 0 are used. From (14), (27), and (28),

V (π̂a, π̂b, π̂c) =
1

n

∥h∥2
4π̂2

a

+
µ

n2

∑

i,j∈N

(
(ei − ej)

⊤h
2

+ π̂c

)2

+ ν(2π̂2
a + π̂2

c ) (29)

is derived. Equation (29) can be minimized separately using
π̂a and π̂c. For π̂c ∈ κZ,

π̂c =
1

n2

∑

i,j∈N

(ei − ej)
⊤h

2
= 0

is obtained, which yields (19). For π̂a, from (18) and (23),
(17) must be satisfied. If π̂a is a real value and

π̂a =

√
∥h∥

2
√
2nν

(30)

satisfies (17), (30) is the solution to (29). Because (29) is
convex according to π̂a, the optimizer π̂a ∈ κZ is given
by rounding (30) into κZ, which corresponds to the first
two terms in (16). If the rounded values do not satisfy (17),
the boundary of the inequality provides the solution, which
corresponds to the last term in (16). From (29), (21) is
derived.

IV. SIMULATION

To verify the effectiveness of the developed method, sim-
ulations were conducted using the realistic traffic simulator

V
x
(x
(t
))

un
it2

Time t hour

Fig. 3: Sample variance Vx(x(t)) of penalties of parking
slots with DP (solid line) and without DP (dashed
line).

SOUND [14]. Figure 2 shows a scene of the simulations,
in which n = 25 stations were scattered over an area of
approximately 6 × 8 km with sharing and general cars.
The capacities of the parking slots were all set to 10, i.e.,
xmax
i = 10. m = 164 was the number of sharing cars. We

considered the system consisting of the models of (1)–(9)
with the common, distributed dynamic pricing policy of (11)
and (13). The time interval of changing prices was 5 min,
which determined the sampling time.

The system parameters were as follows: price elasticity
of demand ϕ̂ = 2.5 × 10−5; expectation of demand δij =
0.005 × 60−1 to 3 × 60−1; ease of shifting stations γik =
e−η∥ρi−ρk∥, where ρi ∈ R2 is the position of station i in
Figure 2 and η = 4.5× 10−4. According to Theorem 1, the
pricing policy π in (13) was designed with µ = ν = 0.01
and κ = 1. Subsequently, the parameters π̂a = −π̂b = 1 and
π̂c = 0 were designed according to (16), (18), and (19) by
solving the optimization problem of (15). Simulations were
executed under two conditions: with dynamic pricing (DP)
and without DP (fixed price).

Figures 3 and 4 show the sample variance of the penalties
of the parking slots Vx(x(t)) in (10) and the discrepancy
of the prices Vp(x(t)) in (12), respectively, with DP (solid
lines) and without DP (dashed lines). The value in Figure
3 is restrained with DP (solid line), compared with that
without DP increases over time (dashed line). This result
demonstrated that the unevenness of the vehicle distribution
decreases when the developed pricing policy was used.

Figures 5 and 6 show the incremental values of the unful-
filled demands

∑
ij uij(t) and total income

∑
ij rij(t)pij(t),

respectively, with DP (solid lines) and without DP (dashed
lines). These figures indicate that the unfulfilled demand with
DP (solid line) was lower than that without DP (dashed line)
and the total income with DP (solid line) was consequently
larger. This result suggested that introducing DP can increase
incomes of car-sharing services owing to the decreases in
unfulfilled demand.

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



V
p
(x
(t
))

pr
ic

e
un

it2

Time t hour

Fig. 4: Discrepancy Vp(x(t)) of adjusted prices with DP
(solid line) and without DP (dashed line).

∑ t

∑ ij
u
ij
(t
)

un
it

Time t hour

Fig. 5: Incremental value of the numbers of unfulfilled de-
mands

∑
ij uij(t) with DP (solid line) and without

DP (dashed line).

V. CONCLUSIONS

This study investigated the potential of dynamic pricing
to solve the problem of uneven distribution of vehicles
in a one-way car-sharing system. To design a dynamic
pricing policy, this system was modeled with parking-slot,
reservation, demand, and demand-shift models. In particular,
the voluntary demand shift of customers was newly modeled
with a stochastic process. Based on the simplified models, the
unevenness of penalties of the parking slots was estimated
based on the results of consensus control systems. Sub-
sequently, the common, distributed dynamic pricing policy
was designed with the aim of minimizing the unevenness of
penalties and price discrepancies. The effectiveness of the
developed method was illustrated through simulations using
the realistic traffic simulator by comparing the results with
and without DP.
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