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RECENT PROGRESSES ON GENUS ONE EXTENSIONS OF MIXED
TATE MOTIVES OVER Z

KENJI SAKUGAWA

ABSTRACT. In this survey article, we give an overview of recent progress of construction
of genus one extension of the category of mixed Tate motives over Z by Brown [6] and
Hain-Matsumoto [18].

1. Introduction

The construction of (sub)categories of mixed motives satisfying the following condi-
tions is one of important open problems in Arithmetic geometry: (i) This is a Q-linear
Tannakian category and a universal cohomology theory of varieties over Q. (ii) The ex-
tension classes of simple objects can be computed by algebraic cycles. (iii) Its Tannakian
fundamental group can compute explicitly.

The category of mixed Tate motives over a number field is one of the few subcategories of
mixed motives that satisfy all of the above conditions. As an application of the existence of
such a category, Goncharov and Terasoma proved independently that Zagier’s conjectural
dimension of the space of multiple zeta values gives an upper bound ([8], [29]). Tt is
natural, therefore, to ask about possible extensions of this category.

Problem 1.1. Let MTM(Z) be the category of mixed Tate motives over Z. Find a nice
extension of MTM(Z).

The aim of this article is to give an overview of a recent attempts to construct of a nice
category of mixed motives containing MTM(Z) by Francis Brown ([6]) , Richard Hain and
Makoto Matsumoto ([18]).

Notation. For a field k, Veci™ denotes the category of finite dimensional k-vector spaces.
For an abstract group T' (resp. a pro-algebraic group G over k), Rep,(T") (resp. Rep,(G))
denotes the category of representation of 7 (resp. algebraic representations of G) on finite
dimensional k-vector spaces.

2. Relative pro-unipotent completion

Our basic tool to construct subcategories of mixed motives is the relative pro-unipotent
completion of a topological fundamental group. We recall this notion briefly.

Let k be a field of characteristic zero and let S be a reductive algebraic group over k.
Let m be an abstract group and let

po: ™ — S(k)

be a group homomorphism whose image is Zariski dense. A relative unipotent lift of po is
a tuple (G, pr, pg) where:

e (5 is an algebraic group over k.
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e pr: G — S is a surjective homomorphism whose kernel is unipotent.
e pc: ™ — G(k) is a group homomorphism such that the composition pr o pg is
equal to pg and that the image of pg is Zariski dense.

DEFINITION 2.1. The relative pro-unipotent completion of m with respect to py is a
pro-algebraic group over k defined to be
@1 G.
pa: m—G(k)
Here, pg runs over relative unipotent lifts of pg. This pro-algebraic group is denoted by
m(po) in this article. When S = Spec(k) and py is the trivial representation, the relative
pro-unipotent completion with respect to pg is called the pro-unipotent completion of ™
and this group is denoted by 7" /k or 7" simply.

EXAMPLE 2.2. Let 7 be a finitely generated group. Then, the ring O(7"™/k) of regular

functions on 7" /k has the following explicit description ([12, Proposition 3.222]):
O(m™/k) = lim Homy, (Z[x] /1" k)
n>0

Here, Z[r] is the group ring of m and I denotes its augmentation ideal. The existence
of the natural isomorphism above follows from Proposition 2.4 below. This isomorphism
is not only an isomorphism of k-vector spaces but also of commutative Hopf k-algebras.
Here, the multiplication (resp. coproduct) of the right-hand side is the induced map by
the diagonal map 7 — 7 x 7 (resp. the multiplication 7 x 7 — 7). In particular, if
7 is a free group of rank r, then O(7™) is naturally isomorphic to a non-commutative
polynomial ring in r-variables with the shuffie product and the concatenation coproduct.

By definition, we have the canonical representation

Puniv: T —> 7T(pO)(k/‘)v

which has a universal property for relative (pro-)unipotent lifts of py. Then, we have the
induced natural functor between k-linear Tannakian categories

(2.1) Repy,(m(po)) — Repy(m)

by p"v, which is fully-faithful by the Zariski density of the image of puny. An object V of
Repy () is said to be relatively unipotent with respect to py if its Jordan-Holder component
extends to an algebraic representation of S via pg.

ExamMpPLE 2.3. When pg is the trivial character, a relatively unipotent representation
of 7 is nothing but a unipotent representation of 7 in the usual sense.

PROPOSITION 2.4. The essential image of (2.1) coincides with the full-subcategory of
Repy(m) consisting of relatively unipotent representations with respect to py. In other
words, T(po) is canonically isomorphic to the Tannakian fundamental group of the category
of relatively unipotent representations over k of m with respect to py.

Proof. Tt is sufficient to show the essential surjectivity of the functor (2.1). Let (V,p) be
a relatively unipotent representation of 7 on a finite dimensional k-vector space V. Let G
be the Zariski closure of p(7) in Aut(V) =2 GLy . As usual, we equip G with the reduced
scheme structure. Then, it is easily checked that G forms a closed subgroup of Aut(V).
Moreover, there is a unique isomorphism G/G"™ = S compatible with representations of
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m, where G"™ is the unipotent radical of G. Therefore, by the definition of 7(pg), there is
a natural homomorphism pr: 7(py) — G and p o pr coincides with puni,. This implies the
essential surjectivity of (2.1). O

By definition, there exists a short exact sequence of pro-algebraic groups

1— W(ﬂo)un — 7T(,00) — S5 — 17

n

where m(pg)"™ is the pro-unipotent radical of m(pg). For a pro-algebraic group G over k
and a finite dimensional algebraic representation V', H (G, V) is defined by

Hz(g7 V) = EXtiRepk(g) (k7 V)7

where k is the trivial representation of G, and H'(G) is defined to be H*(G, k). To compute
topological generators and relations of the Lie algebra of 7(pg)"™, the following proposition
is useful:

PROPOSITION 2.5 ([17, Lemma 5.1]). Let G = S x U be a pro-algebraic group over k
with reductive S and pro-unipotent U. Then, for any i, we have a natural isomorphism

H'(U) = @ Extgep, @) (F; Va) @k V3
AEA

of S-modules. Here, A is the set of isomorphism classes of irreducible representations of
S and V) is a corresponding irreducible representation to \.

EXAMPLE 2.6. Let 7 be a free group of rank r and let 7" denote the pro-unipotent
completion of 7 over k. Since 7" is pro-unipotent, this group can be reconstructed by
its Lie algebra. Hence, to determine the isomorphism class of 7", it suffices to compute
the topological generators and primitive relations of Lie(7"™). Recall that Lie(z"") is
topologically generated by a topological basis of Hj(Lie(7")) and the set of primitive
relations is given by Hy(Lie(m™)) (cf. [18, Section 18]) . According to Proposition 2.5 and
[18, Proposition 10.1], we have

k i=0,
HcitS(Lie(Trun)) = Hi(ﬂ'un) = HomGrp(ﬂ-, k) Z = 17
0 1=2

Here, H! (Lie(r"™)) is the continuous cohomology group of the topological Lie algebra

Lie(m™) ([17, Subsection 5.1]). Since Homgyp(m, k) is a k-vector space of rank r, we
conclude that Lie(7"™) is isomorphic to the topological Lie algebra

l(iﬂlLiek(xl, R 4 B TN € T B
Here, Lieg(x1,. .., x,) is the free Lie algebra over k of rank r and I'"Lieg(z1, . .., x,) is the
central descending series defined by

I'Liey(x1,. .., 2,) = Lieg(x1, ..., 2,),

' Lieg(z1, ..., 2,) = [Lieg(wy,. .., 2,), ['Lieg(zy, . .., 2,)].
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3. Mixed Tate motives over Z

In this section, we recall basic facts about the category MTM(Z) of mixed Tate motives
over Z. Then, we recall Brown’s fundamental theorem which is the basis for the idea of
extending MTM(Z) to genus one world.

It is not the aim to state precise construction of this category. However, for the reader’s
convenience, we give a rough recipe of the construction of MTM(Z) with references.

(Stepl) Construct the category DMM,,, (Q) of Voevodsky’s derived category of mixed mo-
tives over Q (cf. [30], [24], [2]).

(Step2) Define the full triangulated subcategory DMTM(Q) of DMM,,, (Q) to be the small-
est triangulated subcategory stable under extensions and containing Q(n).

(Step3) Show that there exists a natural truncated structure on DMTM(Q) by using Borel’s
computation ([4, Proposition 12.2]) of higher K-group of Q (see [22]).

(Step4) Define MTM(Q) to be the heart in the sense of Beilinson-Bernstein-Deligne ([3,
Définition 1.3.1]) of DMTM(Q) with respect to the natural truncated structure.

(Step5) Define MTM(Z) to be the full-subcategory of MTM(Q) consisting of objects which
are “unramified everywhere” (see [8, 1.7]).

Note that, by construction, MTM(Z) and MTM(Q) are Q-linear abelian categories with a

natural ®-structure. Moreover, it is known that they are Tannakian. For a smooth variety

X over Q with a stratification X D X; D -+ D Xg = () such that X; \ X;;; = [[A%, an

object A"(X)(r) of MTM(Q) is defined for any n,r € Z. We call such an X a variety of

mixed Tate type in this article.

3.1. Properties MTM(Z). We recall basic properties of MTM(Z) and MTM(Q). Let
Rg be the category of the Hodge components of system of realizations over Q ([7, 1.4],
8, 2.13]). An object of R consists of tuple H = (Hg, Hag, compyg ) where:
e Hy is an object of VecﬁQn with an increasing filtration W,Hp and an Q-linear
endomorphism F, such that F2 = id.
e Hgr is an object of VecﬁQn with an increasing filtration W, Hgr and a decreasing
filtration F*Hgg.
® compgg p is an isomorphism of underlying C-vector spaces

compgr p: Hp ®q C = Har ®q C,
which preserves the filtrations W, on the both-hand sides.
They satisfies the following conditions:
e A bi-filtered module (HB,W.HB7compgéyB(F'HdR ®q C)) is a Q-mixed Hodge
structure.

e Under the comparison isomorphism, we have cqr = cgF, where ¢, is the complex
conjugation with respect to the R-structure H, ®q R.

ExampPLE 3.1. Let X be a smooth variety over Q. Then,
Hg := H"(X(C),Q(i)), Har := Hix(X/Q)(i)
forms a part of an object of Rg ([28, Theorem 4.2], [19, Proposition 3.1.16]). The symbol
H"™(X)(i) denotes the corresponding object of R{.

Let wy: Rg — Vec%n be the functor defined by w.(H) = H,. Similar to the usual mixed
Hodge structure, ’Rg is a Q-linear Tannakian category and w, is a fiber functor.
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Let C' be a smooth algebraic curve over Q. The, the symbol RE denotes the category
of the Hodge components of system of realizations over C. For the precise definition, see
[7, 1.21]. Roughly speaking, an object of R consists of a tuple F = (Fp, Fur, COMPyR p)
where:

e 73 is a Q-local system over C(C) with an increasing filtration W, JFg, which is
functorial in the algebraic closure C of R.

e Fur = (Fur, V) is a flat connection over C regular at infinity with two filtrations
F*Far and W Fyr.

® compgg p is an isomorphism

JFB ®q cs (]_-dR’C)V:O
of C-local systems such that (Fg, We, compjjp gF**) forms an admissible variation
of mixed Hodge structures ([28, Definition 14.49]) and that functorial in C.
The basic properties of MTM(Z) is as follows:
THEOREM 3.2. There exists a functor
Ry: MTM(Q) — RE,
which is called the Hodge realization functor satisfying the following conditions:
(1) This functor is faithful exact ®-functor ([8,2.9,2.11]). Letw,: MTM(Q) — Vecgy'
denote the composition of Ry with w, by abuse of notation.
(2) For a variety X over Q of mized Tate type, we have a natural isomorphism
Ry (K"(X)(d)) = H"(X)(0).
(3) (Structure of Tannakian w1 ) We have a natural isomorphism of pro-algebraic
groups
T (MTM(Z),wdr) = Gy X Uiy
over Q, where U3\, is the pro-unipotent radical of 1 (MTM(Z),war). Let Lie(UdE\):

be the subspace of Lie(UdRy,) on which G, acts via the lth power of the standard
character. Then, we have a natural isomorphism

GrLie(Uyiiy) : @Lle Uk i & Lie(os, 05, 07, 09, - - +)
I€Z

(18, 2.4] ). Here, the right-hand side is the free graded Lie algebra over Q generated
by homogeneous elements oo1 with deg(oor1) = 2k + 1.

(4) The Hodge realization functor Ry is fully-faithful and its essential image is closed
under subobjects ([8, Proposition 2.14] ).

3.2. Brown’s structure theorem. For a pair (¢g,n) of non-negative integers, let .,
be the moduli stack of n-marked genus g curves over Z ([9], [21]).

EXAMPLE 3.3. The stack .# 4 is a smooth scheme over Z. Explicitly, we have a natural
identification

Moy =P\ {0,1,0¢}.
More generally, when g = 0,n > 3, .4, is isomorphic to (P'\ {0,1,00})" ™\ Ui<;A45,
where A;; is the locus defined by z; = ;.

LOf course, they are fiber functors of MTM(Q) and MTM(Z).
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Let II§, := 7r1(///074(C);a)““. As Moy = PP\ {0,1,c}, its topological fundamen-
tal group ﬂl(%0,4(C);ﬁ) is a free group of rank two so that O(IIf,) = Q(z,y). Let
Car (4, 4) denote the category of unipotent flat connections over .#,/Q, which is a Q-
linear neutral Tannakian category (cf. 7, 10.26]). Let TI§% be the Tannakian fundamental

group of Car (40 4) with the base point of (cf. [7, 15.28-15.36], [10, Subsection 1.1]). It is
known that there is a natural isomorphism

Homgq(O(I15}), Q) = Q({eo, e1)),

where Q{(eo, €1)) is the ring of non-commutative formal power series with variables ey, e;.

We sometimes identify e; with the one form % on #y4/Q. Then, we have a map

(3.) (040, 0) > Cleger)s 7o Y (/ )b

b: words in eg,e;

where wj, is the corresponding sequence of %, 1 =0,1to b and ﬁ ,Wh is the regularized
iterated integrals (cf. [7, 15.53], [23, Section §]).

THEOREM 3.4. (1) ([7,12.16, 15.50-15.53] ) The map (3.1) induces an isomorphism
COMPyR B O(H&) 2q C = O(Hgi) ®q C

of commutative Hopf algebras.

(2) The triple O(II}},) := (O(I1§,), O(II§}), compyg ) forms a part of a Hopf algebra
object of Ind(Rg)?.

(3) (I8, Théoreme 4.4]) There exists a Hopf algebra object O(TIFY") of Ind(MTM(Z))
with a natural isomorphism

Ry (O(TI5")) = O(TI))

of Hopf algebra objects of Ind(Rg).

REMARK 3.5. For a k-linear neutral Tannakian category 7T, the category Aff.Schs of
affine schemes in 7 in the sense of Deligne ([7, §5]) is defined as follows: Let Algs denote
the category of algebra objects of Ind(7). Then, Aff.Schy is defined to be the opposite

category of Algs. By definition, any fiber functor w: T — Veci™ induces an equivalence

of categories
Aff.Schy = {Affine schemes /k equipped with algebraic actions of m (7, w)}.

Let Hg}gt denote the object of Aff.Schyrm(z) corresponding to (’)(H‘O'}Zt). This affine scheme
in MTM(Z) is called the motivic fundamental group of .#, 4 (with the base point 07)

DEFINITION 3.6. Let V' be an object of Ind(Rg). The full subcategory of Rg generated

by V is the full subcategory of Rg whose objects is isomorphic to a sub-quotient of
D, VE" or its dual.

Famous theorem of Brown states that the motivic fundamental group of .4 4 generates

MTM(Z), namely:

2Ind(A) means the ind-category of A.
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THEOREM 3.7 ([5]). Let MTM(Z)' denote the Tannakian full-subcategory of RG gener-
ated by (’)(H%{A)A Then, Ry induces an equivalence

MTM(Z) = MTM(Z)'.

Sketch of the proof. Let Z™ be the space of motivic MZVs ([5, Subsection 2.2]). Then,
we have a non-canonical injection

Z™ <5 O(Uptm) ®q Q]

of graded algebras (this gives an upper bound of the space of MZVs proved by Goncharov
and Terasoma). Brown proved the linearly independence of {¢™(ky,...,kq) | ki = 2,3}
over Q. Then, by the dimension counting, we conclude that the injection above is an
isomorphism. This implies that the action of 7 (MTM(Z),war) on II§% = wqr (II§5") is
faithful. Then, conclusion of the theorem follows by a formal argument. O

By Brown’s theorem, we are led to the second definition of MTM(Z):

DEFINITION 3.8 (Quick “definition” of MTM(Z)). The category of MTM(Z) is defined
to be the full-subcategory of R generated by O(IT{,).

REMARK 3.9. Of course, this quick “definition” is not so useful. For example, it is
very difficult to determine the structure of its Tannakian fundamental group without
the original definition of MTM(Z) and Brown’s theorem (this is needed to use Borel’s
computation). However, this “definition” has the advantage that similar definitions can
be easily made. This is discussed in the next section.

4. Mixed modular motives over Z

Let’s begin our exploration of the extension of MTM(Z) into the world of genus one.

An idea to construct a natural extension of MTM(Z) is
replace %, 4 by 4, ;,
where .#1 1 = the moduli of elliptic curves. Let .#; be the smooth compactification of
A1 and let
Spec(Z[q]) — A1

be the classifying morphism defined by the Tate generalized elliptic curve ([20, (8.4)]).
Then, this morphism defines a point oo of .# ; and a non-zero tangent vector v = diq at
o0. By abuse of notation, we use the same v for the base points defined by v ([7, §15]).
4.1. Definition. Recall that the pro-unipotent group H(])BA is defined to be the pro-

unipotent completion of Wl(%0,4(c),ﬁ). The group H]f:l is constructed by a similar
way. Note that we have

m(A11(C),v) = SLy(Z)
(cf. [14, Subsection 3.5]). Let std: SLa(Z) — SLQ(Q) be the standard representation.
We regard this as a representation of m1(.# 1(C),v) by the natural isomorphism above.
The pro-algebraic group 1_[171 is defined to be the relatlve pro-unipotent completion of
m (A1 1(C),v) with respect to the standard representation. By definition, we have

I} = lm &

(G.p)
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where p: m (#1(C),v) — G(Q) runs over relative unipotent lifts of the standard repre-
sentation of 1, (41 1(C),v).

REMARK 4.1. Tt seems that to take the relative pro-unipotent completion with respect
to std is very natural. What happens if we take a pro-unipotent completion? It is well-
known that SLy(Z) is generated by two elements

0 —1 11
= {1 0]’ = {0 1}
(cf. [27, Subsection 1.5]) and it is easily checked the relations
S? = (ST)? = —E,

hold. Hence, SLy(Z)® is an abelian group of order 12 so that SLy(Z) has no non-trivial
unipotent representation on a finite dimensional Q-vector space. Hence, SLy(Z)"™ is the
trivial group and there is nothing to interest. This triviality is also deduced by the fact
that there is no non-zero modular form of full-level of weight two.

Before to define a de Rham analogue of HS}Z, we give a geometric interpretation of
IT?,. Recall that Repg(mi(.#11(C),v)) is equivalent to the category of Q-local systems
over the orbifold ., 1(C) (cf. [14, Subsection 3.3]). On the other hand, by Proposition
2.4, RepQ(H]ﬁl) is equivalent to the category of relatively unipotent representations with
respect to std. Since any irreducible algebraic representation of SLj g is isomorphic to
Sym" (std) for some n (cf. [16, Section 10]), Repg(I1})) is naturally equivalent to the full
subcategory of Q-local systems over . ;(C) whose Jordan-Hélder component is isomor-
phic to Sym”(Vg) for some n, where Vg is the Q-local system over .#; 1(C) corresponding
to the standard representation. A model of Vg can be taken as follows. Let m: & — 4, ;
be the universal elliptic curve over . ; and let R'7.(Q) be the first higher direct image of
the constant sheaf Q on &(C), which is a family of the first cohomology groups of elliptic
curves with coefficients in Q. Then, the fiber of R'7,(Q) at v is canonically isomorphic
to the standard representation of SLy(Z) ([16, Section 9]). Therefore, Vi can be taken as

Vi = Rlﬂ*(Q).
Let us define a de Rham analogue. Define the coherent sheaf Vyg on .4, by
Var = RIW*SZC}//{M,

where Qi@///l,l is the sheaf of ith differential forms on & relative to .#; 1. Note that Vg is
a family of the first algebraic de Rham cohomology groups of elliptic curves. This coherent
sheaf is equipped with the Gauss-Manin connection® which is flat. Let Car (4 1) be the
category of flat connections with regular singularities at infinity whose Jordan-Holder
component is isomorphic to the flat connection Sym’(V4r). Then, we can easily check
that this category is a Q-linear Tannakian category and v defines a fiber functor of this
Tannakian category. Then, Hf% is defined by

H(ipf = Wl(CdR(./ﬁJ), U).

Similar to the . 4-case, the Riemann-Hilbert correspondence induces a natural compar-
ison isomorphism
COMPyR B O(Hllg,l) 2 C — O(Hf}}f) ®q C

3This flat connection is canonically isomorphic to the dual of H defined in [16, Section 9].
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of Hopf C-algebras.

THEOREM 4.2 ([16], [6, Subsection 13.2]). The triple (O(II)), OF, compyp g) forms a
part of a Hopf algebra object O(I1}) of Ind(Rg).

Let H71{,1 denote the corresponding group object of Aff.Schpa. Then, we can define a
genus one analogue of MTM(Z) by mimicking the quick “definition” of MTM(Z):

DEFINITION 4.3 (cf. [6]). The category MMM(Z) is defined to be the Tannakian full-
subcategory of R¢ generated by O(II},).

REMARK 4.4. (1) This category is the same as H,, , in [6].

(2) It scems that Hi’fl can be constructed geometrically and that this is a realization

of a certain ind-mixed motive at least in the sense of Nori (cf. [19]). This problem
is still open.

We see two typical examples of objects in MMM(Z).

ExaMPLE 4.5. Let V = (VB,U,VdR,U,Comde’B) be the fiber of the variation of MHS
(VB Var, compgg ) at v. Then, by [26, Theorem 6.16], this admits a limit mixed Hodge
structure which is isomorphic to Q & Q(—1) (cf. [23, Example 7.8]). Let H?fm be the
closed subgroup of 117 ", whose underlying group is the pro-unipotent radical of 18, We

will compute the structure of this pro-unipotent radical in Proposition 4.8 below. Then
we have a natural isomorphism

H'(IT}5") = @5 H' (SLa(Z), Sym* (V) ®q Sym* (V)"
k>2
in R§, where the Hodge structure on H'(SLy(Z), Sym*~2(V)) is defined by the Eichler-
Shimura isomorphism ([27, Chapter 8], [31, Section 12, Section 14]). Thus, for a Hecke
eigen modular form f of full-level, the associated MHS H; is an object of MMM(Z) ® Q.

EXAMPLE 4.6 ([18, Example 6.8]). For an elliptic curve E with the origin O, E* denotes
E\ {O}. Let #™(E*) be the pro-unipotent fundamental group of E*. Then, the family
of Lie algebras

{Lie(mi™(67)) | = € 41, }
forms a pro-local system over .#; ;. Its fiber at v is an object of MMM.

Since Lie(n}™ (&), w)) contains Lic(IIf,) as a sub pro-mixed Hodge structures (cf. [15
Section 18], [18, Section 28]), the category MMM(Z) is certainly an extension of MTM(Z).
Namely:

PROPOSITION 4.7 ([6, Theorem 14.5]). The category MMM(Z) contains MTM(Z) as a
Tannakian full subcategory.

4.2. Group structure of HEI. Let us return to the determination of the group structure
of H]13,1~ By definition, we have

(4.1) 1 I - I — SLygq — 1,

where HB 1" is the pro-unipotent radical of TI|. According to Proposition 2.5, we have

an 1somorphlsm

H(II™) = @D H(ITF,, Sym* (V) ®q Sym* (V)

E>2
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of SLy g-modules. According to [18, Proposition 10.1], the natural homomorphism
HY(TIP, Sym**(V)) — H'(SLy(Z), Sym* (V')

induced by puniy is isomorphism if ¢ < 1 and injective if ¢ = 2. Since SLy(Z) contains a
free group of finite rank as a finite index subgroup, the cohomology groups above vanish
when ¢ > 2. Thus, we have the following proposition:

PROPOSITION 4.8. The pro-Lie algebra Lio(H]i’lun) is topologically generated by a basis
of
(4.2) P H'(SL(Z), Sym* 2(V))" ©q Sym* (V)

k>2
freely.
We have an isomorphism of C-vector spaces
M;,(SLo(Z)) @ Si(SLo(Z)) = H'(SLo(Z), Sym* (V) mq C,
where M}, (SLy(Z)), Sk(SLs(Z)) denote the space of full-level modular forms and cuspforms
of weight k, respectively. Therefore, Lie(H]ﬁ‘fn) /Q is topologically generated freely by
elements
er XYY, e;cXin7 eg XY,
where f (resp. g) is a full-level normalized Hecke eigen cuspform (resp. Eisenstein series)
of weight k and i 4+ 7 =k — 2.

4.3. Zeta and modular generators of Lie(Ug,,). Let 71 (MMM(Z),wqr) be the Tan-
nakian fundamental group of MMM(Z) and let Ui\, be its pro-unipotent radical. Accord-
ing to Proposition 2.5, to determine the generators of this pro-unipotent group, we need to
compute Ext,{AMM(Z)(Q, H) for all simple object H. This is generally very hard task, how-
ever, Brown proved that this extension group is non-zero when H = Q(2n+1), H(d) with
n > 1, d > wt(f). As a consequence, he had found a part of generators of Lie(Udm)-
Moreover, he proved that there is no non-trivial relation between those generators:

THEOREM 4.9 ([6, Theorem 21.2]). Let B denote the set of normalized Hecke eigen
cuspforms of full-levels. Then, there exists a system of elements
{o2n+1, 0%5(d), of(d) € Lie(Upm) | n € Zs1, f € B, d > wt(f)},
which generates a free Lie subalgebra of Lie(Usiym)-

See [6, Subsection 17.1] for a conjecture about topological generators and relations of
Lie(Udtm) based on an analogue of the Beilinson conjecture.

4.4. An analogous category MMM(.#, ;). By the Tannakian duality. the fiber functor
war of MMM(Z) induces an equivalence wqr: MMM(Z) = Repq (71 (MMM(Z), wqr)). On
the other hand, we have a canonical action Hfﬁnwl(MMM(Z),wdR) by the definition of
MMM(Z). It is natural to consider the representation of II{, not only m(MMM(Z), war).

DEFINITION 4.10. The category MMM (.# ) is defined to be the category of algebraic
representations of 1 (MMM(Z), war) x II{% on finite dimensional Q-vector spaces:

MMM (.4, 1) := Repg (71 (MMM(Z), war) X Hf}}).
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This category is conjecturally equivalent to a full subcategory of motivic sheaves over
AMi,1. Here, we mean the category of motivic sheaves is the essential image of the re-
alization functor from the category of motivic local systems over .#; in the sense of
Arapura ([1]) in the category of system of realizations ([7, 1.21]). A motivic sheaf F is in
MMM (.4, 1), then Gr)' F = @, Sym' (V)@ M; (M; € MMM(Z)).

We have a sequence of Tannakian categories:

MTM(Z) € MMM(Z) € MMM (., ;)

Problem 4.11. They are natural extensions of MTM(Z), but still huge (e.g. generators
of 7y is still unknown). Is there an “easier” intermediate category?

One of a solution is to take a “ mixed Tate quotient”. This will be done in the next
section.

5. Mixed elliptic motives

Mixed elliptic motives was defined by Hain and Matsumoto in [18]. In this section,
we give a brief review of their results. First, we give a group theoretic definition of the
category of mixed elliptic motives over .#;,. Then, we see Hain-Matsumoto’s original
definition. One of main results of [18] is partial determination of the structure of the
Tannakian fundamental group of this category. We state their results and give a sketch
of the proof.

REMARK 5.1. In [18, Definition 6.1], Hain and Matsumoto defined three categories of
universal mixed elliptic motives over . 1, ///1 7, and over M1 5. We only consider the
category of the universal mixed elliptic motives over . ; for simplicity.

5.1. Group theoretical definition. Let HE‘}S denote the maximal mixed Tate quo-
tient of H(f}}. That is, Hfif is a quotient pro-algebraic group of H‘li}} satisfying the following
properties:

e The kernel of the canonical projection pr: Hff} — H]Eils is stable under the action

of 11 (R@,war) so that the group m (R, war) acts on I naturally.

e The action of m(Rq,war) on I factors through the natural surjective homo-
morphism 7 (R, war) — m1(MTM(Z), war).

e For any morphism f: Hcfil — G satisfying the properties above, there exists a

Bis ., G satisfying f = g o pr.

unique homomorphism g: TI7’

DEFINITION 5.2 ([18]). The category MEM = MEM; ; of universal mixed elliptic
motives is defined by

MEM = Repg (m1(MTM(Z), war) x IITP).
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The following diagram is a relation of Tannakian fundamental groups that appear in this
article:

(MMM( (JJdR

'\

T (MTM(Z), war) T (MMM(.#1 1), war)

/

Here, m1(MEM,wqr) denotes the Tannakian fundamental group of MEM with the base
point defined by the forgetful functor. By Tannakian duality, we have the following fully-
faithful functors of Tannakian categories:

/\5

wl(MEM,wdR)

MMM(Z
/ \

MTM(Z) MMM (.1 1)
\MEM/

Note that H‘f“f is isomorphic to the de Rham realization of an affine group scheme HE‘S mot
in MTM(Z). Let H‘E‘f B denote the Betti realization of H‘E‘f ™ Then, it is easily checked
that the category MEM is equivalent to the category Repg(mi(MTM(Z),ws) x Hlﬁif’B).

5.2. Original (geometric) definition. We see an original (geometric) definition of
MEM due to Hain-Matsumoto here. Let Rg,ff be the category of the Hodge and /(-
adic components of system of realizations over . ; in the sense of [7, 1.21] (cf. [8, 2.15]),

where ¢ runs over all prime numbers. A universal mized elliptic motive in the original
sense ([18, Definition 6.1]) is a tuple (F, H, f) where:

1) F be an object of RZF such that
M1
Gr'V F = q;Sym™ (V) (i)

(2) H is an object of MTM(Z) equipped with an increasing filtration W, H, which
does not have to match the original filtration on H as an object of MTM(Z).

(3) f: F, = R(H) is an isomorphism of objects of Réi;ﬁ(z) preserving W,. Here, the
Hodge component of F, is equipped with the limit mixed Hodge structure.

Hence, each universal mixed elliptic motive in the original sense is an object of R%f

which is a successive extension of Sym™(V)(r).

PROPOSITION 5.3. The category of universal mized elliptic motives in the original sense
1s naturally equivalent to MEM.

LEMMA 5.4. Let Rﬁh (V) be the full-subcategory of Rf}},l_l consisting of objects whose
Jordan-Hélder component is isomorphic to Sym™(V) @ H for some non-negative integer
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n and H € Obj(R§). Let v: RY, (V) — RE be the functor defined by taking the fiber at
v. Then, we have a natural isomorphism

Wl(RiI//I’l(V)., WqR 0 V) X Wl(Rg,wdR) X Hi{i{.

Proof. Note that the category Repg(mi(Rq,war) X II{%) is equivalent to the category of
V of objects in Rg equipped with the coaction of O(Hi‘fl). Therefore, to prove the lemma,
it suffices to show that the functor

(5.1) W ow: Rf}h?l()}) — RepQ(m(Rg,wB) x I17)

induced by wpg o v is an equivalence of Tannakian categories. Let us construct a quasi-
inverse of the functor above.

Let HRep(HEl) denote the category of Hodge representation of Hlﬁl over Q in the sense
of [13, Section 4], namely, this is the category of representations of 71 (MHSq,wp) x II};.
Then, according to [13, Theorem 5.1, Subsection 5.5], the functor wp o v induces an
equivalence of Tannakian categories

(5.2) MHS(#1,V) = HReP(H]13,1),

where MHS(.#,1,V) is the category of admissible variations of MHSs over .#;; whose
Jordan-Holder component is isomorphic to Sym"(V) ® H with H € MHSq.

Then, a quasi-inverse of (5.1) is constructed as follows. Let Hg be a given representation
of m (R§, we)II}; and let Hag be the corresponding representation of 71 (Rg, war ) < I1{1.
Define a pair F = (Fp, Far) to be the Q-local system over .#) 1 ., and flat connection
over .#1, by representations Hp of Hlil and Hggr of Hf}}, respectively. Then, (Fg, Far.c)
forms an admissible variation of MHSs by the result of Hain above. Moreover, the low-
est weight subbundle of Fyr ¢ is a direct factor of the vector bundle associated with
H O(Hﬁ’un, Har) ®q C and this factorization is automatically defined over Q. Hence, by
the inductive argument on the length of the weight filtrations, we conclude that W, Fur.c
descends to the filtration on Fyg. Then, the datum defined above forms an object of
R{/{”l,l(v)' The construction is obviously functorial in Hp and we can easily check that
this defines a quasi-inverse of (5.1). O

Sketch of the proof of Proposition 5.3. Let (F, H, f) be a universal mixed elliptic motive
over ., in the original sense. Then, by Lemma 5.4, Rqr(H) defines a mixed elliptic
motive in our sense. Hence, this correspondence defines functor from the original category
of MEMs to the category of our MEMs. The quasi-inverse is constructed as follows. Let
H be our mixed elliptic motive. Then, by fixing equivalences in the proof of Lemma 5.4,
we have an object Fy; of Rffh (V) corresponding to H. Then, for a prime number /, the
smooth Q-sheaf F, is defined to be the corresponding one to the representation

T (M) Qo) = Gal(Q/Q) i SLa(Z) — m (MTM(Z), ws)(Qy) x TIEPE(Qp).

The comparison between F; and Fg is the induced isomorphism by m (.4, 1(C),v) =
T (1 1/Q,v). We take f as the canonical isomorphism between F, and R(H). Accord-
ing to [18, Remark 6.2], W, H is recovered by the action of m;(.#;1(C),v) on Rg(H) via
m (A1 1(C),v) — Hfils’B(Q). This defines filtrations W, on Fy. We leave to the leader to

show that this is a quasi-inverse of the natural functor defined by wv. O
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From now, we identify those two categories. Then, for each object H of MEM in our
sense, two weight filtrations W H and M,H are equipped. The first filtration is the fiber
of global filtration W, F and the second is the weigh filtration as an object of Rg

5.3. Structure of m (MEM, war). Let Uy, be the pro-unipotent radical of 71 (MEM, wag ).

Then, by definition, we have a short exact sequence
(53) 1— UI?/IFI;M — Wl(MEM,wdR) — GLZQ — 1

of pro-algebraic groups over Q. Therefore, to compute topological generators of Lie(Ug&\,),
it is sufficient to compute extension groups Extygy(Q, Sym’(V)(r)) for each non-negative
integer ¢ and an integer r (Proposition 2.5).

THEOREM 5.5 ([18, Theorem 15.1)). We have

Qz,, 1=0, r>3,odd,
Extyem(Q, Sym‘ (V) (r)Y = < Qe;, 1> 1, even, r =1+ 1,
0 otherwise.

In particular, Lie(UdR\w) has a topological generators
Zori1s ek (=1, k>1, 0<i<2k).

Next, let us consider the relations of U%,,. According to [18, Proposition B.1], there
exists a natural splitting of W,H and M,H functorial in H € Obj(MEM). This splitting
gives a splitting of (5.3) and each W-graded piece of H is stable under the action of GL q.
Then, Lie(UdRy) is equipped with pro bi-graded Lie algebra structure ([18, Subsection
19.2]). Let GrLie(U3R,,) be the associated bi-graded Lie algebra over Q. Since Lie(Udgy)
is recovered by GrLie(UlRy,), to determine the structure of Lie(UdRy), it suffices to de-
termine the structure of GrLie(UgRy). Let f be the free Lie algebra generated by symbols
Zori1, €peorra  (r>1, k>1, 0 <i<2k). There exists a natural action of GLyq on f
by identifying this Lie algebra with the free Lie algebra

Lie ( P Exthien(Q. Sy 20)(1)" ©q Sym“w)(r)) .
k>2reZ

Here, we take eggio is an invariant vector under the action of T € SLy(Z). Then, by
Theorem 5.5, we have a GLy g-equivariant surjective homomorphism
(54) f — GI’LIQ(U&%M), Z9r41 > Zoryi, 66€2k+2 — 6662k+2-
Note that t is contained in [f,§] by Theorem 5.5. We mean a relation of GrLie(UdR,,)
an element of the kernel v of (5.4). Let f, be the Lie subalgebra of § generated by
{€'eaki2}tk>1, 0<i<ak so that the image of f, under (5.4) is GrLie(HEils’un). A geometric
relation means an element of t, := v N f,. In this article, a highest weight vector of a
GLy g-module V is an element of {v € V | Tv = v} and V"' denotes the space of highest
weight vectors. Since any irreducible algebraic representation of GLjyq is generated by
its highest weight vectors, t (resp. t,) is determined by €™ (resp. t)™).

Let I'f be the central descending series defined by T = [f, ], = [''f and let us
consider the natural mapping

(5.5) % — Grf := I%/T%.
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A relation z € v of GrLie(U3R,,) is called quadratic if the image of z under (5.5) does
not zero, namely, the leading term of z is quadratic. To determine the image of v under
(5.5), it is sufficient to determine the image of ™ in (Grif)"™* under (5.5). The set
(Grf,)™ of highest weights vectors are described as follows:

LEMMA 5.6 ([25, Proposition 4.1], [18, Proposition 24.2]). For non-negative integers
a,b,d satisfying d > 2, 2min{a,b} > d — 2, define an clement wib € Grif, by

d—2 , . .
wh= 3 ("] e e iebenn cheeal
i+j=d—2, 1,j>0 !
Then, the set
{wl, | abdeZ, d>2 2min{a,b} >d—2}
is a basis of (Grif,)™*.

Before to state their result, we recall period polynomials defined by modular forms
briefly. For an even positive integer k greater than two, let V}, be the space of homogeneous
polynomials in z,y of degree k — 2 over Q. Then, the group GLy(Q) acts on V; by

el = Jas + et ), 5= |7 ) € GLa(@)

The subspace Wy, of Vj is defined by

Wi ={f € Vi | fliss = flisrs+rs)2 = 0}
([6, Subsection 7.3]). It is easily checked that £ = {_01 ﬂ preserves the subspace Wy. Let
W,;t denote the +1-eigen spaces of ¢ and f* denotes the projection of f € Wy to W= by
a natural projection. We call elements of W, ®q C (resp. W, ®q C) an even (resp. odd)
period polynomials. Note that the space W is closely related to the cohomology group
of SLy(Z). Let Z1,. (SLay(Z),V}) be the set of inhomogeneous one cocycles of SLy(Z) ([6,

cusp

(7.3)]) coefficients in V}, satisfying ¢(T") = 0. Then, we have
Z(:lusp(SLZ(Z)7 Vk) :> Wk, C > C(S)

([6, (7.4)]). Elements of the image of coboundary one cocycles under the isomorphism
above are called coboundary period polynomials. The period polynomial r; € Wj, ®q C
associated with a cuspform f of weight k is defined by the above correspondence. Fx-
plicitly, this is constructed as follows: For a modular form f of weight £, put w; =
(2 =1k f(7)(x — 7y)*~2dr, which defines an element of H9s (.4 1, Sym* 2?(Var)).
When f is a cuspform, the period polynomial r¢ is defined by

V=10
T'f = / Wf7
0

where f: denotes the integration along the geodesic path from a to b on H [ PL1(Q).
One of the main results of Hain-Matsumoto’s paper is as follows:

THEOREM 5.7 ([18, Theorem 25.1]). The image of t™* under (5.5) is given by

g
{Z aibwi,b € (Gr%fg)hm

a,b,d

sgn((—1)9
vd, Z az,bl,2afd+2y2bfd+2 _ T.fg (=1 ),Elf c 52k2d+6(SL2(Z))} )

a+b=k
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By specializing d = 2, we have the following very simple assertion:

COROLLARY 5.8. Let & be an element of tEWt, Then, a congruence

£= Z Ca [e2a+27 e2b+2} ( mod [[f ﬂa ﬂ)

a+b=k, a,b>0

holds if and only if Za+b:k,a,b20 car?y?t = 7’}' for a full-level cuspform f of weight 2k + 2.

We have seen that cuspforms produces geometric quadratic relations. How about
coboundary period polynomials? The answer is that they produce relations between
Zok+15 and efeay428:

THEOREM 5.9 ([18, Theoerm 25.1]). For all m > 2,k > 1, there exists an element
&(m, k) € v satisfying the following congruence relation:

§(m, k) = [Z2m717 €2k-+2]

2m — 2)! 2k + 2\ B, ,RE+9)! )
()( ) 2m+2k (-1 (2_7')[3032%(3{)32%%} ( mod ng),

i+j=2m—2

(2m + 2k)I\ 2 Bogo

Here, B, is the nth Bernoulli number.

The summarizing table of the results above is as follows:

TABLE 1. Table of quadratic relations

22r41 €)C2k+2

Zort1 Non “coboundary period polynomial”

ebearra | “coboundary period polynomial” cuspforms

Under the natural surjection Lie(Ugy,) — Lie(Ug&), zo,11 maps to the free generator
02,-41. Hence, there is no relation between z3,1s.

Sketch of the proof of Theorem 5.7. According to Pollack’s computation ([25, Theorem
3]), there is no non-trivial quadratic geometric relation coming from cuspforms. The
converse inclusion relation follows from:

e Explicit computations of period computations arising from two Eisenstein series
([6, Theorem 9.2]).

e Relate Brown’s computation to cup products of {efeas 12}, by using the Beilinson-
Deligne cohomology theory for affine group schemes in MHSq ([13, Section 8,
Section 10]).

See [18, Proof of Theorem 25.1] for more details. O
Is there a relation that is not a quadratic relation? The conjecture is:

CONJECTURE 5.10 (cf. [18, Corollary 25.4]). Every non-trivial primitive relation of
GrLie(UdR\,) is a quadratic relation.

This is true if an analogue of the Beilinson conjecture ([18, Conjecture 17.1 (i)]).
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6. Problems

In this section, we collect problems, which is not solved satisfactory to the best of the
author’s knowledge.

6.1. Elliptic analogue of Brown’s theorem. The representation 7 (MTM(Z)) —
Aut(IIp4) is the induced representation by the splitting of

1— H074 — Wl(MTM((%()A)) — Wl(MTM(%()’g))) — 1
(note that .#, 3 = Spec(Z)). Genus one analogue of the sequence is

1— ﬂ‘fn((fggx,’w) — Wl(MEM(%LQ)) — ’/Tl(MEM(%l,l))) — ].7

v

and the induced representation is the monodromy representation (MEM(.Z;,) =
MEM). Therefore, a naive analogous question is as follows:

Problem 6.1 ([18, Question 26.2]). Is the monodromy representation
p: m(MEM) — Aut(m{" (&), w))
injective?

6.2. Analogue of the Beilinson conjecture. The Hodge realization functor defines
the regulator

regy, - Extyem(Q, Sym"2(V)(r)) — Hi (A1 /R, Sym* *(V)g(r)).

CONJECTURE 6.2 (HM20, Conjecture 17.1 (i)). The regulators regs, @ R are isomor-
phisms for all k,r.

If the conjecture is true, then we can compute the second cohomology group of UdR,.
Since the set of relations can be determined by the second cohomology group of Uk,
we can know the explicit structure of 71 (MEM) if the conjecture above is positive.

Note that, to show Brown’s theorem, we need to know the explicit structure of 71 (MTM).
Thus, to attack the elliptic analogue of Brown’s theorem according to his method, the
first difficulty seems to be to determine the explicit structure of m1(MEM). Then, it is
natural to ask the following question:

Problem 6.3. Can we prove the elliptic analogue of the Brown’s theorem assuming the
conjecture above?

6.3. Higher level case. Let MEM; (V) denote the universal mixed elliptic motives over
the modular curve Y;(N).

Problem 6.4. Compute quadratic relations of generators of Lie(Umem, (n))-

One of difficult points is to compute cup products of Eisenstein symbols ezplicitly (The
paper [11] is a work of this type).

Problem 6.5. What is the meaning of W,Lie(Uvem,(ny) N Lie(Untmezpyny)? (This is
closely related to the depth when N = 1. See [18, Part 4].)

Problem 6.6. Consider similar problems for the modular curve Y(N)/Z[uy, 1/N].
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6.4. Problems on II{;. One step extensions of objects of MMM(Z)*® appearing in O(I1},)
was studied by Brown in [6] partially.

Problem 6.7. Study the two step extensions in O(IT},).
Problem 6.8. Replace the base point diq by a CM elliptic curve. What will happen?

After the replacement of the base point, then it seems that O(H{'fl) has a geometric
description (cf. [8, Proposition 3.4]).

Problem 6.9. Find an explicit description of O(H%) by relative cohomology groups of
open Kuga-Sato varieties.
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