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Execution game in a Markovian environment* 
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:j:Center for Mathematical Modeling and Data Science, Osaka University+ 
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Abstract 

This paper examines an execution game model in a Markovian environment. We focus on how 
two risk-averse large traders execute a large volume of a risky asset to maximize the expected 
utility of each large trader from the terminal wealth over a finite horizon. The price impact 
caused by each large trader and the Markovian environment are assumed to affect the market 
and execution price. A formulation as a Markov game model enables us to solve this problem. 
We obtain an equilibrium execution strategy and its associated value function under a Markov 
perfect equilibrium via the backward induction method of dynamic programming. 

1 Introduction 

Developments in trading technology for algorithmic trading have attracted a growing body of re-

search regarding execution problems. According to [21], although traders did not often use high-

frequency trading (HFT) around 2000, HFTs have accounted for 20 percent of the total trading 

volume in the market since the mid-2000s (until 2019). The volume-weighted average price (VWAP) 

or time-weighted average price (TWAP) strategy was the mainstream of algorithmic trading in the 

early 2000s. However, liquidity---seeking algorithm usage has become more common since the mid-

2000s (until 2019). These facts underscore the importance of analyzing algorithmic trading that 

large traders have heavily used for more than a decade. 

With the above fact in mind, we examine an execution problem for two large traders. In 
particular, our model sheds light on the effect of a Markovian environment on an "equilibrium" 

execution strategy for the large traders. We can interpret the Markovian environment in several 

ways. An example would be to consider the price impact caused by (random) aggregate orders of 

small traders, such as [32], [13], and [33]. The so-called "order book imbalance," as investigated in 

[38] and [27], is also significant in the analysis of execution problems and market microstructure. 

The order book imbalance is of great interest in recent literature. [34] conducts an experimental 

analysis and shows that public information available for all traders is well incorporated into market 

prices. This finding supports the model taking into account the order book imbalance since much 

information about the imbalance is available for all traders. 
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The model we analyze in this paper is closely related to [27], which investigates the influence 
of (Markovian) microstructure signal on the optimal execution strategy. Our model can be seen 

as an extension of this paper from the following viewpoint. Firstly, [27] considers an optimal 
execution problem for a single large trader, although our model focuses on an interaction between 

two large traders. To this end, our problem is formulated as a Markov game model. Secondarily, we 

incorporate the effect of permanent impact on the "fundamental price" we define in the sequel, as 

opposed to [27].1 Besides, the most important difference between their model and our model is that 
we incorporate both transient price impact and risk-averse property of the large trader into the 

market model for deriving an equilibrium execution. Their analysis shows that a cost minimization 

problem with a risk-averse term under the influence of market microstructure signal admits at most 

one optimal execution strategy.2 However, they only derive an explicit optimal execution strategy 

under the following situations with the effect of the market microstructure signal: (i) no term 

representing the risk aversion with transient price impact; (ii) no transient price impact with risk-

aversion term. Our formulation enables us to derive an equilibrium execution strategy considering 

both transient price impact and a risk-averse term under the existence of a Markovian environment. 

The model of the "fundamental price" in this paper is also different from seminal papers which 

stem from [26] and study the field of market microstructure. The so-called "order flow imbalance" 
is also a key ingredient of price fluctuation, as [9] empirically shows. One of the related works is 

[2], which studies the effect of dynamic order flow imbalance on an optimal execution. Their model 
also considers an endogenous impact on the order flow dynamics caused by a large trader as well 

as a trading horizon under a cost minimization framework. Their analysis is worth mentioning, 

although the model does not derive the optimal execution strategy explicitly in this setting. 

We derive an equilibrium execution strategy at a Markov perfect equilibrium with the effect of 

a Markovian environment. Large traders are assumed to have a Constant Absolute Risk-Averse 

(CARA) Von Neumann-Morgenstern (vN-M) type utility. Our analysis prevails that the transient 

price impact and what we call the residual effect of past price impact and a Markovian environment 

described by an AR (1)-type normal distributed random variable affect the execution strategy. The 

derivation method is similar to [32]. 
The organization of this paper is as follows. Section 2 summarizes related literature. In section 
3, we describe a market model where two large traders have large impacts on their execution price 

due to their large volumes of orders. An effect of a Markovian signal on a traded asset is embedded 

in the model. We describe the methodology to formulate this model as a Markov game model. 

Applying the backward induction method of dynamic programming then allows us to obtain an 

explicit equilibrium execution strategy at a Markov perfect equilibrium as an affine function of four 

state variables: the remaining execution volume of each large trader, the residual effect of past price 

impact caused by both large traders, and the last Markovian environment. The proof for the main 

theorem is shown in the appendix. 

2 Related literature 

2.1 Optimal execution problem 

In the last (two) decades there has been considerable interest in optimal execution problems for a 

single large trader among academic researchers and practitioners. The first investigation into the 

optimal execution strategy is conducted by [3] in a discrete-time framework. They find that the 

optimal strategy becomes a basket of equally divided trading volumes. [1] subsequently extends 

and constructs their model incorporating both the execution cost caused by a large trader and the 

1In [27], they call the underlying asset price "unaffected price," which (partially) corresponds to the "fundamental 
price" we define in our model setting. Our assumption that the permanent price impact would have an impact makes 
the difference of what we define as the fundamental price. 
2They show that the objective function representing the cost with risk-averse term for the large trader is strictly 
convex with respect to the trading speed. 
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degree of risk-aversion of the large trader. The formulation of their model makes the analysis entail 

a mean-variance approach. In addition, [35] addresses an optimal execution strategy for a risk-

averse large trader with CARA-type utility maximization. They show that the optimal execution 

strategy for such a large trader becomes deterministic. Another approach for an optimal trade 

execution has been put forward by [16] and [17]. They incorporate a predictable return into the 

cost minimization model with (quadratic) transaction cost which can be seen as a price impact in 
an infinite discrete-and continuous-time framework, respectively. 

Much work on the optimal execution strategy has been carried out as we mentioned in the 

previous paragraph. However, there are still some points that need careful consideration. Firstly, a 

pitfall with much of the literature on the optimal execution problem including the above research is 

the lack of a transient part of the price impact. As [4] empirically demonstrates, the price impact 

dissipates over the trading window. Thus one should take a transient price impact into account. [15] 
extends the model considered in [4] for a continuous-time framework. [30] subsequently formulates 

the model from a viewpoint of a limit order book (LOB) dynamics with transient price impact. [32], 

[13], and [33] study the optimal execution problem with a generalized transient price impact model 

assuming that aggregate orders posed by small traders also cause price impact. All of these studies 

highlight the importance of transient price impact being embedded in the analysis of an execution 

problem by showing that transient price impact does affect the optimal execution strategy. Our 

formulation of the transient price impact model bears a close resemblance to our previous studies 

[25], [31], [32] and [13]. 
We can consider the price impact model with the effect of aggregate trading volumes posed by 

small traders on the market (and therefore execution) price. [6] and [7] include the price impact 

caused by order flow (or small traders) under a cost minimization problem for a large trader and 

derive the optimal execution strategy and the optimal VWAP execution strategy, respectively. 

Notwithstanding an insightful analysis, both studies, however, offer no explanation for a utility 

maximization problem. [25], [31], and [32] analyze a utility maximization problem for a large trader 
with a generalized price impact model (which incorporates the price impact caused by small traders) 

and derive the optimal execution strategy. These researches show that aggregate orders posed 

by small traders affect the optimal execution strategy for the large trader through the transient 

price impact. Moreover, [13] further if aggregate orders posed by small traders have a Markovian 
dependence, then a "statistical" arbitrage for a large trader exists. 

2.2 Execution game 

The situation in a real marketplace leads to a game-theoretic formulation, which is the second aspect 

one should take care of. Since multiple large traders affect the market price they execute with each 

other, the so-called market impact game model, which can describe a much more complicated 

financial market, might be more acceptable from a viewpoint of practitioners. [36] and [28], which 

are motivated by [37], investigate a market impact game model with a transient price impact for one 
risky asset. These studies then derive an equilibrium at a Nash equilibrium for a cost minimization 

problem as well as a utility maximization problem. [10] subsequently extend their model to a 

multiple risky asset one and derive an equilibrium execution strategy. The strategies obtained in 

these studies are all static and deterministic. However, an execution strategy should be constructed 

in a dynamic class even if the trading window is very short (e.g., one day or a few days). Thus, 

in [32] and [31], they address a market game model with transient price impact and derive an 

equilibrium execution strategy in a dynamic and non--deterministic class. Other researches, [19] or 
[5] for example, analyze an execution game model via a mean-field game approach, though their 

model does not take into account a transient price impact. The method to formulate the problem 

we focus on in this paper is reminiscent of the one used in [31] and [32]. 
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2.3 Execution problem for multiple assets 

Another direction of optimal and equilibrium execution problems is an execution problem of multiple 

(risky) assets. [8], for instance, studies the optimal execution strategy for multiple risky assets 

considering temporary and permanent price impact. As mentioned above, we should model a 

transient price impact as well as temporary and permanent price impacts. They also show the 

way one can incorporate the information that a large trader does not trade. [40] investigates the 
cross-impact of multiple risky assets in a transient price impact model via a close examination 

of order book dynamics. They show that a large trader can increase his/her expected utility by 

execution of other assets even when there is no obligation to buy/sell multiple risky assets (or when 

they are going to buy/sell only a single risky asset). [33] addresses a pair-trade execution problem 

for a single large trader and shows that buy and sell orders for each risky asset posed by small 

traders affect the optimal pair-trade execution volume for both risky assets. For other research, 

see, e.g.,[10]. 

2.4 Microstructure effect on market price 

The following summary is based on [38]. The order book dynamics attract widespread interest 

among academic researchers and practitioners from theoretical and empirical points of view. In 

particular, how we should consider an underlying (or a fundamental) price of a risky asset is un-

dergoing a revolution in the light of empirical analysis. These represent a price without any price 

impact caused by (large) order submissions. We may recognize the so---cailed mid-price as the 

underlying price. The mean of best-bid and best-ask accounts for the mid-price: 

M:=~ 化 +pb)' (2.1) 

where pa and pb are respectively the best-bid and best-ask. Another feature that may be of 

interest to practitioners is the weighted mid-price defined as follows: 

W:=w戸＋（1-w)P尺 (2.2) 

where the weight w is the order book imbalance defined by the total volume at the best bid Qb and 

the total volume at the best邸 kQ生

Qb 
w:= び＋Qa・ (2.3) 

Although both features make a certain sense in terms of being easily obtained from market data, 

empirical studies have shown that they have some shortcomings. [38] thus define another notion 

of what he called the micro-price. The micro-price incorporates the effect of mid-price M, order 

book imbalance I, and the bid-ask spread S := pb -pa into the underlying price. In mathematical 

form, we can write the dependence as follows: 

p叩 cro:= M + g(I, S), (2.4) 

using a function g. The method to estimate the function g is explained in [38]. We will follow this 

spirit and construct what we call the "fundamental price" in the model setting. 

3 Execution game model 

In a discrete time framework t E { 1,..., T, T + l} (, T E Z++ := { 1, 2,... }), we assume that 
two large traders, denoted by i E { 1, 2 }, purchase one risky asset in a trading market. It is also 
supposed that each large trader has a CARA vN-M (or negative exponential) utility function with 

the absolute risk aversion p紅 ameter,'>0 for i E { 1, 2 }. 
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3.1 Market 

We consider the situation that each large trader must purchase D'(E良） volumeof one risky asset 
by the time T + 1. In the sequel, qf (E政） standsfor the large amount of orders submitted by the 

large trader i E { 1, 2} at time t E { 1,..., TいWedenote by切the remained execution volume 
of the risky asset for the large trader i E { 1, 2 }, i.e., the number of shares remained to purchase 

by the large trader at time t E { 1,..., T, T + 1 }. So we have 

Q;＋1 ＝切ーqt, (3.1) 

with the initial and terminal conditions：切＝迂 E恥 QT+1= 0 E良 foreach large trader 
i E { 1, 2 }. In the sequel of this paper, the buy-trade and sell-trade of a large trader are supposed 

to induce the same (instantaneous) linear price impact.4 

The market price (or quoted price) of the risky asset at time t E { 1,..., T, T + 1} is Pt. Then, 
the execution price of the asset becomes Pt since the large traders submit a large number of orders, 
influencing the asset price at which they execute the transaction. In the rest of this paper, we 

assume that submitting one unit of (large) order at time t E { 1,..., T} causes the instantaneous 
price impact denoted asふ(>0). 
We subsequently define the residual effect of past price impact caused by both large traders 

at time t E { 1,..., T }, represented by Rt-It characterizes the discounted sum of past transient 
price impact. Many existing researches, conducted from both theoretical and empirical viewpoints, 

highlight the significance of the transient nature of price impacts (e.g., [ 4], [15], and [30]). By means 
of the following exponential function G :艮→艮++:= （0, oo): 

G(t) := e―pt, (3.2) 

where p (E [O, oo)) stands for the deterministic resilience speed, we formulate the residual effect of 
the past orders posed by both large traders. 

Remark 3.1 (Extension of deterministic resilience speed). We can extend the exponential decay 
kernel model. The time dependency for the resilience speed, i.e., Pt, is consistent with empirical 

analysis. However, we conduct the following analysis without assuming the time dependency for 

the resilience speed since the assumption does not lead to any illuminating results. 

Then the dynamics of the residual effect of past price impact are defined as follows: 

R1 = O; 

Rt+1 :＝区°'k>.k(qi+ qD e―p((t+I)-k) 
k=l 
t-1 

=e-PL叫 k(qt+ q~) e-p(t-k) + a山 (qi+q;) e-P 
k=l 

=e―p［凡十a山 (q}+q;)], t=l,...,T, (3.3) 

where ctt E [O, 1] represents the linear price impact coefficients representing the temporary price 
impacts. Eq. (3.3) indicates that Rt has a Markov property in this settings, which stems from the 
assumption of the exponential decay kernel. 

Furthermore, we define a sequence of independent random variables Et at time t E { 1,..., T} 
as the effect of the public news/information about the economic situation between t and t + 1 since 

3For each large trader i E { 1, 2 }, the positive q/ for t E { 1,..., T} stand for the acquisition and negative q/ the 
liquidation of the risky asset. This setting allows us to establish a simil紅 setupfor a selling problem of I紅getraders 
4This assumption is justified by some empirical studies, for example, [6] and [7] 
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some public news or information affect the price. Et for t E { 1,..., T} are assumed to follow a 

normal distribution with mean μi E股andvariance (ufl2 E恥＋， i.e.,

Et ~N（凡，（汀）， t= l,...,T. (3.4) 

In the sequel, we邸 sumethat μt = 0 for all t E { 1,..., T }. 
We here focus on the dyn皿 icsof the "fundamental price" at time t E { 1,..., T }, denoted 
f by Pf. The fact that the residual effect of the past price impact dissipates over the course of the 

trading horizon allows us to define Pt -Rt邸 thefundamental price of the risky asset, i.e., 

P/ :=Pt-Rt- (3.5) 

We assume that the linear permanent price impact is represented by 

/3山 (qi+q;), (3.6) 

where f3t E [O, 1]. Here the additional factor that affects the fundamental price is assumed to aザect

the fundamental price. The Markovian environment, denoted by五 directlyinfluences the funda— 

mental price of the risky asset. The distribution of石isassumed to have a Markovian dependence 
as follows: 

恥＝ O;

知 1II,~N(心— bf+1石，（心）2).
(3.7) 

Note that af,研， and(uf) are deterministic functions of time t. We can rewrite the dynamics of 
石asfollows: 

Io= O; 

和 1= （af+1 -bf+1石） ＋ 6[+四t+l, t = 0,..., T -1, 
(3.8) 

where Wt ~ N (0, 1) for all t E { 1,..., T }. 

Remark 3.2 (Implication of Markovian environment). The interpretation of a Markovian environ-
ment is various and needs to be carefully mentioned. We can consider the price impact caused by 

aggregate orders of small traders as the Markovian environment. [6] and [7], for instance, analyze 
the effect of order flows on the optimal execution strategy under the existence of temporary and 

permanent price impacts. [12], [13], and [33] also investigate the case that aggregate orders posed 
by small traders follow a normal distribution and have a Markovian dependence in a transient price 

impact as well as temporary and permanent price impacts. These studies show that, under this 

setting, the small traders'orders directly affect the optimal execution strategy for a single large 

trader. Another example is the so-called order book imbalance. [38] defines a notion of micro-price 
as an extension of mid-price or weighted mid-price and shows the importance of incorporating 

order book imbalance into the formulation of market price dynamics. [27] investigates an optimal 
execution strategy focusing on the effect of order book imbalance (or what they call a marketmi-
crostructure signal) and shows that the signal does influence the optimal execution strategy. From 

these viewpoints, we can consider the Markovian environment as an extension of these models. 

Remark 3.3 (Property of Markovian environment). Eq. (3.7) and (3.8) take the same form as the 
aggregate orders posed by small traders in [13]. The classification in terms of various conditions for 
af+l and研＋1are the same as and thus detailed in the paper. 

Here we make the following assumptions. 



58

Assumption 3.1 (Correlation between two stochastic processes石andEt)• We assume that石and
Et are correlated with correlation coefficient炉,<E (-1, 1) for each time t E { 1,...,T }. So we have 

(：＋＋:)ェ～ N（（af+1μ]＋り＋1It),()名兄2oi炉；雰++1亨/+1)). (3.9) 

In addition, no other sequential dependencies between two stochastic sequences exist in the sequel. 

By definition of Et, we define the dynamics of the fundamental price Pf:= Pt-Rt with Markovian 

environment and the permanent price impact as follows: 

pt信：＝ P［＋f3山 (qi+q;)＋石十 Q
(＝R+1-Rt+1) 

=Pt-Rt+/3山 (qi+q;)＋五十匂， t = 1,...,T. (3.10) 

Remark 3.4 (Implication of Eq. (3.10)). The above relationships indicate that the permanent price 

impact caused by large traders and the public news or information about an economic situation is 
assumed to affect the fundamental price. This assumption also reveals that the permanent price 

impact may give a non-zero trend to the fundamental price. For a more detailed discussion, see 

[32]. 

According to Eq. (3.3) and (3.10), the dynamics of market price are described as 

Pt+l = Pt + (Rt+i -Rリ＋い (qf+ q;) ＋石十 €t

= Pt -(1-e―p汎＋ （ate―p這）ふ (qi+q;)＋五十Et, t = 1,..., T. (3.11) 

We here consider the following assumption in the rest of this paper. 

Assumption 3.2. For Oct E [O, 1], f3t E [O, 1] and p E [O, oo), the relationships 

ate―P+/3tく 1 (3.12) 

holds for all t E { 1,..., T }. 

The implication for Eq. (3.12) is that the friction of permanent and transient price impact at 

time t E { 1,..., T} is (strictly) less than the price impact caused by both large traders. This 

assumption is plausible from the perspective of limit order book dynamics. 

Remark 3.5. In this context, 

(3t入t(qj + q;) ; °'t入t(qi+ q『)； e―Pat入t(qi+ q;), (3.13) 

represent the permanent impact, temporary impact, and transient impact at time t E { 1,..., T }, 

respectively. Moreover, if p→oo, the residual effect of past price impact becomes zero for all 
t E { 1,..., T} since R1 = 0 and from Eq. (3.3) 

lim Rt+1 = lim e―P [Rt+ atAt (qi+ q;)] = 0, t = 1,..., T, (3.14) 
P→00 p→OO 

and therefore, 

Pt+l =Pt+ (3山 (q;+ q;)＋石十Et, t=l,...,T, (3.15) 

that is, we have a permanent impact model (with an effect of the Markovian environment). 

From the definition of the execution price, the wealth process for each large trader i E { 1, 2 }, 

denoted by Wf (E股）， evolvesas follows: 

w[+1 = w; -?tq: = W!-{Pt十ふ (qi+q;)} ql, t = l,..., T. (3.16) 
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3.2 Formulation as a Markov game 

In a discrete-time window t E { 1,..., T, T + 1 }, we define the state of the decision process at time 
t E { 1,..., T, T + 1} as 7-tuple and denote it as 

st= (wl, w?,Pt,Qi, Qぃいい） ER XR X股 XRXRX罠 XJR =: S. (3.17) 

For t E { 1,..., T }, an allowable action chosen at state St is an execution volume qf E罠＝： A'so

that the set Ai of admissible actions is independent of the current state St-

When an action q; is chosen in a state St at time t E { 1,..., T }, a transition to a next state 

St+i = (Wtい，W贔，Pt+1,Q}+190:+1,Rt+1，石） ES (3.18) 

occurs according to the law of motion which we have precisely described in the previous subsection. 

We symbolically describe the transition by a (Borel measurable) system dynamics function ht (: 

SxAxAx（罠 x罠)-----+S): 

St+1 = ht(St,qj,q『,（Wt,Et)), t= 1,...,T. (3.19) 

A utility payoff (or reward) arises only in a terminal state BT+l at the end of horizon T + 1 as 

g知 (ST+1)：＝ {-exp{-1’Wい｝ if叩＝ 0； 
—00 ifびT+1#0, 

(3.20) 

where 1'> 0 represents the risk aversion parameter of the large trader i E { 1, 2 }. The term -oo 

means a hard constraint enforcing the large trader to execute all of the remaining volume切Tat 
the maturity T, that is, q~ = ctr,. The types of large traders could be defined by 

(W国 □），i= 1,2, (3.21) 

and these are assumed to be their common knowledge.5 

Ifwe define a (history-independent) one-stage decision rule ft at time t E { 1,..., T} by a Borel 

measurable map from a state St E S =配 toan action 

qJ =月（St)EA=恥， (3.22) 

then a Markov execution strategy 1r is defined as a sequence of one-stage decision rules 

が：＝ （fi,．．．，f;，．．．, f}）． (3.23) 

We denote the set of all Markov execution strategies as IIM. Further, fort E { 1,..., T }, we define 

the sub-execution strategy after time t of a Markov execution strategy 7r E IIM as 

and the entire set of吋asIll M,t・ 

吋：＝ （f；，．．．，f}）， (3.24) 

5In a real market, large traders have little access to this information of the counterpart. We can, however, consider a 
plausible explanation for the assumption of Eq. (3.21) from the viewpoint of a game-theoretic analysis. In this model, 
our focus is placed on how the existence of the other large trader influences the execution strategy in comparison 
with a single large trader's (optimal) execution problem. We formulate this Markov game model as a dynamic game 
of complete information. Therefore, the above (hypothesized) definition and assumption associated with the notion 
of common knowledge are legitimate so that the solution concept of a Nash equilibrium in a non-cooperative game 
is (rationally or ideally) applicable in this model. The formulation of a generalized model as a dynamic game of 
incomplete information requires further intricate analysis, which is left for our future research. 
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By definition (3.20), the value function under a pair of execution strategies（孔召） becomesan 
expected utility payoff arising from the terminal wealth Wf+i of the large trader i E { 1, 2} with 

the absolute risk aversion parameter,i E恥＋：

Vi'（が，召）［s1] = lE~が，召）［恥(ST+1)Sll 

=lE『[-exp { -1iW:い｝ • ]_｛叩＝o}+ (-oo).]_｛翌岳°}叫. (3.25) 

Then, fort E { 1,..., T, T + 1} and St E S, we further let 

叫叶）［St]= lE~rr日）［如(ST+1)Stl 
=lE 
国，Tt)
t [-exp ｛一吋WT+1}]_｛叫＝o}+(-oo)]_ {Q~+l c/0} I St], (3.26) 

be the expected utility payoff at time t under the strategy 1r. Note that the expression of the 
1 _2 

itional conditional expectation, E 
（が，召） in (3.25) and E炉叩） in(3.25), implies the dependence of the 

probability laws on the strategy profiles,（礼召） and（吋元）， respectively.Also,い standsfor the 
indicator function of an event A. 

What we seek here is an equilibrium execution strategy for large traders. First, we consider the 
definition of a Nash equilibrium in this model as follows. 

Definition 3.1 (Nash Equilibrium).（が＊，1r2*)E IIL x rri is a Nash equilibrium starting from a 
fixed initial state s1 if and only if 

W（が＊，召＊）［s1]2'. Vl（計，召＊）［s叶， VがErrL; 
Vl2厨＊，召＊）［s1]2'.け（計＊，召）［s1], V召Erri. 

(3.27) 

(3.28) 

We can define a refinement of the Nash equilibrium of this model as the notion of a Markov 

perfect equilibrium: 

Definition 3.2 (Markov Perfect Equilibrium).（が＊，1r2*)E II紅xrri is a Markov perfect equilibrium 
if and only if 

り1（吋＊，叶＊）［St]：：：：り刊吋， 7rぞ）［St], V吋EIlfu!,t, 'ist ES, Vt= 1,..., T; (3.29) 

り刊吋＊， 7r『＊） ［ St] ：：：： ½1 （吋＊汀「そ）［St], V叶EIIも，t, 'ist ES, Vt= 1,..., T. (3.30) 

Based on the following One Stage [Step, Shot) Deviation Principle, we obtain an equilibrium 
execution strategy at a Markov perfect equilibrium by backward induction procedure of dynamic 

programming from time T to 1. 

亨言＊）［St] ＝ sup叩［凰（7r贔羞）［ht(Bt, (q}，庁(st)),(wt,Et)）］叫
q}嗅

＝叫ぬ（7r比， 7r糾）［ht(St, Ul* (St)，庁(st)),(wt心））］吋； （3.31) 

叩（吋＊＇ず） ［叫＝ sup E［如（7r比， 7r比）［ht(st, Ul*(st),q;), (w砂））］ St]
q;E艮

=E[饂（7r比， 7r勾 [ht(St,Ul*(st),庁＊（sリ），（W凸））］ St]. (3.32) 

3.3 Equilibrium execution under a Markov perfect equilibrium 

Theorem 3.1 (Equilibrium execution under a Markov perfect equilibrium). There exists a Markov 

perfect equilibrium at which the following properties hold for each large trader i E { 1, 2 }: 
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1. The execution volume at the Markov perfect equilibrium for the large trader i E { 1, 2} at time 

t E { 1,..., T }, denoted as qi*, becomes an affine function of the Markovian environment at 

time t -1. I,_,. th , It-1, the remaining execution volume of each large trader, Q; and Q: (iヂj,i,jE 
{ 1,2 }), and the cumulative residual effect, Rt, that is, 

qt= al+ bl切＋c；切＋d}凡十e;石-1, t = 1,..., T. (3.33) 

The dynamics of aL bL cL dL ei for t E { 1,..., T, T + 1 } are deterministic functions of time t 

which are dependent on the problem parameters and can be computed backwardly in time t 

from maturity T. 

2. The value function ½i（が，召）［st] at time t E { 1,..., T, T + 1} for each large trader i E { 1, 2} 
is represented as a functional form as follows: 

w(7rl，叶）［W｝，W?，P辺⑳，Rt,It-1]

=-exp{-,[wf-P,鷹＋G｝'（齊＋G鸞＋H匹訊

+H国＋H閂＋I｝蟷＋I繹 Rげ If'は）2＋I澤
+J噂五1+ J;iR瓜 1+ Jf窃五1+ Jf匹ー1+ Jfi五1心］｝， （3.34) 

where G}i,Gぞ，Hli,H戸，H戸，Ili,1戸，I戸，Ifi,Jr,..7,戸，J戸，Jfi,J,戸，z:fort E { 1,..., T, T + l } 
are deterministic functions of time t which are dependent on the problem parameters and can 
be computed backwardly in time t from maturity T. 

Proof. See Appendix A 口

As the above theorem shows, the equilibrium execution volume qi'at the Markov perfect equi-

librium for t E { 1,..., T } depends on the state St = (Wl, Wl, Pt，叫，吋，Rt，It-ilE S of the 
decision process through the Markovian environment at the previous time,互 1,in addition to the 

remaining execution volume of each large trader,切fori E { 1, 2 }, and the cumulative residual 
effect,凡， andnot through the wealth of each large trader, Wl for i E { 1, 2 }, or market price Pt. 
Furthermore, by the definition of the Markovian environment, the equilibrium execution volume qi* 

fort E {1 ..., T } includes a nondeterministic term through五 1・

Corollary 3.1 (Deterministicness of the equilibrium execution strategy). If the Markovian en-

vironment for t E { 1,..., T} are deterministic, the equilibrium execution volumes qf* at time 
t E { 1,..., T } for each large trader also become deterministic functions of time. 

Remark 3.6 (In the case without transient price impact). If we consider only temporary and 

permanent price impact, the optimal execution volume for the large trader at time t E { 1,..., T} 

becomes 

q:* =a;+ b；切＋c沿：＋偽五1・ (3.35) 

In this case, the Markovian environment affects the optimal execution volume of the large trader. 
However, if we further assume that It is an independent random sequence and follows a normal 

distribution as follows: 

石～心(μf,af), (3.36) 

then the equilibrium execution volume of each large trader at time t E { 1,..., T} takes the form 

as follows: 

q「 =a~+b；切＋叶切 (3.37) 

meaning that the Markovian environment does not affect the equilibrium execution strategy, even 
if we incorporate the effect of the environment on the fundamental or market price. 
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4 Conclusion 

This paper examines an execution game under a transient price impact with a Markovian envi-

ronment. We then derive an equilibrium execution strategy and its associated value function at a 

.¥1arkov perfect equilibrium and show that the Markovian environment directly affects the execution 

strategy. 

One direction of future research is to consider an endogenous model for optimal or equilibrium 

execution problems. The submission of large orders by large traders may affect the subsequent orders 

posed by small traders in a real market. Thus incorporating the orders submitted by large traders 

into the modeling of aggregate orders posed by small traders endogenously deserve consideration. 

This model may enable us to investigate the interaction between large traders and small traders in 

detail. 
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Appendix 

We here use the notation即 todenote the set of all n---dimensional real-valued vectors and Mn（戦）
to denote the set of all n x n real-valued square matrices. For an n x m real-valued matrix 

(or vector) A, we denote by AT the transpose of the matrix (or vector). Moreover, if a random 
variable X follows an n---dimensional normal distribution with mean μx E民nand covariance matrix 

ExEMn（股）， wedenote it by X ~ NJRn (μx,Ex). 

A Distribution of sum of normally distributed random variables 

with correlation 

Here we show, as a lemma, that any finite sum of normally distributed random variables with 

correlation also follows a normal distribution. Although the statement is straightforward, we note 
the result below for this paper to be self-contained. 

Lemma A.I (Distribution of sum of normally distributed random variables with correlation). 

Define, for a set of random variables X1, X2,..., Xn, lE [X;] := μi and Cov［ふふl:＝砂 Ifan賊n_
valued random variable X := (X1, X2,..., Xn) follows a normal distribution with mean μx E即

and variance Ex E Mn（艮）， i.e.,

X ~ NJll:.n (μx,Ex), (A.I) 

where 

μx :=[） E R叫 ，
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で (A.2) 

then the following (one-dimensional) sum of the random variables each of which is multiplied by 

constants: 

cTX := Cふ＋c心＋・・・十％ふ，

n 

variance区 CiCjO"ijE lR++ := (0, 00). 
i,J=1 

孤c):= lE［四｛パ｝］ ＝exp {icT µx —討Exe},

(A.3) 

where c := (c1,--・,cn)T E町， alsofollows a normal distribution with mean:〉出iE股 and
i=l 

Proof. The characteristic function for the random variable X, denoted by cp(c), is given by 

(A.4) 

where i is the imaginary number that satisfies i2 = -1. The characteristic function of a random 

variable uniquely determines its probabilistic law or distribution. Thus, Eq. (A.4) shows that the 

random variable区砂 followsa normal distribution with mean c T μx＝立亨 andvariance 
i=l 

n 

cTExc=区畑jUij・
t,J=1 

9=1 

口

Remark A.1 (Definition as a multivariate normal distribution). Some books state the result above 

as the definition for a random variable to follow a normal distribution (for example, [39]). 
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B Proof of Theorem 3.1 

We derive an equilibrium execution volume q「atthe Markov perfect equilibrium for each large 
traderi E { 1, 2 } and time t E { 1 ,..., T } by backward induction method of dynamic programming 

from time t = T via the following steps. 

Step 1 From the assumption that each large trader must unwind all the remainder of his/her 

position at time t = T, we have 

切＋1=切— qr=o, (B.l) 

for i E { 1,2 }. Thus, q}＝切 holds.Then, for t = T, the value function for each large trader 
i, j E { 1, 2 } (i =J j) is: 

界（叶＊＇ポ） ［sバ＝ sup lE[VT+1（叶＊＋1,7r外）［sT+1l sT qr嗅 l 
= ~ul lE [ -exp {-,iW:い｝ W｝，W名，P噂｝，喝，RT，五1
qが環 l 
= sup lE［一exp{-,i[w}-［乃＋入T伍＋叶）］Tq}l}叫，W名，P噂虚，RT,1T-1]qr嗅

. 2 

= -exp { -,i [w} -Pt切—初（叫—厨詞l}

= -exp {-,i[W}-R怠＋Gザ（訂＋麟喝]}, (B.2) 

where 

G片：＝ー初(<O); 

J村：＝―柑(<0). 

Step 2 For t = T -1, the value functions, V:い（叶＊ー1,7r因）［sr-1] for each large trader 
i E { 1, 2 }, satisfy the following functional equations: 

Vい（平ぃ 7f和）［sr-1]

= sup lE［玲（寸，吟）［s刃BT-1
qT-1€R 

］ 

= sup lE[-exp{ — ,i[w} — p:J切＋ Gが(Q詞＋ J}⑰喝l}lsr-1]
q}_1 EIR 

(B.3) 

(B.4) 

= sup -exp ｛ーゲ[(—入T-1+ 入T-l°'T-l + Gが）（qL1l2 +［（—入T-l°'T-l -2Gが）切＿1
q~-l EIR 

+ (-J¥)Qい＋｛ー(1-e―P)}Rr-1 +（一入T-1＋入T-l°'T-1+ Jji）王］qT-1

+wい— Pr-1Cfr-1 + G¥(Cfr_1戸＋（1-e―p)切＿潰T-1+ Jfi_l切＿1切＿1

+ (—入T-l°'T-1 -Jヤ）叩qい］｝
x lE [ exp {,i(Qい— qい）（互1 + Er-1)} lsr-1], (B.5) 

where aT-l := °'T-1戸＋応1・ As for the expectation term in Eq. (B.5), we have 

lE[ exp {,i(犀-qい）（五1+ Er-1)} lsr-1] 

= exp {,i（びT-1―qい）（aL1―叶＿1Ir-2)+;叫-qい）2亨｝，（B.6)
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where 

平 1:=V［五1+ Er-1 lsr-1] :=（叶い）2+ (ar-1戸＋2pI,,び[-1吋T-1, (B.7) 

according to the lemma shown in Appendix A. Thus, substituting Eq. (B.6) into Eq. (B.5) and 

rearranging results in 

Vい（叶＊ー1濯和）［sr-1] 

= sup -exp{ -1i[-Aい（叫）2+[BL1~-l ＋叫喝＿1 +D加濱T-1＋研＿1Ir-2+ Mr-1 
qT-1嗅

+NL1王］ qい＋ wい— Pr-1叩＋（G机＿l―；位乳） （犀）2+ (-a矛＿1）切＿1
+ (1-e―P)Rr-1犀＋Jcy;鴎鵡」＋叶＿1Q~_1It-2 +（—入T-l°'T-1 違）切叫］｝，

(B.8) 

with the following relations: 

叫：＝入T-1-ATー1CTT-l-0¥ +；伐已(>O); 
Bい：＝—入T-lCTT-l -2G¥＋位昆；
C}＿1 :＝ -J柏
Dい：＝ー(1-e―P); 
尻＿1:= -bf-1i 
ML1:＝叶＿1;
Nい：＝—入T-1 ＋入T-lCTT-l + J;虎．

(B.9) 

Note that, for all x, B, C E恥andall 1,A E恥＋ ：＝ （0, oo), two functions c1(x) := -exp{-1x} and 
c2(x) := -A呼＋Bx+ C are strictly concave function, and therefore so is the composite function 

of the two, K(x) := ci o c2(x) = -exp { -1(-A丑＋Bx+ C)}. Thus, we obtain the execution 
volume attaining the supremum of Eq. (B.8) by completing the square of the following function: 

Kr-1(qr-1) := -Ar-1(qr-1)2 + [Br-1切＿1+CL1虚＿1+Dr＿濯T-1+ Fr-1Ir-2 + Mr-l 

+Nい叫］qい＋Wr-1-Pr-l叩＋（G糾ー臼亨）（叩）2+ (-af＿賃T-1
+ (1-e―P)Rr-1ct;ぃ＋ J少切＿10今＿ 1 ＋ b手＿1切＿1五2+ （—入T-l°'T-1-.]柑）切＿1竹＿l'

(B.10) 

Then, the best response of large trader i E { 1, 2 } to the other large trader, denoted by B Ri (qい），
becomes 

BR'（厨）＝ 2Aし(Bい尻＋叫忍＋叫Rぃ＋F}＿工＋Mい＋N}＿叫）．
(B.11) 

Thus, at the Markov perfect equilibrium, we have 

｛羞＝ 2Aし(Bい尻＋叫忍＋叫RT-1+Fナ＿工＋Mい＋叫羞）；
1 

釘＝ 2Aみ＿1（B}＿1叩＋叫犀＋DL1厨＋Ff-1ZT-2+Mい＋Nf-1q和）．

(B.12) 
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Solving the above simultaneous equations results in 

qT-1 := B『-1~-1 +c『-1?Jい＋D仇潰T-1+F『-11T-2+M『-1
(=: aL1 + bL1?J~-1 十叶ー1?JL1 +dt＿濱T-1+ eL1Ir-2), (B.13) 

where 

叫＝ 2Aい— N}2-A1かN-［一1,B因＝ （｝ー1(亨 +N}2-A〗C-［一 1 9 

C和 ＝;ー1 叫＋ N｝2Al}B-［-1), D恥 ＝くかー1(叫+Nl;}D-［一1) （B 14) 

F}＊ l =分_1[F} 1+N：ぷF｝11)， M『1= ＜｝-1 (M} 1+N}バかM[1) 
for each i E { 1, 2 }. qJ,*_1 and q今＊ 1 are equilibrium execution volumes at the Markov perfect 

equilibrium for time T -1. Then the value function for large trader i E { 1, 2} at the Markov 
Perfect equilibrium（社＊，召＊） EII}u XII和becomes

叫（吋＊ー1ぷ似）［sr-1]

=-exp{ —Ii [wL1 -Pr-1犀＋ （G叫—貨土）（夏）2 + (-a矛＿l―μい）切＿1
+ (1-e―p)RT—犀＋ J｝噂忍＋ bfー 1切＿1い＋（一入T-lCTT-l-J;村）釘qか*-1
1 

4Ai 
+ （BT_._1切＿1+ct_._1ZJい＋D¥-1凡＋FTTZT-2+L巳）2
T-1 

]} 

= -exp{ —Ii [wL1 -Pr-1犀＋叫（犀）2+G争＿忍＋H和犀Rr-1

+H和瑶＿1＋H芹＿潰T-1+ J;柑＿1ZJ~-1ZJい＋ J和りか＿潰T-1 + J;瓦(Q今＿1戸＋Jヂ＿1りか＿1

噂は1T-2+L祖＿潰T-1い＋L祖＿はい＋叫叫＋L界＿11T-2+Zい］｝，（B.15)
where 
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and 

虞：＝ Gが一；位化＋ （—入T-l°'T-1 -J虎）C戸＋ (B芦）2．
4Ai' T-1 

G争＿1:= -aい＋（一入T-l°'T-1-Jji)M凡＋
B芦 M芦
2Ai,  
T-1 
Bi*＊ Di*＊ 

H恥：＝ （1-e―P) +（—入T-l°'T-1 -Jji)D仇＋ T-1 T-1. 
2Ai, 
T-1 

(D巳）2 TT3i D巳 M巳 B芦 C巳．
H瓦：＝ ； H界＿1：=， Jぬ：＝ J虎＋ （—入T-10T-1 -J杓B此＋4Ai,  

T-1 2Ai T-1 2Ai T-1 

J2, C巳 D芦． J3, （C巳）2•J4' ：＝ C巳 M芦
T-1 ：＝ ：＝ ~, "T-1.-~, "T-1.-~, 

T-1 T-1 T-1 
B巳F}•-*l. Di*＊ Fi*＊ 

L炉：＝ b矛＿1+（一入T-laT-1-J}'）F和＋ ， L祖＿1：= T-1 T-1. 
2 Ai'  T-1 2Ai T-1 

L3t 
ci*＊ Fi*＊ 

T-1:＝ 2Ai ; 
T-1 T-1L4i 

(F9*＊）2F9*＊ M9*＊ 
:=~; L仇：＝た1 T-1 ; z~ . (M閂）2T-14Ai' T-1 

T-1 T-1 
2Ai :=4Ai ・
T-1 T-1 
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Step 3 Fort+ 1 E { T -l,..., 2 }, we can assume from the above results that, at time t + 1, the 

optimal value function has the following functional form: 

w+1鴫，7r比）［st+1]
2 

= -expい[w;+1-Pt十1叩＋G｝い（叩） ＋G鉛叩＋H贔置Rt+1
＋饂R恥＋犀心＋Jは凰畠＋J戸Rt十隣＋J比 (m)2＋喜叩

+L}虞＋1石十L糾Rt+1五十Lf嘉＋1It十L各濯＋Lfい石十Zい］｝． （B.17) 

Then. at time t 9 9 

w（サ＊，叶＊）［St] 
= suplE［如（吋五，心）［St+1]1st 
qiEIR l 
= s;1:~ -exp { -1i [ -{ (1 -aりふーG比＋a山e―PH比＋a;入;e―2pH糾｝（qj)2 
qiE恥

+ [(-atふー 2G比＋a山e―PH贔）切＋｛ー(1-e―P) -e―PH比＋2a山e―2pH比｝Rt

+ (-J}:i1 +a山e―PJ乳1)cJ{+｛ー（1-ぷ）ふー a山e―PH}訂＋2a;入;e―2pH鉛＋Jt臣
-a山e―PJ晶｝qf+ (-G;i1 + a心e―PHか）］q;

+w;-Pは＋G比（切）2+G;い切＋｛（1-e―P)+ e―PH比｝切Rt+e―2pH糾紺＋e―PH轟戊t

+J出切Q{+e―PJ鉛Rば＋ J比（な）バJim{＋z;+1

+ (a髯e―2pHf:i1-a山e―pぬ＋Jか）（qf)バ[(-atふ＋a山e―PH出ー J比）切

+ (2a山e―PH鉛ーe―pJ贔）凡＋（a山e―PJ贔ー 2J比）な＋（a山e―PH比ー Jふ）］外］｝

x lE [ exp { -ri [ Lj虚＋ ［（1-L比＋a山e―p虞）外＋（ー1+ L}i1)切＋e―PL比凡＋虞切

｀い＋ （いte―p虞—土）qf]石ー（切― q枷｝吋， （B.18) 

where が：＝ ate―P+(3t• Here we have the following result, which is a two-dimensional version of 
Lemma A.1 in [33]. We show the result here for this paper to be self-contained, although this result 
is not so difficult. 

Lemma B.1. Suppose 

り）～N(μ,E), (B.19) 

where 

μ :=（悶）国； E :=（咲 PXY~戸） EM疇），
PXYO"XO"Y びY

(B.20) 

and p E (-1, 1) is the correlation coefficient between X and Y. Then, for any a, b, c E恥 wehave 

属 1叶exp ｛年＋ bX+cY}］＝ ~expG(µ,＊汀（ゞ）―1µ,• -~Jl, TE-1μ, }, (B.21) 

where 

E:=（吐恒） ＝炉，ゞ ：＝ （石二2a 恒），が：＝E-1μ,+ s, (B.22 
び21(J'22(J'21 び22

） 

provided that E* is positive definite (that is, E* is invertible). 
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Proof. Define b:＝じ） E配 anddenote the inverse of E as 1:-1 =:（悶~). Then, 

吋exp｛勾＋bX+cY}] (B.23) 

= l expビ（］闘 X+b五｝珈|E|exp {—忙—µ)団（~-µ）}⑫
=加|hrk2 expド（］ば） X+ (b C)丁わ—長丁（認謬）の十 µT （闘謬）ゎ
l ~ ~ 

万E（悶悶）叶曲
=加|E;J尺2exp{ —；ェT（呵ご悶） X+ [μ TE-1 + s Tl X―炉い｝曲
2叫(E*)―1仕 1

. l f exp -！ （おー（ゞ）加）TE*（おー（刃＊）―1が）｝曲
疇ら 2位）―1|5 艮2exp{-1＝ 

=1 

x exp｛抄＊）心＊）―lが一；心叫・

Note that dェ：＝ dx1dx2.

(B.24) 

口

Define（町1町2)＝ （石二2a 西）―1=（ゞ） 1.Th 
四1 1r22 / ¥ u21 u22 

en, Rearranging Eq. (B.24) results in 

叫xp{ a炉＋bX+cY}] = jexp且［疇＋1r22c2+ 21r12bc + 2贔＋2μcc+μal}, 
(B.25) 

where 

忙：＝りも（ゞ ）―1正μ―μ丁i;-1μ;

応＝（和町1＋疇1)μx+（元和＋元心1)μy; 

μc :=（元芦＋疇叫x+（元m ＋元四）μy.

(Note that (I:*)-1 is symmetric.) Define 

｛：：口［土；i：；a山e-PL冨
叫：＝ a山e―PL比ーL比・

Then, letting 

(B.26) 

(B.27) 

(B.28) 

(B.29) 

｛：二□喜］］憚＋e―PLfい凡十L/嘉＋虞＋叫qi)； （B.30) 

C := Ii(~ -qo, 
and rearranging Eq. (B.18) results in 

w（吋＊，叶＊）［St]
= s,ll_~ -exp { -,i [ -A~(q附＋ ［B；窃＋c；窃＋謳＋F叫＋M;＋露］q；

qi€R 

+Wf-Pt切＿1 (B.31) 
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＋ ｛仇—；憫因ーい亨＋青尺｝（切）2
＋｛虞—情L糾ザ＋叫塩＋ （ふ］ ＋O）尋—（ふド＋ふ7f戸）叶｝切，
+ { (1-e―P) + e―PH出—贅e―PL;年が＋青｝2e―PL如｝訊

+ {e―2pH九ー ~,ie―2p (L糾）2が R;
2 

+ ｛e―pH比ーゲe―p虞 L比が＋［がザ＋尺）叶e―p叫｝凡

+ ｛ J出— T喝Llいが＋ゲ亭Lri1} 切切
+ {e―2p靡— ,ie―PL糾L仇団｝麟{

+ ｛ぬ— ;T' （土）冒｝ば）2
＋｛喜—?＇虞L汀ば＋ （元が＋注紐） af虞｝切
+{-（ふが＋ふず）霰＋（甜平＋吋望）bf}娼 1

+{-（元が＋注ザ）研e―p塩｝凡互1

+｛-（ふザ＋0戸ヂ）研L:い｝叩t-1

＋ ｛ 
．． 

一土｛（か）2ザ＋尋希亭＋希万｝（b[）2-嘉｝1f_1
+{-（訥が＋冒）研虞＋》齊｛（元）27fド＋2訥ふ7f戸＋注注ヂ｝＋］か蒻｝互1

+zい＋（元が＋ ~1r;1) afL糾ー臼｛（社）2が＋尋尺＋注石ヂ｝ー土か (a庁＋叫
+XJ(qザ＋［V噂＋＼吼＋Y噂＋茫互1＋仇］叫｝， （B.32) 

1 (S)―11 ½ 
where xi:= ~log~, and 

2,'~ IE|ラ

（みふ） （国）2伍元叫1)1 
み注

：＝ 
PI,e示四 （咋1)2 , 

信切＝ （ふ—び誓;L糾言）ー1'
(B.33) 

and 

A}:= (1-at)ふ-G恥＋a心e―PH出賛炉噂＋貨(Oi)2ザ＋；ゲヂ＋青房；

Bj :=ーが入t-2G如＋叫te-PH比ー 1疇ず＋疇＋青贋—青屑；

e; ：＝ -J出＋ a山e-PJ鉛—惰L轟団—青｝疇；
Df := -(1 -e-P) -e-P H比＋ 2a凸e-PH昆—噌e-PL応—呵e-PL贔

、-- ~ 

Fl:= -（かが＋がザ鱈—（かが＋ ij-尺）研；
M; := -G和＋叫／＿PHi+1-0tLfi叶—責匹比＋ a祠（ふザ＋みザ）
+af（却ヂ＋紐ヂ）； 
Nf := -(1 -at) -atふe―PHね1+ 2a;浮e-2pHfi1 + Jli1 -atふe-PJ乳l―,ie作り吋．1_,i叶．2叫，

(B.34) 
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and 

x; 
W•9 
1"t2i 

1"t3i 

叩i

1"t5' 

:=a;入;e-PH糾ーatふe-PJ佑＋J乳l―ド（叫）2が；
:= -atふ＋a山e-PH比ー J比ー和認が＋青｝鸞；
:= 2a山e-2pHf+1―e―PJ肛l―,ie―PL鉛叫州；
:=a山e―PJ年ー2J昆ー,;Lr訂叫ザ；

~ ~ ~ ~ -. 

:=-（かが＋叶賛）恥；

：＝叫te-PH比ー J比ー,iLf訊ザ＋（ふザ＋命7rf1)af叫．

Then, the best response of large trader i E { 1, 2 } to the other large trader aat time t, denoted by 

BR呪）， becomes

BR'（叶）＝喜（蟷＋Cば＋摩＋尋1+M[＋N加）．

Thus, at the Markov perfect equilibrium, we have 

｛が＝五（蟷＋c邸＋摩＋F匹＋M；＋N富）；

祈＝上（
2Af 
Bば＋噂＋D畑＋F叫＋M{＋事＊）．

Solving the above simultaneous equations results in 

q「:＝ B「~+c｝＊切＋ D「Rt + FJ*It-1 + MJ* 

(=:al+bl切＋cicJ{+ d；凡＋e;石＿1),

where 
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D
t
M
t

年＝~(c:＋：り），
F;* :=~(Fl+ ：塁），

w（吋＊，叶＊）［Wt1,W?，Pは，吋，Rt,五 1]
2 

= -expい[w!-Pt切＋G噂）＋G耀＋H図 Rt
+H賢＋H閂＋J｝窃窃＋J疇 Rt+J戸（訂＋翼

+L}'切五1+ L;iR叫＋虞四＋L？互＋L戸工t-1+z;]｝， 

(B.35) 

(B.36) 

(B.37) 

(B.38) 

for each i E { 1, 2 }. qf* and q;* are equilibrium execution volumes at the Markov perfect equilibrium 

for time t. Then the value function for large trader i E { 1, 2 } at the Markov Perfect equilibrium 

（が＊，召＊） EIlk XII和becomes

(B.39) 
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where 

G}i :=G比—貨店—貨ぞ＋青汽＋x；（年）2＋炉er+
(B}＊＊）2. 
4Ai' 

G;i :=Gか—贅Lfいが＋ 1'が虞＋ （ふが＋注ず）尋—（ふ平＋ 0戸子） af

+2X;c9M[＋炉C?＋砂M9+
Bi**Mf**. 
2Ai' 

犀：＝ （1-e-P)+e-PH贔—贅e-PLi+1ず＋ 1'がe-PL;臼＋ 2x:cf*Df*

+ Yi鸞＊＋砂Di*+Bi** Di**. 2Ai, 

犀：＝e-2PH比ー；,ie-2p(L;t1/が＋Xl(Dげ＋炉Di*+
(Di*＊)2. 

4Ai' 
t 

叩：＝ e―p犀— ,ie-P塩L糾ザ＋（元が＋注か）忍碍

+2X詞＊Mf*+％虜＊＋炉M/*+Di**Mt**. 
2Ai' 

J}’:＝ J出ー1喝Lft1ず＋T＇がLrい＋2均Bi*Ci* + Yi, 1i Bi*＋沢'er+
Bi**Ci**. 
2Ai, 
t 

Jfi := e―2PJfi1 -,ie―PL年L芹＋1ザ＋2XJ1釈D{*＋ザ’Bi*+ Yi,3i Df* + C「*Di**.

J;i :=.J.贔—芦 (L比） 2 が＋ x;（郎）2+炉Bf*+
(C;＊＊)2. 

J↑ :＝ J出ー1＇虚 L[言＋（ふが＋び戸ず）af虞

+2X国＊M［＋炉B{＊＋汀Mi*+cr苅＊＊．

4Ai, 

2Ai' 

2Ai, 

砧：＝―(石l＋泊か）尋＋（紺吋2 t ）bf + 2XJCi* F/*+＼賣＋炉F[＊
B}＊＊町＊＊．
＋ 2Ai' 

研：＝―（元が＋注守）研e―PL糾＋2X況＊庁＋Y噂＊＋炉F/*+ 
Di*＊町＊＊ • 
2Ai' 

c;•＊窮＊＊ • 
砧：＝―（石l＋注か）研Lft1+ 2X国＊庁＋炉B{＊＋炉Fド＋ 2Ai' 

2 眈＝—芦｛（元）2 が＋ 2ふ注州＋ふ臼｝（bf)2 ＿岳十 X;(F?）t2 ＋炉F[＊＋ （町＊＊）21;, ・ ・t ¥ • t J, • t • t, 4Ai, 
t 

L『'=-（元ず＋臼）研虞＋ ~a賢｛（み） 2ザ＋ 2年西が＋年臼｝＋》がafbf

+2X霞卯＋炉庁＋炉Mi*+Ff**Mf**. 2Ai, 

z; := +zい＋（元が＋注ザ） a［土記｛（ふ）2ず＋2年西7rド国亨ヂ｝

—五ふ (af)2+x;+x;（M{＊) + 2, (M「*）24Ai ・ (B.40) 

口
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C In the case with target close orders 

In this subsection, we consider an execution model with a closing price. The time framework 

t E { 1,..., T, T + l } is the same in the model mentioned above. However, we add an assumption 

that a large trader can execute his/her remaining execution volume at time T + l,びT+1，with
closing price Pr+1-We further assume that the trading at time T + l impose the large trader to 

pay the additive cost XT+l E JR per unit of the remaining volume. As stated in the last section, we 

have the following theorem. 

Theorem C.1 (Equilibrium Execution Strategy and the Value Function in the Case with Target 

Close Orders). There exists a Markov perfect equilibrium at which the following properties hold 

for each large trader i E { 1, 2 } : 

1. The execution volume at the Markov perfect equilibrium for the large trader i E { 1, 2} at time 

t E { 1,..., T }, denoted as qj*', becomes an affine function of the Markovian environment at 

time t-1，互1,the remaining execution volume of each large trader, Q; and Q~ (iヂj,i,jE 
{ 1,2 }), and the cumulative residual effect, Rt, that is, 

q「=a「+b⑳＋吋窃＋ぷRt+et＊五1, t = l,..., T. (C.1) 

2. The value function ½'（が， 7rり [St] at time t E { 1,..., T, T + l } for each large trader i E { 1, 2 } 
is represented as a functional form as follows: 

w（計，召）［wf,w/,Pt，叫，Qi,Rゎ五1l 
= -exp{ -1[w;-P鷹＋G}憚＋G和（切）2＋犀＊砧凡＋卵＊紛＋H戸＊Rt

+Ifi*盆＋I戸＊〇汎＋I沢（訂＋I繹

+ Jfi•叩五1 + J戸＊R瓜 l+ J？噂1t-1+ J炉坊＿1＋ J圧五1+z:•]}, (C.2) 

where G} i•, Gぞ＊，Hfi*,H戸＊，H夜＊，I｝t*,If•’, I夜＊， Jfi•,Jf i•, Jfi•, J戸＊， Jfi•,J戸＊， z「 fort E { 1,..., T, T + 1} 
are deterministic functions of time t which are dependent on the problem parameters, and 

can be computed backwardly in time t from maturity T. 

Proof. Omitted. 口




