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Abstract
Issuing a disaster certificate, which is used to decide the contents of a victim’s support, requires accuracy and rapidity. However,
in Japan at large, issuing of damage certificates has taken a long time in past earthquake disasters. Hence, the government needs a
more efficient mechanism for issuing damage certificates. This study developed an estimation system of roof-damaged buildings
to obtain an overview of earthquake damage based on aero-photo images using deep learning. To provide speedy estimation, this
system utilized the trimming algorithm, which automatically generates roof image data using the location information of building
polygons onGIS (Geographic Information System). Consequently, the proposed system can estimate, if a house is covered with a
blue sheet with 97.57% accuracy and also detect whether a house is damaged, with 93.51% accuracy. It would therefore be
worth considering the development of an image recognition model and a method of collecting aero-photo data to operate this
system during a real earthquake.

Keywords Damage certification . Deep learning . Image recognition . Aero photo . GIS

1 Introduction

In Japan, when disasters, such as earthquake, flood, and wind
damages occur, local governments investigate and certify the
damage level of residents’ buildings. Afterwards, the local
governments issue damage certificates to the residents to
prove that they are the victims of the disaster. The damage
certificate is used as the basis for deciding the victims’ support
contents, for example, the price of support money, the order of
priority of temporal houses corresponding to their buildings’
damage level, and the necessity of livelihood rehabilitation. In
the investigation, the buildings are divided into five damage
levels like Fig. 1. In general, first, visual observations are
performed outside the building, and second, detailed observa-
tions are performed inside the building. The latter is

performed if a victim disagrees with the former (Cabinet
Office, 2013). Both of the investigation, at first, judge whether
a building is complete collapse by the outside appearance and
the inclination. When the building is not complete collapse,
the investigators calculate the proportion of damage on the
roof, the outer walls, and the foundations. Judging from the
proportion, the building is divided into five damage levels.

After the Basic Act on Disaster Management in Japan was
revised based on the information gathered from the Great East
Japan Earthquake, local governments were obliged to issue
damage certificates without any delays. Hence, they nowmust
issue these certificates rapidly and exactly (Cabinet office in
Japan, 2017). However, in Japan at large, house damage in-
vestigations and issuing of damage certificates take a long
time in even now. Consequently, supports to victims of the
disasters are delayed. According to a survey conducted after
the 2016 Kumamoto Earthquake (Ministry of Internal Affairs
and Communications, 2018), labor shortage, complexity of
investigation, numerous reinvestigations, and difficulties of
arranging a working environment, were the causes for these
delays.

In such cases, the number of resources for disasters become
limited and the investigation is not done adequately and
efficiently.

A previous study (Inoue et al., 2018) analyzed work vol-
ume of disaster response in local governments based on the
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Kumamoto earthquake. The study defined the disaster re-
sponse work based on the guideline of Japanese Cabinet office
and classified the work into two types: maintenance type and
achievement type. Maintenance type is the work requiring a
fixed number of personnel for management. Achievement
type is the work finished by achievement of specific
objective. By increasing the number of personnel, the
ending time of achievement type can be short, but the
ending time of maintenance type cannot be short. In
achievement type of the most seriously damaged local
government, the work which require the most personnel
is issuance of damage certificates, then house damage
investigations. From this result, it is assumed that performing
the two works rapidly can lead to supplement of personnel to
other works.

Furthermore, the necessity of rapid damage investigations
and the issuance of damage certificates increases owing to a
forecast of large scale earthquake occurrences in Japan in the
near future.

2 Research Background and Purpose

2.1 Research Background

2.1.1 Revision of House Damage Investigation Manual

In the 2016 Kumamoto Earthquake, damage certificate
issuance took a long time, and this led to a long delay
in getting support to the victims. After the occurrence

Fig. 1 Flow of house damage
investigation

352 Inf Syst Front (2023) 25:351–363

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



of this earthquake, the Cabinet Office in Japan revised
the house damage investigation manual (Cabinet
Office, 2018). The revision enabled local governments
to make the necessary decisions based on the aero-photo
images or the pictures taken by the victims. This means
that the Japanese government requires a more efficient
investigation mechanism and also recommends investi-
gation using aero-photo images.

When the Northern Osaka’s earthquake occurred in
2018, local governments determined the damage levels
of the victims, based on the pictures taken by the vic-
tims. Moreover, when the Hokkaido Eastern Iburi
Earthquake took place in 2018, local governments cer-
tified the damage level of the buildings based on the
aero-photo images, under the consideration that the
buildings were completely destroyed.

2.1.2 Roof Damage as a Result of Earthquakes

When earthquakes occur, many roofs get damaged, especially
the tile roofs, in Japan. The tile roof is a Japanese traditional
roof style, and it is vulnerable to the shakings of the earth-
quake. A previous study (Shimizu et al., 2019) analyzed the
percentage of tile roof in each built date and each prefecture in
Japan. Although the overall percentage in Japan is declining,
the average of the percentage of each prefecture in current date
(2011-) is 60.37%. Considering that many Japanese buildings
have tile roofs, counting the number of damaged roofs helps in
the understanding of the overall damage of the buildings in the
earthquake region.

Currently, observing the damage from the outside is
the only way to investigate the damage level of the roofs.
This method of investigation is difficult and has low ac-
curacy of evaluation in the investigation of the building
like Fig. 2.

2.1.3 Recent Improvements in Image Recognition Techniques

AlexNet utilizing DCNN (Deep Convolutional Neural
Network) won the 2012 ILSVRC (IMAGENET Large Scale
Visual Recognition Challenge 2012), which is a world image
recognition competition. DCNN is one of the deep learning
algorithms. After that competition, DCNN became the basic
image recognition way and the image recognition accuracy
became higher than other algorithms. In view of the develop-
ment of large-scale image datasets, such as ImageNet (Deng
et al., 2009) and the improvement of computers calculation
capacity, such as GPU (Sharan Chetlur et al. 2014), image
recognition techniques using deep learning is expected to lead
to significant developments.

2.2 Research Purpose

The purpose of this study is to ensure good efficiency
and rapidity in house damage investigations using aero-
photo images and image recognition. Furthermore, if the
proposed system can estimate the damaged roofs of
buildings based on aero-photo images using DCNN as
the image recognition algorithm, during an earthquake,
local governments can obtain a clear understanding of
the approximate number of houses that are damaged,
and the regions with numerous damaged houses. Using
image recognition enable to estimate many damage
buildings automatically and rapidly even when there is
little manpower during disaster. Hence, local govern-
ments can estimate the time required for the investigation,
number of investigators, instruments and working places.
Consequently, the estimations performed in this study can
be used for planning house damage investigations in the future
and also lead to making house damage investigations and
issuing of damage certificates more rapid.

Fig. 2 A building whose roof is
damaged
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3 Previous Studies

Some studies on the estimation of buildings with damaged
roofs, using deep learning or aero-photo images, have already
been performed.

Ogawa and Yamazaki (2000) visually determined damage
buildings using aero photo images taken in the 1995 Kobe
Earthquake. They concluded that damage of non-wooden
buildings was difficult to be recognized using aero photo im-
ages at that time, but using aero photo images was effective
tool for detecting overall damage distribution in a large area
after natural disasters. However, this manual system needs a
long time and many hands for detection and isn’t practical
during disaster response.

Suppasri et al. (2013) estimated probability of damaged
building using fragility functions. Fragility functions lead
probability of damaged building from input of some factors
such as peak ground acceleration, types of building and so on.
This fragility function could estimate damage buildings with
high accuracy, but this estimation is not by building but by
area.

Kashani and Graettinger (2015) detected damage buildings
using 3D data and k-means algorithm of clustering method.
Getting minute 3D data from ground-based laser scanning led
to high accuracy.Matsuoka et al. (2017) determined whether a
roof was damaged or not based on the temperature recorded
by an UAV, using an infrared camera. In roof part under
deformations owing to the shakings associated with earth-
quakes, foundation material under tile roof is exposed. This
part is difficult to absorb sunlight and decrease temperature.
The low temperature part was considered as damaging part.
Kamagatani and Matsuoka (2017) used both aero-photo im-
ages taken from right above and oblique direction by a special
camera and estimated house damage level judging from these
images. Using two types of aero-photo images make the ex-
traction of roof damaging features easy and also increase
accuracy.

Our study use not special data such as 3D data or infrared
camera data but aircraft camera data or drone data, which are
cheaper and easier to take photos with, thereby ensuring that a
large number of photo images can be taken with great ease,
during an actual disaster. This also ensures that there is suffi-
cient training data for our system. Additionally, although the
damage state of roofs may vary over time owing to after-
shocks, using aero-photo images by drones enable us to obtain
damaged roof-photo data at any point in time.

In the abovementioned study, when the roof database of
photo images was constructed for training and testing, they
depicted each polygon fitting building (roof) shape manually.
In this study, after getting aero-photo images and locating
building shape polygons information from GIS, the trimming
algorithm makes the database of roof images automatically.
Furthermore, this algorithm enables us to get a lot of images

for training data and reduces database making time after a
disaster occurs. Additionally, this algorithm enables the pro-
posed system to estimate damage level with respect to a build-
ing and not a region.

Ji et al. (2019) detected damage buildings from pre- and
post-event very high-resolution (VHR) remote sensing imag-
ery using deep learning. They could get high accuracy, but
their system needs pre-event imagery data which may not
exist in the damage area. This means that their system may
not be able to validate in large area. Our system doesn’t need
pre-event aero photo images and it is assumed that Our system
can be used in large area.

Hezaveh et al. (2017) extracted roof damage from aero
photo images using deep learning in hail disaster. Their study
showed that deep learning can estimate roof damage in hail
disaster with high accuracy. Nex et al. (2019) estimate damage
area from aero photo images using deep learning in earth-
quake disaster. Their study showed that deep learning can
extract damage part of aero photo images in earthquake
disaster.

Considering these above studies, our study uses deep learn-
ing, aero photo images and trimming algorithm to estimate
damage buildings because using these methods can obtain
an overview of earthquake damage in large area by building
automatically and rapidly.

From the viewpoint of the damage certificate issuance, a
previous study has developed and validated the “Damage
Assessment Training System” in Niigata Prefecture Chuetsu
Earthquake, 2004, to unify the criterion of investigators with
prior training and ensure fairness (Horie et al., 2005).
Moreover, Murakami et al. (2012) analyzed the issuance of
damage certification work conducted in Uji city of Kyoto
prefecture to examine a rapid and an efficient method of the
work. Fujiu et al. developed database system using GIS to
make building damage assessment more rapid (Fujiu
et al., 2013). They showed that their system could assess their
damage levels using uploaded photos of damaged house taken
by residents or volunteer fire corps in damaged area. Although
these studies approach a more rapid issuance of damage cer-
tification work from the viewpoint of the investigators train-
ing, operation flow or getting data, no study has approached
the problem from aero-photo images.

4 Estimation System of Roof‐damaged
Buildings

4.1 Structure of the System

Figure 3 shows the structure of the system in this study. First,
the system performs the trimming algorithm from aero-photo
images and locates information on building polygons in GIS
to make a roof-image database. Considering the
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characteristics of a roof damage in an area, a part of the roof-
image database is used for deep learning training data.
Second, each label, whether the roof is damaged or not, is
put to each image in the training data manually. This system
uses supervised learning as image recognition model. Next,
the system makes a DCNN model learn feature of damage
roofs from the roof-image database and the label for training.
Finally, the system enables the DCNNmodel to estimate dam-
aged roofs from the remaining database and also estimate
damaged buildings.

A few days after an earthquake occurs, many victims cover
the damaged part of their roofs with blue sheets.
Consequently, if it takes a long time to take aero photos or
aero photos are taken again by aftershocks, many roofs are
expected to be covered with blue sheets. In this case, the
system must determine the damaged roofs based on the num-
ber of blue sheets present. Hence, the system involves the use
of two DCNN models, one for estimating the damaged roofs,
and another for estimating the blue sheets.

4.2 Application of the Proposed System

In this system, the estimation result is used in three ways to
ensure that the house damage investigations are rapid.

(1) The first way is to obtain an overview of damaged build-
ings in the region, the required time for investigation and
the number of investigators; instruments; and working
places. In view of the fact that available resource is lim-
ited owing to an earthquake, it is necessary for local
governments to obtain an overall damage overview and
also make the disaster-response plan rapidly and effec-
tively. In the current investigation, there are two ways to
determine buildings which are targets for investigation
like Table 1. Local governments select one of the two
ways or both for each region. The appropriate way is

selected depending on the damage scale of the region
because these ways have demerit and demerit respective-
ly as in the Table 1. Consequently, the estimation of
damaged buildings in the region is expected to enable
local governments to select the appropriate way for each
region and investigate more efficiently.

(2) The second way is to enable investigated buildings to
efficiently make a round investigation. If this system
can estimate and determine damaged buildings which
need investigation before the application of damage cer-
tificates from victims, investigators need not include
round buildings in the order of application. They can
investigate in an order which considers the geographical
condition of buildings efficiently. Additionally, they
need not to investigate undamaged buildings, thereby
reducing the number of unnecessary investigations.
Therefore, it is assumed that this way of investigation
using our system has both merits of the two current ways
in Table 1.

(3) The third way is to directly use each roof estimation for
damage score in house damage investigation. Although
investigators must sometimes calculate roof damage pro-
portion in the house damage investigation, they have no
choice than to look up from the outside. Furthermore, it
is assumed that the automatic calculation of the damage
proportion from aero-photo images helps to investigate
house damage more rapidly and exactly.

Although the third way can lead more rapid and accurate
investigation, this study deals with both the first and the sec-
ond ways at first. Because the third way needs more high
accuracy and, fine classification or regression model, the
way is not covered by this study. We consider the third way
as ultimate goal.

This system cannot estimate buildings with completely
crushed first floors and undamaged roofs. In Japan, quick

Fig. 3 Structure of the proposed system
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post-earthquake inspections of damaged buildings are imple-
mented to prevent secondary disasters (for example, buildings
collapse and components falling by aftershock) and protect
people safely. Hence, quick post-earthquake inspections of
damaged buildings are implemented earlier and less exactly
than the house damage investigation. As a result, this study’s
system does not have to estimate buildings with completely
crushed first floors and undamaged roofs.

4.3 Trimming Algorithm

In this system, the trimming algorithm constructs the roof-
image database automatically, with the use of aero-photo im-
ages and location information of building polygon vertex,
similar to Fig. 4. These polygons can be gotten from some
map such as Open Street Map.

First, the algorithm obtains both maximum and minimum
values of longitude and latitude of the building polygon vertex
from GIS and makes a circumscribed quadrangle. Next, the
algorithm determines whether each pixel in the circumscribed
quadrangle is in the building polygon. This judgement can be
understood from counting crossing points of building polygon
lines and lines drawn from the target point to the right end
point like Fig. 5. If the number of cross points is even, the
target point is out of the building polygon. In contrast, if the
number is odd, the target point is inside the building polygon.
This algorithm paints pixels outside building polygons with
black and pixels inside with the color as it is.

This algorithm enables the reduction of learning and esti-
mation time because time of making manually image data

where each building is reflected can be left out. Moreover,
the system can estimate building damage one by one because
of using building polygons. Additionally, removing parts ex-
cept buildings in photo images is expected to prevent mistak-
en learning and estimation for deep learning. This study uses
the trimming algorithm considering operation in an actual
earthquake.

4.4 Necessary Data in an Earthquake

In an earthquake, the system needs aero-photo images, loca-
tion information of building polygon in the damaged area and
label for deep learning as input data. However, because these
are existing data, the system doesn’t have to add new data and
systems to get data. The system can be utilized with only
existing data or system gathering data.

4.4.1 Aero-Photo Images

After a disaster happens, the Geospatial Information Authority
(GIA) of Japan takes aero-photo images of the damaged area
as important data for initial response, understanding the entire
damaged state, recovery and reconstruction (Geospatial
Information Authority of Japan, 2020). People can get these
aero-photo images for the purpose of disaster response or
research.

The disaster rescue team “DRONEBIRD”, which incorpo-
rated a nonprofit organization “Crisis Mappers Japan” admin-
isters, takes aero-photo images with drones having the latest
technology for rescue or support activity in natural disasters or

Table 1 Two methods of investigating buildings

Method Suitable case Merit Demerit

All buildings
in the area

Investigate→Apply→Issue Severe damaged area Investigators can make a round
efficiently in the large
earthquake.

Undamaged buildings must be investigated.
The number of investigations increases.

Only applied
buildings

Apply→Investigate→Issue Little damaged area Investigators can only
damaged buildings.

Investigation may not be executed in the
order adjoined geographically and efficiently.

It is difficult to predict the number of
investigated buildings and make plans
of obtaining staff.

Fig. 4 Trimming algorithm

356 Inf Syst Front (2023) 25:351–363

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



political riots (DRONE BIRD, 2020). In view of the fact that
their aero-photo images are uploaded on a website, people can
download the images freely (Open Aerial Map, 2020).

Although aero-photo images taken by the GIA have lower
resolution, they have a wider range area compared to the ones
taken by the DRONE BIRD. The images have more data
volume because of the wide range area and therefore
cannot be uploaded on a website. In contrast, though
aero-photo images taken by the DRONE BIRD have
higher resolution, they have smaller range area com-
pared to the ones taken by the GIA. Consequently, im-
ages have less data volume and can therefore be
uploaded on a website and downloaded from a distant
place immediately after an earthquake.

While the GIA aircraft images have 20 cm resolution, the
drone images have several centimeters resolution. To detect
tile roof damage, which is likely to be caused by an earth-
quake, the resolution requires at least 20-30 cm, which is the
size of one piece of tile. Hence, it is assumed that the above
aero-photo images have minimum necessary resolution.

4.4.2 Location Information of Building Polygons

Crisis Mappers Japan rapidly provides maps of damaged area
all over the world when natural disasters or political riots arise

(Crisis Mappers Japan, 2020). This organization enables
worldwide people to participate in drawing maps on the
Internet using an Open Street Map (OSM). In view of the fact
that geographic information in OSM is available to everyone,
this system can use the location information of building poly-
gons in the map (Kevin Curran et al. 2012). Although the
building location condition change every day because of con-
struction and destruction, maps drawn anew after a disaster
provide the newest information of residence and deal with the
gap owing to crustal movement by earthquake.

The accuracy of building polygons in an OSM de-
pends on skills or the prudence of drawing people.
When we used approximately 260 buildings in one area
of Osaka prefecture and calculated the overlap propor-
tion between OSM and basic map information of the
Japan Geographical Survey Institute, the proportion
was 59.62 %. This overlap proportion was the ratio of
intersection area to union area between two maps.
Currently aero-photo images, such as Bing-aero photos
are used as background pictures when the OSM in a
damaged region is drawn. However, these aero-photo
images sometimes have low resolution or were taken a
few years ago. Therefore, it is difficult to draw exact
building polygons. Subsequently, it is assumed that this
difficulty led to the reduction of the overlap proportion. Hence
forth, if aero-photo images taken after an earthquake occurs
are used as background pictures, OSM is expected to be more
exact and reflect newest information.

Fig. 5 Judging pixel

Fig. 6 Structure of AlexNet

Fig. 7 Breakdown of data in cross validation
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4.4.3 Label for Deep Learning

Deep learning needs labeling, whether a roof is damaged or
not, for training data. The labelling can be inputted by staffs of
local governments or crowdsourcing. In recent years, volun-
teers input data online for information support activity tomake
and use geospatial information, which is necessary for disaster
response like the above Crisis Mappers Japan or “National
Network for Emergency Mapping” (National Network for
Emergency Mapping, 2020).

5 Experiments of DCNN Model

5.1 DCNN Model

In this study, we used AlexNet as the DCNN model, which
won 2012 ILSVRC (world image recognition competition)
and the first deep learning model that exceeded the conven-
tional machine learning models (Krizhevsky et al., 2012) ac-
curacy. In view of the fact that models in the ILSVRC dis-
criminated one thousand kinds of objects, it is assumed that
AlexNet is a model for general use. Generally, increasing the
number of layers in deep learning leads to the enrichment of
the expressive power; however, the accuracy eventually
reaches its peak. Consequently, volume of calculation

increases and the learning time becomes longer. Therefore,
if we use the more complicated model that won the latest
ILSVRC (Zeiler & Fergus, 2014; Szegedy et al., 2015; He
et al., 2016; Hu et al., 2017), it may have high accuracy but
longer time, which is insignificant in this study. Considering
the above, in this study we use the Alexnet, which has the
fewest layers and is the simplest among the models which
won the ILSVRC. Figure 6 shows the structure of the
Alexnet in reference to original paper (Krizhevsky
et al., 2012). In Fig. 6, conv represents a convolutional layer
and fc represents a full connection layer. We implemented
AlexNet by python and tensorflow.

5.2 Learning Way

We used three datasets: training data to optimize parameters,
validation data to determine training time and test data to
evaluate the model. We did cross validation which changed
these dataset three times for exact evaluation like that in Fig. 7.
Furthermore, we did mini batch training with batch size 128
and changed the order of data in every epoch in the batch to
reduce deviation of data in the mini batch. We used momen-
tum optimizer, applying weight decay with 10− 5 learning rate.
Generally, excessive training time may lead to overfitting
(Prechelt 1998). To restrain the overfitting, we confirmed
the decline in the accuracy of the validation data and stopped
the training when overfitting began.

In an actual earthquake, the location accuracy of aero-
photo may not be exact and there may also be difference in
mapping skills between mapped people. Hence, it is difficult
to overlap actual buildings in aero-photo images and building
polygons in an OSM completely and also there is expected to
be somewhat gaps between them. From the above, although
there are somewhat gaps in the data we used as building poly-
gons like that in Fig. 8, we didn’t revise the gaps and
proceeded to train the data as it was.

5.3 Evaluation Criterion

In many damaged regions as a result of an earthquake, it is
expected that there are more undamaged buildings than dam-
aged ones. There is a gap between the number of data in two
classes for estimation. If we use accuracy (1) as the evaluation
criterion, estimating many data, as no damaged roof, increases
accuracy easily. This means that the system cannot obtain an
exact overview of damaged buildings in 4.2 (1) and may over-
look the damaged buildings in 4.2 (2). Similarly, if we use
recall (2) as the evaluation criterion, estimating many data, as
damaged roof, increases recall easily. This means that the
system cannot obtain an exact overview of damaged buildings
in 4.2.(1) and may increase unnecessary investigations of un-
damaged buildings in 4.2 (2). To deal with imbalance between
the number of data in the two classes, in this study, we used

Fig. 8 The gap between buildings and building polygons of OSM

Table 2 Confusion matrix

舃Actual

舃Damage 舃No damage

舃Estimate 舃Damage 舃TP 舃FP

舃No damage 舃FN 舃TN
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balanced accuracy (4), which does not depend on the propor-
tion of data in the classes. Balanced accuracy is the mean of
the recall and the specificity (3). TP, TN, FP and TP in the
equations below are referenced by the confusion matrix in
Table 2.

accuracy ¼ TP þ TN
TP þ FP þ FN þ TN

ð1Þ

recall ¼ TP
TP þ FN

ð2Þ

specificity ¼ TN
FP þ TN

ð3Þ

balancedaccuracy ¼ recall þ specificity
2

ð4Þ

However, in the present experiment, we used the same
number of test data in the two classes. Therefore, in this study,
balanced accuracy equals accuracy.

Apparently, there is no clearly defined accuracy which is
required in the actual work of the house damage investigation.
Therefore, we set up a 90% balanced accuracy as the required
accuracy in the case of obtaining an overview of damaged
buildings (4.2 (1)), a 90 % balanced accuracy and a 95 %
recall as the required accuracy in the case of determining in-
vestigated buildings (4.2 (2)). Using recall implies that this
system prioritizes the reduction of overlooking data (FN) in
mistaken data (FP and FN). If this overlooking of investigative
buildings happens, some supports cannot reach victims who
need them. However, buildings of FP data are investigation
targets because they are estimated as damage data by this
system. Their mistaken (FP) can be revised at the

investigation. Additionally, many regions may have much un-
damaged buildings than damaged ones in general.
Furthermore, if people revise mistaken data of this system’s
estimation to get more reliable data, they may revise the esti-
mated data as damaged buildings (TP and FP), considering the
smaller number of data. Therefore, the probability of revising
FP data is higher than FN data. From the above, this study
used not only balanced accuracy but also recall as a way of
determining investigated buildings (4.4 (2)).

5.4 Estimation of Blue Sheets

We used aero-photo images taken by drone in the Ibaraki city
of Osaka prefecture after the Northern Osaka’s earthquake and
location information of building polygons in OSM. We ex-
cluded some data which we cannot label because of low res-
olution, failure of ortho process and big gap between buildings
and polygons.

The number of data used is shown Table 3. We increased
data by rotation, horizontal reverse and contrast change of
image to get a high accuracy and subsequently make a robust
model. Furthermore, we made the number of training data in
the two classes equal to have a high balanced accuracy.
Putting label on each image took about 4 s. The total time
was about 4 h.

This result is shown in Table 4. The mean of the balanced
accuracy was 97.57% and the mean of recall was 96.74%.
Stopped training times was 3000 times, and training time was
about 65 min using GPU (GeoForce GTX TITAN X).

5.5 Estimation of Direct Damage

We used aero-photo images taken by aircraft in the Mashiki
city of Kumamoto prefecture after the 2016 Kumamoto
Earthquake and location information of building polygons in
OSM. Additionally, we excluded some data which we cannot
label even by human sight because of the low resolution of the
aero photo images.

Table 3 The number of data
Blue sheet No blue sheet Damage No damage

Training data 4416(276×16) 4416(2208×2) 7920(495×16) 7920(3960×2)

Validation data 1472(92×16) 1472(736×2) 2640(165×16) 2640(1320×2)

Test data 2944(184×16) 2944(1472×2) 5280(330×16) 5280(2640×2)

Table 4 Result of the estimation

Blue sheet Direct damage

Balanced accuracy Recall Balanced accuracy Recall

1st time 98.30% 98.30% 92.63% 87.86%

2nd time 97.12% 95.38% 94.46% 92.95%

3rd time 97.28% 96.54% 93.43% 95.23%

mean 97.57% 96.74% 93.51% 92.01%

Table 5 Examples of used data

Blue sheet No blue sheet

Training data 4896(306×16) 4900(2450×2)

Validation data 1232(77×16) 1180(590×2)

Test data 169 2702
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The number of data used is shown in Table 3. We also
increased data by data augmentation. Furthermore, we also
made the number of training data in the two classes equal.
Putting label on each image took about 6 s. The total time
was about 15 h.

This result is shown in Table 4. The mean of the balanced
accuracy was 93.51% and the mean of recall was 92.01%.
Stopped training times was 3000 times, and training time was
about 65 min using GPU (GeoForce GTX TITAN X).

5.6 Used Example

We used the system in one area of Ibaraki city to show the
used example. Table 5 represents the number of used data and
Table 6 represents the confusion matrix of the result.

For obtaining an overview of damaged buildings (4.2
(1)), although the actual proportion of the damaged
buildings was 5.886% (169/2871), the estimation of the sys-
tem was 11.25% ((162 + 161)/2871). Consequently, it is as-
sumed that this overestimation was caused by many mistaken
data of the actual no blue sheet data. When an area has more

undamaged roofs than damaged ones, the system is expected
to overestimate.

When determining the investigated buildings (4.2 (2)), the
system can reduce 2871 investigated buildings to 323
(11.25 %). However, this result means that the system
overlooked 7 damaged buildings.

Furthermore, by referencing location information of
each image data from GIS, the system can visualize
the estimation result onto some maps or aero-photo im-
ages like as seen in Figs. 9 and 10. It is assumed that
local governments can make an efficient plan for inves-
tigation from the visualized map.

6 Challenges of the System in Operation

6.1 Aero‐photo Images

The system is expected to use aero-photo images taken by
drones or aircrafts. Aircrafts can take photos in a large area
in the form of one prefecture, approximately within one week.
However, photos taken by the Geospatial Information
Authority have 20 cm resolutions. Roughly 20 % of the
roof-image database images, used in the estimation of direct
damage, could not be categorized (damage and no damage)
even by the naked eye; hence, they were removed from the
training data in our experiments. However, drones of some
organizations, such as the DRONE BIRD can take aero-
photo images with a high resolution, in the order of several
centimeters. However, drones take photos only in small areas,

Table 6 Confusion matrix of used examples

Actual

Blue sheet No blue sheet

Estimate Blue sheet 162 161

No blue sheet 7 2541

Fig. 9 Map visualizing
estimation result on map (blue
paint: actual blue sheet; red frame:
estimated blue sheet)
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of approximately 10 ~ 20 square kilometers, owing to their
smaller battery life.

The system therefore needs to improve its method of using
aero-photo images. Example includes that photos taken by
drones are used only as training data either in a severely dam-
aged area, a thickly housed area, or the one in which changes
have taken place due to aftershocks. Because drones and air-
crafts havemerit and demerit respectively, the system needs to
use both photos properly like above examples.

6.2 Accuracy of Building Polygons

The accuracy of building polygons in an OSM is not high at
present, as shown in 4.4.2 and other study (Girres &
Touya, 2010). To improve this accuracy, mappers must be
capable of creating precise drawings and the latest aero photo
taken after earthquake must be used as the background map
while drawing. According to Taichi Furuhasi, the trustee of
Crisis Mappers Japan, in the 2016 Kumamoto Earthquake,
approximately 17,000 building polygons in Mashiki city were
drawn by a total of 122 mappers for approximately one day.
Therefore, the system does not encounter any difficulties in
terms of the time required to draw the building polygons.

6.3 People Putting Label for Deep Learning

If the labels for the data, used by the deep learning model, is
input by the volunteers via crowdsourcing, a significant
amount of labelled data can be generated. However, the accu-
racy of the labels cannot be completely ensured. Although
some incorrect labels by the volunteers lead to inaccuracies
in the estimation, no one may take responsibility.

Whereas, if staffs of the involved organization, such as
local governments, provide the labels, the accuracy can be
ensured to a certain extent, as they would be more responsible
to toward the labelling task. However, a significant amount of
labelled training data cannot be generated, because the num-
ber of that stuff is much smaller than volunteers.

Going forward, we need to consider the amount of neces-
sary training data and time required for labeling in order to
select an appropriate labelling method.

7 Discussion

In the blue sheet estimation, the mean of the balanced accura-
cy and recall were 97.57% and 96.74%, respectively. These
values exceeded the level of accuracy required in obtaining an
overview of the damaged buildings and determining the in-
vestigated buildings. In the direct damage estimation, the
means of the balanced accuracy and recall were 93.51 % and
92.01%, respectively. These values also exceeded the level of
accuracy required with regard to obtaining an overview of
damaged buildings but not in the determination of the inves-
tigated buildings because low recall means leading
overlooking of damage buildings.

From the above result, it is assumed that local governments
can know which area has large damage. This is good for not
only local government but also victims because their buildings
which are estimated as damage can be investigated preferen-
tially. Additionally, it is assumed that high recall in the blue
sheet estimation can prevent overlooking.

Subsection 5.6 presented a used example, where the system
was operated in an actual disaster. The system was found to be

Fig. 10 Map visualizing
estimation result on aero photo
(blue point: actual blue sheet; red
point: estimated blue sheet)
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capable of estimating the buildings that needed investigation
and also reduce the number of investigations efficiently, al-
though the accuracy of estimation for direct damage may de-
crease. However, if the target area has more undamaged build-
ings than damaged ones, the system was found to overestimate
damaged buildings. In the future work, we must consider the
reduction of the overestimation to make the system more prac-
tical. Additionally, in both these applications, we must not only
consider the damaged roofs of buildings but also other damaged
parts. Furthermore, considering that these damaged buildings
could not be detected by our system, we must use information
of other investigations, such as quick post-earthquake inspec-
tions of damaged buildings or other estimation methods.
Moreover, local governments can use map visualizing
estimation result to make an efficient investigation plan.

The accuracy of the direct damage estimation was lower than
that of the blue sheet in 5.4. and 5.5 experiments. It is assumed
that this is caused by the lower resolution of the aero photo data
and the difficulty in the extraction of direct damage features.
While we used aero-photo images by drones in the estimation
of blue sheet, aero-photo images by aircrafts were used in the
estimation of direct damage. Generally, deep learning requires a
considerable amount of training data to increase its accuracy.
However, there are few high resolution aero-photo images, par-
ticularly aero-photo images including direct damage, owing to
the very low frequency of earthquake disasters and the relatively
short span of time since the development of drone techniques.
Additionally, because many victims cover the damaged parts
of their roofs with blue sheets few days after an earthquake
occurs, it is extremely difficult for organizations from the out-
side of the damaged area to take aero-photo images.
Therefore, some organizations, companies, and research insti-
tutes need a structure that can enable data to be shared among
them such that sufficient training data is available for the
system.

Further considerations will be needed to obtain more find-
ings about the data, model, and learning methods to improve
the accuracy of the system and address the challenges encoun-
tered during actual operations.
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