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Abstract 

In the propagation and evolution of sea waves, previous studies pointed out that the 

occurrence of the freak wave height is significantly related to the quasi-resonant four-wave 

interaction in the modulated waves. From the numerical-experimental study over an uneven 

bottom, the nonlinear effect caused by the bathymetry change also contributes to the occurrence 
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of extreme events in the unidirectional waves. To comprehensively analyze the two-

dimensional wave field, this study develops an evolution model for a directional random 

wavefield based on the depth-modified Nonlinear Schrödinger equation, which considers the 

nonlinear resonant interactions and the wave shoaling the shallow water. Through Monte Carlo 

simulation, we discuss the directional effect on the four-wave interaction in the wave train and 

the maximum wave height distribution from deep to shallow water with a slow varying slope. 

The numerical result indicates that the directional spreading has a dispersion effect on the 

occurrence of the freak wave height. In shallow water environment, this effect becomes weak, 

and the bottom topography change is the main influencing factor in the wave evolution.  

Key words 

Freak wave; depth-modified NLS equation; two-dimensional wavefield; directional random 

wave; wave shoaling 

1 Introduction 

    With the development of the technology in observation and recording, rogue/ freak/ 

extreme wave (from now on called “freak wave”) has been generally recognized as a kind of 

marine disaster instead of a small probability event in special circumstances. The concept of 

the freak wave was first put up by Draper (1965), and its occurrence behaves as the wave height 

abnormally exceeds the significant wave height by factor 2. Under different conditions, the 

occurrence probability of the freak wave clearly varies, which inspires us to think that the 

influence mechanism in wave height distribution is more complicated than generally expected. 

    Researches to date indicate that the generation mechanism of the freak wave can be 

divided into internal and external factors. For the internal factor, the nonlinear interaction plays 

an important role in the occurrence of freak waves. Through a nonlinear wave evolution model, 

Benjamin (1967) indicated that modulational instability, a phenomenon leading to the energy 

concentration in a narrow-spectrum wave train, will make the waveform of surface gravity 

waves significantly unstable in deep-water. After the ’90s, it is considered an important reason 

for causing freak waves to behave as the four-wave interactions in the nonlinear wave model. 
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In the study of Janssen (2003), the instability in Benjamin (1967) is actually an example of a 

non-resonant four-wave interaction in which the carrier wave is phase-locked with the 

sidebands. Based on the four-wave interactions and random wave statistics, a complete 

prediction model of freak waves in deep-water is given by Janssen (2003) and Mori and Janssen 

(2006) and is verified by the wave tank experiments (e.g., Mori et al., 2007; Kashima and Mori, 

2019). When it comes to the external factors, the bathymetry effect, the interaction with current, 

wind force, and others contribute to the evolution of nonlinear wave to varying degrees. The 

bathymetry effect on the water depth and local topography change have been known as 

significant influencing factors in the second-order nonlinear wave evolution.   

    For a more general explanation of freak wave occurrence, we need to consider the 

synthetic effect of internal and external factors. For a uniform unidirectional wave train, the 

modulational instability has a critical water depth at 𝑘ℎ = 1.363 from Benjamin (1967). When 

𝑘ℎ < 1.363, the modulational instability disappears, which implies the occurrence of the freak 

wave at relatively shallow water may decrease due to the attenuation of four-wave interactions. 

However, when it comes to a directional wavefield without limiting to collinear instabilities, 

there is no critical water depth such as 𝑘ℎ = 1.363 due to the transversal disturbance (Benney 

and Roskes, 1969; McLean et al., 1981). If we think that the four-wave interactions play an 

important role in the occurrence of the freak wave, the variation of water depth seems to be a 

non-negligible influencing factor. From the observation record, such as the World Ocean and 

the coast in Nikolkina and Didenkulova (2011), the freak wave occurs in deep-water and finite 

and shallow water. Therefore, further investigation of the evolution of the four-wave 

interactions in the nonlinear modulated wave with the variation of bottom topography is 

necessary to study freak wave behaviors both offshore and onshore. 

    For a weakly-dispersive long-wave train, its propagating process can be summarized by a 

partial differential equation about time and space. The Nonlinear Schrödinger (NLS) equation 

(e.g., Zakharov, 1968; Davey and Stewartson, 1974), which can reflect the nonlinear effect 

caused by modulation interactions, is widely used to describe the amplitude evolution. From its 

standard format, a constant depth can be extended to a modified form with varying depth 

considering spatial inhomogeneity. For example, Djordjevic and Redekopp (1978) derived a 

solution for an envelope-hole soliton moving over an uneven bottom and gave a depth-modified 
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NLS (dNLS) equation with a slope effect. Variation of the depth in Liu and Dingemans (1989) 

was divided into different scales, and then they gave evolution equations for modulated wave 

groups over an uneven bottom in different types. The evolution of modulated wave train over 

an uneven bottom can also refer to Peregrine (1983), Turpin et al. (1983), and Mei and 

Benmoussa (1984).  

    Several numerical studies of the different nonlinear evolution equations have been given, 

such as the NLS-like equation (Zeng and Trulsen, 2012; Lyu et al., 2021; Kimmoun et al., 2021), 

the KdV equation (Sergeeva et al., 2011; Majda et al., 2019), Boussinesq equations (Gramstad 

et al., 2013; Kashima et al., 2014; Zhang et al., 2019) and other nonlinear methods (Viotti and 

Dias, 2014; Zheng et al., 2020; Lawrence et al., 2021; etc.). From the research mentioned above, 

a similar conclusion can be derived that the increase of bottom slope angle will give rise to the 

inhomogeneity of wavefield and lead to the increase of the kurtosis of surface elevation in very 

shallow water, which equals to the increase of exceeding occurrence probability of extreme 

wave height 𝑃𝑚(𝐻max) . The abrupt slope change, like the demarcation point between the 

sloping section (deep to shallow) and the flat bottom, gives a significant increase of 𝑃𝑚(𝐻max) 

as well as the skewness 𝜇3 of the surface elevation, which suggests the bathymetry effect is 

more reflected by the second-order effect. If we compare the numerical results in flat bottoms 

with different water depths, 𝑃𝑚(𝐻max) decreases from deep to medium water, as well as the 

kurtosis 𝜇4  of surface elevation, and it corresponds to Benjamin (1967)’s result of the 

evolution of modulational instability: in shallow water 𝑘ℎ ≤ 1.363, modulational instability 

disappears and the 𝜇4 shows an inverse effect on the unidirectional wave train in deep-water 

case. The variation of 𝑃𝑚(𝐻max) with depth change can also be referred to Mendes et al. (2022), 

in which the second-order theory provides a physical explanation about wave statistics. 

    A similar process in shallow water can be verified in experiments. Physical modeling 

experiments can provide a reference for the steeper slope case and more variety of bottom 

topography as Trulsen et al. (2012), Kashima et al. (2014), Ma et al. (2014), Bolles et al. (2019), 

Zhang et al. (2019), Kashima and Mori (2019), Trulsen et al. (2020) and Lawrence et al. (2021, 

2022). The value of kurtosis 𝜇4  and skewness 𝜇3  show a local maximum near the edge 

between the sloping bottom and flat bottom (deep to shallow). As the slope angle extremely 

becomes steep, this local maximum reaches its peak at the abrupt depth transitions in shallow 
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water (Zheng et al., 2020; Li et al., 2021).  

    It should be pointed out that most of the numerical and experimental studies to date 

concentrate on the unidirectional wave train. The wave behaviors in the natural state are a two-

dimensional (2D) hydrodynamic problem. The stability of deep-water random waves in 2D 

space can be referred to as Alber and Saffman (1978). For long-crested irregular waves 

propagating over 2D bathymetry, Lawrence et al. (2022) discussed the statistical properties of 

the surface elevation and the velocity field through the numerical simulation by the high-order 

spectral method. Besides, a 2D wavefield model can provide the directional wave spreading 

due to wind or current effect and the dispersion on one more horizontal dimension. Recent 

works show that the four-wave interaction decreases due to the directional dispersion effects. 

The maximum wave height in a directional wavefield decreases with the unidirectional wave 

in the numerical simulation through a modified form of NLS equation in Gramstad and Trulsen 

(2007). The enhancement of kurtosis is significantly suppressed by the increase of directional 

spread in the directional wave in Waseda (2006), Waseda et al. (2009), Onorato et al. (2009a), 

and Onorato et al. (2009b). Based on the contribution from the directional bandwidth in the 

directional spectrum, Mori et al. (2011) gave the theoretical estimation of kurtosis for 

directional sea states, and the fourth-order cumulant and directional spreading can predict the 

occurrence probability of freak waves. However, a comprehensive discussion about the 

bathymetry effect on the 2D modulated wave is still to be supplemented.  

    To develop the freak wave analysis in 2D wave fields, this study investigates the 

directional nonlinear modulated wave evolution in an uneven bottom as an expansion work of 

Lyu et al. (2021). The dNLS equation in 2D form for a slow-varying bottom is applied to 

establish the numerical model. In a 2D wave basin, we consider the directional dispersion effect 

as part of the initial value problem and give the discussion to compare the roles in the wave 

evolution from different parameters such as the slope angle, the water depth, and directional 

spreading. Random wave statistics and a Monte-Carlo simulation are conducted to give the 

evolution of nonlinear effect and the distribution of extreme events in two-dimensional space-

time (2D+T). Section 2 gives the derivation of the theoretical model and its numerical solving. 

Section 3 gives the computation result and the discussion, and they are summarized in Section 

4. This article concentrates on the case when the wave normally incidents with the contour line 
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of the bottom, so we do not consider the wave refraction. The oblique wave case will be given 

in the later work, Part II. 
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2 Methodology 

2.1 2D dNLS equation for an uneven bottom 

For a 2D flow field, we continue to assume the flow is irrotational, inviscid, and 

incompressible with a free water surface. A coordinate system (𝑥, 𝑦, 𝑧) is defined with origin 

𝑂, as shown in Figure 1. Plane 𝑂𝑥𝑦 is defined along the quiescent water surface, and 𝑧 axis 

is defined vertically upward direction, opposite to gravity acceleration 𝑔 . An incident 

directional random wave train comes from an external field, and its principal wave direction is 

along the 𝑥  axis. The bottom 𝑧 = −ℎ(𝑥, 𝑦)  mainly varies in the principal direction in the 

region between dashed lines A and B. Velocity potential 𝛷 and free surface elevation 𝜂 are 

defined as 

𝛷 = 𝛷(𝑥, 𝑦, 𝑧, 𝑡), 𝜂 = 𝜂(𝑥, 𝑦, 𝑡).                       (1) 

where 𝑡 represents time.  

In the entire flow field, 𝛷 is a solution of the Laplace equation to satisfy continuity: 

𝛻2𝛷 =
𝜕2𝛷

𝜕𝑥2
+

𝜕2𝛷

𝜕𝑦2
+

𝜕2𝛷

𝜕𝑧2
= 0.                            (2) 

On the boundary of the free surface 𝑧 = 𝜂(𝑥, 𝑦, 𝑡), 𝛷 and 𝜂 satisfy the kinematic boundary 

condition (i.e., free surface equation) and the dynamic boundary condition (i.e., Bernoulli 

equation): 

 

Figure 1 Sketch of the wave propagating over an uneven bottom in a 2D wavefield 
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𝜕𝛷

𝜕𝑧
=

𝜕𝜂

𝜕𝑡
+

𝜕𝛷

𝜕𝑥

𝜕𝜂

𝜕𝑥
+

𝜕𝛷

𝜕𝑦

𝜕𝜂

𝜕𝑦
, 𝑧 = 𝜂,                    (3) 

2
𝜕𝛷

𝜕𝑡
+ 2𝑔𝜂 + (

𝜕𝛷

𝜕𝑥
)
2

+ (
𝜕𝛷

𝜕𝑦
)
2

+ (
𝜕𝛷

𝜕𝑧
)
2

= 0, 𝑧 = 𝜂.            (4) 

At the bottom of the flow field, 𝛷 satisfies the no-flux boundary along the seafloor. If the 

water depth ℎ is constant at a flat bottom 𝑧 = −ℎ, 𝛷 satisfies the flat bottom equation: 

𝜕𝛷

𝜕𝑧
= 0, 𝑧 = −ℎ.                                  (5) 

If we assume, the bottom is uneven, and water depth varies at 𝑧 = −ℎ(𝑥, 𝑦), 𝛷 satisfies the 

uneven bottom equation: 

𝜕𝛷

𝜕𝑧
+

𝜕ℎ

𝜕𝑥

𝜕𝛷

𝜕𝑥
+

𝜕ℎ

𝜕𝑦

𝜕𝛷

𝜕𝑦
= 0, 𝑧 = −ℎ(𝑥, 𝑦).                  (6) 

    Based on the periodicity of the time and space in the propagation of gravity waves, wave 

frequency 𝜔 and wave number 𝑘 satisfy the linear dispersion relation: 

𝜔 = √𝑔𝑘𝜎,                                            (7) 

where 𝜎 = tanh𝑘ℎ. For a medium that has no temporal variation, carrier wave frequency 𝜔 =

𝜔0, where subscript 0 represents the constant angular frequency independent of the variable 

bathymetry. For a flat bottom with a constant water depth ℎ, carrier wave number 𝑘 = 𝑘0 is 

also constant as 𝜔; for an uneven bottom, wave number 𝑘 will be changed because of spatial 

inhomogeneity due to bottom topography. The change in wave dispersion will also be reflected 

in the group speed 𝑐𝑔:  

𝑐𝑔 =
𝑔

2𝜔0

[𝜎 + 𝑘ℎ(1 − 𝜎2)].                                 (8) 

In other words, 𝑘 and 𝑐𝑔 are functions of ℎ. 

For a weakly nonlinear wave train, the modulation parameter comes from the contribution 

from the small perturbation in high-order harmonic, so we further expand the velocity potential 

𝛷  and free surface elevation 𝜂  into harmonic functions. In this research, we assume the 

modulation caused by the nonlinear effect and the depth variations are in the same order of 

magnitude, referring to Liu and Dingemans (1989). Therefore, we make this small parameter 

equal to wave steepness 𝜀, and expand 𝛷 and 𝜂 in the form of: 

𝛷(𝑥, 𝑦, 𝑧, 𝑡) = ∑ 𝜀𝑛 [ ∑ 𝛷𝑛𝑚(𝑥, 𝑦, 𝑧, 𝑡)

𝑛

𝑚=−𝑛

𝐸𝑚]

∞

𝑛=1

,                (9) 
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𝜂(𝑥, 𝑦, 𝑡) = ∑ 𝜀𝑛 [ ∑ 𝜂𝑛𝑚(𝑥, 𝑦, 𝑡)

𝑛

𝑚=−𝑛

𝐸𝑚]

∞

𝑛=1

,                (10) 

𝐸 = exp {i [∫ 𝑘(𝑥)𝑑𝑥
𝑥

− 𝜔0𝑡]},                      (11) 

where 𝐸 represents the harmonic functions, and the complex conjugates part satisfy 𝛷𝑛,−𝑚 =

𝛷̃𝑛𝑚，𝜂𝑛,−𝑚 = 𝜂̃𝑛𝑚. We take 𝑛 ≤ 3 in the derivation since 𝜀 is very small.  

    With the expansion of 𝛷 and 𝜂 to the third-order of 𝜀, the method of multiple scales 

introduced in Davey and Stewartson (1974) is applied to give the solution at different orders 

and harmonic. The details in this process are similar to Hasimoto and Ono (1972). To simplify 

the problem, we suppose the water depth ℎ varies slowly. Additionally, we want to concentrate 

on the variation of depth in the wave propagating direction, so we assume the magnitude of the 

gradient of depth change satisfies ℎ′(𝑥)~𝑂(𝜀2) and ℎ′(𝑦)~𝑂(𝜀3). Considering the expansion 

form in Eq. (9) and (10), the effect of bottom topography change is only reflected in the third-

order 𝑂(𝜀3)  and ℎ′(𝑦)~𝑂(𝜀3)  is equivalent to ℎ′(𝑦)  = 0. As for the dispersion relation 

between wavenumber and frequency, the carrier 𝜔 = 𝜔0  is still constant since there is no 

temporal variation, but carrier wave number 𝑘 changes. Based on the above inference, we can 

get 𝑘 = 𝑘(𝑥)  and 𝑐𝑔 = 𝑐𝑔(𝑥)  on the principal wave direction, and we can introduce a 

specific variable substitution of 𝑡 and 𝑥, referring to Djordjevic and Redekopp (1978):  

𝜏 = 𝜀 [∫
𝑑𝑥

𝑐𝑔(𝑥)

𝑥

− 𝑡] , 𝜉 = 𝜀2𝑥, 𝜁 = 𝜀𝑦.           (12) 

We apply Eq. (12) to transfer (𝑥, 𝑦, 𝑡) to (𝜉, 𝜁, 𝜏) and take Eq. (9) – (11) into Eq. (1) – 

(6), then the evolution equation of envelope 𝐴̅(𝜉, 𝜁, 𝜏) for a very mild slope can be given in 

the form of: 

i𝛽ℎ𝐴̅ + i
𝜕𝐴̅

𝜕𝜉
+ 𝛽𝑡

𝜕2𝐴̅

𝜕𝜏2
+ 𝛽𝑦

𝜕2𝐴̅

𝜕𝜁2
= 𝛽𝑛|𝐴̅|2𝐴̅,             (13) 

where  

𝛽ℎ =
(1 − 𝜎2)(1 − 𝑘ℎ𝜎)

𝜎 + 𝑘ℎ(1 − 𝜎2)

𝑑(𝑘ℎ)

𝑑𝜉
=

1

2𝑐𝑔

d(𝑐𝑔)

d𝜉
,            (14 − 1) 

𝛽𝑡 = −
1

2𝜔0𝑐𝑔
[1 −

𝑔ℎ

𝑐𝑔
2

(1 − 𝜎2)(1 − 𝑘ℎ𝜎)],             (14 − 2) 

𝛽𝑦 =
1

2𝑘

𝜕𝜔

𝜕𝑘
≡

𝑐𝑔

2𝑘
,                                  (14 − 3) 

𝛽𝑛 = 𝑘2𝜔0 [
1

16
(9 − 10𝜎2 + 9𝜎4) −

1

2sinh22𝑘ℎ
]                      
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+ [
𝜔0

3

𝑔

1

2𝑔
(𝜎2 − 1) +

𝑘

𝑐𝑔
] (

𝑐𝑔
2

𝑐𝑔
2 − 𝑔ℎ

) [
𝑔2𝑘

2𝜔0𝑐𝑔
+

𝜔0
2

4sinh(𝑘ℎ)2
].    (14 − 4) 

𝛽ℎ represents the contribution from topography change, which is proportional to the derivative 

of wave number with respect to coordinate 𝜉 . When the topography change becomes very 

small, 𝛽ℎ ≈ 0 and Eq. (13) is equivalent to the evolution equation in Davey and Stewartson 

(1974). 𝛽𝑡 and 𝛽𝑦 give the local curvature based on the linear dispersion relation for carrier 

wave period and lateral component of wave number, respectively. 𝛽𝑛  represents the 

contribution from nonlinear effect from the quasi-resonant four-wave interaction. 

 

2.2 Numerical solution and freak wave estimation 

    In the 1D problem of the unidirectional wave train, as Lyu et al. (2021), the evolution 

equation of 𝐴̅ is numerically solved in a spatial step by pseudo-spectral method. Based on the 

periodicity of wave envelop on time and space, the partial differential term in evolution 

equation can be transformed into a more concise form by using Fourier transform. In the 1D 

problem, we can simplify the partial differential term with respect to time and express it in the 

frequency domain. In the 2D problem, the variation in the lateral direction requires the 

consideration of one more dimension. Based on the periodicity of time and space for a 2D 

wavefield, the 2D Fourier transform is applied to transform Eq. (13) into an ordinary differential 

equation:  

d𝐴̅

d𝜉
= −i𝛽𝑛|𝐴̅|2𝐴̅ − i𝛽𝑡𝜔𝜏

2𝐴̅ − i𝛽𝑦𝑘𝜁
2𝐴̅ − 𝛽ℎ𝐴̅,                (15) 

where we take the Fourier transformation 𝐹𝜏 with respect to 𝜏 on time and 𝐹𝜁 with respect 

to 𝜁  on lateral spatial coordinate, respectively, and 𝜔𝜏  and 𝑘𝜁  represent corresponding 

variables about the frequency and the lateral wave number in the Fourier transform: 

𝐴̇(𝜔𝜏, 𝜉, 𝜁) = 𝐹𝜏[𝐴̅(𝜏, 𝜉, 𝜁)], 𝐴̈(𝜔𝜏, 𝜉, 𝑘𝜁) = 𝐹𝜁[𝐴̇(𝜔𝜏, 𝜉, 𝜁)].     (16) 

Through the spatial evolution of 𝜉  in Eq. (15), the wave envelope can be numerically 

simulated from an initial condition at 𝜉 = 𝜉0 . We assume the initial Fourier amplitude 

𝐴̈(𝜔𝜏, 𝜉0, 𝑘𝜁) satisfies the 2D Gaussian shape directional spectral: 

𝐴̈(𝜔𝜏, 𝜉0, 𝑘𝜁) = 𝐴̈(𝜔𝜏, 𝜉0, 𝜃𝜁) 

=
𝑎

2𝜋𝜎𝜔𝜎𝜃
exp {−

1

2
[(

𝜔𝜏 − 𝜔0

𝜎𝜔
)
2

+ (
𝜃𝜁 − 𝜃0

𝜎𝜃
)

2

] + i𝜓},          (17) 
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where  𝑎  represents the standard deviation of envelop and 𝜀 = 𝑘𝑎 , 𝜃𝜁  = arctan (
𝑘𝜁

𝑘0
) 

represents the direction of a single wave with the lateral wave number 𝑘𝜁, 𝑘0 and 𝜔0 are 

carrier wave number and frequency, 𝜎𝜃 is dimensionless directional width, 𝜓 is the random 

phase uniformly distributed at [0,2π]. 𝜎𝜔 is frequency spectral width, and we will also use its 

dimensionless form 𝜎𝑠 =
𝜎𝜔

𝜔0
 in the following discussion. 𝜃0 is the principal wave direction, 

and here we set 𝜃0 is fixed at 𝜃0 = 0. When 𝜃0 ≠ 0, the incident wave is oblique with the 

contour line of topography, and wave refraction will occur due to the inhomogeneity of 

dispersion relation on the wave front line. This part of the discussion will be given in Part II.   

In this problem, the initial spectral is decided by the contribution from both the temporal 

and spatial frequency, and 𝐴̈ distributed in a 2D plane about frequency 𝜔𝜏 and 𝑘𝜁 (or 𝜃𝜁). 

Referring to the 1D problem as Janssen (2003), the Benjamin–Feir index (BFI) is defined as 

the ratio between wave steepness 𝜀 and dimensionless spectral bandwidth 𝜎𝑠: 

𝐵𝐹𝐼 =
√2𝜀

𝜎𝑠
.                                (18) 

In this study, we hope to separate the effect from different contributions in the temporal and 

spatial part and concentrate more on the directional dispersion effect, so we continue to use Eq. 

(18) as the definition of BFI in the initial condition. The parameter 𝜎𝜃 will be taken as an 

individual parameter in the spectral bandwidth, and 𝜎𝑠 is set as constant (i.e., 𝜎𝜔 is constant 

in Eq. (17)).   

On principal wave propagation direction, we can solve the wave envelope 𝐴̅  at each 

spatial step on 𝑥 (or 𝜉) through Eq. (15), and give the wave surface elevation 𝜂 by Eq. (19): 

𝜂(𝑥, 𝑦, 𝑡) = 𝜀Re [
1

2
𝐴̅(𝑥, 𝑦, 𝑡)𝐸] + 𝜀2Re [

𝑘cosh𝑘ℎ

8sinh3𝑘ℎ
(2cosh2𝑘ℎ + 1)𝐴̅2(𝑥, 𝑦, 𝑡)𝐸2] . (19) 

    Similar to Lyu et al. (2021), we integrate 𝜂(𝑦, 𝑡) in Eq. (19) at each step from offshore to 

onshore, assuming periodic boundary conditions in time, and construct the surface elevation in 

a discrete 2D+T form. Eq. (19) considers the contribution from first-order to second-order and 

second harmonic. The progressive wave is established on the periodicity only in (∫ 𝑘(𝑥)𝑑𝑥
𝑥

−

𝜔0𝑡 ), because the contribution of 𝑘𝜁0 = 0  on the component of lateral length 𝑦  of carrier 

propagating direction. 

    Because of the very small probability of freak wave occurrence, an ensemble simulation 
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size is necessary to provide a more reliable prediction. In this study, we continue to estimate 

the nonlinear interaction in wave evolution by the fourth-order moment kurtosis 𝜇4 and the 

third-order moment skewness 𝜇3, and their variation will be compared with the wave height 

distribution directly obtained from the 2D+T surface elevation data in a large-size Monte Carlo 

simulation.  

    𝜇4 and 𝜇3 of a fixed point (𝑥∗, 𝑦∗) in the wavefield are derived from the discrete surface 

elevation 𝜂(𝑥∗, 𝑦∗, 𝑡) in time series:    

𝜇4 =
Ex(𝜂𝑖 − 𝜂̅)4

𝜂rms
4

,   𝜇3 =
Ex(𝜂𝑖 − 𝜂̅)3

𝜂rms
3

,                       (20) 

where Ex represents expected value, 𝑖 represents the index number of the data sample, 𝜂̅ is 

the mean value and 𝜂rms is the root mean square value of 𝜂. For a wave train in the Gaussian 

process (i.e., linear random waves), 𝜇4 = 3 and 𝜇3 = 0. The theoretical value of 𝜇4 can be 

changed with different nonlinear processes or hypotheses. For a narrowband second-order 

nonlinear wave train, the Stokes wave model gives contribution from bound waves (Longuet-

Higgins, 1963). Thus, the values of 𝜇4 and 𝜇3 estimated inbound wave (marked as 𝜇4
𝑏, 𝜇3

𝑏) 

are related to the wave steepness 𝜀: 

𝜇4
𝑏 = 3 + 24𝜀2, 𝜇3

𝑏 = 3𝜀.                                 (21) 

In Janssen (2003) and Mori and Janssen (2006), 𝜇4  (marked as 𝜇4
∗ ) can change the quasi-

resonant and non-resonant interactions than Eq. (21). It is parameterized by the fourth-order 

cumulant 𝜅40, which is proportional to the square of BFI defined by Janssen (2003):   

𝜇4
∗ = 𝜅40 + 3, 𝜅40 =

𝜋

√3
BFI2.                          (22) 

Based on the contribution from the quasi-resonant four-wave interactions in Eq. (22) on wave 

height 𝐻, Mori and Janssen (2006) gave the exceeding probability 𝑃(𝐻): 

𝑃(𝐻) = 𝑒
−𝐻2

8 [1 +
𝜅40

384
(𝐻4 − 16𝐻2)],                   (23) 

and exceeding probability 𝑃𝑚(𝐻max) of maximum wave height 𝐻max: 

𝑃𝑚(𝐻max) = 1 − exp {−𝑁0𝑒
−𝐻max

2

8 [1 +
𝜅40

384
(𝐻max

4 − 16𝐻max
2 )]},    (24) 

where 𝑁0 represents the number of waves in a wave train. Eq. (24) is well validated by the 𝜇4 

in wave tank experiment from Mori et al. (2007) and Kashima and Mori (2019). With the 

consideration of the directional effect, Mori et al. (2011) gave the estimation of maximum 𝜅40 
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with the directional spread 𝜎𝜃 by: 

𝜅40 =
𝜋

√3
BFI2 (

𝛼

𝜎𝜃
),                                    (25) 

where 𝛼 is an empirical coefficient, and 𝛼 = 0.0276 from their asymptotic analysis in Monte 

Carlo simulation. 

 

3 Numerical results  

3.1 Model setup 

With the 2D Gaussian shape directional spectral in Eq. (17) and inverse Fourier transform, 

we give the initial envelope 𝐴̅(𝜏, 𝜉0, 𝜁) in the matrix of time series and spatial distribution on 

the lateral direction. As a pseudo-spectral method, discrete Fourier transform requires a 

sufficient length of the target variable to ensure the result has enough information in the 

evolution. On the other hand, Fourier transforms for a 2D matrix require a large amount of time 

in calculation compared with the 1D model, which is a critical problem since we apply the 

Monte Carlo method simulation.  

From the Eq. (17), the shape of the initial directional spectrum is decided by the 

dimensionless spread 𝜎𝜃 and the frequency spectral width 𝜎𝜔. In Lyu et al. (2021), the effect 

from 𝜎𝜔 has been discussed from the unidirectional wave train with different initial BFI. For 

a 2D wavefield, the dimensionless spread 𝜎𝜃 in different sea states vary from 0.15 to 0.5 from 

the research on observation and wave age (Ewans, 1998; Forristall and Ewans, 1998; Banner 

and Young, 1994). Yuen and Lake (1982) indicated a limitation of the 2D NLS-like wave model 

that the instability of the wave train continually increases in a certain interval, which reflects in 

our numerical model that the result cannot reach convergence in Monte Carlo simulation when 

𝜎𝜃 ≤ 0.25. Therefore, we set the 𝜎𝜃 = 0.3, 0.4, 0.5 in the following comparison for different 

directional spreading. 

To ensure the accuracy and computational efficiency, we make the calculation step is 

constant at d𝜉 = 2×10-5𝐿0 where 𝐿0 is carrier wavelength. For the initial condition, carrier 

angular frequency 𝜔 = 2.5s-1, sampling time 𝑑𝑡 = 0.1s, time length 𝐿𝑇 = 40𝑇0, where 𝑇0 is 

wave period; carrier lateral wave number 𝑘𝜁0 = 0, sampling distance 𝑑𝑦 = 0.5𝐿0. To ensure 
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that the initial condition given by Eq. (17) converges to a Gaussian process, we generate the 

initial Fourier amplitude by a sufficiently large number (𝑁 =
𝐿𝑇

𝑑𝑡
= 1000) of component waves 

with different frequency 𝜔𝜏 uniformly distributed around the carrier frequency. The kurtosis 

𝜇4  and skewness 𝜇3  of the initial surface elevation 𝜂(𝑥0, 𝑦, 𝑡)  satisfy the Gaussian 

distribution that 𝜇4 = 3 and 𝜇3 = 0. The initial water depth starts at a medium depth 𝑘ℎ = 5, 

wave steepness 𝜀 = 0.1. The width of the 2D computational domain 𝐿𝑦 = 30𝐿0 to reflect the 

propagation of directional waves (the analysis and discussion to decide the appropriate set of 

𝑑𝑦  and 𝐿𝑦  is given in the supplementary materials). For different forms of bottom 

topography, the length of the computational domain on the principal direction varies from 30𝐿0 

to 150𝐿0, and the calculation stops at the shallow water 𝑘ℎ = 1.1, where wave steepness 𝜀 = 

0.1343. This study assumes the water surface basically maintains the form of a mechanical 

wave in the evolution, so the wave-breaking case is not taken into consideration. Therefore, our 

simulation stops before the wave steepness reaches the threshold value of breaking in very 

shallow water.  

    Mei and Benmoussa (1984) introduced a normalization to make all parameters 

dimensionless in the realization process. We apply a different normalization for the variable 

(𝐴̅, 𝜉, 𝜁, 𝑘𝜁 , 𝜔𝜏, 𝜏) in programming as follows: 

𝐴′ =
2𝜋

𝐿0
𝐴̅, 𝜉 ′ =

2𝜋

𝐿0
𝜉, 𝜁′ =

2𝜋

𝜀𝐿𝑦
𝜁, 

  𝑘𝜁
′ = 𝜀

𝐿𝑦

2𝜋
𝑘𝜁 , 𝜔′ = 𝜀

𝐿𝑇

2𝜋
𝜔𝜏, 𝜏 ′ =

2𝜋

𝜀𝐿𝑇
𝜏.             (26) 

 

3.2 Evolution of modulated wave over flat bottoms 

Firstly, we consider the wave evolution over a flat bottom to investigate the effect of initial 

conditions as reference runs for uneven bottom cases. If we set 𝛽ℎ = 0, Eq. (13) is equivalent 

to the 2D NLS equation in Davey and Stewartson (1974), and the evolution process is 

constructed by spatial step on the principal wave direction. The surface elevation is given in 

discrete 2D+T form. In Figure 2, we give the transient surface elevation 𝜂 at 𝑡 = 40𝑇0 from 

three random samples with different directional spread 𝜎𝜃 and initial BFI = 1 (𝜎𝑠 = 0.14) at 

water depth 𝑘ℎ = 5. The viewing angle is vertical to the horizontal plane, and we use the color 

gradient to represent the elevation. The 2D irregular waves propagate from the left to the right 
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side, and the wavefront lines can figure out the multi-directions. As the 𝜎𝜃 increases from 0.3 

to 0.5, the propagation becomes more divergent in different directions, which makes the 

wavefront appear to be more discontinuous.  

The initial condition with a random phase in Eq. (17) helps generate an irregular wave 

train, and a Monte Carlo simulation is conducted. For a domain in strict-sense stationary (SSS), 

the statistical properties keep invariant to any shift at any order, and the surface elevation for 

2D irregular wave at a fixed point will be generally closed to a zero-mean SSS process when 

the Monte Carlo simulation for random wave phase has enough ensemble size. In this study, 

we set the ensemble size is 300 and give the average value of kurtosis 𝜇4 and skewness 𝜇3 in 

time series on each space node. The deciding process of the ensemble size can also be referred 

to the supplementary materials.  

The result in 2D form can be modified into 1D form by being averaged again on one space 

dimension because the statistical significance is uniformly distributed in this 2D domain. To 

show the wave evolution process, we take the averaged value on the lateral direction of the 

principal wave direction and give the Monte Carlo result of the unidirectional wave train and 

the 2D wavefield with initial BFI = 0.5 (𝜎𝑠 = 0.28) for a flat bottom 𝑘ℎ = 7 to discuss the 

effect from the directional spread 𝜎𝜃 in Figure 3. The result in the unidirectional wave train 

can be regarded as 𝜎𝜃 = 0. As the 𝜎𝜃 increases, both kurtosis 𝜇4 and skewness 𝜇3 decrease, 

which implies the increase of directional spreading disperses the nonlinear interactions in the 

wave train. 

For the 2D propagation in a directional wavefield, both short-time and long-time behavior 

of 𝜅40 for a narrowband wave train is related to the directional width and a frequency width 

(Janssen and Bidlot, 2009). We are also interested in the kurtosis distribution at the intermediate 

stages in freak wave forecasting. Mori et al. (2011) conducted an asymptotic analysis of 𝜅40, 

BFI and 𝜎𝜃 by numerical simulation, and gave Eq. (25) with empirical coefficient 𝛼. Table 1 

shows the ensemble-averaged result of the expected maximum 𝜅40  and mean 𝜅40  at 𝑥 ∈

[20𝐿0, 30𝐿0]  from Monte Carlo simulation of the wave model in this study, and gives the 

empirical coefficient 𝛼max  and 𝛼mean  by Eq. (25) for maximum 𝜅40  and mean 𝜅40 , 

respectively. Due to different calculation conditions, we give different empirical coefficients 

with Mori et al. (2011) (𝛼 = 0.0276), and the expected maximum 𝜅40 is significantly larger 
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than their prediction. Nevertheless, the result from 𝑘ℎ = 7 shows that the increase of 𝜎𝜃 and 

the decrease of BFI leads to the decrease of both maximum and mean 𝜅40, but the change in 

empirical coefficient 𝛼  represents the 𝜅40  is not strictly inversely proportional to 𝜎𝜃  as 

Eq.(25), and the case from different initial BFI will ask for a different 𝛼. The 𝛼mean for mean 

𝜅40 at 𝑘ℎ = 7 is better than 𝛼max to describe the kurtosis of the wavefield, and its value is 

around 0.09~0.14. When the water depth becomes shallow (𝑘ℎ = 5, 3, 1.1), Eq.(25) is no longer 

applicable and 𝛼mean  and 𝛼max  significantly decrease. For 𝑘ℎ  = 1.1, the increase of 𝜎𝜃 

leads to the increase of 𝜅40  and 𝛼mean  seems anomalous. The behavior of 𝜅40  further 

indicates that the occurrence of extreme wave height in medium and shallow water cannot only 

be predicted by the four-wave interaction as in deep-water. The contribution from water depth 

becomes important, especially in shallow water, and the simulation over a changing depth may 

reveal this process more effectively.  

 

 

(a) 𝜎𝜃 = 0.3 

 

(b) 𝜎𝜃 = 0.4 
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(c) 𝜎𝜃 = 0.5 

Figure 2 Transient surface elevation 𝜂 at 𝑡 = 40𝑇0 from different directional spread 𝜎𝜃 

with initial BFI = 1, 𝑘ℎ = 5 
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(a) kurtosis 𝜇4                        (b) skewness 𝜇3 

Figure 3 Spatial evolution of kurtosis 𝜇4 and skewness 𝜇3 of surface elevation from 

directional spread 𝜎𝜃 with initial BFI = 0.5, 𝑘ℎ = 7 

(1D (𝜎𝜃 = 0): blue. 2D: red: 𝜎𝜃 = 0.3; yellow: 𝜎𝜃 = 0.4; black: 𝜎𝜃 = 0.5) 

Table 1 The ensemble-averaged 𝜅40 dependence on BFI and 𝜎𝜃 at different 𝑘ℎ 

𝑘ℎ 𝜎𝜃 Initial BFI Max 𝜅40 Mean 𝜅40 𝛼max 𝛼mean 

7.0 0.3 0.5 6.329 0.180 4.187 0.119 

7.0 0.4 0.5 4.555 0.127 4.018 0.112 

7.0 0.5 0.5 4.206 0.092 4.638 0.101 

7.0 0.6 0.5 3.841 0.064 5.082 0.085 

7.0 0.3 0.4 4.441 0.136 4.591 0.141 

7.0 0.5 0.4 3.725 0.083 6.418 0.143 

5.0 0.3 0.4 3.976 0.117 4.110 0.121 

5.0 0.5 0.4 3.368 0.070 5.803 0.121 

3.0 0.3 0.4 3.148 0.065 3.254 0.067 

3.0 0.5 0.4 2.948 0.038 5.079 0.066 

1.1 0.3 0.4 2.294 0.059 2.371 0.061 

1.1 0.5 0.4 2.754 0.113 4.745 0.195 
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3.3 Evolution of modulated wave over uneven bottoms 

This section conducts the Monte Carlo simulation of the 2D wave model for uneven 

bottoms. The variation in the bottom topography brings about the spatial inhomogeneity in the 

dispersion, which reflects in both second-order and third-order effects. Our numerical model 

by Eq. (13) assumes the depth mildly changes in the principal wave direction, and the bottom 

topography does not vary in its lateral direction. Therefore, the statistical properties keep 

stationary on the y-axis but vary on the x-axis. 

As a simulation of the bottom topography from offshore to onshore, we set the depth 

slowly decreases from a medium water depth to shallow water. In previous research (e.g., 

Kashima and Mori, 2019; Li et al., 2021; Lyu et al., 2021), the abrupt change in depth or slope 

will lead to a significant local peak in 𝜇3 and 𝜇4 due to the aftereffect. Usually, the water 

depth decreases in a smoother way in natural seabed. On the other hand, the local peak caused 

by this unusual topography is so significant that it may cover the difference caused by the 

directional effect. To make our simulation closer to the natural seabed, we adjust the sloping 

region in Figure 1 between A and B to become smoother and continuously decrease in Figure 

4. The sloping region is divided into 2 parts by the dividing line C at 𝑘ℎ = 1.2: the depth 

linearly decreases with a slope 𝛾𝑠  from 𝑘ℎ  = 5 to 𝑘ℎ  = 1.2; the depth decreases with a 

decaying slope 𝛾𝑠
′ = 𝛾𝑠 (

ℎ

1.55
)
40

 from 𝑘ℎ = 1.2 to 𝑘ℎ = 1.1. In the shallow water area, the 

derivative of the decreasing depth is approximately continuous, and we set 𝛾𝑠 = 0.05, 0.02, 

0.01 to ensure the depth changes very mild under the assumption ℎ′(𝑥)~𝑂(𝜀2). 

Figure 5 to 6 shows the averaged values of kurtosis and skewness from the Monte Carlo 

simulation of the bottom type in Figure 4. In Figure 5, we give the averaged kurtosis 𝜇4 in 

2D form at the different directional spread 𝜎𝜃 and slope angle 𝛾𝑠 with initial BFI = 0.4 (𝜎𝑠 = 

0.35). Comparing the result from different 𝜎𝜃 in Figure 5 (a), (b), and (c), we find the 𝜇4 

decreases in the deep-water depth but increases in the shallow water when the initial directional 

spreading 𝜎𝜃 increases from 0.3 to 0.5, which shows the same phenomenon results in a flat 

bottom in 3.1. In the medium water depth region between locations A and C, 𝜇4 decreases as 

the decrease of water depth, and it rebounds at the end of the constant sloping region (location 

C) where 𝑘ℎ = 1.2. In the region between C and B, where the slope angle mildly decreases, 𝜇4 
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decreases and becomes stable at the same level as the final flat bottom in shallow water 𝑘ℎ = 

1.1. The evolution of 𝜇4  indicates that the directional dispersion effect decreases the 

occurrence probability of freak waves in deep and medium water but increases it in shallow 

water. As the wave propagates from the medium water to shallow water, the wave evolution is 

significantly affected by the bottom topography, and the 1D result in Figure 5 (d) clearly gives 

the rebound of 𝜇4  due to the slope angle. To further study the effect from the bottom 

topography, we give the mean 𝜇4 at 𝛾𝑠 = 0.02 and 𝛾𝑠 = 0.01 with initial BFI = 0.4 and 𝜎𝜃 

= 0.3 in Figure 5 (e) and Figure 5 (f). The result shows the rebound of 𝜇4 decreases as the 

bottom change become milder, and Figure 5 (g) provides the variation of 𝜇4 on the principal 

wave direction in 1D. Comparing the 𝜇4  over uneven bottoms between the unidirectional 

wave train and the 2D wavefield, we find the slope angle similarly affects the wave evolution. 

However, its contribution is more significant in 2D due to the dispersion effect on the four-

wave interaction, which implies the second-order effect plays a more important role in a 

directional 2D wavefield. 

In Figure 6, we give skewness 𝜇3 in the same form with 𝜇4 in Figure 5 at the same 

condition. Different from 𝜇4, 𝜇3 does not influence directional spread from Figure 6 (a), (b), 

(c), and (d) due to the unchanging second-order nonlinear interaction. When the bottom 

topography changes, Figure 6 (e), (f), and (g) show the 𝜇3 increases as the water depth become 

shallow. This process will slow down if the slope angle becomes mild, but it only means 𝜇3 is 

determined by the water depth 𝑘ℎ and the change from slope angle 𝛾𝑠 has little influence. 

Different from the unidirectional wave train, 𝜇3  in the 2D wavefield is basically only 

determined by the variation in dispersion due to depth change, and hardly affected by the local 

bathymetry effect. When the wave trains propagate into shallow water, the 𝜇3 increases with 

the increase of wave steepness 𝜀. 
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Figure 4 The variation of water depth 𝑘ℎ on the bottom topography with 𝛾𝑠 = 0.02  

A C B 
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(a) 𝜎𝜃 = 0.3, 𝛾𝑠 = 0.05                (e) 𝜎𝜃 = 0.3, 𝛾𝑠 = 0.02 

 

(b) 𝜎𝜃 = 0.4, 𝛾𝑠 = 0.05                (f) 𝜎𝜃 = 0.3, 𝛾𝑠 = 0.01 

 

          (c) 𝜎𝜃 = 0.5, 𝛾𝑠 = 0.05            (g) 𝜎𝜃 = 0.3, 𝛾𝑠 = 0.05, 0.02, 0.01 

 

    (d) : 𝜎𝜃 = 0.3, 0.4, 0.5, 𝛾𝑠 = 0.05 

Figure 5 Mean kurtosis of surface 

elevation 𝜂  at uneven bottoms at 

different directional spread 𝜎𝜃  and 

slope angle 𝛾𝑠 with initial BFI = 0.4 

(blue: 𝜎𝜃  = 0.3, red: 𝜎𝜃  = 0.4, 

yellow: 𝜎𝜃 = 0.5; g: blue: 𝛾𝑠 = 0.05, 

red: 𝛾𝑠 = 0.02, yellow: 𝛾𝑠 = 0.01) 

A B C A C B 
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(a) 𝜎𝜃 = 0.3, 𝛾𝑠 = 0.05                (e) 𝜎𝜃 = 0.3, 𝛾𝑠 = 0.02 

 

(b) 𝜎𝜃 = 0.4, 𝛾𝑠 = 0.05                (f) 𝜎𝜃 = 0.3, 𝛾𝑠 = 0.01 

 

          (c) 𝜎𝜃 = 0.5, 𝛾𝑠 = 0.05            (g) 𝜎𝜃 = 0.3, 𝛾𝑠 = 0.05, 0.02, 0.01 

 

    (d) : 𝜎𝜃 = 0.3, 0.4, 0.5, 𝛾𝑠 = 0.05 

Figure 6 Mean skewness of surface 

elevation 𝜂  at uneven bottoms at 

different directional spread 𝜎𝜃  and 

slope angle 𝛾𝑠 with initial BFI = 0.4 

(blue: 𝜎𝜃 = 0.3, red: 𝜎𝜃 = 0.4, yellow: 

𝜎𝜃 = 0.5; g: blue: 𝛾𝑠 = 0.05, red: 𝛾𝑠 = 

0.02, yellow: 𝛾𝑠 = 0.01) 

 

A B C A C B 
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3.4 Quantitative analysis of the extreme wave height  

In sections 3.2 and 3.3, the evolutions of the nonlinear resonant interactions have been 

discussed with the bathymetry effect on different water depths. 𝜇4 and 𝜇3 represent different 

nonlinear mechanisms, and they show different characteristics on the directional wavefield over 

an uneven bottom. However, the final result of the occurrence of extreme wave height is their 

combined effect, and we cannot simply give the estimation until giving a quantitative analysis 

of the distribution of surface elevation 𝜂.  

    In Figure 7, we give the expected maximum wave height 𝐻max and maximum wave crest 

𝜂max  on the principal wave direction. In the same form with 𝜇4  and 𝜇3  in Figure 5 and 

Figure 6, 𝐻max and 𝜂max are counted from the time series sampling data at a fixed point in 

the 2D wavefield, and their ensemble-averaged value is given by Monte Carlo simulation. We 

make the wave height dimensionless by taking 𝐻max/𝜂rms  and 𝜂max/𝜂rms , and continue to 

write them as 𝐻max  and 𝜂max  for convenience. The result contains the wave train with 

different directional spreading 𝜎𝜃 = 0.3, 0.4, 0.5 over the bottom topography 𝛾𝑠 = 0.05, 0.02, 

0.01, and the theoretical result from the linear model (Rayleigh distribution) and the numerical 

result from the second-order bound wave model in 𝜎𝜃  = 0.3, 𝛾𝑠  = 0.05 are given as a 

comparison. The Rayleigh distribution can be referred to as the standard linear narrow-banded 

wave theory in Goda (1970, 2000), in which the wave height 𝐻  follows the Gaussian 

distribution and the exceeding probability 𝑃𝑚(𝐻max) follows: 

𝑃𝑚(𝐻max) = 1 − exp(−𝑁0𝑒
−𝐻max

2

8 ),                                  (27) 

where the number of waves 𝑁0 = 40 in our simulation. From the deep-water to shallow, 𝐻max 

in 2D model monotonically decreases as the water depth in comparison with the second-order 

model. Similar with 𝜇4, The peak of 𝐻max is suppressed by the increase of 𝜎𝜃 in deep-water 

but is enhanced in shallow water. However, there is no significant change in the slope. In Figure 

7 (b), the 𝜂max  significantly increases in shallow water, and the local peak reflects the 

contribution from the slope. Even the bottom changes in a relatively continuous process, this 

local peak still occurs, and it is consistent with the variation of 𝜇4. Different with 𝐻max in 

shallow water, the increase of 𝜂max  is related to the 𝜇3 , in keeping with the general 

deformation of waves in the shoaling process. In Rayleigh distribution, 𝐻max and 𝜂max are 
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independent with the bathymetry. The linear model underestimates 𝐻max in deep-water and 

overestimates it in the shallow water, and significantly underestimates 𝜂max. As a result of the 

second-order bound wave model, 𝐻max hardly affected by the bottom topography and 𝜂max is 

determined by wave steepness. Comparing different models, the present model provides more 

consideration about the different effects of the four-wave interaction in various depths. 

Comparing the result in Figure 5-7, we find the rebound of 𝜇4 at location C does not reflect 

in the 𝐻max but shows in 𝜂max, which implies the wave height distribution at this area is more 

determined by the topography effect in second-order rather than the four-wave interaction in 

third-order. 

When concentrating on the freak wave problem, only the expected value is insufficient to 

estimate the extreme case. Therefore, we integrate the distribution of 𝐻max and 𝜂max at each 

section on the principal wave direction. If we follow the common definition of the freak wave 

as the wave height exceeds the significant wave height by two times, then the freak wave height 

is 𝐻max  > 8𝜂rms  and corresponding wave crest is equivalent to 𝜂max  > 4𝜂rms  under the 

standard linear narrow-banded wave theory from Goda (1970, 2000). Figure 8 calculates the 

probabilities as mentioned above and gives the fit curves through the tenth-order polynomial. 

A little different from Figures 5-7, the horizontal axis is set to be the water depth 𝑘ℎ in Figure 

8, so we can more easily check the effect from different 𝛾𝑠 on the same depth. In Figure 8 (a), 

the 𝑃𝑚(𝐻max > 8𝜂rms) monotonically decreases with the water depth as expected 𝐻max, but 

more details can be given: in the relatively deep-water as 𝑘ℎ  > 4, the convergence of 

𝑃𝑚(𝐻max > 8𝜂rms) becomes worse, which implies variance of surface elevation significantly 

rises; for the shallow water 𝑘ℎ < 2, the increase of slope angle 𝛾𝑠 enhances the probability of 

freak waves; the directional spreading 𝜎𝜃  plays a more important role in deep-water, but 

bottom topography has a greater impact in shallow water. Compared with Figure 8 (a), 

𝑃𝑚(𝜂max > 4𝜂rms) in Figure 8 (b) is much larger than 𝑃𝑚(𝐻max > 8𝜂rms) in general, and it 

experiences a process of descending, ascending, and descending again with the decrease of 𝑘ℎ. 

In the linear model, the probabilities in Figure 8 (a) and (b) are the same result, and their 

deviation with current models are corresponding to the evolution in Figure 7. The result from 

the second-order bound wave model continues to show a strong correlation with wave steepness 

𝜀, and it gives an abnormal enhancement in both 𝑃𝑚(𝐻max > 8𝜂rms) and 𝑃𝑚(𝜂max > 4𝜂rms) 
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in very shallow water after the slope section, which is not consistent with the natural state and 

experiments. 

    In Figure 9 and Figure 10, we give the wave height distribution in Cumulative 

Distribution Function (CDF) in logarithmic coordinates at specific sections at different water 

depths. We choose five sections on the sloping region in Figure 4: S1 (dashed line A in previous 

figures) where 𝑘ℎ = 5; S2 where 𝑘ℎ = 3; S3 where 𝑘ℎ = 2; S4 (dashed line C in previous 

figures) where 𝑘ℎ = 1.2; S5 (dashed line B in previous figures) where 𝑘ℎ = 1.1. Figure 9 

shows the CDF. of 𝑃𝑚(𝐻max) from the same conditions as before and compared with Rayleigh 

distribution (i.e., linear distribution). As the water depth decreases from S1 to S5, the 

occurrence probability of 𝐻max decreases from the comparison with the Rayleigh distribution 

(the linear distribution model does not change with water depth). The nonlinear model gives a 

higher exceeding probability of extreme events than the linear distribution in deep-water (S1) 

but lower in shallow water (S4, S5). They have a similar prediction of wave heights distribution 

in medium water depth (S2, S3). In S1-S3, the increase of directional spread 𝜎𝜃 leads to the 

decrease of the exceeding probability for 𝐻max/𝜂rms > 6. However, in shallow water depth (S4, 

S5), the effect of 𝜎𝜃  is very limited or even becomes opposite. The effect from 𝛾𝑠  works 

mainly in the shallow region, and focuses on the distribution of larger values (i.e., the 

occurrence of “freak wave”). The result from the second-order bound wave model is hardly 

affected by the water depth from S1 to S4, but increases in very shallow water S5, especially 

for the occurrence of extreme value, and exceeds the result from the present model. In Figure 

10, we give the CDF. of 𝑃𝑚(𝜂max)  in the same form. Basically, 𝑃𝑚(𝜂max)  has a similar 

variation with 𝑃𝑚(𝐻max) under the effect from 𝜎𝜃 and 𝛾𝑠, but 𝑃𝑚(𝜂max) markedly exceeds 

the Rayleigh distribution, which indicates that the wave deformation makes the wave crest 

exceeds the half of wave height due to the nonlinear effect. In shallow water, this deviation 

becomes more obvious from smaller value 𝐻max/𝜂rms > 3, even the extreme case decreases, 

which indicates the second-order nonlinear effect significantly rises due to the bottom 

topography change.  
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(a) maximum wave height 𝐻max 

 

(b) maximum wave crest 𝜂max 

Figure 7 Ensemble-averaged expect maximum wave height and free surface elevation 

distribution at initial BFI = 0.4 from different 𝜎𝜃 and 𝛾𝑠 

(Present model: black: 𝜎𝜃 = 0.3 𝛾𝑠 = 0.05; blue: 𝜎𝜃 = 0.4 𝛾𝑠 = 0.05; red: 𝜎𝜃 = 0.5 

𝛾𝑠 = 0.05; yellow: 𝜎𝜃 = 0.3 𝛾𝑠 = 0.02; gray: 𝜎𝜃 = 0.3 𝛾𝑠 = 0.01. Second-order 

model: dotted: 𝜎𝜃 = 0.3 𝛾𝑠 = 0.05. Rayleigh distribution: green line) 
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  (a) probability of 𝐻max > 8𝜂rms            

 

 (b) probability of 𝜂max > 4𝜂rms  

Figure 8 Occurrence probability of the freak wave in wave height and free surface elevation 

distribution at initial BFI = 0.4 from different 𝜎𝜃 and 𝛾𝑠 

(Present model: black: 𝜎𝜃 = 0.3 𝛾𝑠 = 0.05; blue: 𝜎𝜃 = 0.4 𝛾𝑠 = 0.05; red: 𝜎𝜃 = 0.5 

𝛾𝑠 = 0.05; yellow: 𝜎𝜃 = 0.3 𝛾𝑠 = 0.02; gray: 𝜎𝜃 = 0.3 𝛾𝑠 = 0.01. Second-order 

model: dotted: 𝜎𝜃 = 0.3 𝛾𝑠 = 0.05. Rayleigh distribution: green line) 
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(a) S1 (𝑘ℎ = 5)                          (b) S2 (𝑘ℎ = 3) 

 

(c) S3 (𝑘ℎ = 2)                          (d) S4 (𝑘ℎ = 1.2) 

 

(e) S5 (𝑘ℎ = 1.1) 

Figure 9 Exceedance probability of maximum wave height 𝐻max at initial BFI = 0.4 

from different 𝜎𝜃 and 𝛾𝑠 

(Present model: black cross: 𝜎𝜃 = 0.3 𝛾𝑠 = 0.05; blue: 𝜎𝜃 = 0.4 𝛾𝑠 = 0.05; red: 𝜎𝜃 

= 0.5 𝛾𝑠 = 0.05; yellow: 𝜎𝜃 = 0.3 𝛾𝑠 = 0.02; gray: 𝜎𝜃 = 0.3 𝛾𝑠 = 0.01. Second-

order model: black circle: 𝜎𝜃 = 0.3 𝛾𝑠 = 0.05. Rayleigh distribution: green line) 
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(a) S1 (𝑘ℎ = 5)                          (b) S2 (𝑘ℎ = 3) 

 

(c) S3 (𝑘ℎ = 2)                          (d) S4 (𝑘ℎ = 1.2) 

 

(e) S5 (𝑘ℎ = 1.1) 

Figure 10 Exceedance probability of maximum wave crest 𝜂max at initial BFI = 0.4 from 

different 𝜎𝜃 and 𝛾𝑠 

(Present model: black cross: 𝜎𝜃 = 0.3 𝛾𝑠 = 0.05; blue: 𝜎𝜃 = 0.4 𝛾𝑠 = 0.05; red: 𝜎𝜃 

= 0.5 𝛾𝑠 = 0.05; yellow: 𝜎𝜃 = 0.3 𝛾𝑠 = 0.02; gray: 𝜎𝜃 = 0.3 𝛾𝑠 = 0.01. Second-

order model: black circle: 𝜎𝜃 = 0.3 𝛾𝑠 = 0.05. Rayleigh distribution: green line) 
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4 Conclusion 

    Based on the 2D dNLS equation and pseudo-spectral method, we establish a third-order 

nonlinear model for the evolution of the directional wave train in a 2D wavefield for an uneven 

bottom. With the Monte Carlo simulation from random initial phase information, we summarize 

the nonlinear effect from four-wave interaction and spatial inhomogeneity and the dispersion 

from directional spreading in the wave evolution through the statistical features of random 

irregular waves. 

    To investigate the occurrence of the freak wave in different conditions, we discuss the 

contribution to the nonlinear interactions from different mechanisms and hypotheses, 

respectively, and compare the distribution of extreme wave height and crest to find the essential 

factor. The result indicates:  

A) Compared with the unidirectional wave, the directional spreading in the 2D wavefield 

significantly affects the wave train evolution and the occurrence of freak waves. The rise 

of the directional dispersion will make the kurtosis decrease in deep-water but increase in 

shallow water. Correspondingly, the directional spread contributes to the exceedance 

probability of maximum wave height and crest, the same as kurtosis.  

B) The directional dispersion effect has almost no effect on the skewness of surface elevation 

at second-order, and the wave steepness mainly determines the skewness in a 2D wavefield.  

C) In shallow water, a steep slope angle leads to the local peak of kurtosis due to wave 

shoaling. Correspondingly, it reflects in the increase of the exceedance probability of 

maximum wave height and crest.  

D) Regarding the degree of impact, the dispersion effect from directional spread mainly 

affects the wave evolution and the occurrence of the freak wave in deep-water. However, 

the bottom topography change becomes the major role in the medium and shallow water 

before the wave breaking. 

The model allows a weakly oblique incident wave angle to the slope. The oblique wave case 

will be given near future.  

It should be pointed out that this model still needs to be improved due to the following 

limitations: first, the wave breaking in shallow water depth is not taken into consideration; 
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second, the bottom topography is idealized, which ignores the variation on the lateral direction 

and restricts the slope in a relatively mild range about the steepness squared. Additionally, the 

wavefield in this study is sufficiently narrow banded spectra. To apply the results of this 

manuscript to field data, we also need to consider the contribution from the bandwidth of the 

spectrum to the distribution of wave height and crest height (e.g., Næss (1985)). Furthermore, 

we assume that there is no extra contribution to the wave evolution during its propagation 

processes like wind or current, so the initial conditions and bottom topography only decide the 

directional spreading.  
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