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Frequency-Domain Model Order Reduction of Electromagnetic 

Field in Induction Motor   
 

Toru Shimonishi1, Takeshi Mifune1, and Tetsuji Matsuo1 

 
1Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan 

 

A model order reduction method for an induction motor using a Cauer ladder network is developed in the frequency domain. A 

multiport frequency transformation between the stator and mover domains is derived by neglecting the spatial harmonic interactions. 

Even after neglecting the harmonic interactions, the reduced model provides a reasonably accurate frequency response, which is more 

accurate than that of the conventional approximated equivalent circuit. 

 
Index Terms—Cauer ladder network, induction motor, model order reduction, spatial harmonics  

 

I. INTRODUCTION 

N recent years, the need for an efficient analysis of motor 

drive systems has led to the research on model order 

reduction (MOR) of motors to avoid time-consuming finite 

element analyses. Based on a magnetostatic approach, the MOR 

of synchronous motors has been realized [1], [2]. The MOR of 

induction motors [3]–[5] is under development to cover a wide 

range of operational conditions. The Cauer ladder network 

(CLN) method [6] is an efficient and convenient MOR method. 

Its multiport version has been applied to the MOR of a linear 

induction motor [3], where the stator and mover domains are 

separately reduced and connected through spatial harmonic 

components at the air gap in the time domain to accurately 

reproduce time-dependent field variables. 

Even though the frequency domain analysis is an efficient 

tool to evaluate steady-state motor properties, the application of 

the CLN-based MOR [3], [5] to the frequency domain analysis 

of induction motors was difficult because the spatial harmonics 

from the slot structure are converted to temporal harmonics. 

Accordingly, even a sinusoidal current/voltage input yields a 

distorted voltage/current waveform, which prevents a 

characteristic analysis under a single frequency condition.  

The generation of multiple harmonics results from the 

interactions between spatial harmonic components, which are 

represented by the off-diagonal elements of the multiport 

impedance/admittance matrices in the CLN. Based on this 

knowledge, this study discusses the frequency transformation 

between the stator and mover domains to derive the MOR of an 

induction motor in the frequency domain to evaluate the motor 

property efficiently without transient computation. 

II. MULTIPORT CLN METHOD 

A. Multiport CLN method 

The eddy-current field in the finite element space is  

 
 𝑪T𝝂𝑪𝒂 = 𝝈𝒆 + 𝒋𝟎 ,  𝑪𝒆 = −j𝜔𝑪𝒂   (1) 

 

where a is the variable vector of vector potential, e is the 

variable vector of electric field, j0 is the imposed current, σ is 

the conductivity matrix, ν is the reluctivity matrix, C is the 

edge-face incident matrix, and CTνC is the stiffness matrix for 

the finite element eddy-current analysis.  

Let 𝑀  be the number of ports in the reduced model. The 

multiport CLN method [3] recursively constitutes the matrices 

𝒂2𝑛−1  and 𝒆2𝑛  that compose the basis vectors of the vector 

potential and the electric field, respectively. They are 

represented as 
 

 𝒂2𝑛−1 = (𝒂1,2𝑛−1, … , 𝒂𝑀,2𝑛−1) 

 𝒆2𝑛 = (𝒆1,2𝑛, … , 𝒆𝑀,2𝑛).    (2)  
 
The multiport CLN method generates 𝒂2𝑛−1  and 𝒆2𝑛  by 

sequentially solving (3) and (4): 
 

 𝑪T𝝂𝑪(𝒂2𝑛+1 − 𝒂2𝑛−1) = 𝝈𝒆2𝑛𝑹2𝑛  (3) 
 

 𝒆2𝑛+2 − 𝒆2𝑛 = −𝒂2𝑛+1𝑳2𝑛+1
−1  , (4) 

 
where 𝑳2𝑛−1  and 𝑹2𝑛  are the inductance and resistance 

matrices of size 𝑀 ×𝑀. They are given by 
 

 𝑳2𝑛−1 = {𝐿2𝑛−1,𝑙,𝑚}, 

 𝐿2𝑛−1,𝑙,𝑚 = 𝒂𝑙,2𝑛−1
T 𝑪T𝝂𝑪𝒂𝑚,2𝑛−1   (5) 

 

 𝑹2𝑛
−1 = {𝐺2𝑛,𝑙,𝑚}, 

 𝐺2𝑛,𝑙,𝑚 = 𝒆𝑙,2𝑛
T 𝝈𝒆𝑚,2𝑛.   (6) 

 
The electromagnetic fields are expanded using the basis 

vectors obtained above as  

2 1 2 1 2 2,n n n nn n− −= = a a I e e V  . (7) 

Here, I2n−1 and V2n are coefficient vectors, which are determined 

by the matrix Cauer network in Fig. 1.  

 

 
Fig. 1. Matrix Cauer network when M =2. 
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Fig. 2. Linear induction motor (unit: mm). 

 

When the number of Cauer ladder stages is N, the 

construction of CLN roughly costs NM times as much as the 

solution of (1) in the finite element analysis. The nonlinear 

analysis is realized by parametrizing the inductance and 

resistance matrices depending on the degree of saturation [7]. 

B. Spatial harmonic decomposition  

The three-phase linear induction motor in Fig. 2 [3] is 

analyzed; the stator domain is separated from the mover domain 

at the air gap. For simplicity, the motor length is supposed to be 

long enough so that the spatially periodic boundary condition 

can be applied. The multiport CLN method is applied to the 

stator and mover domains independently with the magnetic 

field and electric field at the air-gap interface as the input and 

output, respectively. 

(𝑥, 𝑦, 𝑡) and (𝑥′, 𝑦′, 𝑡′) are the coordinates of the stator and 

mover domains, respectively, where  
 
 𝑥′ = 𝑥 − 𝑣𝑡, 𝑦′ = 𝑦, 𝑡′ = 𝑡 .  (8) 

 
The mover moves in the 𝑥-direction at a velocity of 𝑣. The two 

domains are connected by an electric field 𝐸𝑧 and a magnetic 

field 𝐻𝑥  at the air-gap interface. Using the time-dependent 

terms ejωt and ejωt’ in the stator and mover domains, respectively, 

the magnetic fields 𝐻𝑥 and 𝐻𝑥
′  of the stator and mover domains, 

respectively, are decomposed as follows:  

𝐻𝑥(𝑥, 𝑡) = √2∑ [𝐻c𝑚 cos(𝑚𝑘𝑥) + 𝐻s𝑚 sin(𝑚𝑘𝑥)]ej𝜔𝑡
𝑚

 

𝐻𝑥
′ (𝑥′, 𝑡′) = √2∑ [𝐻c𝑚

′ cos(𝑚𝑘𝑥′) + 𝐻s𝑚
′ sin(𝑚𝑘𝑥′)]ej𝜔𝑡

′

𝑚
 

      (9) 

where 𝑘 = 𝜋/𝑊 is the wave number, and 𝑊 is half the spatial 

period. Assuming antiperiodic boundary condition for half-

spatial period, the coefficient vectors are represented only with 

odd harmonic components as: 
 

 
𝑰 = [𝐻c1, 𝐻s1, 𝐻c3 , 𝐻s3, ⋯ ],

𝑰′ = [𝐻′
c1, 𝐻

′
s1, 𝐻

′
c3, 𝐻

′
s3, ⋯ ]

 . (10) 

 
Similarly, the electric fields at the interface are represented by 

the coefficient vectors as 
 

 
𝑽 = 𝑊[𝐸c1, 𝐸s1, 𝐸c3, 𝐸s3, ⋯ ],

𝑽′ = 𝑊[𝐸′
c1, 𝐸

′
s1, 𝐸

′
c3, 𝐸

′
s3, ⋯ ]

.  (11) 

 

 
𝜱 = 𝑊[𝐴c1, 𝐴s1, 𝐴c3, 𝐴s3, ⋯ ],

𝜱′ = 𝑊[𝐴′c1, 𝐴
′
s1, 𝐴

′
c3, 𝐴

′
s3, ⋯ ]

.  (12) 

 
where  
 

 j= −V Φ  , j  = −V Φ .  (13) 
 

C. Matrix Cauer form representation  

The three-phase source current and voltage are defined as 

 𝑰0 = [𝐼𝑈 , 𝐼𝑉 , 𝐼𝑊], 𝑽0 = [𝑉𝑈, 𝑉𝑉 , 𝑉𝑊].  (14) 
 
In this study, the iron loss is neglected for simplicity, even 

though it can be considered by homogenization [3]. In this case, 

the input to the multiport CLN for the stator is (𝑰0, 𝑰), which is 

related to the output (𝑽0, 𝑽) as:  
 

 𝑽0 = 𝒁00𝑰0 + 𝒁01𝑰 
 𝑽 = 𝒁10𝑰0 + 𝒁11𝑰 .   (15) 

 
The relation in the mover domain is represented as 
 

 𝑽′ = 𝒁′𝑰′    (16) 
 
where Z' is the impedance matrix in the mover domain. These 

variables are used in both the frequency and time domains for 

simplicity of notation. The multiport transfer functions above 

are given in matrix continued fraction forms, meaning they are 

represented by matrix Cauer forms, as shown in Fig. 1.  

D. Representation in frequency domain 

The interface magnetic fields 𝐻𝑥 and 𝐻𝑥
′  are rewritten using 

the forward and backward wave components as 
 

 
j j j

f b2 ( e e )emkx mkx t
x m mm

H H H −= +  

 
j j j

f b2 ( e e )emkx mkx t
x m mm

H H H   −  = + . (17) 

 
Using (8), the components of Hx are rewritten as   
 

 f b

j [1 (1 )] j [1 (1 )]

f b

j j j

j j

(

e

)e e

e e e

m m

m s t m s t

mkx mkx t

mkx mk

m

x

m

H H

H H

e 

 

−

 −  − − + −= +

+
 (18) 

 
where s is the slip that is defined from the moving speed v as 
 

 𝑣 = (1 − 𝑠)
𝜔

𝑘
.    (19) 

 
From (17), (18) and the boundary condition Hx = Hx', the 

boundary condition of the forward and backward wave 

components at the gap interface are given as 
 

𝐻𝑓𝑚(j𝜔) = 𝐻f𝑚
′ (j𝜔[1 −𝑚(1 − 𝑠)]) = 𝐻f𝑚

′ (j𝜔f𝑚
′ ) 

𝐻b𝑚(j𝜔) = 𝐻b𝑚
′ (j𝜔[1 + 𝑚(1 − 𝑠)]) = 𝐻𝑏𝑚

′ (j𝜔b𝑚
′ ) 

      (20) 
 
where 𝜔f𝑚

′  and 𝜔b𝑚
′  are the angular frequencies of the forward 

and backward waves, respectively, depending on 𝑠. They are 

defined as 
 

 𝑠f𝑚 = 1 −𝑚(1 − 𝑠), 𝑠b𝑚 = 1 +𝑚(1 − 𝑠) 
 𝜔f𝑚

′ = 𝑠f𝑚𝜔,𝜔b𝑚
′ = 𝑠b𝑚𝜔  (21) 

 
where 𝑠f𝑚 and 𝑠b𝑚 are the slips of the forward and backward 

waves, respectively. Similarly, the boundary condition for the 

vector potential is given as 
 

 Afm(jω) = A′fm(jω′fm) , Abm(jω) = A′bm(jω′bm). (22) 
 
Using the vector potential, the electric field is given as  
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 Efm = –jωAfm , Ebm = –jωAbm ,  

 E′fm = –jω′fmA′fm , E′bm = –jω′bmA′bm.   (23) 
 
Consequently, the boundary condition for the electric field is 

given as 
 

 𝐸f𝑚
′ (j𝜔f𝑚

′ ) = 𝑠f𝑚𝐸f𝑚(j𝜔), 

 𝐸b𝑚
′ (j𝜔b𝑚

′ ) = 𝑠b𝑚𝐸b𝑚(j𝜔).  (24) 
 
The forward and backward wave components of the magnetic 

and electric fields are represented by coefficient vectors as 
 

 𝑯 = [𝐻f1, 𝐻b1, 𝐻f3, 𝐻b3, … ], 
 𝑯′ = [𝐻′f1, 𝐻′b1, 𝐻′f3, 𝐻′b3, … ]  (25) 

 
 E = W [Ef1, Eb1, Ef3, Eb3, …] ,  

 E’ = W [E′f1, E′b1, E′f3, E′b3, …].  (26) 
 
The comparison of (17) with (9) gives the relationships between 

the cos/sin components and the forward and backward wave 

components as: 
 
 𝑬 = 𝑸𝑽 , 𝑯 = 𝑸𝑰  

 𝑬′ = 𝑸𝑽′ , 𝑯′ = 𝑸𝑰′   (27) 
   
where 𝑸 is the transformation matrix given as 
 

 𝑸 = blockdiag[𝑷, 𝑷, … ]   (28) 
 

 𝑷 = [
1/2 j/2
1/2 −j/2

] , 𝑷−1 = [
1 1
−j j

]. (29) 

 
The slip matrix 𝒔 is defined as 
 
 𝒔 = diag[𝑠f1, 𝑠b1, 𝑠f3, 𝑠b3, … ].  (30) 
 
Using 𝒔, (24) can be written as  
 

 𝑬′ = 𝒔𝑬 ,    (31) 
 
whereas the boundary conditions of the magnetic field are given 

as 
 

 𝑯′ = 𝑯.     (32) 
 

E. Derivation of motor impedance matrices 

Equation (16) represents the relation for the sin/cos 

components on the mover side, which are converted to the 

relation for forward/backward wave components as 
 

 E′ = QZ′Q–1H′ = Z′H′ ,   

 Z′ = QZ′Q–1    (33) 
 
where Z′ is the impedance matrix for the forward/backward 

wave components on the mover side. Note that Z′ depends on 

the slip frequencies (sfmω or sbmω), which are functions of the 

harmonic order m. In the moving coordinate, the angular 

frequency depends on the harmonic order m, where the 

backward wave has a different angular frequency from that of 

the forward wave. 

From (31), (32), and (33), the relation for the 

forward/backward components on the stator side is given as:  
 

 E = s–1Z′H′ = Z′′H ,   

 Z′′ = s–1Z′ = s–1QZ′Q–1   (34) 
 
where Z′′ is the impedance matrix for the forward/backward 

wave components on the stator side. The relation for the sin/cos 

components on the stator side is given as 
 

 V = Q–1Z′′QI = Z′′I ,   

 Z′′ = Q–1Z′′Q    (35) 
 
where Z′′ is the impedance matrix of the sin/cos components in 

the stator.  

Using (15) and (35), the magnetic field I at the gap interface 

is given by  
 

 I = (Z′′ – Z11)–1 Z10I0.   (36) 
 

The motor impedance matrix 𝒁0 is defined from 𝑽0 = 𝒁0𝑰0 , 

which is obtained by eliminating 𝑰  from (15) and (36) as 

follows: 
 

 𝒁0 = 𝒁00 + 𝒁01(𝒁
′′ − 𝒁11)

−1𝒁10.  (37) 
 

The air-gap power P2 transferred to the mover domain is 

given by P2 = Re(−VTI*), where * denotes the complex 

conjugate. The thrust force Fx = ∫0
WHxBydx at the air gap is 

obtained as follows [3]: 

 Fx = Re(BTI*),     (38) 

where B is given as  

 B = kW [−As1, Ac1, −3As3, 3Ac3, …] .  (39) 

A factor of 1/2 is used by P2 and Fx above if the coefficients are 

not effective values, but temporal amplitudes.  

F. Approximation of spatial harmonic interactions  

The spatial harmonic components are not independent but 

interact with each other. For example, even if I′ has only the l-

th spatial harmonic component on the mover side, V′ given in 

(16) has the l′-th component unless the (l′, l)-element of Z′ is 0. 

The l′-th component of V′ is converted to V in the stator domain 

with a different temporal frequency because of the frequency 

transformation (21). Accordingly, frequency domain analysis 

becomes difficult because the interaction converts the slot 

harmonics into temporal harmonics due to the slot structure. 

Accordingly, even a sinusoidal current/voltage input yields 

temporal harmonics of the voltage/current waveform, which 

prevents motor analysis under a single frequency condition.  

Similarly to Z′, the interactions among the spatial harmonic 

components are represented by the off-diagonal elements of the 

multiport impedance/admittance matrices in the CLN. To 

realize the frequency domain analysis, the spatial harmonic 

interaction is neglected in the mover-domain CLN, as follows:  

[Method A]–The off-diagonal components of the mover 

network element matrices are ignored after constructing them 

using the multiport CLN method.  

[Method B]–Each diagonal component of 𝒁′  is 

independently computed by the single-port CLN method 

without considering the other harmonic components. To 

compute only the diagonal elements, (5) and (6) are modified.  
 

 𝑳2𝑛−1
′ = diag(𝐿2𝑛−1,1,1𝑙

′ , 𝐿2𝑛−1,3,3
′ , … ), 

 𝐿2𝑛−1,𝑙,𝑙
′ = 𝒂𝑙,2𝑛−1

T 𝑪T𝝂𝑪𝒂𝑙,2𝑛−1,  (40) 
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 𝑹2𝑛
′−1 = diag(𝐺2𝑛,1,1

′ , 𝐺2𝑛,3,3
′ , … ), 

 𝐺2𝑛,𝑙,𝑙
′ = 𝒆𝑙,2𝑛

T 𝝈𝒆𝑙,2𝑛.   (41) 
 
The process of the multiport CLN method using method B is 

equivalent to performing a single-port CLN M times. 

The approximations above neglect the generation of 

additional temporal harmonics assuming that their contribution 

to the average motor characteristics is small.  

III. NUMERICAL ANALYSIS  

A sinusoidal three-phase current I0 with an amplitude of 1 

AT is fed to the linear induction motor [Fig. 2]. The resistance 

of the stator windings is not included in the stator-side CLN; 

however, it can be inserted between the power source and 

stator-side CLN. The relative permeability of the iron core is 

1000 and the conductivity of the mover bar is 3 × 107 S/m. Fig. 

3 shows the frequency dependence of the inductance observed 

from one phase of the three-phase ports when the 1st to 11th 

spatial harmonic components are considered. The slip is set to 

0.1. There are four stages of the Cauer circuit in the mover 

domain. Method B provides a result closer to that of the finite 

element analysis in the high-frequency range than method A.  

Fig. 4 shows the speed dependence of the thrust force Fx and 

gap power given by method B at 50 Hz, where the 1st to 

(2K−1)th spatial harmonics are included with K = 1, 4, and 6. 

The accuracy is improved by including higher spatial 

harmonics. It seems reasonable to choose 2K−1 a little larger 

than the numbers of stator slots and mover bars per pole-pair 

for accurate analysis.  

Next, the frequency-domain analysis using method B was 

compared with the analysis using the conventional approximate 

equivalent circuit [8]. Fig. 5 shows the speed dependence of Fx 

at 50 Hz, where the mean square errors compared with the finite 

element analysis are indicated in parentheses (“er.”). The 

approximate equivalent circuit is less accurate than the CLN 

method in the frequency domain with the 1st to 11th spatial 

harmonics.  
 

 
Fig. 3. Frequency dependence of inductance.  
 

IV. CONCLUSION 

The MOR of the induction motor in the frequency domain 

was realized by neglecting the interaction between the spatial 

harmonic components at the gap interface. Because the spatial 

harmonics are multiple inputs in the multiport CLN method, 

neglecting the spatial harmonic interaction results in the single-

port CLN method. The proposed frequency-domain method 

provides reasonably accurate properties of the induction motor, 

which are more accurate than the conventional equivalent 

circuit.  
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