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Syncytin-2 is a membrane fusion protein involved in placenta development

that is derived from the endogenous retrovirus envelope gene acquired in

the common ancestral lineage of New World and Old World monkeys

(OWMs). It is known that syncytin-2 is conserved between apes and

OWMs, suggesting its functional importance; however, syncytin-2 of com-

mon marmosets (Callithrix jacchus) exhibits lower fusogenic activity than

those of humans and OWMs in human cell lines. To obtain insight into

the functional diversity of syncytin-2 genes in primates, we examined the

syncytin-2 gene in New World monkeys (NWMs). We experimentally eval-

uated the cell fusion ability of syncytin-2 in humans, C. jacchus, and tufted

capuchins (Sapajus apella). We found that the cell fusion ability of

S. apella was lower than that of human syncytin-2. Chimeric syncytin-2

constructs revealed that the amino acid differences in the surface unit of

S. apella syncytin-2 were responsible for the weak cell fusion activity. In

addition, genomic sequence analyses of syncytin-2 revealed that the open

reading frames (ORFs) of syncytin-2 were highly conserved in seven apes

and 22 OWMs; however, the syncytin-2 ORFs of three of 12 NWM species

were truncated. Our results suggest that syncytin-2 in several NWMs may

be of less importance than in OWMs and apes, and other syncytin-like

genes may be required for placental development in various NWM species.

Approximately 9% of the human genome consists of

endogenous retroviruses (ERVs) [1]. Endogenous

retroviruses originate when an exogenous retrovirus

infects the host germline; the reverse transcriptase and

integrase cause the integration of the entire length or

part of the retroviral genome into the host genome.

Although ERVs code various functional retrovirus-

derived genes, most have lost their function during the

long evolution process; however, some have obtained

new functions in the hosts [2]. One example is syncytin

genes derived from ERV envelope genes [3,4]. Syncytin

is specifically expressed in the placenta and retains

plasma membrane fusion activity as retroviral envelope

genes, contributing to the fusion of trophoblast cells in

the placenta.

In humans, two syncytin genes—syncytin-1 and

syncytin-2—have been reported to be involved in pla-

cental development, particularly for the cell fusion

process of cytotrophoblast cells into a multinucleated

layer called syncytiotrophoblast [5]. Syncytin-1 derived

from an ERV-W envelope was inserted in the ancestor

of the Old World monkey (OWM) lineage, but their

open reading frames (ORFs) are conserved only in

the ape lineage, including humans [6]. Syncytin-1 pro-

tein expresses in placental syncytiotrophoblasts and

exhibits cell fusion ability [3,4]. Meanwhile, syncytin-2
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derived from human endogenous retrovirus (HERV)-

FRD was acquired in the common ancestor of Simi-

iformes (i.e., simians), including New World monkey

(NWM) and OWM lineages, the ORFs of which are

reported to be conserved [7]. Human syncytin-2

expresses primarily in cytotrophoblasts and uses major

facilitator superfamily domain-containing protein 2A

(MFSD2A) as a receptor that is expressed predomi-

nantly in syncytiotrophoblasts [8]. Therefore, cytotro-

phoblasts expressing syncytin-2 fused with

syncytiotrophoblasts expressing MFSD2A and trans-

formed into syncytiotrophoblasts [8]. In experiments

using BeWo cells and primary human trophoblast

cells, cell fusion activity was significantly reduced when

the expression of syncytin-2 was suppressed compared

with that of syncytin-1, suggesting that syncytin-2

plays a significant role in trophoblast cell fusion in

humans [9]. Cell fusion activity of syncytin-2 was

thought to be conserved among simians, including

apes, OWMs, and NWMs; however, the syncytin-2

fusion ability of common marmosets (Callithrix jac-

chus) was observed using feline G355-5 cells and

showed no fusion activity in human 293T and TE671

cells [7]. This observation suggests that the fusion

activity of syncytin-2 genes in NWMs could differ

from those of syncytin-2 in apes and OWMs.

To obtain insights into the functional diversity of

syncytin-2, we investigated the molecular function of

syncytin-2 genes in NWMs. For this purpose, we eval-

uated the cell fusion ability of syncytin-2 in the two

NWMs, C. jacchus and tufted capuchins (Sapa-

jus apella, also known as Cebus apella), and found that

it was lower than that in humans. We also compared

the amino acid sequences of syncytin-2 in 41 species of

simians and found they were truncated in some

NWMs. Our results suggest that syncytin-2 might be

less important for the cell fusion process during pla-

cental development in NWMs, possibly as a result of

replacing other syncytin-like genes.

Materials and methods

Cell culture

293T embryonic kidney cells (#RCB2202; Riken BioRe-

source Research Center, Tsukuba, Japan) and G355-5

feline astrocyte cells (#CRL-2033; American Type Culture

Collection, Manassas, VA, USA) were added to Dulbecco’s

Modified Eagle’s Medium (#5796; Sigma-Aldrich, Tokyo,

Japan) with inactivated fetal bovine serum (Thermo Fisher

Scientific, Waltham, MA, USA) and Penicillin–Strepto-
mycin Mixed Solution (#09367-34; Nacalai Tesque, Kyoto,

Japan) and cultured at 37 °C and 5% CO2 levels.

Plasmid

The human syncytin-2 expression plasmids (phCMV3-

Syn2+400) were used as those previously reported [10]. Geno-

mic DNA was extracted from whole blood samples using a

PureLink Genomic DNA Mini Kit (Thermo Fisher Scientific)

to construct syncytin-2 expression plasmids of C. jacchus and

S. apella. Blood samples from S. apella (individual number

Ca18, male) were collected following a protocol approved by

the President of Kyoto University after review by the Institu-

tional Animal Care and Use Committee (permission number:

2012-017). Blood samples from C. jacchus (individual number

Cj181, male) were obtained during blood glucose monitoring

as part of healthcare, and therefore we did not have a permis-

sion number. All individuals were bred and born at the Kyoto

University Primate Research Institute.

The syncytin-2 protein-coding sequence and 300 bp of the

30 untranslated region (UTR) were included from the extracted

genomic DNA and amplified by polymerase chain reaction

(PCR). Amplicons were cloned into EcoRI and BamHI sites

of phCMV3 vector (#P003300; Genlantis, San Diego, CA,

USA) using NEBuilder HiFi DNA Assembly Cloning Kit

(#M5520AA; New England BioLabs Inc., Ipswich, MA,

USA). The inserted Syncytin-2 protein-coding sequence was

confirmed by Sanger sequencing (Fasmac Co., Ltd., Tokyo,

Japan) to be identical to the reference genome in RefSeq genes

(humans, NM_207582.3; C. jacchus, NM_001305096.1;

S. apella, XM_032249944.1), respectively. To generate human

and S. apella syncytin-2 chimeric expression plasmids, human

syncytin-2 expression plasmids were linearized by inverse

PCR, and a fragment of S. apella syncytin-2 was inserted using

NEBuilder HiFi DNA Assembly Master Mix (New England

BioLabs). For cloning of human MFSD2A, we synthesized

human cDNA from RNA extracted using an RNeasy Mini

Kit (#74104; Qiagen, Hilden, Germany) from 293T cells using

a Verso cDNA Synthesis Kit (#AB1453B; Thermo Fisher Sci-

entific). Then, the coding regions of MFSD2A were amplified

using PCR. The coding regions of MFSD2A genes of S. apella

(GenBank ID: XM_032247058.1) were artificially synthesized

(Eurofins Genomics K.K., Tokyo, Japan). To generate piggy-

Bac plasmids (pPB-hsMFSD2A and pPB-saMFSD2A)

expressing human MFSD2A (hsMFSD2A) and S. apella

MFSD2A (saMFSD2A), the EGFP coding region of the pPB-

EGFP (#VB900088-2265rnj; VectorBuilder, Chicago, IL,

USA) was removed by inverse PCR and replaced with the

hsMFSD2A and saMFSD2A sequences using the NEBuilder

HiFi DNA Assembly Master Mix (New England BioLabs

Inc.). KOD One PCR Master Mix (#KMM-101; Toyobo,

Osaka, Japan) was used for the above PCR. The sequences of

the primers are listed in Table S1.

Cell fusion assay

293T and G355-5 cells were seeded in 24-well plates

(3 9 105 cells�mL�1). The next day, 500 ng of syncytin-2
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expression plasmid was transfected into cells using Ava-

lanche Everyday Transfection Reagent (#EZT-EVDY-1;

EZ Biosystems, College Park, MD, USA). Cell fusion was

observed 7 h after transfection for G355-5 cells and 20 h

after transfection for 293T cells.

Western blot

Syncytin-2 expression plasmids were transfected into 293T

and G355-5 cells in the same manner as cell fusion assays.

Cells were lysed in RIPA Lysis Buffer (#08714-04; Nacalai

Tesque) from transfection to G355-5 cells at 7 h and from

transfection to 293T cells at 20 h. Cellular suspensions were

subjected to glycolysis treatment for 1 h using a PNGase F

Kit (New England BioLabs). SDS/PAGE was performed

using Mini-PROTEAN TGX Precast Gels (#4561094; Bio-

Rad Laboratories, Inc., Hercules, CA, USA). Peptides from

the gel were transferred to polyvinylidene difluoride mem-

branes, and the monoclonal ANTI-FLAG M2 antibody

(#F3165; Sigma-Aldrich) was used to detect Flag-tagged

syncytin-2. Signals were detected using a Super Signal West

Femto System (#34095; Thermo Fisher Scientific), and

images were obtained using a LAS4000 Mini camera sys-

tem (Fujifilm, Tokyo, Japan).

Generation of MFSD2A constitutively expressing

cells

To generate 293T cells constantly expressing human and

S. apella MFSD2A, we utilized the piggyBac transposon

system. This system consists of two plasmids. One is an

insertable plasmid in which the MFSD2A gene and the

puromycin-resistant gene are flanked by inverted terminal

repeats (ITRs) (pPB-hsMFSD2A for human MFSD2A and

pPB-saMFSD2A for S. apella MFSD2A, respectively). The

other plasmid is the hyper PBase expression plasmid

(pCAG-hyPBase) (#VB900088-2874gzt; VectorBuilder).

When these two plasmids were co-transfected, the hyper

PBase protein transfers the region between 50- and 30-ITRs

into the genomic DNA of the transfected cells. 293T cells

were transfected with 0.4 lg of pPB-hsMFSD2A or pPB-

saMFSD2A and 0.1 lg of pCAG-hyPBase. At 48 h post-

transfection, cells were selected through puromycin

(1 lg�mL�1), and the resulting cells served as 293T-

hsMFSD2A and 293T-saMFSD2A, respectively.

Quantitative reverse-transcription PCR

293T and 293T-hsMFSD2A were seeded in 24-well plates

(3 9 105 cells�mL�1), and the RNeasy Mini Kit (#74104;

Qiagen) was used to extract RNA. We designed primer sets

of the 8th and the 9th exons of human MFSD2A sequences

(Table S1), and reverse-transcription quantitative PCR

(RT-qPCR) reactions were performed using the Power

SYBR Green RNA-to-CTTM 1-Step Kit (#4389986; Thermo

Fisher Scientific). The reverse transcription (48 °C for

30 min) and denature (95 °C for 10 min) were followed by

the denature (95 °C for 10 s) and extension (60 °C for

1 min) with 40 cycles. PCR was carried out using the CFX

Connect Real-Time PCR Detection System (Bio-Rad Labo-

ratories, Inc.). The MFSD2A expression level of mRNA

was normalized by the ACTB expression level. These exper-

iments were performed twice independently.

Fusion-dependent luciferase assay

293T cells were seeded in 24-well plates

(4 9 105 cells�mL�1). The next day, 500 ng of syncytin-2

expression plasmids, 500 ng of pT7EMCV-Luc, and 50 ng

of pRL-TK were transfected into 293T cells. The

pT7EMCV-Luc plasmid expresses firefly luciferase with the

internal ribosome entry site of encephalomyocarditis virus

in the presence of T7 polymerase. At the same time,

another 293T cells were transfected with 500 ng of pCAG-

T7-pol expressing T7 polymerase. Six hours after transfec-

tion, 293T cells were transfected with syncytin-2 expression

plasmid, and pT7EMCV-Luc and pRL-TK were co-

cultured with the 293T cells transfected with the T7 poly-

merase expression plasmid. Then, 24 h after co-culture, the

luciferase activity of the cellular lysates was measured using

the Dual-Luciferase Reporter Assay System (#E1910; Pro-

mega, Madison, WI, USA).

Exploring syncytin-2 genes in the primate

genome

The reference genomes of 65 Euarchonta, including 61 pri-

mates (apes, 7 species; OWMs, 22 species; NWMs, 12 species;

tarsiers, 1 species; prosimians, 19 species), three treeshrews

(Scandentia), and one colugo (Dermoptera), were downloaded

using GenomeSync (https://genomesync.org/; November 21,

2022; Table S2). The coding sequence of the human syncytin-2

transcript (NM_207582.3) was searched against these reference

genomes using TBLASTN v2.10.0 (e-value < 1E-50) [11]. The

nucleotide sequence of the top match in each genome was

extracted with 500 bp of upstream and downstream sequences

using the getfasta program in BEDTOOLS v2.30.0 [12]. From

these sequences, ORFs with more than 500 codons were

retrieved using the getorf program in the EMBOSS [13] suite

v6.6.0.0, and the amino acid sequences of ORFs were aligned

using MAFFT v7.487 with the L-INS-i method [14]. A species

tree of the primates used in the analysis was retrieved from

TimeTree [15].

Evolutionary analysis of syncytin-2 genes

Multiple alignments of syncytin-2 amino acid sequences of

apes (seven species), OWMs (22 species), and NWMs with
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full coding frames (nine species) were separately generated

using MAFFT v7.487 with the L-INS-i method [14]. The

resultant alignments were converted to codon alignments.

IQ-TREE v2.0.3 was used for constructing maximum likeli-

hood trees [16]. Then, the codon alignments and maximum

likelihood trees were used for the codeml program in PAML

v4.8 [17] to conduct the dN/dS analysis based on Nei-

Gojobori method [18]. A single dN/dS ratio for all

branches (model = 0) and all sites (NSsites = 0) was esti-

mated in each primate group of apes, OWMs, and NWMs.

The significance of the dN/dS ratio was tested by log-

likelihood ratio tests against the null hypothesis (dN/

dS = 1).

Results

Cell fusion activity of syncytin-2

Gene cloning of syncytin-2 from three simians—hu-

mans (Homo sapiens), common marmosets (C. jacchus),

and tufted capuchins (S. apella)—was carried out

(Fig. 1A). We extended 300 bp at the 30 ends of the

syncytin-2 ORFs to stabilize their protein expression

[10]. The constructed syncytin-2 expression plasmid

was introduced into 293T and G355-5 cells. By

comparing the cell fusion activity of syncytin-2 among

three simians, we revealed that the cell fusion of

S. apella syncytin-2 was weaker in both 293T and

G355-5 cells (Fig. 1B). It is known that G355-5 cells

are fusion-prone cells and they are widely used for cell

fusion assays [7]; however, syncytin-2 of S. apella did

not clearly exhibit G355-5 cell fusions. To examine

whether the differences in cell fusion efficiency were

simply dependent on the expression level of the pro-

tein, we conducted a western blot assay with FLAG to

the C-terminus of syncytin-2. In 293T and G355-5

cells, the protein expression level of C. jacchus

Syncytin-2 was lower than those of S. apella and

human Syncytin-2 (Fig. 1C). Thus, the lower cell

fusion capacity of syncytin-2 of S. apella may not be

due to the lower expression level of the protein.

Cell-fusion activity and MFSD2A expression

Syncytin-2 causes cell fusions by binding to cell

surface-expressed MFSD2A [8]. Syncytin-2 of S. apella

cannot use human MFSD2A but can interact with

MFSD2A of S. apella. To confirm this possibility, we

generated 293T cells constitutively expressing human

(A)

(B)

(C)

Fig. 1. Syncytin-2 cell fusion assay in

humans, common marmosets, and tufted

capuchins. (A) Description of syncytin-2

expression plasmids. hCMV, promoter

from human cytomegalovirus. (B) Three

syncytin-2 expression plasmids and empty

control plasmids were introduced into

293T and G355-5 cells, and cell fusion was

observed. The shape of the individual cells

becomes obscured when cell–cell fusion

occurs. A white scale bar indicates

250 lm. (C) A western blot assay was

performed using the transfection FLAG-

tagged syncytin-2 gene. Total cells were

harvested when cell fusions were

observed (i.e., G355-5 cells after 7 h and

293T cells after 20 h).
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and S. apella MFSD2A (named 293T-hsMFSD2A and

293T-saMFSD2A, respectively). Using these cells, we

compared the cell fusion activity of the human and

S. apella syncytin-2 genes (Fig. 2A). The results

revealed that 293T-saMFSD2A interacts with both

human and S. apella syncytin-2, as indicated by the

fusion cells. Interestingly, syncytin-2 of S. apella can

cause cell fusion in 293T-hsMFSD2A as well, which is

contrary to the result of the wild-type 293T cells

(Fig. 1B). We assumed that the differences in the

expression level of MFSD2A could be responsible for

the differences in cell fusion activity. To confirm this,

we performed RT-qPCR to quantify the expression

level of MFSD2A. 293T-hsMFSD2A expressed

approximately 1000-fold more MFSD2A than the

wild-type 293T cells (Fig. 2B). Therefore, it was specu-

lated that the high expression level of the human

MFSD2A gene interacting with S. apella syncytin-2

results in cell fusion even if their interaction was weak.

These findings suggest that the membrane fusion effi-

ciency of syncytin-2 of S. apella via interaction with

MFSD2A is lower than that of human syncytin-2.

Identification of regions affecting the fusion

ability of syncytin-2

To elucidate the amino acid sequence responsible for

the difference in cell fusion ability between human and

S. apella syncytin-2 genes, we generated human and

S. apella chimeric syncytin-2 (Fig. 3A,B) and compared

their cell fusion ability (Fig. 3C). Based on the amino

acid sequence alignment of human and S. apella

syncytin-2, we split syncytin-2 into four elements and

generated a chimeric syncytin-2 in which human

syncytin-2 was partially replaced with S. apella

syncytin-2 (Fig. 3A,B). The fusion activity of the chi-

meric syncytin-2 of human/S. apella was evaluated

using fusion-dependent luciferase assay by co-

transfection of a plasmid expressing luciferase lumines-

cent enzyme and substrate into 293T cells (see Materials

and methods for details). Cell fusion ability was

assessed by cell fusion-dependent luciferase lumines-

cence (Fig. 3C). Elements 1, 2, and 3, in which a

syncytin-2 element was introduced into the surface unit

(SU) region, showed less than 0.1-fold values of lucifer-

ase luminescence, which were similar to those of wild-

type S. apella syncytin-2. By contrast, the luminescence

value of Element 4, in which the transmembrane (TM)

region was modified, was approximately 0.6-fold com-

pared with that of wild-type human syncytin-2. These

results suggest that the reduced cell fusion ability of

S. apella syncytin-2 is mainly due to its SU region.

Truncated syncytin-2 ORFs in several New World

monkeys

The lower cell fusion activity of syncytin-2 in S. apella

suggests that the physiological importance of syncytin-2

Fig. 2. Comparison of cell fusion potential of syncytin-2 in MFSD2A constitutively expressed 293T. (A) Syncytin-2 plasmids and empty plas-

mids were inserted into 293T cells that constitutively express human and Sapajus apella MFSD2A (293T-hsMFSD2A and 293T-saMFSD2A,

respectively). The shape of the individual cells becomes obscured when cell–cell fusion occurs. Also, as the fusion progresses, the fused

cells become balloon-shaped and detach from the bottom of the plate. A white scale bar indicates 250 lm. (B) MFSD2A mRNA expression

levels in 293T and 293T-hsMFSD2A were examined. The expression level of mRNA (log scale) was normalized by actin-b.
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in the placenta development of NWMs may be lower

than that in apes. To address this hypothesis, we exam-

ined the evolutionary conservation of syncytin-2

obtained from the genomes of 61 primates (apes, 7 spe-

cies; OWMs, 22 species; NWMs, 12 species; prosimians,

19 species; 1 tarsier species), 3 treeshrews (Scandentia),

and 1 colugo (Dermoptera) (Table S2). We found that

all of the apes or OWMs analyzed in this study had

538 amino acid or 537 amino acid lengths of conserved

ORFs of syncytin-2, respectively (Fig. 4). Syncytin-2

was found in all of the NWM genomes analyzed in this

study; however, three species, emperor tamarins (Sagui-

nus imperator), brown spider monkeys (Ateles hybridus),

and white-faced sakis (Pithecia pithecia), had shortened

syncytin-2 ORFs (Fig. 4). In S. imperator, one base

insertion occurred in the syncytin-2 ORF, resulting in a

shortened ORF. In A. hybridus, one two-base insertion

and two one-base deletions occurred. In P. pithecia,

TM regions of syncytin-2 were shortened by 18 amino

acids by the CAG-to-TAG mutation.

For the nine NWM syncytin-2 sequences remaining

full-length ORFs, we estimated the nonsynonymous

and synonymous substitution ratio (dN/dS ratio) to

test the hypothesis that purifying selection of syncytin-

2 is more relaxed in NWMs than in apes and OWMs.

As a result, the same level of purifying selections was

detected in NWMs as in apes and OWMs (Fig. 4;

Table S3). The other outgroup primate species (i.e., 19

prosimians and 1 tarsier) do not contain syncytin-2

sequences in their genomes (Table S2). These findings

indicate that the syncytin-2 inserted in the ancestor of

the NWM lineage has not efficiently contributed to the

cell–cell fusion process of placental development in

several NWMs.

Discussion

Syncytin-2 has been considered highly conserved in

simians as a fusion gene responsible for placental

development [7]. However, our experimental results

(A) (B)

(C)

Fig. 3. Assessment of the cell fusion capability of syncytin-2 in humans and tufted capuchins. (A) Amino acid sequence alignment of human

syncytin-2 and Sapajus apella syncytin-2. Syncytin-2 is cleaved by furin at the furin cleavage site (i.e., RVRR amino acids) shown in bold and

divided into SU (surface unit) and TM (transmembrane). (B) Illustration of chimeric syncytin-2. (C) Comparing the cell fusion ability of chi-

meric syncytin-2.
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suggest that syncytin-2 of tufted capuchins (S. apella)

showed a lower ability to fuse cells through the inter-

action between syncytin-2 and MFSD2A (Figs 1 and

2). This observation was consistent with the cell fusion

assay of human 293T cells using the common mar-

moset (C. jacchus) syncytin-2 [7]. Furthermore,

although the amino acid length of syncytin-2 in

S. apella and C. jacchus is the same as that of humans,

three NWMs do not contain intact syncytin-2 ORFs

(Fig. 4). While these results suggest the potential

reduction of the Syncytin-2 fusogenicity in NWMs,

intact syncytin-2 genes of NWMs were under purifying

selection (Fig. 4; Table S3). The same observation was

reported in envV2, which was the envelope gene of

ERV-V inserted into the ancestor of simians [19]. The

envV2 genes were conserved and under purifying selec-

tion in simians. However, their fusogenic activity in

some NWMs and apes was lost, while those in OWMs,

common marmosets, and gibbons are still intact [19].

Together, previous and our studies imply the dynamic

birth-and-death evolution in fusogenic activity of

envelope-derived genes that are involved in placental

development.

We previously proposed the “baton pass” hypothesis

for the dynamic evolution of syncytin genes in mam-

malian genomes [20]. Since various ERVs integrated

into mammalian genomes multiple times, newly

acquired envelope genes derived from ERVs could have

replaced the fusogenic genes previously responsible for

cell fusion, the process of which was called the “baton

pass” [20]. This hypothesis is based on the observation

of ruminant species. In bovines, two syncytin-like genes,

fermatrin-1 [21] and syncytin-Rum1 [22], were involved

in the cell fusion process during placenta development,

and the newly acquired fematrin-1 showed a more vital

ability to fuse cells [21]. Such observations have led to

the proposition of the baton pass hypothesis in which

the function of a preexisting syncytin-like gene was

transferred to a newly incorporated envelope gene, thus

facilitating the evolution of placental morphology

[20,23]. Lavialle et al. also hypothesized that envelope

genes involved in placental development have been sub-

sequently replaced in the diverse lineages emerging dur-

ing the mammalian radiation on successive and

independent germline infections by new retroviruses and

co-optation of their envelope genes during the evolution

of Theria [24].

The interspecies differences in cell fusion capacity of

the syncytin-2 gene in NWMs revealed in this study

support the baton pass hypothesis, as the reduced

fusion capacity or loss of the syncytin-2 gene in some

NWMs may facilitate, or result from, the replacement

process. It is also considered that syncytin-like genes

derived from envelope genes of ERV have species

specificity and redundancy, which may have con-

tributed to the variability in placental morphology in

mammalian species [25]. Therefore, the lower placental

invasiveness in common marmosets than in apes [26]

may be related to the poor cell fusion capacity of

syncytin-2 in NWMs.

In conclusion, this study shows the poor cellular

fusion potential of syncytin-2 in common marmosets

and tufted capuchins. Furthermore, although syncytin-

2 ORFs are conserved in apes and OWMs, they are

truncated in several NWMs. These findings provide a

perspective that, in addition to the divergence of

syncytin-like genes that differ among mammalian lin-

eages, functional fluctuations of identical syncytin-like

genes are also critical to the understanding of placental

evolution.

050 Million years ago

Ape (7 species)
OWM (22 species)
Saguinus imperator
Callithrix jacchus
Aotus nancymaae
Saimiri boliviensis
Cebus imitator
Cebus albifrons
Sapajus apella
Ateles geoffroyi
Ateles hybridus
Aloutta palliata
Pithecia pithecia
Plectrocebus donacophilus

520 aa

381 aa

289 aa

537 aa
538 aa

538 aa
538 aa
538 aa
538 aa
538 aa
538 aa
538 aa

538 aa

538 aa

Syncytin-2
(from start to stop codon)

NWM

dN/dS ratio
0.29*
0.18*

0.32*
(9 species of 538 a

Fig. 4. Conservation of syncytin-2 ORFs in

NWMs. Syncytin-2 genes were obtained

from 41 genomes of apes (7 species),

OWMs (22 species), and NWMs (12

species). Three NWMs contain stop

codons in the syncytin-2 ORF. The

phylogeny and divergence time of each

species were obtained from the TimeTree

database [15]. The dN/dS ratios are shown

on the right. Data were analyzed by log-

likelihood ratio test (*P < 0.05).
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