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Variational proof of the existence of periodic

orbits in the spatial Hill and its constrained

problems

Shota Iguchi∗1, Yuika Kajihara†1, and Mitsuru Shibayama‡1

1Department of Applied Mathematics and Physics, Graduate
School of Informatics, Kyoto University, Yoshida-Honmachi,

Sakyo-ku, Kyoto 606-8501, Japan

Abstract

The Hill problem models the motion of a particle near a planet. In
this paper, we show the existence of symmetric periodic orbits in the
spatial Hill problem by using the variational method. We also study the
problem under a constraint on a prescribed plane and show the existence
of periodic orbits in the problem. The obtained orbits are applicable to
artificial satellites around the Earth.

1 Introduction and Main Results

By using a variational method, Chenciner and Montgomery showed the existence
of a remarkable periodic orbit called the figure-eight orbit (see [3]). Their result
has led to a lot of works on the n-body problem and a number of periodic orbits
has been shown to exist. Compared with the n-body problem, there are few
results on the the restricted three-body problem (R3BP) using the variational
methods because the technical parts of the level estimates for the R3BP are
more difficult. In [7], Moeckel showed the existence of the transit orbit in the
R3BP for regions from around the Earth to around the Moon. The result in
[8] yields the existence of orbits realizing symbolic sequences in the Sitnikov
problem. Arioli et al showed the existence of periodic orbits revolving around
Jupiter in [1]. Chen proved the existence of the orbits moving away from the
center in [2]. The Hill problem models motion of an asteroid or artificial satellite
close to the second primary in the R3BP.
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Particles around the Earth are the most affected by the gravitational force
of the Earth. Thus the motion is modeled by the Kepler problem

Ẍ = − X

(X2 + Y 2 + Z2)3/2

Ÿ = − Y

(X2 + Y 2 + Z2)3/2

Z̈ = − Z

(X2 + Y 2 + Z2)3/2
.

Other forces which affect the particles are the gravitational force by the Sun,
the Coriolis and the centrifugal force due to the Earth revolution. The model
which involve these force is the spatial Hill problem:

Ẍ = 2Ẏ + 3X − X

(X2 + Y 2 + Z2)3/2

Ÿ = −2Ẋ − Y

(X2 + Y 2 + Z2)3/2
(1)

Z̈ = −Z − Z

(X2 + Y 2 + Z2)3/2
.

The Hill problem is more accurate than the Kepler problem for particles around
the Earth like artificial satellites(see [5, 9] for more detail). This problem has
been studied to design orbits of space probes. See [6] for example.

In this paper, we show the existence of several symmetric periodic orbits in
the Hill problem. Let

LX+ = {(X, 0, 0) | X > 0}, LX− = {(X, 0, 0) | X < 0},
LY+ = {(0, Y, 0) | Y > 0}, LY− = {(0, Y, 0) | Y < 0},
PXZ = {(X, 0, Z) | (X,Z) ∈ R\{(0, 0)}}, PY Z = {(0, Y, Z) | (Y, Z) ∈ R\{(0, 0)}}.

Let T0 > 0 be the constant determined by cos T0 = T0, which is approximately
0.739.

Theorem 1 For the spatial Hill problem (1), the followings hold.

(i). For each 0 < T < 1, there is a 2T -periodic orbit satisfying q(0) ∈
LX+, q(T ) ∈ LX−.

(ii). For each 0 < T < 1, there is a 4T -periodic orbit satisfying q(0) ∈
LX+, q(T ) ∈ LY+.

(iii). For each 0 < T < T0, there is a 4T -periodic orbit satisfying q(0) ∈
LX+, q(T ) ∈ LY−.

(iv). For each 0 < T < T0, there is a 4T -periodic orbit satisfying q(0) ∈
LX+, q(T ) ∈ PY Z .
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(v). For each 0 < T < 1, there is a 2T -periodic orbit satisfying q(0) ∈
LY+, q(T ) ∈ LY−.

(vi). For each 0 < T < T0, there is a 4T -periodic orbit satisfying q(0) ∈
LY+, q(T ) ∈ PXZ .

See figure 1.
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Figure 1: Boundary conditions

To prove this theorem, we use a variational method. The Lagrangian for the
Hill problem (1) is

L =
Ẋ2

2
+

Ẏ 2

2
+

Ż2

2
+XẎ − Y Ẋ +

3X2

2
− Z2

2
+

1√
X2 + Y 2 + Z2

.

The Hill problem is equivalent to the variational problem with respect to the
action functional

AT =

∫ T

0

Ldt.

The result of this paper is organized as follows. Next section, we show the
coercivity condition for the existence of a minimizer under the boundary condi-
tions corresponding to each orbit in Theorem 1. We also show that the obtained
minimizers have no collision by applying our previous result. In Section 3, we
state the reversibility of the Hill problem and show that the obtained minimiz-
ers are periodic orbits. In the viewpoint of an application to the trajectory
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design for artificial satellites, we need orbits on a prescribed plane. For exam-
ple, geosynchronous satellites move directly above the Earth’s equator. We also
prove the existence of several periodic orbits in the constrained problem. Sec-
tion 4 is devoted to the study of the existence of periodic orbits of the holonomic
constraint system on a prescribed plane. Last section, we show the numerical
solutions.

2 Coercivity and the existence of minimizers

For subsets D1, D2 ⊂ R3, let

Ω(D1, D2;T ) = {γ ∈ H1([0, T ],R3\{0}) | γ(0) ∈ D1, γ(T ) ∈ D2}.

Here H1 denotes the Sobolev space. By taking LX+, . . . , PY Z in Section 1 as D1

and D2, we will show the existence of a minimizer of AT |Ω(D1,D2;T ). We call the
functional AT |Ω(D1,D2;T ) coercive if AT |Ω(D1,D2;T )(γ) → ∞ as ∥γ∥H1 → ∞(γ ∈
Ω(D1, D2;T )). It is well-known that there is a minimizer of AT |Ω(D1,D2;T ) on

Ω(D1, D2;T )(γ) if the functional is coercive.
By changing variables

X = (cos t)x+ (sin t)y, Y = −(sin t)x+ (cos t)y, Z = z,

the Lagrangian becomes

Lrot =
1

2
(ẋ2 + ẏ2 + ż2)

+
3(cos2 t)x2

2
− 3(cos2 t)y2

2
+ 3 cos(t) sin(t)xy − x2

2
+ y2

− z2

2
+

1√
x2 + y2 + z2

.

We estimate the terms on its second line by using the polar coordinate (x, y) =
r(cos θ, sin θ):

3(cos2 t)x2

2
− 3(cos2 t)y2

2
+ 3 cos(t) sin(t)xy − x2

2
+ y2

=
3r2 cos(2t− 2θ)

4
+

1

4
r2 ≥ −1

2
r2 = −1

2
(x2 + y2).

Therefore, we get

Lrot ≥
1

2
(ẋ2 + ẏ2 + ż2)− 1

2
x2 − 1

2
y2 − 1

2
z2 +

1√
x2 + y2 + z2

=: L̃.

Define

ÃT =

∫ T

0

L̃dt.
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If ÃT |Ω(D1,D2;T ) is coercive, so is AT |Ω(D1,D2;T ).
Let

(x(0), y(0)) · (x(T ), y(T )) = |(x(0), y(0))||(x(T ), y(T ))| cos ρ.

For example, in the case of D1 = LX+, D2 = LX− which corresponds to (i) in
Theorem 1, the boundary condition is represented by

x(0) > 0, y(0) = z(0) = 0

(cosT )x(T ) + (sinT )y(T ) < 0,−(sinT )x(T ) + (cosT )y(T ) = 0, z(T ) = 0

(x(T ), y(T ), z(T )) ∈ {ξ(cos(T + π), sin(T + π), 0) | ξ > 0}.

Hence, ρ = T + π.
Note that ∫ T

0

|ẋ|2dt ≥ 1

T

(∫ T

0

|ẋ|dt

)2

.

Let
rmax = max

t∈[0,T ]
|x(t)|.

If |ρ| < π/2,

ÃT ≥ 1

2T
(r2max sin

2 ρ)− 1

2
Tr2max =

r2max

2
(
sin2 ρ

T
− T ).

If π/2 < |ρ| < π,

ÃT ≥ 1

2T
(r2max)−

1

2
Tr2max =

r2max

2
(
1

T
− T ).

In the case that
∥x∥H1 = (∥ẋ∥2L2 + ∥x∥2L2)1/2 → ∞

and that ∥x∥2L2 < ∞, ÃT diverges to infinity since

ÃT ≥ 1

2
∥ẋ∥2L2 −

1

2
∥x∥2L2 .

In the case of ∥x∥2L2 → ∞, rmax → ∞, and henceAT diverges if T < | sin ρ|(|ρ| <
π/2) or T < 1(|ρ| > π/2). Now we adapt these computations to our setting in
Theorem 1.

(i). LX+ → LX−: since ρ = π + T , AT is coercive if 0 < T < 1;

(ii). LX+ → LY+: since ρ = π/2 + T , AT is coercive if 0 < T < 1;

(iii). LX+ → LY−: since ρ = π/2−T , AT is coercive if 0 < T < sin(π/2−T ) =
cosT ;
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(iv). LX+ → PY Z : since ρ = π/2−T , AT is coercive if 0 < T < sin(π/2−T ) =
cosT ;

(v). LY+ → LY−:since ρ = π + T , AT is coercive if 0 < T < 1;

(vi). LY+ → PXZ :since ρ = π/2− T , AT is coercive if 0 < T < sin(π/2− T ) =
cosT .

The structure of the collision singularity (X,Y, Z) = (0, 0, 0) is essential
same as ones of the restricted three-body problem. We [4] established a method
to avoid the collision singularities in the restricted three-body problem. We can
apply the method to the Hill problem and show that the obtained minimizers
have no collision.

3 Reversibility

Consider ordinary differential equations:

ẋ = F (x) (x ∈ Rn) (2)

where F : Rn → Rn is a smooth function.

Definition 1 (Reversible) Let R be an linear map from Rn to Rn. If F (x)
satisfies

F (Rx) +RF (x) = 0,

then (2) is said to be reversible with respect to R.

With a simple calculation, we get the following proposition:

Proposition 1 In a reversible system with respect to R, if x(t) is a solution of
Eq. (2), so is Rx(−t).

We define
Fix(R) = {x ∈ Rn | Rx = x}.

It is easy to see that, for a solution x(t) of (2) and a real value s ∈ R, x(s) ∈
Fix(R) is satisfied if and only if x(s+ t) = Rx(s− t).

By letting (VX , VY , VZ) = (Ẋ, Ẏ , Ż), we rewrite the Hill problem (1) as the
first order differential equations:

Ẋ = VX

Ẏ = VY

Ż = VZ

V̇X = 2VY + 3X − X

(X2 + Y 2 + Z2)3/2

V̇Y = −2VX − Y

(X2 + Y 2 + Z2)3/2

V̇Z = −Z − Z

(X2 + Y 2 + Z2)3/2
.
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This system is reversible with respect to the following four linear maps:

R1 = diag(1,−1, 1,−1, 1,−1)

R2 = diag(1,−1,−1,−1, 1, 1)

R3 = diag(−1, 1, 1, 1,−1,−1)

R4 = diag(−1, 1,−1, 1,−1, 1).

For those linear maps,

Fix(R1) = {t(X,Y, Z, VX , VY , VZ) | Y = VX = VZ = 0}
Fix(R2) = {t(X,Y, Z, VX , VY , VZ) | Y = Z = VX = 0}
Fix(R3) = {t(X,Y, Z, VX , VY , VZ) | X = VY = VZ = 0}
Fix(R4) = {t(X,Y, Z, VX , VY , VZ) | X = Z = VY = 0}.

Consider the case (i). From the first variational formula, ∂L
∂ẋ (0) · LX+ =

∂L
∂ẋ (T ) · LX− = 0 Since

∂L

∂ẋ
= (Ẋ − Y, Ẏ +X, Ż),

Ẋ(0) = 0, Ẋ(T ) = 0

Therefore,

(
x(0)
ẋ(0)

)
,

(
x(T )
ẋ(T )

)
∈ Fix(R3). We have

(
x(t)
ẋ(t)

)
= R3

(
x(−t)
ẋ(−t)

)
,

(
x(T + t)
ẋ(T + t)

)
= R3

(
x(T − t)
ẋ(T − t)

)
.

Therefore, we get(
x(t+ 2T )
ẋ(t+ 2T )

)
=

(
x(T + (t+ T ))
ẋ(T + (t+ T ))

)
= R3

(
x(T − (t+ T ))
ẋ(T − (t+ T ))

)
= R3

(
x(−t)
ẋ(−t)

)
=

(
x(t)
ẋ(t)

)
.

Hence the obtained orbit is 2T -periodic. The other cases (ii)-(vi) are similar.

4 Holonomic constraint

In the point of view of an application to orbits of artificial satellites, we need
orbits on a prescribed plane. A prescribed plane is not invariant under the flow
of the Hill problem in general. Hence we constraint the system to a prescribed
plane with an external force like a jet by an artificial satellite.

Let c = (c1, c2, c3) be a unit vector and consider the plane perpendicular
to c passing the origin(Figure 2). The holonomic system is represented by the
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c

Figure 2: Holonomic constraints

Lagrangian system with the Lagrangian

L̄ =
1

2
(ẋ2 + ẏ2) + c3(xẏ − yẋ) + λ1x

2 + λ2y
2 +

1√
x2 + y2

where λ1 ≤ 0 ≤ λ2 are the constants determined by

λ1 + λ2 = −3c21 + c23 + 2, λ1λ2 = −3

4
c22.

The equations are

ẍ = 2c3ẏ + 2λ1x− x

(x2 + y2)3/2

ÿ = −2c3ẋ+ 2λ2y −
y

(x2 + y2)3/2
.

(3)

Let

lX+ = {(X, 0) | X > 0}
lX− = {(X, 0) | X < 0}
lY+ = {(0, Y ) | Y > 0}
lY− = {(0, Y ) | Y < 0}.

See Figure 3.

Theorem 2 For the holonomic system (3), the followings hold:

(i). For each 0 < T < min{π/2, 1/(c23 − 2λ1)}, there is a 2T -periodic orbit
satisfying q(0) ∈ lX+, q(T ) ∈ lX−.
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ii
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Figure 3: Boundary conditions in the constrained problem

(ii). For each 0 < T < min{π/2, 1/(c23 − 2λ1)}, there is a 4T -periodic orbit
satisfying q(0) ∈ lX+, q(T ) ∈ lY+.

(iii). For each 0 < T < min{π, T1}, there is a 4T -periodic orbit q(0) ∈ lX+, q(T ) ∈
lY−.

(iv). For each 0 < T < min{π/2, 1/(c23 − 2λ1)}, there is a 2T -periodic orbit
satisfying q(0) ∈ lY+, q(T ) ∈ lY−.

The proof is similar as one for Theorem 1.
To apply these orbits for artificial satellites, we need to control it for c-

direction. But this must be less costly than we use the orbit of the Kepler
problem.

5 Numerical computation

We numerically found the periodic solutions. In order to obtain those, we con-
sider the Fourier series of the solutions and compute the Fourier coefficient by
using the steepest descent method. Let

c = (0.6490, 0.6490, 0.3971).

That is the direction of the earth’s axis and the obtained periodic orbits are
over the equator. Weather satellites move over the equator and its period is
one day which is T = 0.0172 in our setting. Numerical solutions in Figure 5
corresponds to ones of Theorem 2 (i). The existence guarantees for small T > 0
theoretically, but numerical solutions for large T > 0 are obtained.

Quasi-zenith satellites are used for GPS system. The orbits are on the plane
inclined at an angle of 45◦ with the earth’s axis and their period are one day.
In this case,

c = (0.2603, 0.2603, 0.9298).

9

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



Figure 4: Numerical orbits for c = (0.6490, 0.6490, 0.3971)

T = 100 (upper left), T = 10 (upper right), T = 1 (lower left) and
T = 0.0172 (lower right)
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Figure 5: Numerical orbits for c = (0.2603, 0.2603, 0.9298)

T = 100 (upper left), T = 10 (upper right), T = 1 (lower left) and
T = 0.0172 (lower right)
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[5] J. Llibre, R. Mart́ınez & C. Simó, Tranversality of the invariant manifolds
associated to the Lyapunov family of periodic orbits near L2 in the restricted
three-body problem. J. Differential Equations, 58 (1985), 104-156.

[6] M. Giancotti, S. Campagnola, Y. Tsuda, J. Kawaguchi, Families of peri-
odic orbits in Hill’s problem with solar radiation pressure: application to
Hayabusa 2. Celestial Mech. Dynam. Astronom. 120 (2014), 269–286.

[7] R. Moeckel, A variational proof of existence of transit orbits in the restricted
three-body problem. Dyn. Syst. 20 (2005), 45–58.

[8] M. Shibayama, Variational construction of orbits realizing symbolic se-
quences in the planar Sitnikov problem. Regul. Chaotic Dyn. 24 (2019),
202–211.

[9] V. G. Szebehely. Theory of Orbits. Academic Press, New York, 1967

12

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp




