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Computation of weighted Bergman inner products
on bounded symmetric domains
and Parseval-Plancherel-type formulas

for (Sp(r,R), Sp(r',R) x Sp(r",R))

Ryosuke Nakahama*f
NTT Institute for Fundamental Mathematics

Abstract

Let (G, G") = (G, (G7)p) be a symmetric pair of holomorphic type, and we consider a pair
of Hermitian symmetric spaces D' = G'/K' C D = G/K, realized as bounded symmetric
domains in complex vector spaces pf = (pT)? C p* respectively. Then the universal
covering group G of G acts unitarily on the weighted Bergman space A(D) Cc O(D) =
O\ (D) on D for sufficiently large X. Its restriction to the subgroup G’ decomposes discretely
and multiplicity-freely, and its branching law is given explicitly by Hua-Kostant—Schmid—
Kobayashi’s formula in terms of the K’-decomposition of the space P(p3) of polynomials on
pg := (pT)~7 C p*. Our goal is to understand the decomposition of the restriction (D) l&

by studying the weighted Bergman inner product on each K’-type in P(p3) C Ha(D). In this
article we mainly deal with the symmetric pair (G, G’) = (Sp(r,R), Sp(r',R) x Sp(r",R)).

1 Setting

First we review a family of representations, called holomorphic discrete series representations,
of a Hermitian Lie group G, in the case G = Sp(r,R). We realize the real symplectic group
G = Sp(r,R) as

oseny={pcarmarla (8 o= 9.0 - D

Then this is isomorphic to the usual Sp(r,R) via the Cayley transform. Under this realization,
G acts transitively on

D, = {z € Sym(r,C) | I — 27 is positive definite}
by the linear fractional transform
a b 1
(c d> 2= (ax +b)(cx +d)™,
and D, gives the bounded symmetric domain realization (Harish-Chandra realization) of the

Hermitian symmetric space Sp(r,R)/U(r). Next let A € C, and let (7, V) be a finite dimen-
sional representation of GL(r,C), with the K := U(r)-invariant inner product (-,-)y. Then

*This work was supported by Grant-in-Aid for JSPS Fellows Grant Number JP20J00114.
"This work was supported by the Research Institute for Mathematical Sciences, an International Joint Us-
age/Research Center located in Kyoto University.



the universal covering group G of G acts on the space of V-valued holomorphic functions
O(D,,V) = 0Ox\(D,,V) by

-1
n<<a b) >f(x) = det(cx + d) " 7 ((cx + d)) f ((az + b)(cz +d) 7).
c d

We note that det(cx-+d) ™ is not well-defined on G x D unless A € Z, but is well-defined on the
universal covering space G x D. Let HA(Dy, V) C Ox(D;,V) be the non-zero unitary subrepre-
sentation of G if it exists. We note that such subrepresentation is unique, since the corresponding
reproducing kernel is proportional to 7(I — 27) det(I — 27)~* by the transitivity of the action
of G on D,. Especially, if A € R is sufficiently large, then such unitary subrepresentation exists,
and its inner product is given by the explicit converging integral

(frghv = CA,V/ (I —27) "' f(2), g(2)) , det(I — 2z)* " V.

-

This is called a weighted Bergman inner product, and the unitary representation (7, Hx(D,,V))
is called a holomorphic discrete series representation. Especially when (1,V) = C is trivial,
then we write Hx(D,,C) = Hx(D,), and call it of scalar type. In this case Hy(D) becomes a
holomorphic discrete series representation if A > r, with the inner product

(fs9)a fC,\/ f(a)g(x) det(I — 2z2)* D dz. (1.1)

Here we determine the constant C) such that ||1], = 1 holds.

Next suppose (G, G') is a symmetric pair of holomorphic type, that is, both G/K and G'/K’
are Hermitian symmetric spaces and the natural embedding G'/K’' — G/K is holomorphic,
and let H,(D) be a holomorphic discrete series representation of G of scalar type. Then it
is known that the restriction Hy(D)| & decomposes discretely and multiplicity-freely, and its
branching law is explicitly determined (see Kobayashi [13]). In the following, we consider the
case (G,G’) := (Sp(r,R), Sp(r',R) x Sp(r",R)) with r = /47", r' < 1", and give the description
of the branching law of H (D, )| & To do this, let

p™ = Sym(r,C), p}, :=Sym(+',C), pf,:= M@ ,r";C), ps :=Sym(",C),
and write the elements z € p™ as
+ _ ot + + _ (T 712
= @D ¥ Sx = .
p P11 D P12 D Po <tz12 x22>

Also, let
7 o ={k=(ki,.... k) €Z" | k1 >--- >k, >0}

Then the space of polynomials P(p},) on pi, is decomposed under K’ := U(r') x U(r") as

Ploty) = PM(,1";C) = @B Pulph) ~ @ W r®™Y,

! /
kez? | kezZy,

where Vk(T’)v is the irreducible representation of U(r’) with the lowest weight —k under a suitable

identification of the weight lattice for U(r’) and ZTI7 and similar for Vérﬂ)v7 where we identify k
and (k,0,...,0). According to this decomposition, for A > r, Hx(D;)|s is decomposed as

Dl 3 Ha (D ) B D ) (1.2)
kEZT
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(see Kobayashi [13, Theorem 8.3]). Now we want to understand this decomposition concretely
by considering the inner product

(@) (faw ey o= (20 ) sent). a)

Az

where the subscript « stands for the variable of integration.

For example, suppose ' = r”, and we consider the case k = (k,...,k). Then we have
P(k’“”k)(pﬁ) = P,y (M (', C)) = Cdet(x12)". In this setting, the above inner product is
explicitly computable.

Theorem 1.1 ([21, Theorem 6.8(2)]). Suppose ' = r". Then for k € Zsg, ReX > 21/,
_ (21 212 +
2= (s ooa) € 0T, we have

det(z12)F, e
{ )re

2r! k i
L2 A+ 5] _%)Lkm det(z10)F F < 7577162;1 St ZA)
= 7 1 57 o1 12) 200 ( 7 )11 212 222712 ) -
i-1 (>‘ - T)k Hi;r/+1 ()‘ - T)Lkm A-karad

Here, (A)m == MA+1)(A+2)--- (A +m — 1). We omit the definition of 2Fy, but this
coincides with a special case of Heckman—Opdam’s multivariate hypergeometric function of type
BC,s under a suitable change of variables. By using this, we can construct explicitly the G'-
intertwining operator (symmetry breaking operator) from Hx(D;)|5 to Har(Dyp) X Hr(Dy)
(see [21, Theorem 8.6]). Also, by the theorem we can immediately determine the top term (i.e.,
the value at z1; = 0, 222 = 0) of (1.3) as

H?gr/ﬂ (/\ + [%W - %) [k/2)

;;1 (A— %)k ?;/'r/-‘rl (=7 Lk/2)

and determine the poles of (1.3) with respect to A € C, that is,

" i1\ o i1 PR
H(/\f - )k 11 (Af - )Lk/ZJ (det(ns)", e >M

i=1 i=r/+1

<det($12)k,€tr(x2)> det(Zlg)k,

Az lz11=0, 220=0

is holomorphically continued for all A € C. In the following, we consider general partitions
k e Zi +. Then we cannot compute explicitly (1.3) so far, but can compute the top term and
the poles. This is applied for the determination of the Parseval-Plancherel-type formula for the
decomposition of Hx(D;)|z

2 Main theorems and applications

As before, let pt := Sym(r,C) D pfy := M(r',7";C) with r = ¢/ + " ¢/ < ¢" and write

z= (i o) €pt. First we give a result on top terms of (1.3).

Theorem 2.1. Letk € Z',, and put kyyy := 0. Then for ReX > r, f(x12) € Px(pfy), we have

=C\K)f(z12),

211=0, z22=0

<f($12), etr(zz)>

Az



where
ML @A G Dk, T (A — i),
H15¢<]‘§r'+1(2)‘ = (47— 1)) kitk; :':1 (A= (i = 1)),
itj—1 itJ
H1§i<j§r’ (/\ ) ) [kﬁ—ij ngigjgr’ (/\ - T) [k"i‘;k’j“

2

- +j—2 i+j—1
[i<icjcrn ()‘ -5 )[mkjj [L<icjcrs (A -5 )Vw
1

C(\k)

(2.1)

2 2

ol
1
HQT’71 [a/2)-1 ()\ - %) Lk1+za*1J H(2L7:,2 z'Li{IZuJ}x{l,af'r’} ()\ - %) [7ki+l;a*i.|

a=3 i=max{l,a—r'}

Hiil H[i/ﬁlx{l,a_w} (A - aE—l) V#k‘a;l—ij Hirz/z H}iﬁix{m-rq (A - %) [’%*ka;l—ﬂ .

Next we give a result on poles of (1.3).

Theorem 2.2. Fork € Zi+, define ¢(k) € Z?ﬂ by
. ki + k; o S /
o(k)q := min — 1<i<ji<r+1,i+j=a+1 (1<a<2r, (2.2)

where kyryq :=0. Then for f(z12) € P(pls),

E a—1 r(zz)
1l </\ S22 >¢(k)a SEOR >M

a=1

is holomorphically continued for all A € C.

Remark 2.3. We can easily verify the restriction of Theorem 2.2 to z11 = 0, 299 = 0 by using
Theorem 2.1, that is,

2r! a1 o Wl
A= C(\ k) = N
H ( 2 >¢(k)a ( ) H ( 2 )min{kﬁk?] lJ

a=1 a=1
Hiigl i[i/nﬂl;{ll,a—r’} ()\ - 112;1) [ki“;a—iJ HZT:IQ Z'Liﬁix{l,a—r/} (/\ - %) "kiJrZa—i“

X ’ a a— r/ a a
T T gy amrry (A= 250) |t | T T gty (A= 8) [Fities]

is holomorphic for all A € C.

Next we consider some applications of the theorems. Let (G,G’) = (Sp(r,R), Sp(r',R) x
Sp(r”,R)) as before. Then since Hx(D.)|g5 decomposes as in (1.2) for A > r, for each k € z,

there exists uniquely (up to scalar) a G -intertwining operator (symmetry breaking operator)
]‘—)‘71(2 'H/\(Drﬂé, — HA(DT/, Vk(r )v) IZ 'H/\(DT//7 Vk(r )v).

We fix the normalization of F x such that

(f(z12) € Pi(pis))

) (10
IFs @D, sz oy =T (350 ) 61

z12=0

holds, independent of A\. Then we can easily prove the following.
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Corollary 2.4. For A > r, for f € H)(D,), we have

2 2
1m0 = 22 CORIPARLIL, 1, o0, v
kezy

where C'(X\, k) is as in (2.1).

We omit the proof of Corollary 2.4. Next we consider the decomposition of Hx(D,)|s, for

smaller A. G = :S?)(r, R) acts on O,(D,), and it is known that there exists a non-zero unitary
subrepresentation Hy(D,) C Ox(D,) if and only if

1 r—1 r—1
A —1,... —_—
G {07 27 ) ? 2 } U < 2 7@)
(see, e.g., [5, Theorem XIII.2.7]). This set is called the Wallach set. Especially, Hy(D,) is
a holomorphic discrete series representation (i.e., the integral (1.1) converges) for A > r. If
A > Tgl, then the decomposition of H(D,)|g, is again given by (1.2). On the other hand, for
smaller A the following holds. Here, ¢(k), is defined as in (2.2) for 1 < a < 2¢/, and we set

d(k)g :=0 for 21" < a <r.

Corollary 2.5. Fora=0,1,2,...,r — 1, we have

[$3) I N "
H%(Drﬂé/ ~ Z H)‘(DT”VI(( )v)&HA(DTII7Vk( )\/)
kezZr
#(k)a+1=0
_ @ ® (r")v & (r")v
- Z Z H%(DT’7‘/(l:,l,...,l,o,...,o)) &H%(D,,u, (1:,1,“.,1,0.,“.,0))'
N — N

0<b<c<r' keZb |
b+c<a kp>2

c—b /¢ c=b Il _c

Remark 2.6. (1) Parseval-Plancherel-type formulas for Hermitian symmetric pairs (G, K),
i.e., cases such that K C G is a mazximal compact subgroup, are studied by, e.g., Orsted
[23], Faraut-Kordanyi [4, 5], Orsted-Zhang [24, 25], Hwang—Liu-Zhang [10] and the author

[20].

(2) Parseval-Plancherel-type formulas for general symmetric pairs of holomorphic type (G, G’)
are studied by, e.g., Hilgert-Krotz [7, 8], Ben Said [1, 2] and Kobayashi—Pevzner [18],
under different realization of holomorphic discrete series representations.

(8) In this article, we treat the explicit forms of symmetry breaking operators as black boxes.
Construction of differential symmetry breaking operalors are studied by, e.g., Rankin [27],
Cohen [3], Peng-Zhang [26], Juhl [12], Ibukiyama—Kuzumaki-Ochiai [11], Kobayashi—
Orsted-Somberg-Soucek [15], Kobayashi—Pevzner [16, 17], Kobayashi—Kubo—Pevzner [1/]
and the author [21].

(4) Branching laws of unitary highest weight modules for discrete Wallach sets are studied by,
e.g., Sekiguchi [28] and Mdllers—Oshima [19]. We can also study branching laws of unitary
highest weight modules by using the seesaw dual pair theory (see, e.g., [9, Section 3]) as in
[19] when (G, G’) is classical.



3 Proof of Theorem 2.2 and Corollary 2.5

In this section we give proofs of Theorem 2.2 and Corollary 2.5. To do this, we observe the
K = U(r)-type decomposition of Hx(D,). The K-finite part of H,(D,) is given by

O\(Dy)z =det™ @ P(p") = det ™ @ P(Sym(r, C)),
and the space of polynomials P(p*) = P(Sym(r, C)) is decomposed under K = U(r) as
D Pulrt) = P Vi
mezZl | mezZl
According to this decomposition, the following holds.

Theorem 3.1 (Faraut-Kordnyi [5, Corollary XII1.2.3]). Let m € Z' . Then for ReA > r,
f(x) € Pm(p™), we have

- 1
fla), e ) = - f(z).
< >)\,x Ha:l (/\ - %)ma
Especially, for f(z) € P(p™) and for 1€ 77,

ﬁ ( - ; 1)10 <f(x)’etr(ﬁ)>x,x

a=1

is holomorphically continued for all A € C if and only if

B Pmlp™)

meZl
ma<la

Proof of Theorem 2.2. Under Theorem 3.1, Theorem 2.2 is equivalent to

Plply) € D Pml?), (3.1)
mEZZ‘r+
ma§¢(k)a

and hence it is enough to prove this inclusion. Since Py (p};) =~ Vk(r/)v X Vk(w)v as a K' =
U(r'") x U(r")-module and P (p™) ~ VzT)v as a K = U(r)-module, it is enough to show that

Homy ey vy (VY RV VYY) £ {0} implies mg < ¢(k)a (1< a<r),
or equivalently by the definition of ¢(k)q,
Homy (v (VY BV Y VY)Y £ 403 implies 2migjo1 < ki+k; (1<i,5<r' +1),
with k.41 := 0. On the other hand, for k € Z++, le Zi:r, meZ,, withr' +7" =r,
dim HomU(T/)XU(Tn)( "V |4 v T)v) = dim HomU(,ﬁ)(Vé{‘)V, Vk(r)v ® Vlmv)

holds in general by [6, Theorem 9.2.3], and by the Littlewood—Richardson rule, we can show
that for k,I,m € Z" ,

Homy (Vi Y, Y @ VOV) £ {0} tmplies mipjo1 <k +1; (1<ij, i+j<r+1)
(see [22, Lemma 3.6]). Hence the theorem follows. O

We note that this proof for (G,G") = (Sp(r,R), Sp(r',R) x Sp(r”,R)) is not available for
other symmetric pairs in general.
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Next, to prove Corollary 2.5, we observe the K -type formula for the discrete Wallach set. By
Theorem 3 1, {-,+)» is meromorphically continued for all A € C, and is positive definite on P(p™)
for A > == That 1s ’HA( g = det™ ® P(p*) holds for A > “71. On the other hand, (-,-),
2220, and O, (D) 7 becomes reducible for such A. If the restriction of

(-,)x to the irreducible (g, K)-submodule of Oy (D ) is positive definite, then this becomes an
infinitesimally unitary submodule. This occurs when A = 0, 3
holds.

Corollary 3.2 (Faraut—Korédnyi [5, Theorem XIII.2.7]). For a =0,1,2,...,r — 1, we have
Ha(Dy)p =det™ ® P Pm(ph).

-
mezZ’
Ma+1=0

—1
LR 7"'5 2

Especially, f(x) € Ha(Dr)z holds if and only if (f(z), etr(zz)%"z is holomorphic for A > 251

Proof of Corollary 2.5. We embed pt = Sym(r,C) into g¢ = sp(r,C). the complexified Lie
algebra of G = Sp(r,R), by = — (%), and similarly embed p{; @ p3, into g'® = sp(r',C) &
sp(r”, C) compatibly, so that we have

¢ > ' := Sym(r, C)
U U
g® O pfieps, =Sym(r,C)® Sym(r",C).
Then since pj; @ p3, acts on Ox(Dy)z = P(p™) by constant coefficient differential operators

+ + + + is ot
along py; @ p3, C p*, the pf; @ pa,-null part of ’H%(DT)I? is given by

+ apd
H%(Dr)pgl@pm P(piz) N @ Prm(p™),

K
r
mez’ |
Maq4+1=0

with pj, := M (r',7";C). Since every (g, K')-submodule in Ha (Dy) intersects the above space,

it is enough to show that
Plpiz) N @ P(p™) = @ Pic(pis)

mEZ' kEZT/
ma+1:0 (K at1=0

holds. To prove the inclusion from right to left, suppose k € Zi  satisfies ¢(k)q11 = 0. Then

by (3.1), we have
Pb) € P Palr)C P Pulb™)

mez” mez”
m;<p(k); Ma+1=0

To prove the opposite inclusion, suppose k € Zi+ satisfies ¢(k)q41 # 0, and take the smallest
a’ > a such that ¢(k)y 11 = 0. Then for f(z12) € Pi(pj;), by Theorem 2.1, we can show that

(Fan). ) = OO\ (212)

211=0,222=0
(f(z12), e“(gfz)>A , is not holomorphic on A > “2;1, and hence

Pulpl) ¢ B Pmld™)

-
mezZ’
Mmaq+1=0

has a pole at A = ¢
by Theorem 3.1 we have

This completes the proof of Corollary 2.5. O



4 Proof of Theorem 2.1

In this section we give a proof of Theorem 2.1. First, for k € Zi 4, we define a polynomial
Ag(712) on pfy = M(+',r";C) by

!

Age(w1) = [ [ det(((z12)ij)1<i <) F4,
=1

where k.., 1 := 0. Then Py (p],) is generated by Ay(z12) as a K’ = U(r') x U(r")-module. Since
the inner product (1.1) is K’-equivariant, it is enough to prove the theorem when f(z12) =
Ak(z12) € Pi(piy)-

To prove the theorem, we prepare some lemmas. First, for s < r we fix an inclusion
Sym(s,C) < Sym(r,C) suitably, and for € Sym(r,C), let 2/ € Sym(s,C) denote the or-
thogonal projection of z. Then the following holds.

Lemma 4.1. For Re X > r, for f(2') € P(Sym(s,C)) C P(Sym(r,C)), we have

(f(a'), ") = (fla), =)

Ha(Dr),z Ha(Ds)a! |

—s

Proof. Let m € Z5 . Then we have Py, (Sym(s,C)) C Pm(Sym(r,C)) = P(m,m)(Sym(r, Q)),
and by Theorem 3.1, for f(2) € Pm(Sym(s,C)) C Pm(Sym(r,C)) we have

(faeme) e ) = (1))

e [l (A= %1),, Ha(Ds)a'

a

Since this holds for every m € Z7 ,, we get the lemma. O

Suppose r = ' + 7", v’ < r” and let s = 2r’. Then by applying the above lemma for the
inclusion
Sym(2r',C) <  Sym(r,C)
U U
M(@',C) < M@, r";C),

for every k € Zi L we get

(w0 ()

HA(Dr) Ha (D)t

Hence it is enough to prove Theorem 2.1 when r' = r”.
In the following suppose r’ = 7 and let p}, := M (+',C). For = € p* = Sym(r, C), let

sy = (o0 1)),

so that det/ (t 0 x”) = det(x12)? holds. Then the following holds.

x12 0

Proposition 4.2. For ReX > r, k € Z>o, f(z) € P(p™), we have

<det(x12)k (@), etr<ﬁ>>

Az
1 1

k
_ 1\ —A+EEE 2 9 1 NMk—TEL tr(zz)
e %% det’(2) z det (2 8,212) det’(2) z <f(:v), e >

Mk
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The proof of Proposition 4.2 is given later. We also need the following.
Lemma 4.3 ([5, Proposition VIL.1.6]). For u € C, k € Z>¢, 1 € Zi+, z12 € pfy = M(r',C), we
have

'

a\" , ,
det [ =—— | det(z12)*A1(z12) = H(u + 1 —k+7r —i+ 1) det(z2)" kAl(zlz).
8212 i—1
Proof of Theorem 2.1. The 2nd equality of (2.1) follows from (2p) = 2¥(p) 2] (1 + %)[k/%’
and the 3rd equality is easy. For the 1st equality, it is enough to prove when r' = r” and
f(z12) = Ak(z12), as explained before. We prove this by induction on 7’ = r/2. First, when
k = (0,...,0) (“r" =0 case”), this is clear. Next we assume the theorem for ' — 1, and prove
it for . We write k. := (ky, ..., k). Then by Proposition 4.2 we have
- ——

<Ak(3312), etr(mz>>

= <dCt($12)k” Akfg(xlz), etr(:cz) >

Az 1211=0, 220=0 Axlz11=0, 200=0

r+1

gl .
_ 1 d t/ 0 219 A+ 0] d l 9 k.1 , 0 219 A+k,. 5
= 1 det | et —_— det’ { ;
[T (A — T)k,, z12 0 2 0z12 z12 0

. <Ak—@(ﬂ”12), e“(ﬁ)>

Atk,r,xl211=0, z00=0

CA+kp k—kp , ks ,
_ (2 : r : T ) det(212)2(—)\+r +%) det (_i) det(Zu)Q()H—kT/—r _%)Ak—k /(212)
Hill (/\ - %)k , 20212 -

C()““kr’vk_ kr’) . . / k
= — H(Q/\ + ki —i—1")y, det(212)" Ay, (212)
2hr Hi:l (>‘ N Tl)kr, i=1 o

_ 1 2‘k‘7k7«/r’ H1§i<]'§74'71(2()\ + kT’) - (Z + j))(ki*krl)‘F(k]'*kT/)
e I (A =50, Thicicier QA+ F) = (5 = )i+ 65—k,
r'—1 . I
N+ ke — ) ,
> T/_';—l ( T ‘ )kz k,. H(Q)‘ Gk i r,)kT/Ak(ZIQ)
Hiil ()\ + kw - (Z - 1))’%*/67‘/ i=1
2kl=2kr” [licicjer—1 @A =+ 5)kitn; [hcicjer@A— (47 —1))2,
12 (A= 5Y), Thicicier @A = @45 = Dy [hcicer—1 (A= (@49,

o L0 =y IO =G= D, @A = G+,
[To O =G =D, Tl =k, T @A= (G + (7 +1) = 1))y,
olkl =2k, [hicicjer @A = G+ krr; Th<icjar—1(2A = (04 7)) 2k,
Hfi’l (A— %)lw [lhicicjer @A =@+ 5 = D))kirk; [Ticicjcr—1 (@A = (04 5))2x,,

/

o L0 =iy L0 =G D),
[T A =G =), TTimi N =i,
_ 24 T iy A = (4 )bty T (A — i),
[hicicjri1 A= (45 = D)krny [T, (A = (i = 1)
« 2724 T (A = 20, T, (A = = D)
L= G =D, T (A= (- 3)),, TTL =ik,
= C(\ k)Ak(212),

k(z12)

(2)\ — 27“/)2kr, Ak (212)

™ Ak (z12)



where we have used Lemma 4.1 and the induction hypothesis at the 3rd equality, and Lemma
4.3 at the 4th equality. Hence the theorem holds for all /. O

Now the proof of Proposition 4.2 is remaining. To prove this, for p™ = Sym(r,C) with
r =27, let nT C pT be the real form and 2 C n™ be the open cone given by

= pt NnHerm(r,C) <? é) (=~ Sym(r,R)),

Q:=ptn Herm, (1, C) ((IJ é) (=~ Sym+(rv R)),

where Herm (r, C) is the set of r X r positive definite Hermitian matrices. Also, for A € C let
Lp(\) == (2r) C-DAT_ T (A=), and let n := dimp™ = r(r + 1)/2. Then the following
holds.

Lemma 4.4. For ReA >r, f € P(p"), z,a € Q, we have

(@) = ey ol

Proof. Let m € Z/, . Then for f(x) € Pm(p"), by Theorem 3.1 we have

/ tr(zw)f(wfl) det’(w)”\dw.
a+y/—Int

<f(l’)7€tr(mz)>)\71 = I—Mﬂz)»

and by the inverse Laplace transform (Gindikin, see [5, Lemma X1.2.3, Section I1X.3]), we have

a n+ i=1 T2 )m

i

Hence the both sides coincide. Since this holds for every m € Z, , , the both sides coincide for
all f(z) € Pun(p*)- O

Proof of Proposition 4.2. First, let Projjo: p* — pf, be the orthogonal projection. Then for

_ (w1l wi2 +
w = (tw12 w22) € p™, we have

det(Proj;o(w™)) = det(("wia — waswin win) ') = det/(w) ' det(wrz).

Now let z = (') 22) € @ C p* and f(z) € P(p*). Then by using lemma 4.4 twice we have

Z12 222

<de'ﬁ($12)kf(w) , etr(@®) > = <det(Pr0j12 () f(x), e (72 >

T Az
= det'(z)ﬁ”L%1 % /+F N ") det(Projyo (w™ )k f(w™h) det’ (w) dw
a n
r FT — i -
= det/(z) ME % / gy € detwn) (™) det! ()
det/(z) A5 10 \'I,(\+k o) e e
:mdet 582—12 (2757\/_—1)21/+\/711+6t< )f(w 1)d€t/(w) A kdw
2 Jk a —1v
_ det’ ( ) % 19 g ¢ NAFE—TEL tr(az)
= - ()\ Tl)k det <2 8z12> det’(z) 2 <f(3:)7 e >A+lm.

Since both sides are single-valued holomorphic with respect to z € p™, both sides coincide for
all z € pT. O
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5 Results for other symmetric pairs of holomorphic type

In this section we state the theorems in the preprint [22] on top terms and poles of weighted
Bergman inner products (-, ), on bounded symmetric domains D ~ G/K for other symmetric
pairs (G, (G?)g) of holomorphic type. Let G be a connected simple Hermitian Lie group with a
Cartan involution 6, that is, the maximal compact subgroup K = G has a 1-dimensional center
Z(K). Let o be an involution of G. Without loss of generality we may assume o commutes
with 6. Then (G, (G7)o) is called a symmetric pair of holomorphic type if Z(K) C G7 (see [13,
Section 3.4]). Then the complexified Lic algebras g€, (g©)7, (g©)7? are decomposed into the
Ad(Z(K))-eigenspaces as

g = pt o € o p,
U U U ]
c (pt)” ()7 & (),
(857 = (p")° () @ (p7).

Let (pT)7 =: pf, (p*) 7 =: pJ so that p* = p] © p, and write z = (z1,22) € pT = p+ @ pyg.
In the following, for simplicity we assume that both g and the non-compact ideals of g°¢ are of
tube type, that is, there exists e € p; C p™ such that ad([e,e])|,+ = 2I,+ holds, where z + T
is the complex conjugate with respect to the real form g C g€, although this assumption is not
essential. Then both p* and pJ have Jordan algebra structures with the unit element e, and we
have rankp+ = rankg G =: r, rankp] = rankg(G°)o =: r9. Let n := dimp*, and when r > 2
let d = 2n=r) Also, if p;’ is simple, then we define dy similarly for p;’ If ro = 1, then we
cannot deiglne dy by this way, and we set do := 2d. Then one of the following holds.

—~
(=]
-
)
I

2]
2]

(1) p5 =p* Dp*" and r = rankp*’ + rankpt = 1" + 1",
(2) py is simple, r = 279 and d = da/2,

(3) pg is simple, r = ry and d = 2d,

(4) pg is simple, r =79 = 2 and d > da.

First we consider Case (1). Suppose (G, (G?)o, (G“%)g) is one of the following.

(1500(2,d+2), SO(2,d)x SO@2),  5Oy(2,2) x SOd) ) (d=0d),
( Sp(rR), U, ), Sp(r',R) x Sp(r”,R) ) (d=1),
(UG, U xUG"), U6 < UG ) (d=2),
( SO*(4r), U(2r,2r’), SO*(4T ) X SO*(4T”) ) (d=4),
( Er( o), U(l) x Eg 14y, SL(2,R) x Sping(2,10) ) (d =8).

Let (r,r',7") = (2,1,1) for the 1st case, (r,r’,r") = (3,1,2) for the 5th case. Then we have the
following.

Theorem 5.1. Letk € Z', 1€ Z'"', and put kyryy = Ly := 0. Let f(x2) € Pucyy(p3).

(1) For ReA > 22 — 1, we have

AN ) A O ey
<f(x2),e(zlz)>/\x ITi- 1H] 1( 2( J ))k:,r‘,»lj F2)

2=0 HT i IT5= HH (A - é(i +J - 2))ki+l_7‘
min{a—1,7"} d
HE 2 Hz max{1l,a— r”} (>\ o 5((], o 1)).1’c,;+la_Z
min{a,r’+1
Ha:1 Hi:m{ax{l,a—}r”} (/\ - %(

f(z2).



(2) The following is holomorphically continued for all X\ € C.

r

d _
11 <Af§<af1>) (Flaz), )
min{k;+1; | 1<i<r/+1, 1<j<r”+1, i+j=a+1} T

a=1

Next we consider Case (2). Suppose (G, (G?)o, (G“%)g) is one of the following.

( SOu(2,n), SOp(2,n — 1), SO0p(2,1) x SO(n—1) ) (d=n-—2),
( Sp(2re,R), Sp(re,R) x Sp(re,R), Ul(ra,r2) ) (d=1),
( SU(2r2,2r2), Sp(2ra, R), SO*(4r9) ) (d=2).

Let o = 1 for the 1st case. Then we have the following.
Theorem 5.2. Let k € Z'2, and put ky,1 := 0. Let f(22) € Pi(p3).
(1) For ReA > 2% — 1, we have

<f<wz>ve<’”‘”>m
H1§i<j§r2 ()‘ - %(i +7 - 1)) [@J H1§z‘§jgr2 (>‘ - % - %(i +J- 1)) [%W

21=0

) Micicjern (A~ 5 +5-2) =] Mhicicicrn(A =3 = 86+ -2) [t fz2)
ez H[uﬂ;{ﬂ,aw} (A—%(a—1) | Aithass |
LAy (O 0 D)ty
TL T 0y (A — 5 — 4(a— 1)) [Fthai]
AT ey O b 20 Dy

(2) The following is holomorphically continued for all X € C.

(020, ey

JJ ‘ 1<i<j<r+1, i+]=a+1}

a=1

Next we consider Case (3). Suppose (G, (G?)o, (G7%)g) is one of the following.

( SO*(4r), SO*(2r) x SO*(2r), U(r,r) ) (d=4),
( SU(r,r), SO*(2r), Sp(r,R) ) (d=2),
( Er(—25), SU(2,6), SO*(12) ) (d=28).

Let r = 3 for the 3rd case. Then we have the following.
Theorem 5.3. Let k € Z', | and put ky41 :=0. Let f(z2) € Pr(p3).
(1) For ReA> 2 — 1, we have

<f(m2)7 e(xlf)> [icicjer A= 3G +5-2)),

5 f(2)

rela=0 [Ticicjers (A= $i+j-3) Kotk
2r—2 ryla/2] d
H - Hz max{1l,a+1—7r} (/\ - Z(a - 1)>ki+ka+1—z
T or2r—1yrla/2] \_d 1 f(22).
H Hz max{1l,a+1—7r} ( - Z(a - )>k1+ka+2—z
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(2) The following is holomorphically continued for all X\ € C.
A—=(a—1)

(A5

”
a=1 min{k;+k; [ 1<i<j<r+1, i+j=2a+1}

(f(az), o)

Az '

Finally we consider Case (4). Suppose
(G, (G7)0, (G)g) = (SO(2,1),S00(2,n) x SO(n"), SO(2,n") x SO(n')),
with n =n' +n”, n” > 3. Then we have the following.
Theorem 5.4. Let k € Z2 ,, and let f(z2) € Pk(p3).
(1) For ReXA > n — 1, we have

()‘+ k1 — n?,)kQ

z1=0 o ()\)k1+k2 ()\ — 7L22)k2

<f(x2),e<x‘f>>

f(z2).

Az

(2) The following is holomorphically continued for all X € C.

(Aker-+ke ()\ _z ; 2) . <f(:c2), e(x\z)>m .

In fact, for this case we have

n' "
<f($2)7e(z|2)> _ (/\+k31_7)7k2 2F1( —k'27 —kl—%-ﬁl ;_Q(21)>f(z )7

P ()\)liran ( — %2)]62 —A—ky — ko + % +1 q(ZQ)
where q(z1), q(22) are suitable quadratic forms on p; ~ cv, pl =~ C"". By using these results,
we can determine the Parseval-Plancherel-type formulas for the decomposition of Hy(D)| (@)
and can determine the branching laws for the discrete Wallach sets. For more detail see the
preprint [22].
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