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Image-to-Graph Convolutional Network for
2D/3D Deformable Model Registration of

Low-Contrast Organs
Megumi Nakao , Member, IEEE, Mitsuhiro Nakamura, and Tetsuya Matsuda , Member, IEEE

Abstract— Organ shape reconstruction based on a
single-projection image during treatment has wide clini-
cal scope, e.g., in image-guided radiotherapy and surgical
guidance. We propose an image-to-graph convolutional
network that achieves deformable registration of a three-
dimensional (3D) organ mesh for a low-contrast two-
dimensional (2D) projection image. This framework enables
simultaneous training of two types of transformation: from
the 2D projection image to a displacement map, and from
the sampled per-vertex feature to a 3D displacement that
satisfies the geometrical constraint of the mesh struc-
ture. Assuming application to radiation therapy, the 2D/3D
deformable registration performance is verified for multiple
abdominal organs that have not been targeted to date, i.e.,
the liver, stomach, duodenum, and kidney, and for pancre-
atic cancer. The experimental results show shape prediction
considering relationships among multiple organs can be
used to predict respiratory motion and deformation from
digitally reconstructed radiographs with clinically accept-
able accuracy.

Index Terms— Deep learning, deformable registration,
graph convolutional network, abdominal organs, low-
contrast images.

I. INTRODUCTION

ORGAN positions and shapes from three-dimensional
(3D) medical images constitute patient-specific morpho-

logical information that is essential to diagnosis and pre-
treatment planning. However, organs may move or deform
during surgical treatment or through several weeks of radiation
therapy [1], [2]. Post-imaging time-series shape changes in
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organs can prevent tumor localization and hinder treatment.
Existing imaging devices for use during treatment have certain
limitations; thus, two-dimensional (2D) images facilitating
real-time measurements (e.g., endoscopic and X-ray images)
are available but 3D imaging is limited [3]–[5].

Organ shape reconstruction based on a single-projection
image during treatment has wide clinical scope including
image-guided therapy/intervention. However, this problem is
ill-posed without prior knowledge as it requires transforma-
tion of 2D space points into points in a higher-dimensional
space. One solution is 2D/3D registration, which involves the
patient-specific organ shape from dense 3D computed tomog-
raphy (CT) or magnetic resonance imaging (MRI) images
taken prior to treatment and use of these data as prior knowl-
edge. This approach aims to solve alignment and deformation
of the organ-shape models to 2D projection images in real
time, and has undergone intensive research in the field of
medical image analysis over the past decade [6], [7]. In par-
ticular, many studies have examined rigid-body 2D/3D image
registration [8], [9] as an optimization problem for parameter
sets that determine the position and orientation.

2D/3D deformable registration of soft organs requires local
point-to-point correspondence between 2D images and 3D
volumes. Unlike rigid-body registration, large-scale parameters
must be optimized proportional to the number of sampling
points. Deformable registration between 3D volumes poses
a similar problem [10]. Diffeomorphic mapping-based reg-
ularization [11], [12] enables calculation of a displacement
field that can obtain smooth correspondence between sampling
points; however, pairwise optimization has high computational
cost for a large-scale parameter set. Thus, recent studies have
investigated 3D displacement field learning using a convo-
lutional neural network (CNN) [13]–[18]. Notably, machine
learning models trained via parallel computing with a graphics
processing unit can provide accelerated registration.

Single-image-based 2D/3D deformable registration has less
constraints than the above-mentioned registration between
3D volumes, making stable optimization difficult. Predictions
based on input images alone have high uncertainty, and the
mapping between the organ shape model and 2D images, along
with its learning method, are key. Some studies use bi-planar
X-ray images to improve prediction accuracy [19], [20]. In the
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field of computer vision, human posture and various general
objects have been investigated, with a camera image database
corresponding to a 3D shape being used as a background [21],
[22]. Recent works have proposed integrating the CNN and
a graph convolutional network (GCN) [23], or an estima-
tion framework that is robust against occlusion through a
self-attention network [24].

As regards medical imaging, collection of organ deforma-
tion data paired with 2D images is difficult, and few cases have
been reported to date. A learning method for a registration
map involving correspondence between an area on a 2D
projection image and a local area in a 3D volume using a
CNN has been proposed [25]–[27]. Additionally, for 2D/3D
deformable registration of soft organs for surgical guidance,
model-based optimization for endoscopic images has been
attempted [28]–[32]. However, to the best of our knowledge,
no studies have provided a framework for deep learning-
based 2D/3D deformable model registration of abdominal soft
organs. Within the scope of our survey, no empirical cases
using actual patient data have been reported.

This study introduces an image-to-graph convolutional net-
work that enables 3D organ-shape reconstruction and localiza-
tion based on a low-contrast projection image. The proposed
network provides a new end-to-end framework that achieves
real-time 2D/3D deformable registration through integration of
an image-based generative network and GCN. The generative
network learns the transformation from the 2D projection
image to a displacement map based on pairwise 3D meshes
obtained before and after deformation. The GCN samples the
input features of each node from the generated displacement
field and learns the transformation into a final 3D displacement
vector that satisfies the geometrical constraints. Finally, our
network outputs a 3D mesh, the position and deformation of
which are registered to the input 2D projection image.

Assuming application to radiation therapy, the shape
reconstruction performance from a single 2D projection
image targeting the abdominal organs of actual patients is
verified experimentally. This is the first study to demonstrate
2D/3D deformable registration of the liver, duodenum, and
kidney, and the gross tumor volume (GTV) of pancreatic
cancer. Many variations in organ shape and deformation
exist between patients, and there are almost no visual clues
(such as contours) in the low-contrast 2D projection images
(Fig. 1); thus, accurate prediction of the organ positions and
shapes was previously considered difficult. We also show
that respiratory dynamics and deformation can be predicted
from digitally reconstructed radiograph (DRR) images via
statistical data augmentation for 3D-CT and simultaneous
prediction of multiple organ shapes.

The methods reported herein extend a previous model-based
deformable registration network (IGCN) [33] presented at
the 2021 International Conference on Medical Image Com-
puting and Computer Assisted Intervention (MICCAI). In the
image-to-graph convolutional networks, image features are
obtained from the reference points by projecting discrete and
spatially discontinuous vertices of a mesh. Pixel2Mesh [22],
which was developed for general 3D objects, uses CNNs to

Fig. 1. Problem definition for 2D/3D deformable model registration
for abdominal organs. (a) Pre-treatment 3D-CT and surface meshes of
liver, stomach, duodenum, kidneys, and pancreatic GTV. 2D projection
images (b) of target states and (c) overlaid with projected vertices of
pre-treatment CT meshes.

extract image features for shape reconstruction. IGCN [33]
improved registration accuracy by obtaining more effective
features using warped reference points, where the relationship
between the extracted features and the 3D deformation of
the mesh was learned. However, registration errors remain
because of the instability in learning image features, i.e.,
the optimization of the weights in the CNNs and GCNs.
We focused on the difference between feature extraction in
CNNs and sparse references in GCNs, and considered that spa-
tially discrete references make it difficult to obtain the smooth
gradients necessary to optimize the weights in CNNs. Our
new framework (called IGCN+ in this paper) aims to solve this
problem by orienting the image transformation network so that
it can learn to generate the pixel-level, dense deformation map.

Secondly, we propose the multiple-organ reconstruction
framework and investigate its effectiveness for learning
deformable shape registration. In the previous paper [33],
we focused on the shape reconstruction of a single organ
and reported liver reconstruction results as a preliminary
study. This paper shows that the multiple-organ reconstruc-
tion framework learns the relationship between the position
and shape of abdominal organs and improves registration
accuracy. We newly validated the registration performance on
the stomach, duodenum, kidney, and a GTV of pancreatic
cancer, and confirmed that clinically acceptable accuracy could
be achieved. We also investigated the role of the statisti-
cal generative models to augment respiratory deformation
datasets.

In summary, the contributions of this study are as follows:

• A new 2D/3D deformable model registration framework
that integrates a pixel-level deformation map generator
and GCN;

• Simultaneous shape reconstruction of five abdominal
organs, the contours of which are not directly visible on
a 2D projection image;

• Application to localization of GTV and organ-at-risk
(OAR) volumes assuming dynamic tumor-tracking radio-
therapy with clinically acceptable estimation accuracy.
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II. RELATED WORK

A. Optimization-Based Approaches

Optimization-based 2D/3D registration has been extensively
researched over the past 20 years [6], [34]–[37]. Rigid-body
and deformable registration involve formulation as a transfor-
mation matrix or as a displacement vector field optimization
problem, respectively [8], [38], [39]. Because of the high
density and large scale of 3D volumes in particular, approaches
that construct shape models based on anatomical labels and
seek positions and deformation on 2D images have been
very successful. Notably, mesh-based shape representation can
express organ elastic properties [30], [40], [41] and statistical
shape variations [1], [42], [43] with few variables and high
computational efficiency. Deformable model registration of
X-ray and endoscopic images has been attempted, with the aim
of surgical guidance [29]–[32]. In radiation therapy, contour
definitions and statistical atlases of GTVs and OARs [1], [7],
[44], [45] can be directly applied in model-based registration.
However, 2D/3D registration based on model parameter opti-
mization is limited to the subspace of physical models and
statistical shape models defined in advance by the expressible
shape variations. Additionally, the high degrees of freedom of
the position and deformation in a 2D image make it difficult
to set objective functions from which a stable solution can
be derived, and each registration requires time for iterative
optimization calculations.

B. Learning-Based Approaches
Recently, deep learning-based frameworks have attracted

attention [46]–[48] because of the high uncertainty and com-
putational costs inherent in model-based 2D/3D deformable
registration. Pointnet [21], a CNN-based framework that gen-
erates a 3D point cloud from a single-viewpoint image, was
applied to 2D virtual images of statistical pneumothorax lung
models, and lobe shapes were reconstructed [47]. However,
in point cloud representation, surface and topological infor-
mation on the inter-vertex relationships, which are important
for deformation field computation, are lost. Wang at al. pro-
posed Pixel2Mesh (P2M) [22] to generate a 3D mesh from
a 2D projection image. P2M uses latent image features to
deform an ellipsoid template into the target shape. A recent
work [48] was the first to apply P2M to respiratory defor-
mation estimation from a DRR, with 3D lung shapes being
artificially generated from multiple initial 3D templates with
free-form deformation. We previously implemented 2D/3D
deformable registration methods using four-dimensional (4D)
CT data for real patients [33], [49] and reported preliminary
liver shape reconstruction results. However, in the abdominal
regions, the available 2D contours or visual cues are poor.
We found limitations in learning dense deformation fields and
capturing distant features from low-contrast projection images.
The improved IGCN+ framework presented herein addresses
these problems and exhibits good estimation performance for
multiple abdominal organs.

III. METHODS

We consider 3D-CT/MRI volumes obtained for
pre-treatment planning and unregistered 2D projection

images obtained during image-guided therapy. We do not
focus on automatic segmentation techniques, and we assume
that the organ contours are segmented from planning CT
images and organ shapes are modeled as triangular surface
meshes as a preprocessing step.

Let M be the initial pre-treatment mesh generated from
3D-CT planning images and I be the 2D projection image
obtained from the target state. X-ray or endoscopic images are
candidates for I ; however, in our experiments for quantitative
evaluation of the proposed 2D/3D deformable registration
method, DRR images were used. These DRR images were
generated from 4D-CT images for performance analysis tar-
geting non-linear motion and shape variability of abdominal
organs during respiratory motion.

The left and central images of Fig. 1 show two typical
examples of M and I , respectively. In the projection images,
the abdominal organs are invisible. Further, the anatomical
variability in organ shape and location between patients is
apparent. The right images are overlaid with the projected
vertices of the mesh, indicating initial misalignment between
M and I . The diaphragm shape visualized in the DRR
does not match the projected initial shape because the two
states differ in terms of patient condition (e.g., posture and
respiratory phase). The deformation is nonlinear and exhibits
local rotation and sliding motion [45] in 3D, and simple
linear transformation is not sufficient to register the two
states.

A. IGCN+ Architecture
Fig. 2 illustrates an outline of the IGCN+ architecture and

deformable model registration process. The outline of the
previous IGCN framework is also illustrated to clarify the
difference of the network architecture. The IGCN+ is a gener-
alized, organ-independent framework that integrates an image
translation network g and a vertex transformation network f .
Various architectures are acceptable for each network model,
but we concentrated on verifying the effectiveness of learning
the deformation map from the projection image in the 2D/3D
deformable registration problem. We hence employed the de
facto standard supervised learning models, i.e., a U-Net-based
network [50] and graph convolutional network [23] for g and
f to match the basic network structure in IGCN+ with that
used in IGCN.

g takes a 2-channel image formed by I and a semantic
label S generated from M . In our experiments, the input image
size was 640 × 640 × 2; however, the method is not limited
to a particular size. g learns the generation of a 3-channel
displacement map u, which represents a spatial mapping
function in 2D space. Then, f receives feature vectors from u
and M . M is projected onto the 2D image space, and the pixel
values of u, i.e., 3D displacement vectors, are sampled from
the projected points p. The 3D vertex coordinates of M and
corresponding 3D displacement vectors are concatenated into
f for learning deformation. Finally, f generates a deformed
mesh registered to I .

The IGCN+ implements a new 2D/3D deformation learn-
ing scheme characterized by f and g. Existing projected
point sampling methods struggle to capture image features
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Fig. 2. Full IGCN+. The image translation network gθ learns to generate a displacement field u. The vertex coordinates and corresponding 3D
displacement vectors are concatenated into the GCN fϕ for mesh deformation learning. IGCN relies on both feature extraction and reference point
optimization in the CNNs.

distant from the initial mesh [22], [33]. P2M [22] employs
CNN-based feature encoding with hierarchical extension to fit
an ellipsoid template to various 3D objects. However, it con-
centrates on mesh deformation and neglects the target object
motion. Abdominal organs contain both local deformation
and global translation, and the projection images have no
clear edges. The displacement map u and composite function
g ◦ f address the non-linear organ motion and deformation.
We describe the roles of these two functions in the next
sections.

B. Displacement Mapping Function
CNN-based encoding schemes struggle to learn image fea-

tures that are distant from the initial template. In our previous
IGCN framework [33], we map the projection point to a new
position at which a higher probability of obtaining effective
image features is expected. As shown in Fig. 2, the CNN part
in the IGCN outputs both image features and 2D warp vec-
tors for the projected points obtained from the pre-treatment
mesh M . The warped projection points pw are calculated
by adding 2D warp vectors to the projection points p. The
image features are sampled from the warped projection points
pw. This scheme improves the registration results; however,
when feature encoding and spatially discrete references at the
sparse vertices of the mesh are simultaneously updated, the
weight optimization for CNNs becomes unstable. In general,
in CNNs including self-attention networks, the loss is calcu-
lated based on image features obtained from pixels; therefore,
the sampling points are fixed to the input image throughout

the training. In the IGCN framework, in addition to being
spatially sparse, the sampling points are updated dynamically
as the 3D mesh deforms at each training epoch. With such
sparse sampling, most of the unsampled image features are
not used in the loss calculation, and the appropriate gradients
needed for continuous updating of the CNN weights are not
obtained. When some pixels are stochastically sampled and
used for loss calculation in this way, the optimization of the
CNN weights becomes unstable, resulting in locally optimal
training.

The method newly proposed in this study involves learning
of the transformation function gθ from I to u based on
the supervised learning framework via the image generative
network defined by the weight parameter θ . Fig. 3 illustrates
the gθ learning process for the liver. Our framework assumes
that the initial and target deformed meshes are registered
and have the same topology, i.e., the two meshes have the
same number of vertices with point-to-point correspondence
(Fig. 3(a)). These registered meshes can be obtained from a
template mesh of each organ through deformable mesh reg-
istration (DMR) [45] in an automated preprocessing process.
The 3D displacement vector di of each vertex vi is obtained
from the corresponding points before and after deformation
(Fig. 3(b)). Next, a 3-channel projection image (Fig. 3(c)) is
obtained by transforming di from Euclidean to color space;
the displacement vector di is defined discretely for each vertex
of a single organ mesh and transformed to the surface color
of the initial mesh. Because the potential application of this
framework is radiotherapy, we assume that the relative angle

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



NAKAO et al.: IMAGE-TO-GRAPH CONVOLUTIONAL NETWORK FOR 2D/3D DEFORMABLE MODEL 3751

Fig. 3. Learning scheme for image translation function generating spatial
mapping function u. (a) DMR between initial and target 3D shapes, (b) 3D
displacement vectors obtained from corresponding vertices, (c) forward
displacement map and sampling, (d) displacement map in abdominal
regions overlaid with their meshes, and (e) one-to-many correspondence
between displacement field and mesh.

and distance between the patient’s body and projection plane
is fixed. The surface of the mesh is rendered by locating a
camera at the X-ray irradiation position of radiotherapy while
considering occlusion using a depth buffer. This means the
displacement vectors of the anterior surfaces are projected into
2D space while overwriting those of the posterior surfaces.
This problem is resolved in the GCN through embedded
learning using 3D vectors obtained from the displacement
map as well as the local shape and topologies at each mesh
vertex.

The 2D region of the patient-specific organ obtained by
projecting the initial mesh can be used as a semantic attention
label S. Here, the proposed gθ defines the transformation:

u = gθ (I, S). (1)

S is used to give alignment information about the initial
organ meshes in the projection image domain. It works as
an additional attention to the image translation network and
contributes to learning the target displacement field that should
to be generated in the organ region. Both I and S are treated as
the 2-channel input image for stable learning and convergence
of the network parameters.

Fig. 3(d) shows the u used for supervised learning and
formed from the meshes of the five abdominal organs. Here,
u is a projection of the volumetric displacement field that
expresses the 3D mesh deformation; thus, the projection points
pi in the map are referenced from the multiple vertices vα, vβ

in the mesh (Fig. 3(e)). In this case, identical displacement
vectors can be assigned to all vertices mapped to p. However,
vα, vβ form parts of different organs and different parts of the
same organ (e.g., the anterior and posterior); thus, they must
each be able to express different displacements. This problem
is resolved in the GCN described below through embedded
learning using 3D vectors obtained from the displacement
map as well as the local shape and topologies at each mesh
vertex.

C. Vertex Transformation Function

The vertex transformation function f updates each vertex in
the mesh using the generated u and template mesh M structure.
Thus, f is responsible for the spatial transformation of each
vertex in the mesh based on the GCN, where

v̂i = fϕ(vi , u(pi )). (2)

Here, vi is the vertex coordinates after normalization; u(pi) is
the 3D displacement vector obtained from the corresponding
projection point pi in the displacement map; fϕ is composed
of the GCN and a learnable parameter ϕ, where the input is a
vector having vi and u(pi ) concatenated; and the output is the
predicted value v̂i of the vertex coordinates. Deformation of
the entire mesh is calculated by transforming all vertices vi ∈
V(i = 1, 2,…, n) composing M using the trained function fϕ̂ .

One-to-many correspondence between the deformation map
u(pi) and the vertex displacement of the mesh can be
addressed because the vertex transformation function f learns
the relationship between the feature vector (vi , u(pi)) and
the vertex displacement. For example, when two different
vertices vα and vβ in the initial mesh are projected onto
the same projection point p, the GCN can distinguish their
features because the vertex transformation function f uses
(vα, u(p)) and (vβ , u(p)) as the input to predict the vertex
transformation. This means that the GCN can learn and
distinguish deformations for the corresponding anterior and
posterior surfaces of the organ based on the initial vertex
positions.

For the GCN layers, graph convolution is applied to obtain
hierarchical topological features in non-Euclidean space [23].
The mesh is a type of graph G(V, E), where V is the set of
vertices and E is the set of edges. The per-vertex features are
shared with the neighbor vertices. The GCN employed in this
study consisted of eight sequential graph convolutional layers,
each of which is defined in Eq. (3).

X (l+1) = σ(D̂−
1
2 ÂD̂−

1
2 X (l)W (l)), (3)

where X (l) and X (l+1) denote the feature matrix before and
after convolution, respectively. In our experiments, X (l) was
the concatenation of the vertex coordinates vi and displace-
ment vectors u(pi ), and W was the learnable parameter matrix.
A ∈ R

n×n was the adjacency matrix, i.e., a symmetric matrix
with binary values, in which element Aij was 1 if there was
an edge between vi and v j , and 0 if the two vertices were not
connected. D ∈ R

n×n was the degree matrix, i.e., a diagonal
matrix, in which each element Dii represented the number of
edges connected to vi . The template mesh was deformed by
updating X (l).

D. Loss Functions
The parameters (θ, ϕ) of the overall network are simulta-

neously updated and optimized by minimizing an objective
function. In this section, we introduce three loss functions
to achieve 2D/3D deformable mesh registration under the
constraint of smooth deformation.
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The ground-truth vertex coordinates of the target meshes are
obtained from the deformable registration process. To strictly
evaluate the point-to-point correspondence, we define the
mean distance loss Lpos of the vertex positions between the
estimated shape and the ground truth as

Lpos = 1

n

n∑

i=1

‖vi − v̂i‖22, (4)

where vi ∈ V(i = 1, 2,…, n) is the target 3D position, and
v̂i is the predicted position. This loss function induces the
convergence of the estimated vertex to the correct position.

In our problem setting, the organ deformation is spatially
non-linear and heterogeneous but expected to remain within
a limited range. To preserve the curvature and smoothness of
the initial surface, we use a regularization loss Lsmooth that
evaluates a discrete Laplacian of the mesh:

Lsmooth = 1

n

n∑

i=0

‖L(vi )− L(v̂i )‖22, (5)

Here, L(·) is the Laplace-Beltrami operator and L(vi ) is the
discrete Laplacian of vi defined by L(vi ) = ∑

j∈N(vi )
(vi −

v j )/N(vi ). N(vi ) is the number of adjacent vertices v j

of the 1-ring connected by the vertex vi . This loss con-
strains the shape changes from the initial state and avoids
generation of unexpected surface noise and low-quality
meshes.

In addition to evaluating the mesh vertex coordinates,
accurate prediction of u improves the 2D/3D deformable reg-
istration results. Specifically, stable learning of u is important
when the target contains both translation and local deforma-
tion. Thus, we introduce the displacement map loss Lmap

determined by the mean absolute error (MAE), such that

Lmap = ‖u − û‖1, (6)

where u is the target displacement map and û = g(I, S) is the
predicted displacement map transformed from I . The existing
2D/3D deformable registration framework [22], [48] does not
use a displacement map, and this study is the first to investigate
the performance of the newly designed loss function.

The full objective L is defined as the weighted sum of the
above three loss functions:

L = Lpos + Lmap + λLsmooth. (7)

The loss function values are normalized to [0, 1] using the
maximum values in each space. Here, to facilitate supervised
learning, we used 0.1 for λ, after examination of several
parameter sets. In the next section, we report ablation studies
and show the effectiveness of individual loss functions.

The optimized deformable registration model gθ∗ ◦ fϕ∗ is
obtained by solving

gθ∗, fϕ∗ = arg min
gθ , fϕ

L(gθ , fϕ). (8)

These are applied to the developed framework at each epoch
to train (gθ , fϕ).

Fig. 4. Statistical models of abdominal organs with respiratory defor-
mation: (a) mean (translucent) and patient-specific (mesh) shapes, and
(b) first and (c) second principal components of vertex displacements.
The colors represent 3D displacement vectors.

E. Statistical Generative Models
In this section, we introduce a data augmentation method

based on statistical generative models to overcome the limited
training data volumes. Displacements that reflect the statistical
properties of respiratory deformation, as obtained from 4D-CT
data, are supplied to a mesh obtained from 3D-CT data.
Specifically, for a mesh generated from a 4D-CT volume,
DMR [45] is conducted between all cases to obtain a mesh
with the same topology. Then, principal component analysis
is conducted to obtain a statistical model of the shape and
displacement.

Fig. 4(a) shows patient-specific shapes obtained via 4D-CT
and the average shapes calculated from data for multiple
patients. Figs. 4(b) and (c) show results obtained by transform-
ing the first and second principal components, respectively,
of the displacement to the RGB space and visualizing these
data as color maps for the mesh surfaces. The displacement
z-component is large because of the characteristics of respira-
tory motion; however, the local displacement distributions of
each organ have different orientations and sizes. The statistical
di is defined as

di =
m∑

k=0

ωkc(k)
i , (9)

where c(0)
i is the mean displacement at vertex vi and

c(k)
i (k ≥ 1) is the kth component of the displacement. Further,

ωk is the weight parameter for each component, and can be
changed to yield various di values and express the statistical
deformation of the 4D-CT data.

Augmented data for supervised learning can be obtained by
deforming the registered mesh M obtained from the 3D-CT
volume based on di . In other words, the vertex coordinates
are updated for each vi of M as vi ← vi − di . The set of
the deformed mesh Md and the projection image I obtained
from 3D-CT volume is used as the input data. The pre-update
mesh M can be used as the target shape of the true value
corresponding to I . Network g ◦ f training is implemented
by randomly changing ωk for each epoch and generating
augmented data with various deformation variations online.

IV. EXPERIMENTS

To evaluate the performance of the proposed method and
its potential application in clinical settings, we conducted the
following three experiments: 1) a comparison with conven-
tional 2D/3D deformable registration methods, 2) deformation
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prediction for multiple organs, assuming a clinical application
of moving-target tracking in radiation therapy, and 3) an
ablation study to demonstrate the effectiveness of individual
components. We implemented our methods using Python
3.9 and TFlearn with a TensorFlow background. We used
1 for each training batch, 200 for the total number of training
epochs, and the ADAM optimizer with a learning rate of
1 × 10−4. Our code and demonstration movies are available
online at https://github.com/meguminakao/IGCN.

A. Dataset

3D-CT volumes of 124 cases and 4D-CT volumes of
35 cases were acquired from various patients who under-
went intensity-modulated radiotherapy in Kyoto University
Hospital. This study was performed in accordance with the
Declaration of Helsinki and was approved by our institutional
review board (approval number: R1446). Each 4D-CT volume
consisted of 10 time phases (t =0, 10, · · · , 90%) for one
respiratory cycle and was measured under respiratory syn-
chronization, with t = 0 and t = 50 corresponding to the
end-inhalation and end-exhalation phases, respectively. Thus,
474 3D-CT volumes were used.

Each 3D-CT volume consisted of 512 × 512 pixels and
88-152 slices (voxel resolution: 1.0 mm × 1.0 mm ×
2.5 mm). During routine clinical procedures, the following
regions were labeled by board-certified radiation oncologists:
the entire body, stomach, liver, duodenum, left and right
kidneys, and pancreatic GTV. We generated surface meshes
(400-500 vertices and 796-996 triangles for one organ) from
the region labels and obtained organ mesh models with point-
to-point correspondence using DMR. The DMR algorithm
and the registration performance for the abdominal organ
shapes were reported previously [45], and template meshes
registered to patient-specific organ shapes with a 0.2 mm mean
distance (MD) error and 1.1 mm Hausdorff distance (HD)
error, on average, were confirmed. This registration error was
sufficiently small for the use of ground-truth meshes.

We generated DRRs from 3D-CT and 4D-CT volumes. The
number of 4D-CT cases were limited; therefore, we adopted
a 3-fold cross validation, which divided 35 patients into three
groups of 12, 12, and 11. Since one 4D-CT data consist
of ten-frame sequential volumes, the total number of test
data was 350. In addition, as statistical data augmentation,
we calculated the mean and Eigen displacement from 4D-CT
data for 23 patients (i.e., 230 training volumes), excluding the
test data; these were then adopted to the 3D-CT volumes of
124 patients for learning while continuously generating vari-
ations of the organ displacement associated with respiration.
The weight parameters were determined as (ω0, ω1, ω2) =
(2, 1, 0) after examination of the prediction performance with
several parameter sets. We summarized the selection method
and the effect of the data augmentation on the registration
performance in Section IV-D.

B. Method Comparison

The first experiment was designed to quantitatively and
qualitatively compare the registration results of the proposed

and existing methods. 3D shapes of the liver, stomach, duo-
denum, left/right kidneys, and pancreatic cancer GTV were
used as the reconstruction targets, and the registration errors
were compared. The liver was in contact with the diaphragm,
and the upper 2D contour was detectable, but the contours on
the lateral and lower regions could not be visually confirmed.
The contours of the other four abdominal organs (stomach,
duodenum, kidney, and pancreatic cancer GTV) could not be
visually confirmed on the 2D projection image, and 3D shape
reconstruction was even more challenging. In this experiment,
these five organs were used as the estimation target for the
performance evaluation and error analysis.

1) Baseline and Experimental Conditions: Few existing
methods can achieve 2D/3D deformable model registration
from a single-viewpoint projection image for deformable
organs. We selected the following four existing learning meth-
ods for comparison; two designed for 3D medical images
where any graph structures are not used, and the other two that
employ image-to-graph convolutional architectures. We then
compared their 2D/3D registration performance with that of
the proposed IGCN+.

AF: an image-based registration method that obtains a 2D
affine transformation between the initial and target projected
images and estimates the 3D global affine transformation for
the initial template mesh using a linear regression. This model
has been widely used for 2D/3D rigid registration [6], [7],
and was added to confirm the complexity of our deformable
registration problem.

VM: a non-rigid image-based registration approach using
VoxelMorph [13], which calculates the 2D dense displace-
ment field between the initial and target projected images
and estimates the 3D displacement for each vertex. This
model does not use any graph structures and learns the 3D
displacement from the initial position vi and the corresponding
2D displacement obtained from projection point pi . This
transformation is the same as Eq. (2), but performed using
a simple regression model.

P2M: an image-to-graph network model designed for gen-
eral images [22]. In our study, the ground-truth position is
obtained for each vertex; thus, the Chamfer loss used in P2M
was changed to the Lpos defined in Eq. (4), and the remaining
loss function was used without alteration. Hierarchical learning
was not applied so that the prediction process would match
those of the other methods.

IGCN: our previous framework [33]. Its basic structure
is similar to that of the P2M model, but implements the
additional learning scheme for warped projection to obtain
better image features for registration. This model does not
learn the dense 3D displacement field, and this point is the
main difference between it and the proposed framework.

We evaluated the 3D shape and position accuracies for
the predicted organs using three error indices, mean distance
(MD), the Hausdorff distance (HD) [53], and MAE between
surfaces. The Dice similarity coefficient (DSC) was also used.
We obtained a mesh with vertex correspondences by applying
DMR for each organ [45] and used it as the target shape with
ground-truth coordinates. The MD and HD are the average and
maximum values, respectively, of the bidirectional distance
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defined by the two nearest vertices between the predicted and
ground-truth mesh; these values quantify the error between
shapes. The MAE is the average Euclidean distance between
the predicted and correct positions of the corresponding vertex
and reflects the prediction error for each vertex. The DSC
quantifies the overlap between the 3D regions of two meshes;
a higher value indicates better prediction performance.

Here, two approaches, referred to as single and multiple
reconstruction, can be considered to estimate the shapes of
multiple organs: single reconstruction learns each individual
organ and multiple reconstruction simultaneously learns multi-
ple organs as a tetrahedral mesh by generating the connectivity
between organs. Multiple reconstruction increases both the
number of vertices in the mesh to be estimated and the shape
expression complexity, but it can effectively learn positional
relationships between organs and the deformation interactions.
In the method comparison, we summarize the results of multi-
ple reconstructions to fairly compare the image-based methods
and image-to-graph framework. Thus, the shape error was
calculated for each organ after simultaneously predicting the
3D shapes of all five organs from one DRR. We further analyze
the difference between the two reconstruction approaches in
the next section.

Verification was conducted using the following two condi-
tions with respect to initial alignment of the template mesh: the
“w/o setup error” condition, which used the initial position in
the first phase (t = 0); and the “w/ setup error” condition, for
which the initial position was set as the position translated in
3D using random noise, with the maximum displacement being
twice the average respiratory displacement. We considered the
“w/ setup error” condition because of differences in the setup
of input images between the experiment and clinical situations.
In the “w/o setup error” condition, the initial alignment of
DRR images is determined using the 4D-CT end-inhalation
phase. This means the relative position of the patient to the bed
during radiotherapy is given. However, as such a strict setup of
the patient’s body is probably difficult to achieve in a clinical
situation, we considered that the possibility of operational
misalignment of the relative positions between the patient
and the bed should be taken into account. To reproduce this,
we analyzed the prediction performance with noise added to
the initial alignment. The maximum range of the added noise
was 17.0 mm in each direction, which was sufficiently larger
than the real setup error for bony structures and variation in
the 3D positions of pancreatic tumors due to respiration [51].
For both conditions, the organ shape and position were set
as unknown for all phases, dynamic properties and hysteresis
caused by time changes were neglected, and this problem was
regarded as a problem of static reconstruction of the organ
shape in each phase. For each method, training was performed
through data augmentation using the statistical generative
model mentioned above.

2) Comparison of Results With Baseline: Table I lists the
average values and standard deviations of the evaluation
indices obtained for 350 test data points for each organ. Here,
“Initial” refers to the difference between the known 3D shape
of the first phase t = 0 and the target state of the nine
phases t = 10, 20, . . . , 90. VM and IGCN performed slightly

TABLE I
QUANTITATIVE COMPARISON OF MULTI-ORGAN SHAPE

RECONSTRUCTION. MEAN ± STANDARD DEVIATION OF MAE, MD,
HD AND DSC

better than the other methods, and the proposed IGCN+
outperformed the other methods for all organ. There is a
relatively large difference between the values obtained by
IGCN and IGCN+, and these differences increased for the
stomach, duodenum, and pancreatic GTV. Interpatient shape
variation in these organs or regions is relatively large [45],
and their contours are not visible on the 2D projection image.
This implies that learning the pixel-level deformation map is
effective for the 2D/3D registration of soft organs with shape
variability.

To further confirm the robustness of the methods, we accu-
mulated error indices for all five organs and the pancreatic
GTV and compared the registration performance with respect
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Fig. 5. Shape registration errors for abdominal organs with respect to “w/o setup error” and “w/ setup error” conditions. Each box plot presents
accumulated evaluation indices for 350 test data obtained from registered meshes of the liver, stomach, duodenum, left/right kidneys, and
pancreatic GTV.

Fig. 6. Visual comparison of methods with respect to the shape reconstruction of abdominal organs for average (Case 13) and maximum (Case
25) error cases. (a) Predicted (cyan), target shapes (magenta) with latent image features (heat map) for the liver and (b) predicted results for the
stomach and duodenum.

to the “w/o setup error” and “w/ setup error” conditions
described above. Fig. 5 presents the box plots of the respective
errors for the two conditions. For the MAE and MD values,
the initial errors increased by 5.4% (0.43 mm) and 8.3%
(0.24 mm), but the increases in the errors of the proposed
IGCN+ were only 4.4% (0.24 mm) and 6.3% (0.11 mm),
respectively. Thus, stable prediction could be achieved even
with setup error in the patient posture or differences in the
initial conditions associated with the 3D shape alignment. The
errors in AF and VF are more affected by the added noise,
suggesting that graph convolution can improve registration
stability in initial value problems. As for both conditions,
significant differences (one-way analysis of variance, ANOVA;
p < 0.05) were confirmed for the conventional methods for
all indices.

The smoothness of the predicted shape and the mesh quality
could not be evaluated using the above error indices only;
therefore, we qualitatively confirmed the estimation results
by visualizing the estimated shape. Fig. 6(a) shows results
obtained by superimposing the liver shape predicted through
DRR of the end-exhalation phase (t = 50) for each method, for
the case in which predictions were based on the mean shape
error (Case 13) and the case for which the shape error was

largest (Case 25). Fig. 6(b) visualizes the estimated stomach
and duodenum shapes of the same cases. Magenta indicates
the true liver and position, and cyan shows the predicted shape.
Arrows indicate relatively large shape errors. A heat map on
the right-bottom of each figure in Fig. 6(a) show the sum of
the latent image features in the same feature encoding layer.
We note that the 3D shapes of five abdominal organs are
predicted simultaneously from one DRR, and liver, stomach
and duodenum are selected in each figure for clarity of visual
comparison.

The proposed method predicted a deformation that is similar
to the target 3D shape despite the fact that visual confirma-
tion of the contours was not achieved for many liver areas,
and only extremely low-contrast textures were visible. Visual
comparisons of the latent image features and prediction results
reveal that P2M responded strongly to the boundary of the field
of view, with large errors at locations with low correlation
with the body contour movements, as indicated by the arrows
in Fig. 6(a). Cases in which the prediction can fail with
large displacement, even if the edge around the diaphragm
is relatively clear, are shown. For IGCN, responses to the
low-contrast edges and texture are apparent. However, the
errors increase in the lower liver, where the edge could not be
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TABLE II
COMPARISON OF DEFORMABLE REGISTRATION PERFORMANCE FOR SINGLE AND MULTIPLE RECONSTRUCTIONS

visually confirmed. The proposed IGCN+ generated features
for the abdominal organ areas and their surroundings, which
yielded good predictions for the lower area of the liver. The
estimation performance of each method for the stomach and
duodenum tended to be similar. Because they are smaller than
the liver, the median error is relatively smaller, but the error
variability is conversely larger, with misalignments and local
shape errors depending on the case.

C. Multiple-Organ Deformation Prediction
In the second experiment, we aimed to verify the organ

deformation and displacement prediction performance assum-
ing clinical applications to tumor tracking radiation therapy.
We verified whether the final performance achieved the 3D
organ area identification accuracy required for real-time local-
ization of pancreatic GTV and surrounding OAR volumes.
We also confirmed effectiveness of multiple reconstruction
for 2D/3D deformable registration with comparison to single
organ reconstruction. For single reconstruction, we calculated
the error by predicting each 3D shape from one DRR for
the liver, stomach, duodenum, and pancreatic cancer GTV
based on the individually-trained network. For multiple recon-
struction, same as the previous experiment, we calculated the
shape error for each organ after simultaneous prediction of
five abdominal organs.

1) Performance Analysis and Motion Dynamics: Fig. 7 shows
the liver, stomach, duodenum and GTV displacements for
each phase, as well as the shape reconstruction errors due
to single and multiple reconstruction. The mean value for
all corresponding vertices was visualized as the centerline,
and the standard deviation was depicted as a colored band.
Table II lists the errors for each organ with regard to nine frame
sequential images (t = 10, 20, . . . , 90) for both single and
multiple reconstruction. For the liver, no significant differences
between the two approaches were apparent, but significant
differences (ANOVA; p < 0.05) were confirmed between
the two methods for the stomach, duodenum, kidneys and
GTV. Shape error improvements of 45.6%, 42.1%, 37.3%,
35.7% and 44.4%, respectively, were obtained for multiple
reconstruction. Regarding the quantitative metric tolerance in
the American Association of Physicists in Medicine guideline
for image registration and fusion [52], MD is 2 - 3 mm and
DSC is 80 - 90%. The obtained results show that shape
reconstruction can be achieved with accuracy equal to or
exceeding this level and, thus, the proposed method is clini-
cally applicable. We measured the computation time for the
whole registration process. The average computation time was

48.9 ms (20.4 frames per second), demonstrating the real-time
registration performance of the IGCN+.

2) Abdominal-Organ Shape Reconstruction: Cases 13 and
25 are shown as typical shape reconstruction examples in
Fig. 8; these cases show the average and maximum shape
errors, respectively, for t = 50, which had the largest dis-
placement. The quantitative values inserted at the bottom of
the figure are accumulated error indices for all five organs
and the pancreatic GTV. Fig. 8(a) shows the multiple recon-
struction results, and the central image (predicted) shows
the vertices of the 3D organ mesh obtained for the input
DRR image, where coloring and superimposed visualization
were conducted for each organ. The image on the right was
obtained by projecting the true (magenta) and predicted (cyan)
shapes on the projected image; the shape errors of each
organ could be locally confirmed. Unlike with the liver,
the contours could not be visually confirmed on the DRR
images for the stomach, duodenum, and GTV; however, shape
reconstruction with minimal deviation from the ground-truth
shape was achieved. The supplemental movie (available online
at https://github.com/meguminakao/IGCN) demonstrates the
results for 10-frame sequential images with more examples.

Fig. 8(b) shows the results obtained by visualizing the
3D meshes of the abdominal organs using single and mul-
tiple reconstruction from two different directions. For single
reconstruction, large deviations in the stomach and duodenum
positions were noted. Thus, shape reconstruction using only
the image features obtained from the 2D area in the DRR
image corresponding to each organ was difficult. For multiple
reconstruction, good matching was found between the true
and predicted shapes. Note that stomach shapes varied con-
siderably between patients because of the stomach contents,
and some deviations were observed. Fig. 8 (c) presents other
multi-organ shape reconstruction examples with relatively
large errors confirmed in the liver and stomach. Despite the
fact that very low-contrast textures and the appearance of the
projection images differ between patients, the shapes can be
stably reconstructed with acceptable errors.

D. Ablation Study
In the third experiment, we conducted an ablation study to

analyze the effect of individual components in the developed
IGCN+ framework. IGCN+ consists of two networks, and
the roles of the semantic label input, graph convolutions, loss
functions, and statistical data augmentation were investigated.
Because it is difficult to validate all combinations of these fac-
tors, we obtained the registration performance when learning
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Fig. 7. Displacements and shape reconstruction errors (mean distance, the Hausdorff distance and the Dice similarity coefficient) for five abdominal
organs and pancreatic cancer GTV due to single and multiple reconstruction. The mean value for all corresponding vertices are plotted as the
centerline, and the standard deviation is visualized as a colored band.

and prediction were performed by excluding each component
from the IGCN+. MD, HD, and DSC were employed as the
error metrics, and the sum of the errors for all organs were
used to simplify the comparison of each model, as shown in
the evaluation of all abdominal organs in Fig. 5.

1) Input Images, Graph Convolutions and Loss Functions:
Table III shows the effects of the key components in the
IGCN+ framework. In the “w/o semantic label” model,

semantic label S was excluded, and a 1-channel DRR image
was used as the input. In the “w/o graph convolution” model,
the vertex transformation function was implemented by a
simple regression model, meaning the vertex position was
directly estimated from 3D displacement vector u(pi ) without
using mesh connectivity. In “w/o displacement mapping loss”
and “w/o regularization loss” models, we simply excluded
Lmap and Lsmooth from the full objective L, respectively.
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Fig. 8. Shape reconstruction examples and method comparison. (a) Average and maximum error cases, (b) estimated shapes obtained from single
and multiple reconstruction, and (c) other examples. The graph convolutions embed per-vertex displacement vector between organs, which results
in better estimation performance of the regions with no visual cues.

TABLE III
EFFECT OF KEY COMPONENTS IN IGCN+ ON 2D/3D

DEFORMABLE REGISTRATION

These results show that each component improves regis-
tration accuracy. In particular, the semantic label and graph
convolution play key roles in our problem settings. We note
that the semantic label determines the initial alignment of the
template to the projection plane, and graph convolution yields
vertex connectivity with the surrounding organs. This result
demonstrates the importance of considering these two factors
in 2D/3D registration. In addition, both loss functions help
reduce the registration error. We also performed additional

experiments with L1 loss for Lpos and/or Lsmooth, which
resulted in lower performance compared with the results with
L2 loss. In our model, the L2 loss was considered sufficient
because there was no sparsity in the displacement vectors to
be predicted.

2) Data Augmentation Using Statistical Generative Model:
Lastly, we investigated the effects of the different data augmen-
tation methods on 3D organ shape reconstruction considering
respiratory displacement variation. First, to determine the
(ω0, ω1, ω2) of the statistical generative model, training was
conducted using eight parameter sets for the 3D-CT models
of 124 cases while generating variations in respiratory motion.
The test data and target organs were the same as those
described in the Section IV-A. We predicted the shape of the
abdominal organs included in the 4D-CT data and calculated
the error metrics.

Table IV presents the parameter set and shape errors inves-
tigated in order. When only ω0 was changed, relatively good
performance was obtained for ω0 = 2, which corresponds to
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TABLE IV
COMPARISON OF AUGMENTATION METHODS AND THE EFFECT OF

WEIGHT PARAMETERS IN THE STATISTICAL

GENERATIVE MODEL

twice the mean respiratory displacement. When both ω0 and
ω1 were changed, performance improved when the first prin-
cipal component was considered but deteriorated when the
second one was considered. Thus, we adopted (ω0, ω1, ω2) =
(2, 1, 0), which yielded the best performance.

We also compared the following cases: no data augmen-
tation (“w/o augmentation”); random translation, which has
traditionally been used as a data augmentation standard; and
data augmentation using the proposed statistical generative
model. For random translation, twice the mean respiratory
displacement was randomly applied in 3D regardless of direc-
tion. The statistical generative model was trained to output
a direction-dependent displacement based on a displacement
vector corresponding to the average respiratory displacement
vector and the first principal component for the weights
obtained as described above. Table IV shows that the best
training performance was achieved using the statistical gener-
ative model, which decreased the MD values obtained by “w/o
augmentation” and random translation by 14.0% and 22.4%,
respectively.

V. DISCUSSION

This study presents a new framework that integrates
an image generative network and GCN, which achieves
model-based deformable registration for 2D projected images.
Unlike image-based 2D/3D registration, a mesh that explicitly
defines the organ areas to be estimated can be output. A wide
range of clinical applications are possible, such as localiza-
tion of GTVs and OAR volumes in radiation therapy, and
tumor position identification for endoscopic camera images
during surgery. The main clinical scenario is to apply the
developed framework to markerless tumor-tracking radiother-
apy. Abdominal organs such as the stomach, duodenum, and
pancreas neighbor each other, but the pancreas cannot be
clearly detected, even on 3D CBCT images. Our experiments
suggest the possibility of real-time tumor localization from
time-series X-ray images or surrogate motion during the actual
intervention.

Conventional CNN-based feature encoding in IGCN relied
both feature extraction and reference point optimization on
CNNs; this problem was resolved through displacement map
generation by the image generative network. Additionally,

significantly improved estimation accuracy for the stom-
ach, duodenum, and pancreatic cancer GTV were confirmed
through simultaneous reconstruction of multiple organs, even
when there were no visual cues in the projected images.
This outcome is thought to be due to successful localization
through convolution of the features of adjacent vertices in
the GCN. The experiments showed that learning both a wide
range of image features and the positional relationship between
organs could improve registration accuracy and prediction
stability. Thus, multiple-organ registration works better than
single-organ registration, but the performance improvement
depends on the measurement condition and fields of view of
X-ray images obtained in clinical situations. Analysis of the
performance obtained when applied to the limited fields-of-
view of clinical X-ray imaging will be required.

To facilitate supervised learning using dense deformation
fields, we aimed to address the problem of defining the
ground-truth displacement field. In the abdominal region in
particular, there may be spatially discontinuous displacements
due to the interaction of multiple organs and sliding motion,
making it difficult to obtain an accurate 3D displacement field
in advance. In contrast, the 2D displacement field generation
process in this study is built upon an accurate deformable
mesh registration with a Hausdorff distance error of 1–2 mm
for each organ, and it has the advantage of generating a
2D displacement field in the projection plane while being
able to handle spatially discontinuous displacements between
organs. This process could also be further extended to 3D
displacement field generation, but the logic for this is currently
under consideration because it involves the new problem of
defining ground-truth 3D displacement fields for supervised
learning.

Our experiments had certain limitations. For example, per-
formance evaluation was conducted using only DRRs as
projected images, and further evaluations for X-ray images
measured during treatment are required. However, multiple
studies have reported that DRR-based learning is effective for
prediction from measured X-ray images [4], [19], [20]. The
organ shape contained in the 3D-CT data used to generate the
DRR could potentially be taken as the true value, yielding
a quantitative and highly reliable performance comparison,
although the estimation error would increase because of the
differences between the X-ray and DRR images. Because
the potential application of this framework is radiotherapy,
we assume that the relative angle and distance between the
patient’s body and projection plane is fixed. The surface of the
mesh is rendered by locating a camera at the X-ray irradiation
position of radiotherapy. Setup error was considered in the
performance analysis. This setting is probably a limitation
in other applications or modalities, but our framework can
generate DRR images by changing the projection angle and
can learn the relationships between more projection patterns
and the underlying deformations. Applying our framework to
other clinical applications and its performance analysis will be
our future work.

Our framework requires some preprocessing of 3D organ
meshes when building a new database for supervised learn-
ing. However, the mesh-based 2D/3D registration uses only
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geometrical information (i.e., organ contour or shape) and
does not depend on the pixel characteristics of the imaging
modality (such as CT, MRI, and CBCT). Therefore, the
shape reconstruction performance is independent of partic-
ular pre-treatment 3D images and the trained network can
be transferred to a newly prepared geometrical dataset. Our
future work includes improving the accuracy, applying IGCN+
framework to other clinical application, and further perfor-
mance analysis with the use of high-resolution X-ray images
and other image modalities available in actual treatment
settings.

VI. CONCLUSION

In this study, we proposed an extended image-to-graph con-
volutional network (IGCN+) that achieves deformable model
registration of a 3D organ model for a single-viewpoint 2D
projection image. We targeted abdominal organs for multiple
shape reconstruction from low-contrast projection images,
and verified that clinically acceptable registration accuracy
was achieved with a mean distance of less than 2 mm for
the stomach, duodenum and pancreatic GTV. The proposed
technique could be directly applied for localization of radiation
targets and organ-at-risk volumes in radiation therapy, and
it could also be applied to a wide range of image-guided
interventions.
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