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a b s t r a c t

Serotonin transporter (SERT) is a membrane transporter which terminates neurotransmission of sero-
tonin through its reuptake. This transporter as well as its substrate have long drawn attention as a key
mediator and drug target in a variety of diseases including mental disorders. Accordingly, its structural
basis has been studied by X-ray crystallography to gain insights into a design of ligand with high affinity
and high specificity over closely related transporters. Recent progress in structural biology including
single particle cryo-EM have made big strides also in determination of the structures of human SERT in
complex with its ligands. Moreover, rapid progress in machine learning such as deep learning accelerates
computer-assisted drug design. Here, we would like to summarize recent progresses in our under-
standing of SERT using these two rapidly growing technologies, limitations, and future perspectives.

© 2022 The Authors. Production and hosting by Elsevier B.V. on behalf of Japanese Pharmacological
Society. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

1. Introduction

Serotonin transporter (SERT) is a membrane transporter which
terminates neurotransmission of serotonin, a monoaminergic
neurotransmitter, through its reuptake.1 This transporter as well as
its substrate have long drawn attention as a key mediator and drug
target in a variety of diseases including mental disorders such as
major depression, schizophrenia, obsessive-compulsive disorder,
anxiety disorders, and drug addiction.2e6 Accordingly, its structural
basis has been studied by X-ray crystallography to gain insights into
a design of ligandwith high affinity and high specificity over closely
related transporters such as dopamine transporter and noradren-
aline transporter. Although the structures of these transporters for
monoaminergic neurotransmitters have been investigated using
bacterial homologues such as LeuT,7,8 recent progress in structural
biology including single particle cryo-EM have made big strides
also in determination of the structures of human SERT in complex
with its ligands. Moreover, rapid progress in machine learning such
as deep learning accelerates computer-assisted drug design.9,10 In

line with this we recently reported that quantitative prediction
model of pharmacological activity with high accuracy and high
generalizability can be constructed with graph convolutional neu-
ral networks, a technique in deep learning and found that a com-
pound predicted to act on SERT by our prediction model are found
to be high affinity ligand against SERT in “real” assay and act as
antidepressant in rodent,11 indicating plausibility of the prediction
model. In this review, we would like to summarize recent pro-
gresses in our understanding of SERT using these two rapidly
growing technologies, limitations, and future perspectives.

2. Identification of new SERT ligand through in silico ligand
prediction with pharmacological validation in “real” assay

2.1. Application of machine learning for activity prediction from
chemical structure

Recent rapid growth in machine learning, especially deep
learning, enables us to data-driven extraction of features from
images, texts, audio, and networks.9,12,13 Importantly, these
extracted features surpass traditional features made by human in
classification of images, texts, and many other types of inputs.
Moreover, these extracted features can be used for generation of
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images and texts similar to, but different from, original inputs.14

From the pharmacological point of view, classification of images
and generation of new images corresponds to classification (i.e.
active or inactive) of drugs and generation of new drug-like com-
pounds, respectively. Therefore, it is possible that activity predic-
tion of any compound for target protein can be achieved through
utilization of machine learning if sufficient amount of assay data is
available. In this line, ChEMBL (https://www.ebi.ac.uk/chembl/) is a
database curating pharmacological/biological activity of small
molecules from published articles.15 This database (ChEMBL 28)
contains over 17 millions activity data of around 2 millions com-
pounds for 14 thousands targets. More importantly, quantitative
activity data (i.e. IC50 of 1 nM, EC50 of 10 nM and so on) is available
in ChEMBL, which is necessary for quantitative prediction of ac-
tivity. Recently we reported a method for quantitative prediction of
virtually any compounds for more than 100 target proteins
including SERT by using ChEMBL.11We also found that a compound,
predicted to inhibit SERT by our method, strongly inhibit SERT in
cell culture and show antidepressant-like efficacy in mice.11 In that
report, we used graph-convolution neural networks for feature
extraction from compound structures by using assay data depos-
ited to ChEMBL.

2.2. Usefulness of graph-convolution neural network for feature
extraction from chemical structures

Graph-convolution neural networks is highly similar to con-
volutional neural networks, a deep learning method often used in
visual recognition tasks.16 In convolutional neural networks, each
pixel is assumed to have a fixed number of neighborhoods. For
example, each pixel is adjacent to four and six pixels in 2D and 3D
images, respectively. Although some reports have constructed
prediction models by applying (conventional) convolutional neural
networks to 2D image of chemical structures, their prediction is not
quantitative but qualitative, or their prediction accuracy is not
high.17,18 Chemical structures can be considered as a network with
vertices of atoms and edges of bonds. Difference in atom compo-
sition as well as bonding pattern characterizes chemical com-
pounds and ultimately determines biological activity. Thus, feature
extraction from networks is thought to play an important role in
activity prediction of chemical compounds. As mentioned above,
conventional convolutional neural networks assumed that each
node has a fixed number of neighborhoods. In chemical com-
pounds, however, each atom has a variable number of neighbor-
hoods, which cannot be processed by conventional convolutional
neural networks. Graph-convolution neural network is developed
to apply convolution to networks with a variable number of
neighborhoods by Duvenaud et al.19 By using graph-convolution
neural networks, Pande and colleagues in Stanford university
constructed quantitative prediction model for lipophilicity and
quantum mechanics with higher accuracy than conventional
method, indicating usefulness of graph-convolution neural net-
works.10 According to these reports, we applied graph-convolution
neural networks to quantitative prediction of pharmacological ac-
tivity. In ChEMBL 25, there are activity data of 7886 compounds for
SERT. We split these data into three parts, training dataset, vali-
dation dataset, and test dataset. Training dataset was used for
construction of prediction model, whereas validation dataset was
not directly used for model construction, but was used for
searching best hyperparameters such as learning rate, model
structures, and so on. Then, goodness of model was evaluated in
test datasets. As a result, we found that mean absolute error of our
model, an index of prediction accuracy in quantitative prediction,
was 0.56 ± 0.011 (as pIC50) for compounds in test dataset. Although
the constructed model successfully predicts activity of compounds

which are not directly used for model construction, it is possible
that the model performance is not high for compounds outside of
training, validation, and test datasets. Thus, we virtually screened
1.7 million compounds from ChEMBL whose activity on SERT was
not reported. Through visual inspection, we selected a compound
designated as CHEMBL1377753 because of its high predicted ac-
tivity for SERT and similar lipophilicity to marketed SSRIs. We
measured the inhibition activity of this compound in HEK293T cells
heterologously expressing human SERT.20 We found that measured
IC50 of CHEMBL1377753 was 6.24 nM and was quite similar to
predicted IC50 (10 nM). Moreover, we found that this compound
acutely induced dose-dependent antidepressant-like effect in
mouse tail-suspension test, a widely used behavioral paradigm for
screening of antidepressants,6 without affecting general locomotor.
These results indicate that the constructed model has high gener-
alizability to compounds outside of the dataset used for model
construction in terms of ligand prediction for SERT.

2.3. Importance of validation of prediction in “real” assay

Considering the huge number of deposited assay data in public
domain including ChEMBL and PubChem (https://pubchem.ncbi.
nlm.nih.gov/), one may think that there is no need to do more
“real” assays. It is partly true; specifically for proteins which are
heavily investigated as a drug target. However, for other vast ma-
jority of proteins, it is not. Even though ChEMBL and similar data-
bases have huge number of assay data, only a few target proteins
have been associated with compounds more than 500, which is on
par with minimum number of assay data we have successfully build
a predictionmodel withmoderate accuracy.11 Therefore, it should be
emphasized that pharmacological “real” assay for a broad range of
proteins is necessary for perfecting in silico drug design and ulti-
mately simulating in vivo efficacy. Moreover, synthetically accessible
chemical space is estimated to be in order of 1033�60, which is too
large to perform “real” assay.21,22 Thus, it would be too optimistic to
consider that our “real” assays have sufficiently cover the diversity of
this huge chemical space, even for target proteins heavily studied.

3. Towards structure-guided in silico screening with minimal
validation in “real” assay

3.1. Rapid progress in structural biology provides deep insights into
how SERT recognizes ligands

Considering the broadness of chemical space, predictability of
prediction model for compounds outside of the chemical diversity
used in model construction explicitly and implicitly will be limited.
From this perspective, virtual screening and subsequent molecular
dynamics simulation of target proteins and possible ligands to seek
chemical structures fit to possible ligand binding pockets are
promising to overcome above mentioned limitation.23e25

Until recently, it was, however, far from realistic to gain a
number of 3-D structures of target proteins, especially membrane
proteins, which is indispensable for molecular dynamics simula-
tion. In 2005, Gouaux and colleagues reported the crystal structure
of LeuT, a bacterial orthologue of neurotransmitter sodium sym-
porters (NSSs) such as SERT.7 However, NSSs consist of other
transporters like dopamine transporter (DAT) and GABA trans-
porter than SERT and overall sequence identity between LeuT and
NSSs is around 20%. Therefore, the 3-D structure of mammalian
SERT had long been awaited to gain mechanistic insights into
ligand selectivity among NSSs. After more than 10 years, Coleman
et al. reported crystal structure of human SERT in complex with its
ligands, citalopram, paroxetine, and subsequently sertraline and
fluvoxamine, although it derived from not wild-type but
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thermostable mutant.26,27 Whilst X-ray crystallography have
revealed structures of a number of proteins and large protein
complexes such as ribosomes,28e30 there has been a rapid surge of
single particle analysis of cryo-EM in structural biology, which does
not require a crystallizing protein, one of the highest barriers for
membrane proteins. In line with this, Coleman and Yang et al.
successfully resolved the structure of wild-type SERT using cryo-
EM in 2019.31 Although it derives from wild-type SERT truncated
with N- and C-termini, analyses of serotonin uptake and ligand
binding suggest it has similar function to full-length wild-type
SERT as well as ts2 thermostable mutant.26,31 This series of work
from Gouaux and colleagues provides deep insights into not only
the structural detail of human SERT but also how antidepressants
act on this protein.26,27,31,32 More recently, Coleman and colleagues
reported the structure of human SERT in complex with vilazodone,
a combined SERT inhibitor and 5-HT1A receptor partial agonist.33

Interestingly, vilazodone is a non-competitive SERT inhibitor
while all other selective serotonin reuptake inhibitors are
competitive inhibitors, indicating a possible therapeutic efficacy of
vilazodone through different mode of action. Cryo-EM structure of
SERT with vilazodone and imipramine suggest that imipramine
binds to the central sites similar to other SERT inhibitors whereas
vilazodone binds to the allosteric sites located to the extracellular
“vestibule”.33 They also demonstrated that binding of vilazodone
concentration-dependently delayed the dissociation of prebound
imipramine or escitalopram from SERT. These data suggest that the
allosteric sitesmay be a promising drug target enhancing efficacy of
antidepressants. Although above mentioned reports have revealed
structure of mammalian SERT, structures of mammalian DAT and
norepinephrine transporter is still unknown as far as we know.
Because almost all DAT ligands have addictive property like cocaine
and amphetamines,34,35 high-resolution 3-D structure of
mammalian DATwill be of high importance for in silico screening to
seek drugs for mental illnesses with minimal risk of addiction.

Many proteins in cell present as a complex with other proteins.
Previous reports have identified syntaxin 1A, SCAMP2, M6B, and
cGMP-dependent protein kinase I as an associated protein with
SERT. More importantly, association with these proteins modulates
function of SERT.36e39 Recent proteomic analyses of protein com-
plex affinity purified for SERT in the mouse brain have revealed
more than 300 proteins are potentially associated with SERT.40,41

Quinlan et al. also used immunoprecipitants from SERT-KO mice,
compared the results with SERT-WT mice, and identified 459
proteins associatedwith SERT.41 These reports strongly suggest that
SERT is associated withmore proteins in vivo thanwe expected and
possible regulation of its function by these bound auxiliary pro-
teins. From this perspective, cryo-EM analysis of immunoprecipi-
tated SERT complex from the brain will provide deep insights into
how SERT function is regulated in the brain in health and disease, as
reported in the cryo-EM analysis of 3-D structure of AMPA receptor
complex with auxiliary subunits in the hippocampus of mice.42

3.2. Current state of structure-guided in silico screening of SERT
ligands and its limitation

By utilizing the unveiled structure of human SERT, molecular
docking and molecular dynamics simulations were performed to
seek novel ligands and binding mode of known ligands. Zhang et al.
have reported the binding mode of vilazodone in the human SERT
through molecular docking and molecular dynamics simulations.43

In their prediction vilazodone binds to allosteric and orthosteric
sites with its cyanoindole moiety and benzofurancarboxamide
moiety, respectively. Although this binding mode is different from
that obtained from cryo-EM structure where vilazodone predomi-
nantly binds allosteric site, it should be noted that cryo-EM

structure was obtained in the presence of imipramine, a high af-
finity ligand to orthosteric site, leading to different binding mode.33

Erol et al. identified several candidate SERT inhibitors through
virtual screening of about 260,000 small molecules from a chemical
database.44 Of note candidate SERT inhibitors they identified have a
distinct chemical structure from SSRIs; 3 out of 4 candidates have
two aromatic rings in both ends which are connected by long
flexible chains similar to the structure of vilazodone. Although they
also performed molecular dynamics simulation of SERT in complex
with candidate inhibitors, pharmacological validation and charac-
terization of these candidates in real assay are needed. Moreover,
selectivity over related proteins, DAT and NET as well as serotonin
receptors in case of SERT, is also important. Although structures of
mammalian DAT and NET are not currently available, the structures
of several serotonin receptors, 5-HT1B, 5-HT2, and 5-HT3, have been
resolved.45e48 Considering that these receptors are therapeutic
targets of a variety of diseases including mental disorders,
migraine, and nausea, virtual screening against these receptors
using 3-D structures will greatly help to achieve labor- and cost-
effective drug development.

3.3. In silico protein folding is a key component for realization of
structure-guided in silico screening with minimal validation

Although cryo-EM have rapidly resolved 3-D structures of pro-
teins, it is still unrealistic to determine 3-D structures of all human
gene products, more than 20,000 at least. To this end, in silico
protein folding gains much attention reflecting rapid growth of
computational resources and machine learning techniques.
Recently, DeepMind, a London-based artificial intelligence com-
pany, and Baker and colleagues developed in silico protein folding
systems named Alphafold2 and RoseTTAfold, respectively.49,50 Both
methods vastly outperform previous methods and are highly ac-
curate in predicting the position of backbone carbon (Ca) as well as
all atoms. Although inputs to these folding systems are primary
amino-acid sequences of interest, it should be noted that they used
previously resolved 3-D structure of homologues for protein-of-
interest, nonetheless their prediction is accurate for proteins with
no structural homologues. Therefore, further experimental deter-
mination of 3-D structures of proteins are important because of not
only determination of structure itself but also increasing accuracy
of prediction in a future. Importantly, these in silico folding systems
provide a structure “template” which accelerates or is necessary in
some cases to solve 3-D structure from raw data of cryo-EM and X-
ray crystallography experiments. Collectively, these advances in
experimental structural biology and computational structural
biology will synergistically accelerate our understanding of mech-
anistic basis of protein functions.

Despite huge effort in developing antidepressant with new
mechanisms of action, almost all current antidepressants are still
ligands for SERT, evidencing the critical role of this transporter in
treatment of major depression. Meanwhile, recreational drugs and
narcotics such as ketamine, psilocybin, and 3,4-methylene-dioxy-
methamphetamine have drawn attention as novel antidepressants
overcoming drug-resistance and delayed efficacy onset from which
current antidepressants suffer.51,52 Because these drugs have addic-
tive or psychedelic property, combinatorial approach using protein
structures and machine learning-based technologies will speed up a
design of robust antidepressant with minimal adverse effects.

4. Concluding remarks

Growth in machine learning technologies and structural biology
have rapidly changed our understanding of SERT and methodology
for identification of new ligands (Fig. 1). However, it is still
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important to validate the prediction made in silico in “real” assay to
some extent at least in the current state. We believe that structure-
guided in silico screening with minimal validation will be realized
through synergistic utilization of in silico protein folding system in a
near future.
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