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REVIEW ARTICLE OPEN

Recommender system for discovery of inorganic compounds
Hiroyuki Hayashi1, Atsuto Seko 1 and Isao Tanaka 1,2✉

A recommender system based on experimental databases is useful for the efficient discovery of inorganic compounds. Here, we
review studies on the discovery of as-yet-unknown compounds using recommender systems. The first method used compositional
descriptors made up of elemental features. Chemical compositions registered in the inorganic crystal structure database (ICSD)
were supplied to machine learning for binary classification. The other method did not use any descriptors, but a tensor
decomposition technique was adopted. The predictive performance for currently unknown chemically relevant compositions
(CRCs) was determined by examining their presence in other databases. According to the recommendation, synthesis experiments
of two pseudo-ternary compounds with currently unknown structures were successful. Finally, a synthesis-condition recommender
system was constructed by machine learning of a parallel experimental data-set collected in-house using a polymerized complex
method. Recommendation scores for unexperimented conditions were then evaluated. Synthesis experiments under the targeted
conditions found two yet-unknown pseudo-binary oxides.

npj Computational Materials           (2022) 8:217 ; https://doi.org/10.1038/s41524-022-00899-0

INTRODUCTION
Innovation in materials technology often initiates with the
discovery of materials. To take an example, the discovery of
powerful permanent magnets and lithium battery materials has
led to the emergence of modern and mass-produced electric
vehicles, making a significant impact on our society. Two
scenarios are possible for the materials discovery. The first is the
discovery of unknown functions in already known compounds.
For this purpose, an experimental database of known compounds
is searched using features representing the function. The features
are chosen based on physical and/or empirical rules using
information on constituent elements and crystal structures of
compounds. Systematic first-principles calculations are sometimes
performed to obtain features. The second scenario begins with
discovering a compound as-yet-unreported by experiments, i.e.,
an as-yet-unknown compound. This is challenging since the
chemical composition space of inorganic compounds with
multiple elements and multiple crystal sites is vast. The space
cannot be explored efficiently without a good strategy to narrow
down the search space. A combination of an experimental
database and its data-driven analysis is a powerful approach. In
this article, we will focus on the second scenario, i.e., the discovery
of as-yet-unknown compounds.
Currently, several inorganic compound databases are available,

such as the inorganic crystal structure database (ICSD)1 in which
approximately 250000 compounds are registered. The yearly trend
of the number of unique compositions registered in ICSD is shown
in Fig. 1. They are only for ternary and quaternary compounds
consisting of multiple cations and a single anion having chemical
compositions of integer ratios, which can be selected using the
ANX formula in ICSD. Anions are taken from groups 15 (pnictogen),
16 (chalcogen), and 17 (halogen) in the periodic table. Cations are
from the remaining groups, except for group 18 (noble gas) and
hydrogen. These compounds include complex or pseudo-binary
(-ternary) pnictogenides, chalcogenides, and halides. According to
the rule, carbonates and silicates are included, but nitrates,
phosphates, and sulfates are not. The number of ternary

compounds composed of two cations and one anion registered
to date is 5823. Similarly, a quaternary compound consisting of
three cations and one anion counts 4897. Among them, 2574
(44%) for ternary and 3428 (70%) for quaternary are oxides. The
predominance of oxides is natural since they are relatively easy to
find as natural minerals or to synthesize artificially. The bar chart
shows that the annual increase in the number of registered
compounds has saturated or declined. The trend suggests that the
discovery of ternary compounds is getting more difficult each year
if we continue the same traditional approach. At the same time,
given the high diversity of elemental combinations, there is a good
chance to discover compounds in quaternary compounds,
especially for non-oxides.
Chemically relevant compositions (CRCs) means the chemical

composition that gives a stable or metastable compound under
given thermodynamical conditions. Thermodynamically stable
compounds are on the convex hull of formation energies, while
metastable compounds show slightly higher formation energies
above the convex hull. It is typically not easy for experiments to
estimate the convex hull of the formation energy for a given
thermodynamic condition. Identifying stable and metastable
compounds by experiments is time and labor intensive. On
the other hand, the convex hulls at zero temperature can be
drawn based on energetics by systematic first principles
calculations. Additional phonon and configurational calculations
must be performed to incorporate temperature effects, which
are possible but rather time-consuming. It should be noted,
however, estimation of the formation energies for compounds is
quite costly when their crystal structures are unknown, since
the structures should be determined prior to the first
principles calculations. If the CRC can be estimated prior to
experiments or first principles calculations, the information is
very useful in narrowing down the chemical composition in the
search for compounds.
In the last decade, large databases of first principles calculations

of inorganic compounds have been constructed and made
available for many users2–7. Combining machine learning models
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and first principles data, attempts to find CRCs have been
reported8–12. In ref. 8, a procedure was given to estimate the
probability as CRC using compositional similarity. In ref. 9 using a
database of the first principles formation energies, a machine-
learning model was constructed only with chemical compositions
to predict yet-unknown CRCs. The present authors used a list of
compounds registered in ICSD as training data, and adopted
methods to establish recommender systems for the discovery of
CRCs13,14. Recommender system15–17 is a type of information
filtering system, which is increasingly popular in a variety of fields,
for example, E-commerce and social networking services. It
attempts to estimate personalized recommendation scores of
items to users based on their history of purchase or ratings. When
this method is used for material discovery, the purchase history
corresponds to the experimental database of compounds. The
recommendation score is then related to the probability of finding
a CRC. In our studies13,14, two types of algorithms were used to
estimate the recommendation scores. One is a descriptor-based
recommender system with features specific to chemical elements.
The other is a tensor-based recommender system. They will be
explained in the following chapters, together with some success-
ful examples to synthesize as-yet-unreported compounds. In the
last chapter, we describe the construction of a recommender
system for experimental processing conditions for compounds
based on a parallel experimental data-set collected in-house.
Synthesis condition data was put into a tensor-based recommen-
der system to evaluate recommendation scores for unexperimen-
ted conditions.

Compositional descriptor-based recommender system
Firstly recommender system of CRC was constructed using
compositional descriptors13. They are made up of 22 elemental
features, such as the atomic number and Pauling electronegativ-
ity, which can be classified into (1) intrinsic quantities of elements,
(2) heuristic quantities of elements, and (3) physical properties of
elemental substances. The compositional space was made from
the means, standard deviations, and covariances of these 22
elemental features weighted by the concentration of the
constituent chemical element. Here, the compositional space
was restricted to ionic compounds with integer-valency cation
and anion. Grid points were placed on the compositional space at
integer composition-ratios. The points corresponding to com-
pounds registered in the ICSD were designated as ‘entries’. The
rest of the grid points were treated as ‘no-entries’. The data were
then supplied to the machine learning for the binary classification
in which responses have two distinct values of y= 1 and 0. A score

of y= 1 was given to ‘entries’, and y= 0 for ‘no-entries’. Although
the composition of y= 1 can be regarded as CRC, the composition
of y= 0 does not necessarily mean that the composition is not
CRC. There may be insufficient synthesis experiments at that
chemical composition of ‘no-entry’. There is also a possibility that
the composition is a CRC, but the corresponding compound is
difficult to synthesize experimentally.
After the machine learning using classifiers, a recommendation

score, ŷ, was estimated at approximately 1.3 million pseudo-binary
and approximately 3.8 million pseudo-ternary compositions that
were not registered in ICSD. The recommendation scores were
then arranged in descending order. To verify whether the
chemical compositions with high recommendation scores corre-
spond to currently unknown CRCs, we examined if they were
listed in another database, ICDD-PDF18. As there was a large
overlap between registered compositions in ICSD and ICDD-PDF,
the data-set that were not included in ICSD were extracted from
ICDD-PDF. We then examined whether chemical compositions
with high recommendation scores were included in ICDD-PDF.
Figure 2a shows the cumulative numbers of verified CRCs for
pseudo-binary compositions with the ranking of the recommen-
dation scores. Results by three classifiers, i.e., random forest,
gradient boosting, and logistic regression, are much better than
that of the random sampling in all cases, indicating that the
approach is helpful for discovering the currently unknown CRCs
that are not present in the training database. Among the three
classifiers, the random forest method performed the best. The
histogram of the number of verified CRCs by the random forest
method is shown in Fig. 2b. The discovery rate defined by the
numbers of verified CRCs in the candidate CRCs is 18% for the top
1000, and 15% for the top 3000 candidates. The discovery rate for
the top 1000 is 60 times greater than that by the random
sampling, 0.29%. It should be noted, however, that the discovery
rate evaluated in this way is only a lower limit, since unknown
compounds not registered in the ICDD-PDF cannot be counted.
First principles calculations can be used to examine if the
candidate CRCs are on the convex hull of formation energies.
This will be discussed in the next chapter with Fig. 6.
Experimental efforts were carried out in collaboration with

synthetic experts to synthesize unknown compounds with high
recommendation scores19. Figure 3 shows Li2O-GeO2-P2O5

pseudo-ternary system with chemical compositions registered
in three databases, i.e., ICSD, ICDD-PDF, and Springer Materials
(SpMat)20. Chemical compositions of CRCs with high recommen-
dation scores but not registered in any database are numbered
according to their recommendation scores. Synthesis experi-
ments were performed at target compositions by firing the mixed

Fig. 1 The yearly trend of the number of unique compositions registered in ICSD (2021 Ver.2) for ternary and quaternary ionic
compounds (orange bars). Only compounds reported to be experimentally synthesized, satisfying the charge-neutral condition, and having
no partially occupied sites were adopted. Oxides are shown separately by green bars. Data-extraction procedures from ICSD to construct
these figures are given in the Supplementary Information.
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starting powders in air. The products were supplied to powder
x-ray diffraction experiments. At the composition of 6 in Fig. 3,
Li6Ge2P4O17, the diffraction patterns were not able to be assigned
to any known compound. After optimizing synthesis conditions
and detailed characterization, a phase having the composition
Li6Ge2P4O17 was identified. The discovered phase showed a
crystal structure different from any known compounds in the
three databases.
Another set of synthesis experiments was carried out for AlN-

Si3N4-LaN pseudo-ternary system21. Fifteen compositions with
high recommendation scores were selected as candidates for
CRCs. Synthesis experiments were performed at target composi-
tions by firing the mixed starting powders at 1900 °C under
1.0 MPa N2. A pseudo-ternary nitride, La4Si3AlN9, forming a
crystal structure different from any known compounds was
successfully identified. An as-yet-unknown variant (isomorphous
substituent) of a known compound was also discovered at the
composition of La7Si6N15.

Tensor-based recommender system
Different from the case in the previous chapter, the recommen-
der system in this chapter does not use any descriptors. The CRCs
registered in the ICSD database were used as training data. They
were stored in a tensor, which was decomposed assuming a low-
rank structure of the tensor. The recommendation scores for
unknown data were then evaluated. A simplified scheme of the
matrix-based recommender system often used in E-commerce is
shown in Fig. 4a. The vertical axis corresponds to a customers’
list. The history of each customer is stored on the horizontal axis
as purchased records of items. Low-rank structure of the matrix
means that customers with similar preferences are interested in
purchasing similar items. The matrix in E-commerce contains an
enormous number of data, but is typically sparse. Combined with
an appropriate decomposition technique, this type of recom-
mender system is known to be very helpful for both customers
and E-shops.
In the work reported in ref. 14, the compositional space was

restricted to ionic compounds composed of two, three, and four
cations {A, B, C, D} and one anion {X} having integer valency.

The number of candidates was approximately 7.4 million for
ternary AaBbXx with max(a, b, x)= 8, approximately 1.2 billion for
quaternary AaBbCcXx with max(a, b, c, x)= 20 and approximately
23 billion for quinary AaBbCcDdXx with max(a, b, c, d, x)= 20. The
number of the training data in ICSD was 9313, 7742, and 1321 for
ternary, quaternary and quinary, respectively. Figure 4b shows an
example of a 3rd-order tensor expressing binary compounds.
Three axes are cation type, anion type, and integer set showing
the chemical composition. Using the Tucker decomposition
method22, the 3rd-order tensor can be approximated by a product
of a core tensor and three matrices, as shown in Fig. 4c. For
verification, the data-set unregistered in ICSD but included in two
other databases, ICDD-PDF and SpMat, were used. Figure 5 shows
the cumulative numbers of verified CRCs with the ranking of the
recommendation scores for ternary, quaternary and quinary
systems. The discovery rate was 59%, 52%, and 15% for the top
100 candidates for ternary, quaternary and quinary systems,

Fig. 3 Candidate CRCs on the Li2O-GeO2-P2O5 pseudo-ternary
system with chemical compositions registered in three databases,
i.e., ICSD, ICDD-PDF, and SpMat. Adopted from ref. 19 with small
modifications.

Fig. 2 The numbers of verified CRCs for pseudo-binary compositions with the ranking of the recommendation scores. a The cumulative
numbers of verified CRCs by three classifiers, i.e., random forest, gradient boosting, and logistic regression, are compared with that by random
sampling. b The histogram by the random forest method, i.e., the differential form of a for the random forest method.
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respectively. The lower discovery rate for the quinary system can
be ascribed to the smaller number of training data than the
ternary and quaternary systems. The high discovery rate for the
present tensor-based recommender system, which does not
use any descriptors, was well confirmed.
A set of first principles calculations was made to examine if the

candidate CRCs are on the convex hull of formation energies.
Pseudo-binary systems that contain candidate CRCs with the top
27 recommendation scores were selected. First principles calcula-
tions were performed using the plane-wave basis projector
augmented wave (PAW) method23,24 as implemented in the VASP

code25,26. Since crystal structures were scarcely known a priori,
calculations were exhaustively made, adopting all possible
prototype structures registered in ICSD. Lowest energy structures
were then used to draw the convex hull. A part of the results for
pseudo-binary oxides is shown in Fig. 6 together with discovered
CRCs and their recommendation scores in parentheses. Known
CRCs registered in three databases are also plotted. As described
in ref. 14, among 27 candidate CRCs, 23 compositions (85%) were
found on the convex hull. Recalling that the 23 CRCs are not
registered in any of the three databases, this result demonstrates
the high performance of the present recommender system.

Fig. 5 The cumulative numbers of verified CRCs with the ranking of the recommendation scores for ternary, quaternary and quinary
systems. a The top 100 candidates. b The top 3000 candidates. Adopted from ref. 14 with small modifications.

Fig. 4 Schematic illustration of matrix- and tensor-based recommender systems. a A simplified scheme of the matrix-based recommender
system used in E-commerce. b An example of a 3rd order tensor expressing binary compounds. c Using the Tucker decomposition method, a
large tensor can be approximated by a product of a small core tensor and three matrices. Adopted from ref. 14 with small modifications.
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Synthesis condition recommender system
Methods to estimate recommendation scores for unknown CRCs
have already been described in previous chapters of this article. It
is true that some compounds were experimentally discovered at
the proposed CRC based on the recommendation. However, we
also experienced that synthesis experiments were often unsuc-
cessful at the proposed CRCs. Since the predictive performance
was well confirmed as described in the previous chapters, the
failure is likely attributed to the lack of knowledge to find
successful synthesis conditions. It is natural that a yet-
undiscovered compound is difficult to synthesize. Experts in
experimental chemistry attempt to synthesize compounds based
on their experiences and knowledge of similar compounds. If
there is a database of various synthesis conditions for diverse
compounds, a computer may indicate the synthesis conditions
efficiently instead of a human expert through machine learning.
Synthesis conditions can be collected through text mining of
scientific literature27–30. Such databases have been constructed
recently, which may be useful for finding successful synthesis
conditions. While such databases provide valuable information,
there is a major problem when applied to machine learning. The
data-set obtained from literature is strongly biased toward
successful synthesis results. But, a good combination of successful
and unsuccessful synthesis results is preferred for reliable machine
learning. For this purpose, it is desirable to develop equipment
that can automatically perform a large number of synthesis
experiments in parallel without human bias, which is called
combinatorial or parallel synthesis equipment.
Automated experimental equipment to construct such a

database has been reported recently31–35. The present authors
reported parallel synthesis experiments to prepare precursor
powders of various inorganic oxides in four different ways, i.e.,
solid-state reaction, polymerized complex, cyclic ether sol–gel, and
spray coprecipitation31. In the work of ref. 32, pseudo-binary
inorganic oxide compositions were targeted and parallel synthesis
experiments were made by a polymerized complex method. There
were 28C2 × 27= 10206 combinations of two cations from 28
elements and 27 compositional ratios, as shown in Fig. 7a. Among
them, 1139 compositions were known to be CRCs and registered

in ICDD-PDF. The remaining 9067 compositions were unknown if
they were CRCs. Some of them may be unstable. Others may be
difficult to synthesize experimentally and require special condi-
tions for synthesis. Since the synthesis of pseudo-binary inorganic
oxides has a long history of in-depth investigation, the chance of
discovering yet-to-be-found oxides may be quite low. Therefore,
to discover compounds, it is necessary to employ a much more
efficient method than random trials on chemical compositions
and synthesis conditions.
Here, the synthesis condition space was composed of 66150

conditions. At each target composition, a maximum of five
different synthesis temperatures, ranging from 873 to 1273 K, was
adopted. Three starting materials were used for V and Mo; for the
rest, one starting material was used for each cation. In order to
obtain training data for the machine learning, synthesis experi-
ments were performed under 1542 conditions in total, which
included 600 conditions at compositions where the presence of
CRC was unknown, and 942 conditions at known CRC. Both of
them were randomly selected. As shown in Fig. 7a, at the known
CRC, the target compound was successfully synthesized under 499
of 942 conditions. On the other hand, at the unknown CRC, not a
single condition out of 600 was successful. Results of the synthesis
experiments were put into a fourth-order tensor with four axes,
namely, ‘starting material #1’, ‘starting material #2’, ‘cation mixing
ratio’, and ‘firing temperature’, as shown in Fig. 7b. Then the
tensor was subjected to the Tucker decomposition and recom-
mendation scores for unexperimented conditions were estimated.
In order to verify the predictive performance of the recommender
system, additional synthesis experiments were conducted at the
top 300 synthesis conditions of unexperimented compositions. A
histogram in Fig. 7c displays the number of successful and
unsuccessful results as a function of the recommendation score.
The fractions of the successful synthesis conditions, i.e., success
rate, for each bin of the recommendation score are shown
in Fig. 7d. Although the success rate was about 20% when the
recommendation score was 0.2, it increased proportionally with
the recommendation score. It became about 50% when the
recommendation score was 0.5. In this way, the usefulness of the

Fig. 6 The convex hull of the formation energy by the DFT calculations for pseudo-binary-oxide systems containing candidate CRCs.
Closed circles (green) denote compounds on the convex hull. Closed triangles (blue) and squares (violet) denote CRCs registered in ICSD and
ICDD-PDF+ SpMat, respectively. Candidate compositions are given with recommendation scores in parentheses. Adopted from ref. 14 with
modifications.
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recommendation score to estimate the success rate of synthesis
conditions was demonstrated.
The top 300 synthesis conditions included 135 conditions for

75 unknown compositions. Synthesis experiments under the
targeted conditions successfully found two as-yet-unknown
pseudo-binary oxides: La4V2O11 and La7Sb3O18. Their powder
X-ray diffraction profiles were analyzed by the Rietveld method
using the RIETAN-FP program36 after the crystal structure
determination using the EXPO2014 code37 to identify their crystal
structures. La4V2O11 and La7Sb3O18 were found to be isostructural
to known compounds, γ-Bi4V2O11 and La7Ru3O18, respectively.
Although the discovery of inorganic pseudo-binary oxides was
thought to be difficult, two as-yet-unreported compounds were
successfully synthesized using the recommender system of the
process conditions.

Conclusion and outlook
The recommender system is increasingly popular in a variety of
fields in our society, such as E-commerce and social networking
services. Based on a database, it attempts to suggest to an
individual user what products to buy, what movies to watch, and
so on. The method can be applied to materials discovery using an
experimental database. The recommendation score can be related
to the probability of finding the most pertinent chemical
composition, synthesis conditions, etc. In this article, we described
such studies on recommender systems for materials discovery.
Firstly, studies on the discovery of as-yet-unknown compounds

using the recommender system were reviewed. A training dataset
was obtained from those registered in ICSD. Two kinds of
techniques were used to estimate recommendation scores. One
method used compositional descriptors made up of elemental
features. The other method used a tensor decomposition
technique. The predictive performance for currently unknown
CRCs was determined by examining their presence in other
databases (ICDD-PDF and SpMat) in which overlapped data with
ICSD was omitted. According to the recommendation, synthesis

experiments were made. Two pseudo-ternary compounds,
Li6Ge2P4O17 and La4Si3AlN9 with currently unknown structures
were successfully discovered.
Next, a synthesis-condition recommender system was con-

structed by machine learning of a parallel experimental data-set
collected in-house using a polymerized complex method.
Recommendation scores for unexperimented conditions were
then evaluated. Additional synthesis experiments were con-
ducted at the top 300 synthesis conditions of unexperimented
compositions to verify the predictive performance of the
recommender system. Although inorganic pseudo-binary oxides
have historically been the subject of much research and
discovering compounds was thought to be difficult, two as-
yet-unknown pseudo-binary oxides, La4V2O11 and La7Sb3O18

were successfully synthesized.
High performance of the recommender system for the

discovery of CRC and synthesis conditions was well demonstrated
in these works. It may be interesting to know the advantages
between the tensor-based and descriptor-based approaches. In
general, they are dependent on the quality and quantity of the
problems and datasets. When many data are uniformly distrib-
uted in the search space, the tensor-based approach should be
preferred. Otherwise, the descriptor-based approach helps avoid
so-called cold-start problems, which occur when few known CRCs
are available. Especially when the descriptors representing the
target property (formation energy, synthesis condition, etc.)
are clearly identified, the descriptor-based approach should be
worthwhile to adopt.
As for the synthesis condition recommender system, the data

acquisition speed is rate-controlling. A breakthrough is expected
to occur when the recommender system is combined with a high-
speed and automated synthesis robot to improve the quality of
the recommendation iteratively.
The use of recommender systems is still in infancy, it would be

important to consider its application to a variety of problems and
data in materials science and technology.

Fig. 7 A synthesis-condition recommender system. a The chemistry space and the synthesis condition space. b A schematic of the Tucker
decomposition of the synthesis condition tensor. c Results of additional synthesis experiments for the top 300 synthesis conditions. The
number of successful (orange) and unsuccessful (blue) results were shown as a function of the recommendation score. d The fractions of the
successful synthesis conditions, i.e., success rate, for each bin of the recommendation score in c. Adopted from ref. 32 with small modifications.
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DATA AVAILABILITY
The database for the tensor-based recommender system in this study is available at
https://github.com/sekocha/recommender. Other data supporting the findings of this
study are available from the corresponding author on reasonable request.
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