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a b s t r a c t 

The sensory cortex is characterized by general organizational principles such as topography and hierarchy. How- 

ever, measured brain activity given identical input exhibits substantially different patterns across individuals. 

Although anatomical and functional alignment methods have been proposed in functional magnetic resonance 

imaging (fMRI) studies, it remains unclear whether and how hierarchical and fine-grained representations can 

be converted between individuals while preserving the encoded perceptual content. In this study, we trained a 

method of functional alignment called neural code converter that predicts a target subject’s brain activity pattern 

from a source subject given the same stimulus, and analyzed the converted patterns by decoding hierarchical 

visual features and reconstructing perceived images. The converters were trained on fMRI responses to identical 

sets of natural images presented to pairs of individuals, using the voxels on the visual cortex that covers from 

V1 through the ventral object areas without explicit labels of the visual areas. We decoded the converted brain 

activity patterns into the hierarchical visual features of a deep neural network using decoders pre-trained on the 

target subject and then reconstructed images via the decoded features. Without explicit information about the 

visual cortical hierarchy, the converters automatically learned the correspondence between visual areas of the 

same levels. Deep neural network feature decoding at each layer showed higher decoding accuracies from corre- 

sponding levels of visual areas, indicating that hierarchical representations were preserved after conversion. The 

visual images were reconstructed with recognizable silhouettes of objects even with relatively small numbers of 

data for converter training. The decoders trained on pooled data from multiple individuals through conversions 

led to a slight improvement over those trained on a single individual. These results demonstrate that the hier- 

archical and fine-grained representation can be converted by functional alignment, while preserving sufficient 

visual information to enable inter-individual visual image reconstruction. 

1. Introduction 

Sensory information is generally thought to be processed through a 

hierarchical pathway that detects topographically organized simple lo- 

cal features in the early stages and then progressively complex global 

features in the later stages, leading to holistic perception. In the ven- 

tral visual pathway, a stimulus is initially processed in the striate cortex 

(V1) to extract simple features, such as edges ( Hubel and Wiesel, 1962 ), 

and is then further processed in the extrastriate cortices (V2–V4) and 

higher visual cortex (HVC) to detect more complex visual features, such 

as shape and face attributes, eventually identifying objects and scenes 

( Mishkin and Ungerleider, 1982 ). Whereas general principles such as to- 

pography and hierarchy appear to govern the organization of the visual 
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cortex (VC), individual brains differ substantially in both macroscopic 

anatomy and the fine-grained organization of feature representations. 

These individual differences make it challenging to relate visual corti- 

cal activity and perceptual content by simple mapping rules common 

across individuals. 

Recent advances in deep neural networks (DNNs) have enabled de- 

tailed analyses of hierarchical feature representations across different 

visual cortical areas ( Yamins et al., 2014 ; Güçlü and van Gerven, 2015 , 

2017 ; Horikawa and Kamitani, 2017 ). Previous encoding and decoding 

studies have shown that DNNs pre-trained on natural images exhibit a 

correspondence between visual areas and DNN layers. These findings 

indicate that the visual cortex processes increasingly complex visual 

features along the ventral neural pathway, similar to how DNNs pro- 

https://doi.org/10.1016/j.neuroimage.2023.120007 . 

Received 29 December 2022; Received in revised form 26 February 2023; Accepted 7 March 2023 

Available online 11 March 2023. 

1053-8119/© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

https://doi.org/10.1016/j.neuroimage.2023.120007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neuroimage
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2023.120007&domain=pdf
mailto:junkai125@gmail.com
mailto:kamitani@i.kyoto-u.ac.jp
https://doi.org/10.1016/j.neuroimage.2023.120007
http://creativecommons.org/licenses/by/4.0/


J.K. Ho, T. Horikawa, K. Majima et al. NeuroImage 271 (2023) 120007 

cess image features. Additionally, the use of DNN-based reconstruction 

algorithms has led to successful reconstruction of perceptual content 

encoded in brain responses as images ( Shen et al., 2019a and 2019b ). 

The deep image reconstruction ( Shen et al., 2019b ) first predicts the 

DNN features of an image from the brain activity given that image as 

a stimulus, and then an initial image is iteratively optimized such that 

its DNN features become close to the predicted DNN features. The use 

of DNN feature decoding enables comprehensive evaluations of hierar- 

chical visual representations, and visual image reconstruction allows a 

holistic evaluation of how accurately perceptual content is encoded in 

the brain activity patterns. However, these predictive models require 

training data derived from hours of experiments that measure the brain 

responses to hundreds or thousands of images. Furthermore, a model 

trained on one subject does not generalize to other subjects because of 

individual differences in macroscopic brain structure and fine-grained 

neural representations. 

Methods for the anatomical and functional alignment of different in- 

dividuals’ brains have been developed in decades of functional magnetic 

resonance imaging (fMRI) studies to account for individual differences. 

Human brain anatomy differs across individuals in terms of shape, size, 

and local anatomical landmarks. Functional brain area parcellation that 

clusters voxels/vertices with similar properties produces similar brain 

areas on the individual level but still exhibit distinct topological features 

( Blumensath et al., 2013 ; Laumann et al., 2015 ). The visual areas delin- 

eated by the retinotopy principle ( Engel et al., 1994 ; Sereno et al., 1995 ) 

are often similar but not the same across individuals. Anatomical align- 

ment can mitigate anatomical differences by matching anatomical fea- 

tures between brains ( Fischl et al., 2008 ; van Essen, 2004 , 2005 ), but it 

still cannot perfectly align the functional topography across individuals 

( Watson et al., 1993 ). Functional alignment adopts an anatomy-free ap- 

proach by learning statistical relationships between subjects’ brain activ- 

ity patterns ( Haxby et al., 2011 ; Yamada et al., 2011 , 2015 ; Chen et al., 

2015 ; Bilenko and Gallant, 2016 ; Guntupalli et al., 2016 ). Methodolo- 

gies of functional alignment include pairwise alignments between two 

subjects, such as a neural code converter ( Yamada et al., 2015 ), and 

template-based alignments, in which a shared template among sub- 

jects is constructed, such as hyperalignment ( Haxby et al., 2011 ). Func- 

tional alignment methods have revealed common neural representations 

across individuals that are concealed under substantial individual vari- 

ations in brain responses. However, previous investigations have often 

focused on a few specific features, such as object categories, image con- 

trast, retinotopy, and semantics ( Haxby et al., 2011 ; Yamada et al., 2015 ; 

Bilenko and Gallant, 2016 ; Van Uden et al., 2018 ), leaving it unclear 

whether distinct levels of fine-grained neural representations of hier- 

archical visual features can be converted across individuals such that 

an individual’s perceptual experience can be reconstructed using other 

individuals models. Furthermore, previous studies have separately per- 

formed alignments on different brain areas using rough anatomical cor- 

respondences across individuals ( Güçlü and van Gerven, 2015 ). It re- 

mains unknown whether data-driven methods trained on fMRI data can 

automatically detect hierarchical representations of distinct levels of vi- 

sual features common across individuals. 

Here, we aim to investigate the feasibility of converting fine-grained 

neural representations of hierarchical visual features between individu- 

als while preserving the encoded perceptual content. To achieve this, 

we utilized a functional alignment method (neural code converter; 

Yamada et al., 2015 ) to convert brain activity, and then used the de- 

coding of hierarchical DNN features ( Horikawa and Kamitani, 2017 ) 

and reconstruction of perceived images (deep image reconstruction; 

Shen et al., 2019b ) to analyze the converted brain activity. We also 

adopted other methods of pairwise alignment, including Procrustes 

transformation ( Schönemann, 1966 ), optimal transport ( Bazeille et al., 

2019 ), and a template-based pairwise alignment via hyperalignment 

( Haxby et al., 2011 ). Our aim is not to exhaustively evaluate all available 

methods of pairwise alignment, but to show the robustness of the results 

across several methods. We restricted the work within the methods of 

pairwise alignment. We did not discuss shared templates due to diffi- 

culties in interpreting the correspondence of visual subareas between 

subjects in a shared template, and the question of how best a template 

can be estimated is distinct from the alignment methods ( Bazeille et al., 

2021 ). Instead, we used the template-based alignment only to construct 

a pairwise transformation via the template, which we call template- 

based pairwise alignment. Our approach involved constructing machine 

learning-based models that convert an fMRI pattern in the VC of one 

subject (the source) to the individual voxel responses of another subject 

(the target) given identical sequences of natural image stimuli ( Fig. 1 A). 

We also trained DNN feature decoders with measured fMRI responses of 

the target subject ( Fig. 1 A). Then, given the source subject’s brain re- 

sponses to novel stimuli, the converter transforms the brain activity into 

the target brain space ( Fig. 1 B). The converted brain activities are de- 

coded by the DNN feature decoders pre-trained on the target subject, 

and then the decoded features are used in a reconstruction algorithm to 

create images ( Fig. 1 B). 

In this study, we first show that machine learning-based converter 

models automatically learn the hierarchical correspondence of visual 

subareas between subjects, even without explicit information about cor- 

tical hierarchy during training. DNN feature decoding from the con- 

verted fMRI responses at each hierarchical DNN level shows greater 

accuracy in the corresponding levels of visual subareas than in other lev- 

els, indicating that fine-grained hierarchical feature representations are 

preserved. Visual image reconstruction using the decoded DNN features 

from the converted fMRI responses produces faithful reconstructions of 

the viewed images, even with small numbers of data for the converter 

training. We also demonstrate that the information about cortical hierar- 

chy used in the training does not improve the performance of convert- 

ers when given sufficient training data. Finally, by pooling data from 

multiple subjects through neural code conversions, we show that DNN 

feature decoders trained on the pooled data achieve a slight improve- 

ment in the inter-individual visual image reconstruction. These results 

demonstrate that the hierarchical correspondence can be automatically 

detected and the fine-grained representations of visual features can be 

preserved across individuals by the neural code converters, providing 

an efficient way to create visual image reconstructions for novel indi- 

viduals. 

2. Results 

2.1. fMRI data 

We analyzed fMRI data of the five subjects in the previously pub- 

lished studies ( Shen et al., 2019b ; Horikawa and Kamitani, 2022 ). For 

two of the five subjects, we collected additional data for this study (see 

Materials and Methods: “fMRI datasets ”). The dataset consisted of fMRI 

data measured when subjects viewed images, each presented in an 8-s 

block (four fMRI volumes). To acquire training data, the presentation 

of 1200 natural images was repeated five times. For test data, the pre- 

sentation of 50 natural images was repeated 24 times in the test natural 

image session, and the presentation of 40 artificial images (simple geo- 

metric shapes) was repeated 20 times in the test artificial image session. 

Artificial images were introduced to assess how well models trained on 

natural images generalize to a different type of images. The fMRI data 

were averaged in each 8-s stimulus block (four fMRI volumes shifted by 

4 s to account for hemodynamic delays). Thus, 6,000 (5 × 1,200) train- 

ing samples, 1,200 (24 × 50) test samples with natural images, and 800 

(20 × 40) test samples with artificial images were available. In decoding 

and reconstruction analyses, test samples were further averaged across 

repetitions (blocks) for each image. Notably, the fMRI data collection for 

6,000 training samples required approximately 800 min of scan sessions 

per subject, conducted on different days. Although some of the training 

data and the test data were collected at different times, separated by 

more than several months or even a year, the trained model generalized 

well across the datasets, as demonstrated in Shen et al. (2019b) . 

2 

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



J.K. Ho, T. Horikawa, K. Majima et al. NeuroImage 271 (2023) 120007 

Fig. 1. Inter-individual deep image reconstruction. 

(A) Training of the DNN feature decoders and a neural code converter. DNN feature decoding models were trained on the 6,000 samples of measured fMRI activities 

of the target subject and the corresponding DNN features. A converter model was trained on a subset of 6,000 samples of fMRI data responses to an identical stimulus 

sequence from both the source and target subject. No explicit information about cortical hierarchy is provided at the training stage. 

(B) Inter-individual DNN feature decoding and visual image reconstruction. The converter model converts the source subject’s stimulus-induced fMRI pattern into the 

target subject’s brain space. The converted fMRI pattern is then decoded (or translated) into a DNN feature pattern using the feature decoders. Finally, the decoded 

features are fed into the reconstruction algorithm to reconstruct the stimulus image perceived by the source subject. 

2.2. Neural code conversion 

We first examined how the results of neural code conversion reflect 

cortical hierarchy using several evaluation methods. We constructed a 

neural code converter model between each pair of subjects, with one 

serving as the target subject and the other as the source subject, result- 

ing in 20 individual pairs. A converter model comprises a set of regular- 

ized linear regression models (ridge regression), each trained to predict 

the activity of each voxel of the target subject’s brain from the source 

subject’s brain activity pattern in a broad region of interest (ROI) that 

covered the lower to higher visual cortex termed VC (see Materials and 

Methods: “Methods of functional alignment ”). In the current study, neu- 

ral code converter models were trained using a varying number of train- 

ing samples (300, 600, 900, 1,200, 2,400, 3,600, 4,800, or 6,000 sam- 

ples). Unless otherwise noted, we show the results obtained using 2,400 

training samples (two repetitions of 1,200 images) as a representative 

case. 

VC consists of V1–V4 and ventral object-responsive areas (see Ma- 

terials and Methods: “Regions of interest ”). We defined the continuous 

region covering the lateral occipital complex (LOC), fusiform face area 

(FFA), and parahippocampal place area (PPA) as the higher visual cortex 

(HVC). In the analyses of this section, all VC voxels were used as inputs 

to the converter without additional voxel selection (see Materials and 

Methods: “Neural code converter ”). Conversion results were evaluated 

within individual ROIs (subareas) in the target subject’s brain space. 

Although we mainly present the results from the neural code 

converter analysis ( Yamada et al., 2015 ), we also conducted sim- 

ilar pairwise alignment analyses using Procrustes transformation 

( Schönemann, 1966 ), optimal transport ( Bazeille et al., 2019 ), and 

template-based pairwise alignment via hyperalignment (Fig. S1; see Ma- 

terials and Methods: “Methods of functional alignment ”) to confirm the 

robustness of the results across different functional alignment methods 

(for an evaluation of different methods, see Bazeille et al., 2021 ). Com- 

pared to other methods, the neural code converter is simple and less 

computationally expensive. 

We evaluated the models using two methods: (a) pattern correlation, 

which calculates the spatial Pearson correlation coefficient between the 

converted and measured voxel patterns for a test image, and (b) pro- 

file correlation, which is the Pearson correlation coefficient between 

the sequences of converted and measured individual voxel responses to 
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Fig. 2. Performance of neural code converters 

and cortical hierarchical correspondence. 

(A) Evaluations of neural code converters. Two 

evaluations were performed by computing the 

Pearson correlation coefficients: pattern and 

profile correlations. 

(B) Conversion accuracy. Distributions of the 

normalized pattern or profile correlation coef- 

ficients of 20 individual pairs are shown for the 

VC and visual subareas. Each horizontal black 

dash indicates the mean value; each circle rep- 

resents the correlation coefficients of an indi- 

vidual pair. 

(C) Ablation analysis on neural code convert- 

ers. The analysis was performed by excluding 

one source visual area from the prediction of 

target voxel activities. 

(D) Cortical map of the effects of source area 

exclusion. The cortical map is shown for one 

target subject (Subject 2). Each voxel on the 

target brain is colored by the index of the ex- 

cluded visual area that caused the largest per- 

formance drop when testing with the natural 

image test dataset (performance drops were av- 

eraged across four source subjects for a sin- 

gle target subject; see Fig. S3 for other target 

subjects). Only voxels that generate reliable re- 

sponses with noise ceilings above a threshold 

are shown (see Materials and Methods: “Noise 

ceiling estimation ”). 

(E) Mean performance drop caused by source 

area exclusion. Each bar represents the mean 

performance drop averaged across voxels in a 

target area when a source area was excluded 

during prediction (averaged over 20 individual 

pairs; error bars, 95% confidence interval [C.I.] 

from 20 individual pairs). 

the 50 natural test images ( Fig. 2 A). The pattern correlation for an im- 

age was defined as the mean of 24 samples (converted) × 24 samples 

(measured) = 576 correlation coefficients. The profile correlation for 

each voxel was defined as the mean of 24 repetitions (converted) × 24 

repetitions (measured) = 576 correlation coefficients. The obtained cor- 

relation coefficients were normalized by their noise ceilings to account 

for the noise in fMRI brain responses over repeated measurements with 

the same stimulus ( Hsu et al., 2004 ; Lescroart and Gallant, 2019 ; see 

Materials and Methods: “Noise ceiling estimation ”). To summarize the 

results, we further averaged the correlation coefficients across images 

and voxels for the pattern and the profile correlations, respectively, in 

each individual pair and each ROI. 

Although our primary analyses focused on the samples within each 

conversion pair ( Smith et al. 2018 ), group results, where each data point 
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represents an individual pair, are shown in main figures for illustrative 

summary purposes. The normalized pattern correlation coefficients in 

individual pairs are shown for different ROIs of the target subject in Fig. 

S2A (left), and their distributions across all conversion pairs are shown 

in Fig. 2 B (left). The mean normalized pattern correlation for the whole 

VC was 0.56 ± 0.06 (mean with 95% C.I.) over 20 individual pairs, with 

the visual subareas showing comparable distributions. Examples of con- 

verted brain activity patterns are shown together with the targets brain 

activity patterns in Fig. S2B. The mean normalized profile correlation 

for VC was 0.53 ± 0.05 over 20 individual pairs (Fig. S2A right for indi- 

vidual pairs; Fig. 2 B right for group results). The subareas also yielded 

distributions similar to those of the VC. The conversion accuracy was 

modest in both pattern and profile correlations across all visual subar- 

eas but comparable to the findings in the previous study ( Yamada et al., 

2015 ). Other methods of functional alignment showed similar conver- 

sion accuracies, with optimal transport showing higher accuracies (Fig. 

S3). 

To see how the source visual areas influenced the conversion ac- 

curacy for each voxel in each target visual area, we excluded one of 

the source visual subareas (V1, V2, V3, V4, or HVC) from the input to 

the trained converter model ( Fig. 2 C). We evaluated the drop in perfor- 

mance (normalized profile correlation difference) relative to the perfor- 

mance when all source visual subareas were included (i.e., the whole 

VC). This ablation analysis revealed that the effects of the source area 

exclusions varied with the area in the target brain. The largest drop in 

performance of a target voxel was often caused by the exclusion of the 

corresponding source area ( Fig. 2 D, target S2; see Fig. S4A for the other 

subjects). On average, the peak of performance drop shifted from lower 

to higher excluded source areas along the hierarchy of the target areas 

(Fig. S4B for results of some individual pairs; Fig. 2 E for group results). 

The results indicate that the machine learning-based neural code con- 

verter models automatically detect a “low-to-high ” hierarchical corre- 

spondence between source and target visual areas even without explicit 

anatomical information. 

2.3. DNN feature decoding 

We next used DNN feature decoding analysis ( Horikawa and Kami- 

tani, 2017 ) to examine whether fine-grained representations of visual 

features were preserved in the converted fMRI activity patterns. Fea- 

ture decoders had been trained to predict the DNN feature values of the 

stimuli using 6,000 training samples of a target subject’s fMRI activity 

patterns in both the whole VC and individual visual subareas. The fea- 

ture decoders were applied to the converted brain activities to predict 

the DNN features of the test images ( “Across-functional ” condition; see 

Materials and Methods: “DNN feature decoding analysis ”). Following 

the original paper ( Shen et al., 2019b ), we used the average fMRI data 

over the repetitions for each test image as the input to feature decoders. 

The decoding accuracy of each DNN unit was calculated as the Pearson 

correlation coefficient between the sequences of the decoded and true 

feature values for the test images. We further took the mean decoding 

accuracy over all DNN units in each layer. 

To provide a comparison, we performed the same analysis with 

anatomically aligned brain activity. The source subject’s fMRI images 

were aligned to the target’s anatomical template and then used for 

DNN feature decoding ( “Across-anatomical ”; see Materials and Meth- 

ods: “Anatomical alignment ”). We also compared the results to those 

obtained from the standard within-individual decoding, where DNN fea- 

tures were predicted using the decoders trained on the same subject’s 

data ( “Within ”). 

We first evaluated feature decoding performance obtained from the 

whole VC (in the target space) of the converted fMRI activity. The re- 

sults of the neural code converter (Across-functional) showed lower but 

comparable performance with the within-individual results, with similar 

trends across layers, both in individual pairs and at the group level (Fig. 

S5A for results of individual pairs; Fig. 3 A for group results). Anatomi- 

cal alignment (Across-anatomical) had the poorest performance among 

the three conditions, with accuracies below 0.1 in most layers, both in 

individual pairs and at the group level. The results show that the neural 

code converters have an advantage over anatomical alignment in DNN 

feature decoding. Other methods of functional alignment showed sim- 

ilar DNN decoding accuracies, with optimal transport showing lower 

accuracies (Fig. S6). 

We next performed decoding analyses on each DNN unit using voxels 

from individual visual areas (V1–V4 and HVC in the target space) and 

identified the visual area that gave the highest decoding accuracy for 

each unit ( “top visual area ”), following Nonaka et al. (2021) . We then 

computed the distribution of the top visual area across DNN units in a 

given layer. We observed a shift of the peak area, from lower to higher 

areas, along the DNN hierarchy in all conditions (Fig. S5B for results 

of individual pairs; Fig. 3 B for group results). To quantify the degree 

of hierarchical correspondence between brain areas and DNN layers, 

we used the decoding-based brain hierarchy (BH) score ( Nonaka et al., 

2021 ), which is based on the rank correlation between the hierarchical 

levels of the DNN layer and the top brain area across DNN units ( Fig. 3 C; 

see Materials and Methods: “Brain hierarchy (BH) score ”). The results 

of the within-individual condition replicated the previous findings with 

a BH score of around 0.5 ( Horikawa and Kamitani, 2017 ; Nonaka et al., 

2021 ). Despite the low accuracies in feature decoding with anatomi- 

cal alignment (Across-anatomical; Fig. 3 A), the hierarchical correspon- 

dence was largely preserved when quantified by the BH score ( Fig. 3 B, 

C). This is presumably because anatomical alignment maps a macro- 

scopic organization of hierarchical visual areas between subjects, and 

the relative amount of information about hierarchy is preserved. The 

inter-individual conversion (Across-functional) showed a lower but sub- 

stantial degree of hierarchical correspondence even though the con- 

verter was blind to cortical hierarchy information during training. 

2.4. Visual image reconstruction 

After confirming that multiple levels of DNN feature representa- 

tions can be decoded from converted brain activity, we next sought 

to determine if we could reconstruct visual images via DNN features 

decoded from converted brain activities (deep image reconstruction, 

Shen et al., 2019b ; see Materials and Methods: “Visual image recon- 

struction ”). Along with the natural images, we also performed the re- 

construction analysis on the artificial images of simple geometric shapes 

(see Materials and Methods: “fMRI datasets ”). 

We first show examples of the reconstructions from VC for the 

Within, Across-anatomical, and Across-functional conditions ( Fig. 4 A). 

The reconstructed images obtained in the Within and Across-functional 

conditions captured the main characteristics of the presented images, in- 

cluding the shapes and colors of the objects, while reconstructions with 

anatomical alignment (Across-anatomical) showed neither a recogniz- 

able shape nor color of the objects in the presented images (see Figs. S7 

and S8 for other examples of natural images and artificial images). Other 

methods of functional alignment also produced similar reconstructions, 

but optimal transport slightly underperformed compared with others 

(Fig. S9). Here, we only present reconstructions from the average fMRI 

data over all the repetitions (24 and 20 repetitions for natural and ar- 

tificial images, respectively). The results with the average of different 

numbers of repetitions are available in the supplemental information 

(Fig. S10). Notably, even fMRI data of a single repetition could produce 

discernible reconstructions, with the visual quality increasing with more 

repetitions. 

To quantitatively evaluate our reconstruction results, we performed 

a pairwise identification analysis in which the pixel or DNN feature pat- 

tern of a reconstruction was used to identify the true stimulus between 

two alternatives by choosing the one with a more correlated pattern (see 

Materials and Methods: “Identification analysis ”). DNN feature patterns 

were extracted using the AlexNet model ( Krizhevsky et al., 2012 ), which 

is different from the DNN used in our reconstruction method (VGG19 
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Fig. 3. DNN feature decoding and hierarchical representation. 

(A) DNN feature decoding accuracy from the whole visual cortex (VC). Decoding accuracies for each layer of the VGG19 model are shown for the Within, Across- 

anatomical, and Across-functional conditions (error bars, 95% C.I. from five subjects for the Within condition, and from 20 individual pairs for the Across-anatomical 

and Across-functional conditions). 

(B) Proportion the “top visual area ” (best decodable area for each DNN unit) across DNN units in each layer. Only five representative layers are shown. Each bar 

indicates the mean proportion of DNN units over five subjects for the Within condition or over 20 individual pairs for the Across-anatomical and Across-functional 

conditions (error bars, 95% C.I. from five subjects or 20 pairs.). 

(C) Brain hierarchy (BH) score. The horizontal black dashes indicate the mean BH score over subjects or pairs; each circle represents the BH score for a subject or a 

pair. 

model). The identification was repeated for multiple false alternatives 

to obtain the accuracy for each reconstruction. For group analysis, the 

mean identification accuracy was calculated over all reconstructions in 

each pair. While the within-individual condition (Within) showed over- 

all superior performance both for natural and artificial images, neural 

code conversion (Across-functional) greatly outperformed anatomical 

alignment (Across-anatomical) both in individual pairs and at the group 

level (Fig. S11 for individual pairs; Fig. 4 B for group results). 

2.5. Visual subarea-wise conversion 

To examine whether constraining neural code conversion to respect 

cortical hierarchy could improve visual image reconstruction, we per- 

formed subarea-wise conversion that predicted the activity values of 

a voxel in a target area only from the source subject’s corresponding 

source area ( Fig. 5 A). All individual pairs showed comparable conver- 

sion accuracies to the whole VC conversion, with the mean pattern 

correlation being 0.58 ± 0.07 and the mean profile correlation being 

0.55 ± 0.06 for VC (Fig. S12A for individual pairs; Fig. S12B for group 

results). We then performed DNN feature decoding and visual image re- 

construction using whole VC, and compared the results with the whole 

VC conversions ( c.f. , Figs. 3 and 4 ). 

In the DNN feature decoding of the natural images, the subarea-wise 

conversion showed similar but slightly lower decoding accuracy than 

the whole VC conversion across layers in all individual pairs (Fig. S12C) 

and at the group level ( Fig. 5 B; ANOVA on the means of individual 

pairs, effect of conversion type with the DNN layer as a between-subject 

factor, F (1, 361) = 1959, p < .001, η2 
𝑝 
= 0.84; see Materials and Methods: 

“Statistics ”). Similar results were obtained for the artificial images in 

some individual pairs and at the group level (Fig. S12C for individual 

pairs; Fig. S12D for group results; ANOVA on the means of individual 

pairs, F (1, 361) = 260.6, p < .001, η2 
𝑝 
= 0.42). 

Reconstructed images obtained from subarea-wise conversions ex- 

hibited a visual quality similar to those of the whole VC conversions 

( Fig. 5 C). In the identification analysis of the natural images ( Fig. 5 D), 

only 2/20 pairs showed significantly higher accuracies for the subarea- 

wise conversion; 6/20 pairs showed higher significant accuracies for the 

whole conversion (Fig. S12E; ANOVA in individual pairs; effect of con- 

version type with the DNN layer feature as a between-subject factor). At 

the group level, the subarea-wise conversion showed lower accuracies 

( Fig. 5 D; ANOVA on the means of individual pairs, F (1, 171) = 11.2, 

p < .001, η2 
𝑝 
= 0.062). In the identification analysis of the artificial im- 

ages, 3/20 pairs showed higher significant accuracies for the subarea- 

wise conversion; 2/20 pairs showed higher significant accuracies for the 

whole VC conversion (Fig. S12E; ANOVA in individual pairs), while no 

statistical difference was found at the group level ( Fig. 5 D; ANOVA on 

the means of individual pairs, F (1, 171) = 3.87, p = 0.051, η2 
𝑝 
= 0.022). 

These results indicate that constraining neural code conversion to re- 

spect cortical hierarchy does not seem to contribute to the improvement 

of visual image reconstruction. Rather, the flexibility of the mapping 

with the whole VC conversion could be beneficial as indicated by the 

slightly superior performance with the natural images. 

2.6. Varying the number of training data 

One potential benefit of the inter-individual analysis is the reduc- 

tion of the number of data required for model training from novel test 

(source) subjects by using training data from other individuals. The re- 

sults of the inter-individual analysis so far were obtained using 2,400 

samples for converter training, we here investigated how the number 

of training samples affects image reconstruction quality by varying the 

number of data used for converter training (300, 600, 900, 1,200, 2,400, 

3,600, 4,800, and 6,000 training samples) while using all data of the tar- 

get subject for decoder training (6,000 samples). We also compare the 

results between the whole VC and the subarea-wise conversions. 

The reconstructed images retained a discernible quality even with 

a reduction in the number of training samples. Specifically, using con- 

verters trained on 300 samples still produced recognizable images in 

both the whole VC and subarea-wise conversions ( Fig. 6 A; similar re- 

sults were obtained for the artificial images, see Fig. S13A). This result 

indicates that image reconstruction using converters with a small num- 

ber of training data is feasible, without the need to collect a full set of 

fMRI data for each subject. 

The identification accuracies increased with the number of train- 

ing samples, approaching the accuracy of the within-individual (Within) 

condition (see Fig. S14A for individual pairs and Fig. 6 B for group re- 

sults). The subarea-wise and whole VC conversions showed similar ac- 

curacies with more than 1,200 training samples, but the subarea-wise 

conversion outperformed the whole VC conversion with 1,200 or fewer 

training samples (ANOVA within individual pairs at each training sam- 
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Fig. 4. Reconstructed images and evaluations. 

(A) Within and across-individual reconstructions from the whole visual cortex (VC). The reconstructions shown under the three analytical conditions for each stimulus 

image were all from the same source subject. The results for different stimulus images are from different source subjects. 

(B) Identification accuracy based on pixel values and extracted DNN feature values. A mean identification accuracy was calculated over all reconstructed images for 

each subject or individual pair. DNN features of images were extracted from the eight layers of the AlexNet model (left, natural images; right, artificial images; error 

bars, 95% C.I. from five subjects or 20 pairs; dotted lines, chance level = 50%). 

ple number, effect of conversion type, p < .05 in 18, 10, 4, 3, 2, 1, 

4, and 1 out of 20 pairs for the eight training sample numbers, respec- 

tively; group analysis on the mean accuracies of individual pairs, p < .05 

at 300, 600, and 900 samples; Bonferroni-corrected by eight). Similar 

results were obtained for the artificial images (Fig. S14B for individual 

pairs; ANOVA within individual pairs, effect of conversion type, p < .05 

in 10, 8, 5, 2, 2, 1, 1, and 2 out of 20 pairs for the eight training sample 

numbers, respectively; Fig. S13B for group results; group analysis on the 

mean accuracies of individual pairs, p < .05 at 300, 600, and 900 sam- 

ples; Bonferroni-corrected by eight). Overall, the neural code conversion 
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Fig. 5. Whole VC vs. subarea-wise conversion. 

(A) Illustration of the subarea-wise conversion. A converter model was trained on a set of fMRI responses to an identical stimulus sequence. Activity values of a voxel 

in a target area were predicted only from source subject brain activity patterns in the voxel’s corresponding source area. 

(B) DNN feature decoding accuracy. The whole VC conversion and subarea-wise conversion were evaluated using DNN feature decoding of natural images (error 

bars, 95% C.I. from 20 individual pairs). 

(C) Reconstructed natural and artificial images. 

(D) Identification accuracies based on pixel values and extracted DNN feature values. DNN features of images were extracted from the eight layers of the AlexNet 

model (left, natural images; right, artificial images; error bars, 95% C.I. from 20 individual pairs; dotted lines, chance level = 50%). 

with the cortical hierarchy constraint does not improve reconstruction, 

but it is beneficial when the number of training data is limited. 

2.7. Pooling data from multiple subjects 

Finally, because the neural code conversion allowed us to pool the 

data of multiple subjects into a single target subject brain space, we 

examined the pooling effect on the performance of the inter-individual 

visual image reconstruction. For a pair of a source and a target subject, 

we pooled all data from the other three subjects into the target brain 

space (4 subjects ✕ 6,000 samples = 24,000 samples in total; whole VC 

conversion; Fig. 7 A). We re-trained the decoders on this pooled data and 

called the decoders “multiple-subject feature decoders, ” in contrast to 

the “single-subject feature decoders, ” which were trained on the target 

subject in the native brain space. For the neural code converter training 

between the source subject’s data and the pooled data, 2,400 samples of 

the source subject were paired with each set of 2,400 samples from the 

four pooled subjects. The converted brain activity from the source sub- 

ject underwent DNN feature decoding with the multiple-subject feature 

decoders and then visual image reconstruction. The results were com- 

pared with those generated from the single-subject feature decoders. 

DNN feature decoding analysis on the natural images showed a small 

improvement in accuracy across all layers in the multi-subject condition 

as compared with the single-subject condition. The multiple-subject con- 

dition yielded better performance than the single-subject condition both 

in individual pairs (Fig. S15A) and at the group level ( Fig. 7 B; ANOVA, 

effect of decoder type, F (1, 361) = 1968, p < .001, η2 
𝑝 
= 0.85). Simi- 

lar results were obtained for artificial images, with the multiple-subject 

condition showing higher accuracies (see Fig. S16A for individual pair 

results and Fig. S16B for group results; ANOVA, effect of decoder type, 

F (1, 361) = 172, p < .001, η2 
𝑝 
= 0.32). Reconstructed images obtained us- 

ing both the single- and multiple-subject decoders showed recognizable 

visual quality, but the visual qualities were not substantially different 

between the two conditions ( Fig. 7 C; see Fig. S16C for artificial images). 

In the identification analysis of the reconstructed natural images, the 

multiple-subject condition showed slightly higher accuracies than the 

single-subject condition (Fig. S15B for individual pairs; ANOVA, effect 

of decoder type, p < .05 in 10/20 individual pairs; Fig. 7 D for group 

results; effect of decoder type, F (1, 171) = 75.6, p < .001, η2 
𝑝 
= 0.30). 

Similar results were obtained for artificial images, with the multiple- 

subject condition showing slightly higher identification accuracies than 

the single-subject condition (Fig. S16D for individual pairs; ANOVA, ef- 

fect of decoder type, p < .05 in 6/20 individual pairs; Fig. S16E for group 

results; effect of decoder type, F (1, 171) = 35.9, p < .001, η2 
𝑝 
= 0.17). 

To examine the impact of limited data availability on the benefits 

of pooling multiple-subject data, we conducted a similar analysis using 

only 300 training samples for the source subject, reflecting situations 

where data collection is restricted due to cost constraints (Fig. S17). 
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Fig. 6. Effect of the number of training data for the converter. 

(A) Reconstructed images. All reconstructed images were produced from the same subject pair (source: Subject 2, target: Subject 3). 

(B) Identification accuracy. Identification accuracies were calculated with the pixel values and the extracted DNN feature values (AlexNet) from the reconstructed 

natural images with varying numbers of training data for the whole VC and subarea-wise converters. The results are shown together with those from the within- 

individual condition (Within) and the anatomical alignment (Across-anatomical) (error bars, 95% C.I. from 20 individual pairs for whole VC and subarea-wise 

conversions; dotted lines, chance level = 50%). 

There was also a slight improvement for the identification accuracies of 

the reconstructed natural images in some of the pairs and at the group 

level when using the multiple-subject feature decoders (Fig. S17D for 

individual pairs; ANOVA, effect of decoder type, p < .05 in 5/20 in- 

dividual pairs; Fig. S17E for group results; effect of decoder type, F (1, 

171) = 28.3, p < .001, η2 
𝑝 
= 0.14). These results indicate that pooling 

multiple-subject data is somewhat beneficial for improving the accu- 

racy of inter-individual decoding and reconstruction, even when data 

availability is limited. However, the visual quality of the reconstructed 

images was not largely improved. 

We additionally performed different pooling data paradigms by 

projecting directly other subjects’ data to a subject’s brain space and 

retraining decoders on the pooled data to examine if this pooling 

method could yield any improvement. DNN feature decoding analysis 

and visual image reconstruction were then performed using the sub- 

ject’s data. However, the results showed no improvement (Figs. S18, 

S19). 

3. Discussion 

This study aimed to investigate whether and how hierarchical and 

fine-grained visual information could be converted while preserving per- 

ceptual content across individuals using methods of pairwise functional 

alignment. The study started by showing that methods of pairwise func- 

tional alignment can accurately convert a source subject’s brain activity 

into a target subject’s brain space by evaluation using the pattern and 

profile correlations. The ablation analysis on the converters with the ex- 

clusion of voxels from various source visual subareas showed that the 
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Fig. 7. Pooling data from multiple subjects. 

(A) Illustration of the pooling procedure. For a pair of a source (not shown) and a target subject, the training data of the other three subjects were converted into the 

target subject’s brain space and DNN feature decoders were re-trained on the converted data of the three subjects plus the target subject’s data (24,000 samples). 

(B) DNN feature decoding accuracy obtained via multiple- and single-subject feature decoders. The multiple-subject feature decoders were trained on pooled data, 

while the single-subject feature decoders were trained on a single subject’s data. The accuracies were obtained from the source subjects test dataset of natural images 

(error bars, 95% C.I. from 20 individual pairs). 

(C) Reconstructed natural images for the multiple- and single-subject conditions. 

(D) Identification accuracies with the natural images. The identification analysis was performed using the pixel values and the extracted DNN feature values of the 

reconstructions obtained via multiple- and single-subject feature decoders (error bars, 95% C.I. from 20 individual pairs; dotted lines, chance level = 50%). 

converters automatically detected the hierarchical correspondences of 

visual subareas between individuals. Decoding the converted brain ac- 

tivity into DNN features revealed the correspondence between visual 

subareas and DNN layers. Visual images were reconstructed from the 

converted brain activity with recognizable shapes and colors of the ob- 

jects in the presented images. While the whole VC conversion slightly 

outperformed the subarea-wise conversion in the inter-individual visual 

image reconstruction with sufficient training data, the subarea-wise con- 

version performed better with minimal data. The results indicate that 

the whole VC conversion preserves the hierarchical structure that is 

explicitly assumed in the subarea-wise conversion. Even with a small 

number of training data, the converters preserved minimally sufficient 

information for visual image reconstruction. Pooling data from multiple 

subjects helped achieve slightly higher accuracy in the visual image re- 

construction, even though the visual quality was not greatly improved. 

Our analyses demonstrate that hierarchically organized fine-grained vi- 

sual features that enable visual image reconstruction are preserved in 

the converted brain activity, allowing efficient reconstruction of visual 

images without training subject-specific models. 

We have shown that the neural code converters automatically de- 

tected the hierarchical correspondence of visual subareas between two 

individuals without explicitly labeling the visual areas ( Fig. 2 B, C). Pre- 

vious studies of functional alignment mainly targeted a specific brain 

area, such as V1 or the inferior temporal cortex ( Yamada et al., 2015 ; 

Haxby et al., 2011 ). Other studies functionally aligned a large region 

of the cortex ( Bilenko and Gallant, 2016 ; Van Uden et al., 2018 ), but 

their subsequent analyses targeted different research questions such as 

the retinotopic organization and the semantic information, leaving the 

hierarchical correspondences of visual subareas remained undiscussed. 

Our results explicitly demonstrate that machine learning-based neural 

code converters can learn the hierarchical correspondence of visual sub- 

areas between two individuals. In addition, we observed some inter- 

regional predictions (e.g., source V1 could predict voxel values in tar- 

get V2, Fig. 2 C), but the prediction accuracy decreased as the cortical 

distance between two areas increased, presumably indicating that two 

close areas share some common information. 

By decoding the converted fMRI activity patterns into DNN features 

and reconstructing them as visual images via the decoded DNN features 

( Figs. 3 and 4 ), we showed that hierarchically organized fine-grained 

visual features that enable visual image reconstruction are preserved 

in the neural code conversion. Previous studies have mainly focused 

on some specific features, such as object categories, image contrast, 

10 

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



J.K. Ho, T. Horikawa, K. Majima et al. NeuroImage 271 (2023) 120007 

retinotopy, and semantics ( Haxby et al., 2011 ; Yamada et al., 2015 ; 

Bilenko and Gallant, 2016 ; Van Uden et al., 2018 ), but whether a set 

of hierarchical fine-grained features is preserved after functional align- 

ment remained unknown. The results of DNN feature decoding on mul- 

tiple levels of DNN layers showed that the converted fMRI activity pat- 

terns held multiple levels of fine-grained visual features ( Fig. 3 ). More- 

over, successful visual image reconstruction further confirmed that the 

converted fMRI activity patterns preserved sufficient perceptual content 

for reconstructing visual images ( Fig. 4 ). 

The subarea-wise conversion marginally underperformed the whole 

VC conversion with sufficient training data in the inter-individual 

visual image reconstruction ( Fig. 5 ), with the whole VC conver- 

sions achieving slightly higher DNN feature decoding accuracy and 

marginally higher identification accuracy in the reconstruction. How- 

ever, the subarea-wise conversion did outperform the whole VC con- 

version when there was little data ( Fig. 6 ). This result shows that 

when sufficient training data are available, the whole VC conver- 

sion can implicitly learn the information about explicit labels of vi- 

sual subareas, without the need to explicitly impose the hierarchy 

constraint. 

Training a full visual image reconstruction model requires an fMRI 

dataset that is costly and takes a long time to collect. In this study, the 

DNN feature decoders were trained on 6,000 data samples, which took 

approximately 800 mins of data collection time. In fMRI studies, this 

long data collection time is impractical for most people. However, by 

trading off some visual quality of the reconstructed images, it is possi- 

ble to collect fewer data samples, for instance, 300 samples, to train a 

neural code converter and perform inter-individual visual image recon- 

struction. In particular, the neural code converter is designed to capture 

the relationships between individuals’ voxels across a range of visual 

scenes, and could potentially be used in combination with other decod- 

ing models. The inter-individual decoding method with the neural code 

converter has the potential to reduce the time and costs of fMRI data 

collection. 

Our results show that pooling data from multiple subjects did not 

greatly enhance visual image reconstruction performance ( Fig. 7 ). A pos- 

sible reason is the variability of data quality, with some subjects’ data 

leading to relatively poor visual quality in the reconstructed images. 

Poor quality data limited the capability of the decoders to leverage the 

pooled data and resulted in a limited improvement in visual image re- 

construction performance. Furthermore, linear regression models may 

not be able to fully address the feature mismatch of brain activity pat- 

terns between individuals, and more advanced methods may be neces- 

sary to solve this problem ( Li et al., 2021 ). Despite our findings indicat- 

ing that pooling data did not lead to great improvements in visual image 

reconstruction quality, it is still a promising direction for future fMRI 

research. 

We observed that the inter-individual image reconstruction did 

not outperform the within individual image reconstruction ( Figs. 4 

and 5 ). As mentioned above, this could be due to the linear con- 

straint used for conversion, which may be too restrictive to capture 

more complex statistical relationships, such as nonlinearity between 

brain activity patterns. Additionally, a brain’s response to a stimu- 

lus comprises a consistent stimulus-evoked response across individu- 

als, an idiosyncratic stimulus-evoked response and a noise component 

( Nastase et al., 2019 ). The brain decoders might leverage the idiosyn- 

cratic responses that could not be converted across subjects, as well 

as noise components. As a result, the inter-individual visual image re- 

construction thus underperformed the within-individual visual image 

reconstruction. 

Our results showed that it is possible to translate brain activ- 

ity patterns across individuals while retaining sufficient information 

to visualize the perceived stimulus. This presents an efficient ap- 

proach for reconstructing visual images without the need to train 

subject-specific models, especially for complex and data-intensive re- 

construction models. By reducing the amount of data required for 

model training, our method could help to promote the use of brain- 

machine/computer interfaces that communicate with our internal 

world. 

4. Materials and methods 

4.1. fMRI datasets 

4.1.1. Subjects 

In this study, Subject 1–3 correspond to the three subjects in 

Shen et al. (2019b) and the dataset was reused. Subject 4 (male, age 22) 

and Subject 5 (male, age 27) participated in our additional experiments 

for the test natural-image and artificial-image sessions. The dataset of 

the training natural-image session of Subject 4 and 5 was reused from 

Horikawa and Kamitani (2022) . All subjects provided written informed 

consent for participation in the experiments, in accordance with the Dec- 

laration of Helsinki, and the study protocol was approved by the Ethics 

Committee of Advanced Telecommunications Research Institute Inter- 

national (ATR). 

4.1.2. Stimuli 

The natural image stimuli in Horikawa and Kamitani (2017) were 

selected from 200 representative categories in the ImageNet dataset 

(2011, fall release; Deng et al., 2009 ). The natural training images were 

1,200 images taken from 150 object categories, and the natural test im- 

ages were 50 images taken from the remaining 50 object categories. 

The artificial image stimuli used in Shen et al. (2019b) consisted of 40 

combinations of five shapes (square, small frame, large frame, plus sign, 

and cross sign) and eight colors (red, green, blue, cyan, magenta, yellow, 

white, and black). 

4.1.3. Experimental design 

In both Horikawa and Kamitani (2017) , and Shen et al. (2019b) , 

fMRI signals were measured while subjects viewed a sequence of visual 

images. The visual images had a central fixation spot and were flashed 

at a frequency of 1 Hz. Each presentation of an image lasted for 8 s in 

a stimulus block with four volume scans (Repetition time [TR] = 2 s). 

The subjects were instructed to maintain fixation on the central fixation 

spot and click a button when two sequential blocks presented the same 

image. 

The test natural-image session and test artificial-shape session con- 

sisted of 24 and 20 runs, respectively. Each run consisted of 55 and 44 

stimulus blocks comprising 50 and 40 blocks of different images, and 

5 and 4 randomly interspersed repetition blocks, along with additional 

32-s and 6-s rest periods at the beginning and the end. The 50 natural 

images and 40 artificial images were presented in random order in each 

run. 

4.1.4. fMRI data preprocessing 

The following description is provided by fMRIPrep ( https: 

//fmriprep.org/en/1.2.1/citing.html ). The results included in this 

manuscript are based on the data preprocessed using fMRIPrep version 

1.2.1 ( Esteban et al., 2019 ) and a Nipype-based tool ( Gorgolewski et al., 

2011 , 2017 ). Each T1w (T1-weighted) volume was corrected for 

INU (intensity non-uniformity) using N4BiasFieldCorrection v2.2.0 

( Tustison et al., 2010 ) and skull-stripped using antsBrainExtraction.sh 

v2.2.0 (using the OASIS template). Brain surfaces were reconstructed 

using recon-all from FreeSurfer v6.0.1 ( Dale et al., 1999 ), and the brain 

mask estimated previously was refined with a custom variation of the 

method to reconcile ANTs-derived and FreeSurfer-derived segmenta- 

tions of the cortical gray-matter of Mindboggle ( Klein et al., 2017 ). Spa- 

tial normalization to the ICBM 152 Nonlinear Asymmetrical template 

version 2009c ( Fonov et al., 2009 ) was performed through nonlinear 

registration with the antsRegistration tool of ANTs v2.2.0 ( Avants et al., 

2008 ), using brain-extracted versions of both T1w volume and template. 

Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter 
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(WM) and gray-matter (GM) was performed on the brain-extracted T1w 

using fast ( Zhang et al., 2001 ; FSL v5.0.9). 

Functional data were slice time corrected using 3dTshift from AFNI 

v16.2.07 ( Cox et al., 1996 ) and motion corrected using mcflirt (FSL 

v5.0.9; Jenkinson et al., 2002 ). This was followed by co-registration to 

the corresponding T1w using boundary-based registration ( Greve et al., 

2009 ) with 9 degrees of freedom, using bbregister (FreeSurfer v6.0.1). 

Motion correcting transformations, BOLD-to-T1w transformation, and 

T1w-to-template (MNI) warp were concatenated and applied in a single 

step using antsApplyTransforms (ANTs v2.2.0) using Lanczos interpola- 

tion. 

Physiological noise regressors were extracted by applying CompCor 

( Behzadi et al., 2007 ). Principal components were estimated for the two 

CompCor variants: temporal (tCompCor) and anatomical (aCompCor). A 

mask to exclude signals with cortical origin was obtained by eroding the 

brain mask, ensuring that it only contained subcortical structures. Six 

tCompCor components were then calculated including only the top 5% 

variable voxels within that subcortical mask. For aCompCor, six com- 

ponents were calculated within the intersection of the subcortical mask 

and the union of CSF and WM masks calculated in T1w space, after 

their projection to the native space of each functional run. Frame-wise 

displacement ( Power et al., 2013 ) was calculated for each functional run 

using the implementation of Nipype. 

Many internal operations of fMRIPrep use Nilearn ( Abraham et al., 

2014 ), principally within the BOLD-processing workflow. For more 

details of the pipeline see http://fmriprep.readthedocs.io/en/latest 

/workflows.html . 

The coregistered data to the T1w space were then re-interpolated 

to 2 × 2 × 2 mm voxels. The data samples were first shifted by 4-s 

(two volumes) to compensate for the hemodynamic delay, followed by 

regression to remove nuisance parameters such as a constant baseline, 

linear trend, and six head motion parameters from each voxel amplitude 

for each run. The data samples were then despiked to reduce extreme 

values (beyond ± 3 standard deviations for each run) and were averaged 

within each 8-s trial (four volumes). 

4.2. Regions of interest (ROIs) 

Regions V1, V2, V3, and V4 were delineated using the standard 

retinotopy experiment ( Engel et al., 1994 ; Sereno et al., 1995 ) in each 

subject’s naive brain space. The higher visual cortex (HVC) was defined 

as a contiguous region covering the LOC, FFA, and PPA, which were 

identified using conventional functional localizers ( Kourtzi and Kan- 

wisher, 2000 ; Kanwisher et al., 1997 ; Epstein and Kanwisher, 1998 ). 

The whole visual cortex (VC) was defined as the combined regions of 

V1, V2, V3, V4, and HVC. 

4.3. Anatomical alignment 

For the analyses with anatomical alignment, the subjects’ struc- 

tural and functional images were nonlinearly normalized to a stan- 

dard space: the ICBM 152 Nonlinear Asymmetrical template version 

2009c (MNI152NLin2009cAsym [MNI space]; see Materials and Meth- 

ods: “fMRI data preprocessing ”). The T1w reference image was spatially 

normalized to MNI space by the ANTs ( Avants et al., 2008 ) and the func- 

tional data were coregistered to this normalized T1w reference image. 

The coregistered data were then re-interpolated to 2 × 2 × 2 mm vox- 

els. Furthermore, ANTs were used to normalize the ROI masks of V1, 

V2, V3, V4, and HVC in their native space to the brain in MNI space. In 

the inter-individual analysis, if a voxel of a source subject and a voxel 

of a target subject shared the same coordinates, the fMRI activity of the 

source voxel was considered to be that of the corresponding target voxel. 

Thus, the voxels of a source subject covered by a ROI mask of a target 

subject were selected as the input to the model. 

4.4. Methods of functional alignment 

4.4.1. Neural code converter 

The neural code converter model for each pair of subjects comprised 

a set of regularized linear regression models (ridge regression), each 

trained to predict the activities of an individual voxel of one subject (tar- 

get) from the brain activity patterns of another subject (source) given the 

same stimuli. A converter takes a source subject’s brain activity pattern 

𝐱 𝑖 ∈ ( ℝ ) 𝑚 consisting of m voxels’ values, and predicts the target brain 

activity pattern 𝐲 𝑖 = 𝐖𝐱 𝑖 + 𝐛 , where 𝐲 i ∈ ( ℝ ) 𝑛 is the converted brain ac- 

tivity pattern consisting of n voxels’ values; 𝐖 ∈ ( ℝ ) 𝑛 ×𝑚 is the conver- 

sion matrix and 𝐛 ∈ ( ℝ ) 𝑛 is the bias vector. The converter is trained to 

minimize the objective function 

𝑁 ∑
𝑖 

||||||𝐲 𝑖 − 

(
𝐖𝐱 𝑖 + 𝐛 

)||||||2 + 𝜆||𝐖 ||2 , 
where 𝐲 𝑖 is the measured target subject’s brain activity pattern for the 

i -th sample, N is the number of training samples, 𝜆 is the regularization 

parameter, and || ⋅ || represents the Frobenius norm. 

To optimize the performance of visual image reconstruction, we fine- 

tuned the regularization parameter through 5-fold cross-validation on 

the training data. At each fold, the brain activity in the validation set 

was converted to the target’s brain space and then decoded into DNN 

features. The decoded DNN features were used to calculate an identifi- 

cation accuracy that measured how well a decoded DNN feature pattern 

can identify the true stimulus between two alternatives (see Materials 

and Methods: “Identification analysis ”). The regularization parameter 

was optimized in a grid-search manner to maximize the identification 

accuracy, which is linked to the performance of visual image reconstruc- 

tion. 500 units instead of all from each layer of the VGG19 model were 

chosen to save the computational time, and were randomly chosen be- 

cause there was no a priori knowledge about which DNN units lead to 

a better visual image reconstruction. 

4.4.2. Procrustes transformation 

Procrustes transformation is a transformation that includes transla- 

tion, rotation and uniform scaling, and preserves the shape of a geo- 

metric object. It was first introduced by Haxby et al. (2011) in the hy- 

peralignment analysis. Considering the source and target subjects’ brain 

activity patterns 𝐱 𝑖 ∈ ( ℝ ) 𝑚 and 𝐲 𝑖 ∈ ( ℝ ) 𝑛 , Procrustes transformation es- 

timates an orthogonal transformation matrix 𝐖 ∈ ( ℝ ) 𝑛 ×𝑚 to minimize 

𝑁 ∑
𝑖 

||||𝐲 𝑖 − 𝐖𝐱 𝑖 ||||2 , 
with the constraint 𝐖 

𝑇 𝐖 = 𝐈 where N is the number of training samples. 

Please refer to Bazeille et al. (2021) for more discussions. 

4.4.3. Optimal transport 

Optimal transport is related to the question of how one could trans- 

form a probability distribution into another probability distribution 

with the least cost. It was first applied to the functional alignment in 

Bazeille et al. (2019) . Defining 𝐗 = ( 𝐚 1 , 𝐚 2 , ⋯ , 𝐚 𝑚 ) and 𝐘 = ( 𝐛 1 , 𝐛 2 , ⋯ , 𝐛 𝑛 ) 
with 𝐚 𝑖 , 𝐛 𝑗 ∈ ( ℝ ) 𝑁 representing a sequence of a voxel response to N stim- 

uli, optimal transport tries to find a transformation matrix 𝐖 

∗ such that 

𝐖 

∗ = argmin 
𝐖 

( ∑
ij 

𝐖 ij 
||||||𝐛 𝑖 − 𝐚 𝑗 

||||||2 − 𝜖ℎ ( 𝐖 ) 

) 

with the constraints 
∑

𝑗 𝐖 ij = 1∕ 𝑚 and 
∑

𝑖 𝐖 ij = 1∕ 𝑛 . 
The entropic term 

ℎ ( 𝐖 ) = − 

∑
ij 

𝐖 ij 

(
log 

(
𝐖 ij 

)
− 1 

)
regularizes the optimal transport problem and 𝜖 controls the strength 

of regularization. The regularization parameter was optimized as in the 
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neural code converter. We used fmrialign ( https://parietal-inria.github. 

io/fmralign-docs/index.html ) package in the analysis. Please refer to 

Bazeille et al. (2019) for more mathematical details. 

4.4.4. Template-based pairwise alignment via hyperalignment 

Template-based pairwise alignment via hyperalignment first es- 

timates a common template among subjects using hyperalignment 

( Haxby et al., 2011 ), and then construct a pairwise transformation by 

first mapping a source subject’s brain activity onto the template, fol- 

lowed by an inverse mapping from the template to a target subject’s 

brain space. In the first iteration, the hyperalignment algorithm first 

selects an initial target subject as a template, then aligns the second 

subject’s fMRI responses to the template using Procrustes transforma- 

tion. The template is then updated as the mean of the current template 

and the newly aligned fMRI responses. The same procedure is repeated 

for additional subjects. In the second iteration, each subject’s original 

response is aligned to the mean aligned responses of other subjects. The 

mean aligned response is recalculated and treated as a template. In the 

last step, each subject’s response is aligned to the template, and an or- 

thogonal transformation matrix is obtained for each subject. 

Although the hyperalignment algorithm can estimate the shared 

space of more than two subjects, we used it only between two subjects, 

as in the neural code converter analysis. 

4.5. Noise ceiling estimation 

Repeated measures of the brain responses to an identical stimulus 

are subject to measurement noise in fMRI data, inevitably lowering the 

prediction accuracy. To account for the noise, we adopted the noise ceil- 

ing estimation used by Lescroart and Gallant (2019 ; see also Hsu et al., 

2004 ). The noise ceiling was obtained by averaging the profile or pattern 

correlation coefficients between repetitions of the same stimuli within 

a subject. This noise ceiling estimation is based on the rationale that 

no model can predict better than the subject’s own responses. Thus, the 

noise ceilings reflect the maximum performances of the converter mod- 

els and were used to normalize the raw prediction accuracies of the 

converter models by dividing the raw accuracies by the noise ceilings. 

Samples/voxels with corresponding noise ceilings below a thresh- 

old (99th percentile point in the distribution from random pairs) were 

excluded from the performance evaluation of the conversion because 

they could not be reliably measured. But all voxels were included in 

the downstream DNN feature decoding analysis to prevent information 

leakage. 

4.6. DNN model 

We used the VGG19 DNN model ( Simonyan and Kisserman, 2014 ) 

implemented using the Caffe library ( Jia et al., 2014 ). This model 

is pre-trained for the 1,000-class object recognition task using the 

images from ImageNet ( Deng et al., 2009 ; the pre-trained model is 

available from https://github.com/BVLC/caffe/wiki/Model-Zoo ). The 

model consists of 16 convolutional layers and three fully connected 

layers. All the input images to the model were rescaled to 224 ×
224 pixels. Following Shen et al. (2019b) , outputs from individ- 

ual units before rectification were used as target variables in the 

DNN feature decoding analysis. The number of units in each layer 

is as follows: conv1_1 and conv1_2, 3,211,264; conv2_1 and conv2_2, 

1,605,632; conv3_1, conv3_2, conv3_3, and conv3_4, 802,816; conv4_1, 

conv4_2, conv4_3, and conv4_4, 401,408; conv5_1, conv5_2, conv5_3, 

and conv5_4, 100,352; fc6 and fc7, 4,096; and fc8, 1,000. 

We used the AlexNet DNN model ( Krizhevsky et al., 2012 ) imple- 

mented using the Caffe library to extract DNN features from the recon- 

structed images and the presented image. This model is also pre-trained 

similarly (available from https://github.com/BVLC/caffe/tree/master/ 

models/bvlc _ alexnet ). The model consists of five convolutional layers 

and three fully connected layers. The number of units in each layer is 

as follows: conv1, 290,400; conv2, 186,624; conv3 and conv4, 64,896; 

conv5, 43,264; fc6 and fc7, 4,096; and fc8, 1,000. 

4.7. DNN feature decoding analysis 

For each DNN unit, we trained a ridge linear regression model (DNN 

feature decoder) that takes an fMRI activity pattern induced by a stim- 

ulus as input and predicts a feature value of the stimulus. The ridge 

regularization parameter was set to 100, and both the feature values 

and voxel values were normalized before model training. We then per- 

formed a voxel selection procedure to select the top 500 voxels with the 

highest Pearson correlation coefficients between the sequences of fea- 

ture values and voxel responses of all voxels for training. The trained 

decoders were tested on the average fMRI pattern over repetitions to 

increase the signal-to-noise ratio of the fMRI signal. For details of the 

feature decoding, please refer to the works of Horikawa and Kamitani 

(2017 , 2022 ) and Shen et al. (2019b) . 

4.8. Brain hierarchy (BH) score 

The BH score was originally designed to measure the degree to which 

an artificial neural network is hierarchically similar to the human brain 

( Nonaka et al., 2021 ). In this study, we adopted the decoding-based BH 

score to see whether the hierarchical similarity is preserved after inter- 

individual conversion. The DNN features of randomly selected 1,000 

units of each layer are decoded from the fMRI pattern of one of the 

five visual areas: V1–V4 and the HVC. For each unit, the visual area 

showing the best decoding accuracy was identified and was called the 

“top visual area. ” The first layer, the last layer, and three randomly 

sampled intermediate layers were used to calculate a Spearman rank 

correlation coefficient between the hierarchical levels of the five DNN 

layers (coded as 0 through 4) and the top visual area (coded as V1: 0, V2: 

1, V3: 2, V4: 3, and HVC: 4) across DNN units. This sampling procedure 

was repeated 10,000 times, and the mean Spearman rank correlation 

coefficient was taken as the BH score. See Nonaka et al. (2021) for more 

details. 

4.9. Visual image reconstruction 

We used an image reconstruction method (deep image reconstruc- 

tion) proposed by Shen et al. (2019b) . The method optimizes pixel 

values of an input image based on a set of DNN features given as a 

target. Given the decoded DNN features from multiple layers, an im- 

age was reconstructed by solving the following optimization problem 

( Mahendran et al., 2015 ): 

𝐯 ∗ = argmin 
𝐯 

( 

1 
2 

𝐿 ∑
𝑙 

𝛽𝑙 
||||𝝋 𝑙 ( 𝐯 ) − 𝐮 il ||||2 

) 

, 

where 𝐯 ∈ ( ℝ ) 224 × 224 × 3 is a vector whose elements are the pixel values 

of an image (width × height × RGB channels); L is the total number of 

layers; 𝛗 𝑙 is the function that maps the image to the DNN feature vector 

of the l -th layer; 𝐮 𝑖𝑙 is the decoded DNN feature vector of the l -th layer 

for the i- th sample; and 𝛽𝑙 is the parameter that weights the contribution 

of the l -th layer, which was set to be 1∕ ||𝐮 𝑖𝑙 ||2 . 
A natural image prior is applied by introducing a generative adver- 

sarial network called the deep generator network (DGN) to enhance the 

naturalness of the image ( Nguyen et al., 2016 ). The optimization prob- 

lem becomes 

𝐳 ∗ = argmin 
𝐳 

( 

1 
2 

𝐿 ∑
𝑙 

𝛽𝑙 
||||𝝋 𝑙 ( 𝐺 ( 𝐳 ) ) − 𝐮 il ||||2 

) 

, 

where G is the DGN and z is a latent vector. The reconstructed im- 

age is obtained by 𝐯 ∗ = 𝐺 ( 𝐳 ∗ ) . The DGN is a pre-trained generator pro- 

vided by Dosovitskiy and Brox (2016 ; available from https://github. 

com/dosovits/caffe- fr- chairs ). 
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The solution to the above optimization problem is considered to 

be the reconstructed image from the brain activity pattern. Following 

Shen et al. (2019b) , natural images were reconstructed using the DGN, 

and the objective function was optimized by stochastic gradient de- 

scent with momentum with 200 iterations, whereas the artificial im- 

ages were reconstructed without the DGN and the objective function 

was optimized by a limited-memory BFGS algorithm with 200 iterations 

( Le et al., 2011 ; Liu and Nocedal, 1989 ; Gatys et al., 2016 ). 

4.10. Identification analysis 

Identification analysis was used to evaluate image reconstruction 

quality. Presented images were identified using the similarity in ei- 

ther image pixels or DNN features, which were reshaped into a one- 

dimensional feature vector. The feature vector of a reconstructed im- 

age was used to compare the true feature vector of the presented image 

with the false alternative of another image. The comparison was counted 

as correctly identified if the feature vector of the reconstruction has a 

higher Pearson correlation coefficient with the true feature vector than 

with the false alternative. The identification was repeated for multiple 

false alternatives for each reconstruction. For natural images, the iden- 

tification was repeated with 49 alternatives for each reconstruction, re- 

sulting in 50 images × 49 comparisons = 2450 comparisons in total. 

The identification accuracy for a reconstructed image was defined as 

the proportion of correct identification. 

During cross-validation to optimize the regularization parameters for 

the neural code converters, we used a set of decoded DNN features con- 

catenated from multiple layers to calculate the identification accuracies 

and evaluate the performance (see Materials and Methods: “Methods of 

functional alignment ”). The candidate images for comparisons were a 

subset of the 1200 images presented in the training image session. 

4.11. Statistics 

We performed statistical analyses primarily on the data samples in 

each pair of subjects to examine the effect of each conversion and its 

prevalence across pairs ( Ince et al., 2022 ). We additionally performed 

group level analyses using mean values from 20 individual pairs for 

summary purposes or when within-pair analysis was not applicable. In 

some analyses, the results with converted brain activity were compared 

with those without conversion (within-individual), in which the data 

from five subjects were similarly processed. 

In the evaluation of conversion for each pair of subjects, the pat- 

tern correlation coefficients for 50 visual stimuli were used to calculate 

the mean conversion accuracy (pattern) and its 95% confidence inter- 

val, while the profile correlation coefficients for all voxels were used 

to calculate the mean conversion accuracy (profile) and its 95% confi- 

dence interval. At the group level, the mean conversion accuracies (pat- 

tern/profile) from 20 individual pairs were used to calculate the group 

mean and its 95% confidence interval. 

In the DNN feature decoding analysis for each conversion or each 

subject (within), the decoding accuracies (profile correlations in indi- 

vidual units) for all DNN units were used to calculate the mean decoding 

accuracy and its 95% confidence interval. At the group level, the mean 

decoding accuracies from 20 individual pairs or five subjects (within) 

were used to calculate the group mean and its 95% confidence interval. 

In the evaluation of the brain hierarchy, a BH score was computed 

for each conversion or each subject (within). At the group level, the BH 

scores of 20 individual pairs or five subjects (within) were averaged to 

obtain the mean BH score. 

In the identification analysis of reconstructed images for each con- 

version or each subject (within), the identification accuracies for indi- 

vidual reconstructed images were used to calculate the mean identifica- 

tion accuracy and its 95% confidence interval. At the group level, the 

mean identification accuracies from 20 individual pairs or five subjects 

(within) were used to calculate the group mean and its 95% confidence 

interval. 

In the comparison of the subarea-wise conversion with the whole 

VC conversion, we performed ANOVA on DNN feature decoding accura- 

cies and identification accuracies with the conversion type as a repeated 

measure factor and the DNN layer as a between-subject factor. Since mil- 

lions of DNN units and their decoding accuracies (profile correlations) 

always lead to statistical significance, we only performed group level 

ANOVA on DNN feature decoding accuracies to compute the F scores, 

p values, and the effect size, in which the data points were the mean 

DNN feature decoding accuracies of 20 individual pairs. For identifica- 

tion, the accuracies with individual reconstructed images were used as 

the data points in the ANOVA analysis to compute the F scores, p values, 

and the effect size in each individual pair. At the group level, mean iden- 

tification accuracies from 20 individual pairs were used as data points 

to compute the F scores, p values, and the effect size. 

Similar ANOVA tests were applied to the pooling data analysis to 

examine the effect of decoder type (multiple- and single-subject). 

Data and code availability 

The experimental code and data that support the findings 

of this study are respectively available from our repository 

(code for inter-individual deep image reconstruction includ- 

ing neural code converter, Procrustes transformation, optimal 

transport and hyperalignment: https://github.com/KamitaniLab/ 

InterIndividualDeepImageReconstruction , code for feature de- 

coding: https://github.com/KamitaniLab/dnn- feature- decoding , 

code for image reconstruction: https://github.com/KamitaniLab/ 

DeepImageReconstruction , code for BH score calculation: https: 

//github.com/KamitaniLab/BHscore ) and open data repository (Open- 

Neuro: https://openneuro.org/datasets/ds003993/versions/1.0.0 for 

Subject 1–3, https://openneuro.org/datasets/ds003430/versions/1.2.0 

for the dataset of training natural-image session for Subject 4 and 5, 

and https://openneuro.org/datasets/ds001506/versions/1.3.1 for the 

dataset of test natural-image and artificial-image sessions for Subject 4 

and 5). 
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