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Abstract

Intelligent systems are applied in a wide range of areas, and computer-aided drug design is a highly important one. One major
approach to drug design is the inverse QSAR/QSPR (quantitative structure-activity and structure-property relationship), for
which a method that uses both artificial neural networks (ANN) and mixed integer linear programming (MILP) has been
proposed recently. This method consists of two phases: a forward prediction phase, and an inverse, inference phase. In the
prediction phase, a feature function f'over chemical compounds is defined, whereby a chemical compound G is represented as a
vector f{G) of descriptors. Following, for a given chemical property 7, using a dataset of chemical compounds with known values
for property 7, a regressive prediction function ¢ is computed by an ANN. It is desired that ¢)(f(G)) takes a value that is close to
the true value of property 7 for the compound G for many of the compounds in the dataset. In the inference phase, one starts with a
target value y* of the chemical property , and then a chemical structure G* such that)(f'(G*)) is within a certain tolerance level of
y* is constructed from the solution to a specially formulated MILP. This method has been used for the case of inferring acyclic
chemical compounds. With this paper, we propose a new concept on acyclic chemical graphs, called a skeleton tree, and based on
it develop a new MILP formulation for inferring acyclic chemical compounds. Our computational experiments indicate that our
newly proposed method significantly outperforms the existing method when the diameter of graphs is up to 8. In a particular
example where we inferred acyclic chemical compounds with 38 non-hydrogen atoms from the set {C, O, S} times faster.

Keywords Artificial neural networks - Integer programming - QSAR/QSPR

1 Introduction

Computer-aided drug design is one of the most significant

>4 Aleksandar Shurbevski areas for application of recently developed methods in artifi-
shurbevski@amp.i.kyoto-u.acjp cial intelligence. One particular approach that has attracted
extensive studies is the inverse QSAR/QSPR (quantitative
structure-activity and structure-property relationship) [16,
23]. The task of QSAR/QSPR is to compute a regression
function between the structure of chemical compounds and
some chemical activity and/or property of interest. The struc-
ture of chemical compounds is commonly represented in the
form of undirected graphs, and the regression function is com-
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Tatsuya Akutsu their activities/properties. The inverse QSAR/QSPR then, giv-
takutsu @kuicr kyoto-u.ac.jp en such a regression function, asks to infer the structure of a

chemical compound that would exhibit certain activity or
property, perhaps while obeying some additional constraints.
A common method to the inverse QSAR/QSPR is to formu-
late an optimization problem that asks to find a chemical graph
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that maximizes or minimizes a particular objective function
under various constraints.

Directly handling chemical graphs in statistical methods
and machine learning methods poses a difficult challenge,
and therefore it is common to represent chemical compounds
by numerical vectors, called a set of descriptors, or a set of
features. There have been several methods that have been
developed for deriving graph structures that are optimal or
close to optimal for a given objective function [10, 16, 20].
In addition to getting one solution that is optimal or close to
optimal, it is often required to infer or enumerate graph struc-
tures that satisfy a given feature vector. There have been var-
ious methods developed for solving the task of enumerating
graph structures [7, 11, 14, 18]. In addition, the computational
complexity of the enumeration task has been studied [1, 17].

1.1 Related work

Undoubtedly Artificial Neural Networks (ANNs) and their ap-
plication in deep learning have enjoyed unprecedentedly rapid
progress recently. Applications of these technologies to the prob-
lem of the inverse QSAR/QSPR include variational
autoencoders [8, 15], recurrent neural networks [22, 26], and
grammar variational autoencoders [13]. These applications stan-
dardly involve training a neural network with a set of known
compound/activity data. Then, the inverse QSAR/QSPR is
solved by solving the problem of inverting a trained neural net-
work, commonly done through statistical methods. However,
one of the major drawbacks of statistical methods is that there
is no guarantee that an obtained solution will be optimal or exact.

A recently proposed approach based on mixed integer lin-
ear programming (MILP) [3], comes with a mathematical
guarantee for the optimality of the derived solution. Since
the proposed method [3] relies on linear programming, the
activation functions of the neurons in an ANN are represented
as piece-wise linear functions, and therefore ReLLU functions
can be represented without any loss, whereas sigmoid func-
tions must be approximated.

The MILP-based method for inverting trained ANNs [3]
has recently been combined with methods for efficient enu-
meration of tree-like graphs, e.g., the algorithm proposed by
Fujiwara et al. [7], into a two-phase framework for inverse
QSAR/QSPR [4, 6].

The first phase in the framework solves (I) PREDICTION
PROBLEM, by constructing a prediction, or a regression, func-
tion by using an ANN V. In this phase, given a set of chemical
compounds, that is, chemical graphs G, and known values
a(G) for a certain chemical property 7, each chemical com-
pound G in the set is represented by a feature vector f(G).
These feature vectors are used as inputs for training the
ANN N, to obtain a prediction function 1/, in such a way
that a(G) is predicted as P (f(G)).

The second phase solves (II) INVERSE PROBLEM. Starting with
a given a target value y* for a chemical property , in stage (II-a),
a feature vector x* is computed based on the trained ANN A/
under the constraint that i, (x*) is within a certain tolerance
range close toy*. Following, (II-b) a set of chemical structures G*
is generated under the condition that /' (G*) = x*. Stage (Il-a) in
the methods of a combined framework [4, 6] is based on an
MILP formulation, which incorporates the one due to Akutsu
and Nagamochi [3]. In particular, the MILP formulation pro-
posed by Azam et al. [4] guarantees that for a given trained
ANN N and a desired target value y*, either:

(i) every feature vector x* inferred from ANN N in (Il-a)
admits a corresponding chemical structure G*, or

(i) no chemical structure exists for the given target value y*
when no feature vector is inferred from the ANN A

Notable related works on the inverse QSAR/QSPR include
the frameworks and results reported by Sumita et al. [24], as
well as Takeda et al. [25]. However, there are certain draw-
backs to these frameworks as compared to the combined
framework described above [4, 6].

The work due to Sumita et al. [24] is noteworthy since it is
reported that the finally obtained structures have been synthe-
sized and their properties experimentally tested. A major
drawback of this approach is that it relies on a Monte-Carlo
based simulation, which is reported to take on the order of
days of computation time.

On the other hand, Takeda et al. [25] propose a framework for
constructing a regression function, solving the inverse problem
on the regression function to obtain the descriptors of a desired
chemical compound, and enumerating several chemical com-
pounds with some desired properties. In this work, the descrip-
tors used as arguments to construct a regression function are
general sub-structure frequency vectors, which is a disadvantage,
since such descriptors are dependent on the features of the train-
ing set. As opposed to general sub-structures, the framework on
which we build [4, 6] uses graph-theoretical descriptors, which
easily preserves explainability. Further, Takeda et al. [25] pro-
pose a custom-implemented gradient search method to solve the
problem of inverting the regression function, which is not guar-
anteed to arrive at a globally optimal, and hence, exact solution.
As opposed to that, using a solution to an MILP formulation
offers an exact solution to the problem of inverting the regression
function constructed by an ANN.

1.2 Our contribution

With this paper, we propose a new MILP formulation, which
when included in the combined framework for the inverse
QSAR/QSPR [4, 6], serves the purpose to infer acyclic chem-
ical compounds with a bounded degree. To this purpose, we
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Fig. 1 A chemical graph A(G) = (nan =6, nu) =3, na(H) =3, na) = 1, naE =0,

G = (H,a, ) and its feature
vector AG)

introduce the concept of skeleton trees, which are trees with
the maximum number of vertices for a given diameter and
degree. Then, an acyclic chemical graph to be inferred is con-
structed as an induced subgraph of a skeleton tree.

The aim for introducing a new MILP formulation is due to
the fact that solving an MILP is known to be a computation-
ally difficult problem. Even though modern-day commercial
solvers such as CPLEX [9] are highly effective in practice, our
intuition is that there is room for improvement, especially by
taking into account the special structure of acyclic chemical
compounds with a limited degree. Here we note that chemical
graphs with diameter up to 11 and degree at most 3, and
diameter at most 8 and maximum degree equal to 4 account
for about 35% and 18%, respectively, out of all acyclic chem-
ical graphs with 200 or fewer non-hydrogen atoms registered
in the PubChem chemical database. Further, those figures are
about 63% and 40% with respect to the acyclic chemical
graphs with 200 or fewer non-hydrogen atoms with degree
at most 3 and maximum degree 4, respectively.

We report computation experiments comparing the perfor-
mance of our new approach with the method due to Azam
et al. [4] over several chemical properties. The results of our
experiments, presented in Section 6, indicate that the new
method proposed with this paper consistently outperforms
the previous method [4] in terms of running time for target
compounds with a limited number of chemical elements and a
small diameter.

2 Preliminaries

Let the sets of real and non-negative integer numbers be de-
noted by R and Z, respectively. For two integers a and b, let
[a, b] denote the closed interval between a and b, that is, the
set of integers i with a < i < b.

Graphs Let H = (V, E) be a graph with a set V of vertices
and a set E of edges. For a vertex v € V, let Ny (v) denote
the set of neighbors of v in H. Then, the degree degy(v) of
v is defined to be the size | Ny (v)| of Ny (v). We define the
length of a path to be the number of edges in the path.
The distance disty(u, v) between two vertices u,v € V is
defined to be the minimum length of a path in A whose
endpoints are u and v. The diameter dia(H) of H is de-
fined to be the maximum distance between two vertices
in H. The sum-distance smdt(H) of H is defined to be the
sum of distances over all vertex pairs.

@ Springer

dia(H) = 0.667, smdt(H) = 0.1435,
nc(G =4, no(G)=1, nNG) =1, ms(G) = 13,
ba(G)= 1, b3(G)=0,
cen@ =2, ncey@ =1, ncon@ =1, nenn@G = 1)

Chemical graphs We represent the graph structure of a
chemical compound in a hydrogen-suppressed model as a
vertex-labeled multi-graph. Let A be a set of labels, and each
label represent a chemical element, such as C (carbon), O
(oxygen), N (nitrogen), etc. Since we work with hydrogen-
suppressed models, we assume that A does not contain H
(hydrogen). For a chemical element a € A, let mass(a) and
val(a) denote its mass and valence, respectively. In our model,
we round the ten-fold atomic mass value down to the nearest
integer, i.e., we take mass*(a) = |10 - mass(a) |, a € A. Let
the set A of labels be totally-ordered based on the mass of the
corresponding elements, and we write ab for chemical ele-
ments a,b € A with mass(a)mass(b). For a tuple v = (a, b,
k) € A x A x[1,3], let 7 denote the tuple (b,a,k). Let I’
C A x A x[1,3]beasetoftuplesy = (a, b, k) such that ab,
andset I's = {7 |ye '}, I'- ={(a,a,k)|ac Ake]l,
3]}and ' = I' U I'_. Wedenote by atupley = (a,b,k) € I’
a pair of atoms with labels a and b which are connected by a
bond of multiplicity £.

We define a chemical graphs in a hydrogen-suppressed
model to be a tuple G = (H, «, 3) of a graph H = (V,E), a
mapping o : V — A and a mapping 5 : E — [1, 3] such that
the following conditions are satisfied:

(i) His connected; and
(i) for each vertex u € Vitholds that >, . B(e) < val

(a(u)).

We note that nearly 55% of the acyclic chemical graphs
with at most 200 non-hydrogen atoms that are registered in the
chemical database PubChem' [12] have degree at most 3 in
their hydrogen-suppressed model. Figure 1 illustrates an ex-
ample of a chemical graph G = (H, «, 3).

Descriptors To define feature vectors, we use only
graph-theoretical descriptors. This choice serves our pur-
pose to design an algorithm for constructing graphs.
Henceforth, we define the feature vector f(G) of a chemical
graph G = (H = (V,E), a, ) to be a numerical vector that
consists of the following eight kinds of descriptors:

n(H): the number of vertices in H;

ng(H) (d €[1,4]): the number of vertices of degree d
in H;

dia(H): the diameter of H divided by |V];

smdt(H ): the sum of distances of H divided

by [V/’;

! https://pubchem.ncbi.nlm.nih.gov/
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Fig. 2 An illustration of a g: a class of chemical a: property MILP
property function a, a feature graphs k function MXxp.2:C1.Cy)
function f; a prediction function .'é;éi)“z' R fé;éi;?" R Y&
1y and an MILP that either =~ /7 Smmmsmam? N Semess 2 \ e = M(x,y:C)

- P f: feature Y ¢ prediction Y50
delivers a vector (x*, g*) that function function O
forms a chemical graph G* € G .
such that ¥ (£ (G*)) = »* (or a( G G =G ANN N
G*) = y*) or detects that no such NG ) O\O\ ~0
chemical graph G* exists in G B . O

ST ./(GL ) M(x’g; CZ)
— x* o\ | 0
. ® { }
) ey (\\ 1 {Sipd
o V -

( no G*Eg s.t. \VW(f(G*))zy*

detect

*

n,(G) (@€ A): the number of vertices with labela € A

ms(G): the average of mass* of atoms in G;
bi(G)(i=2,3): the number of double and triple bonds;
ny(G) (v = (a, b, k) €the number of label pairs {a, b} with
I multiplicity £.

Figure 1 gives an example of a feature vector f{G) of a
chemical graph G = (H, a, 3).

3 A method for inferring chemical graphs

We review the framework for the inverse QSAR/QSPR [4]
that employs both ANNs and MILPs. The framework is sche-
matically illustrated in Fig. 2. Let G be a given chemical
compound, represented by a chemical graph G = (H, «, 3),
and let 7 denote a specified chemical property such as boiling
point. We denote by a(G) the observed value of the property @
for chemical compound G. In the first phase of the two-phase
framework, we solve (I) PREDICTION PROBLEM for the inverse
QSAR/QSPR through the following three steps, as schemati-
cally illustrated in Fig. 2.

1. Gather a dataset D = {(G;,a(G;)) |i=1,2,...,m} of
pairs of a chemical graph G; and the value a(G; ) We fix
two valuesa, a € Rsothata < a(G;) <a,i=1,2,...,m

2. Choose a class of graphs G to be a set of chemical graphs
suchthatG D {G, | ) = oo, €,..., {}. Introduce a feature
functionf : G — R/ fora positive integer k. We call AG)
the feature vector of G € G, and call each entry of vector
AG) a descriptor of G.

3. Using the dataset D, train an ANN N to construct a
regression prediction function )N that given a vector in
x € R, returns a real value /N (x) with ¢ < ¢)N(x) <@
and such that )N (f (G) ) takes a value nearly equal to a(G)
for many of the chemical graphs in the dataset D.

g (x *’g*) deliver

In the second phase, we solve (II) INVERSE PROBLEM for the
inverse QSAR/QSPR through the following two inference
problems.

(IT-a) Inference of Vectors

Input: A real y* € [a,a).

Output: Vectors x* € R* and g* € R" such that YN
(x*) =»* and g* forms a chemical graph G* € G with
f(G) =x"

(II-b) Inference of Graphs

Input: A vector x* € R,
Output: All graphs G* € G such that /(G*) = x*.

In order to tackle Problem (II-a), we use the following result.

Theorem 1 [3] Let NV be an ANN with a piecewise-linear
activation function for an input vector x € RF , na denote
the number of nodes in the architecture and nz denote the

total number of break-points over all activation functions.
Then there is an MILP M(§, 10 C) that consists of var-

iable vectors x € [Rk, v € R, and an auxiliary variable
vector z € R” for some integer p = O(ns + ng) and a set
Cs of O(na + np) constraints on these variables such that
Yy (x*) = y* if and only if there is a vector (x*,)*) feasible
to M(§, 70 Cwo).

In addition, we introduce a variable vector g € Rh, for
some integer /, and a set Cc of constraints on x and g
such that (x*,g*) is feasible to the MILP M(§, }0Cc) if
and only if g* forms a chemical graph G* € G with /(G*)
= x* (see [4] for details). Finally, we note that by using
MILPs, it is not difficult to introduce additional linear
constraints or to fix some of the variables to specified
constants.

To address Problem (II-b), we design a branch-and-bound
algorithm, akin to the work of Fujiwara et al. [7] for enumer-
ating acyclic chemical compounds.

The second phase comprises the following two steps.

@ Springer
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Fig.3 (a) T34 where fimax (3, 4) Ul e e 03 e3 U e U3 e3 Vs ey

=8; (b) T[4 4> Where o 0 U5
Nmax (4,4) = 17 eq es e e; O/l €10

V1o P V11
Us

(@) T [T3,4]

4. Formulate Problem (Il-a) as the above MILP M8, 1, }0
Cx,Ce) taking into account the class G of graphs and the
trained ANN A. Reconstruct a set F* of vectors x* € R*
such that (1 —e)y* < YN(x*) < (1 +¢€)y* for a small
positive tolerance €.

5. To solve Problem (II-b), enumerate all graphs G* € G
such that /' (G*) = x* for each vector x* € F*.

Figure 2 illustrates Steps 4 and 5.

In the MILP formulation M(§, }() Cc) proposed by Azam
etal. [4] in order to construct an acyclic chemical graph G* with n
vertices, we choose as edges a subset of 7 — 1 vertex pairs from
ann X nadjacency matrix, that is, a subset ofn — 1 edges from a
complete graph K, on n vertices. In Section 4, we introduce an
MILP formulation M (§, })Cc) in which a graph G* is con-
structed as an induced subgraph of a larger acyclic graph, which
we call “a skeleton tree,” formally introduced in Section 4.

4 Skeleton trees

Before introducing our MILP formulation for inferring chem-
ical graphs in Step 4 of the framework outlined in Section 3,
we introduce the concept of skeleton trees. Based on this con-
cept, we effectively reduce the number of variables and con-
straints, and thus the computational complexity and time
needed to solve the formulation in practice.

For an integer D, let 7 p 5 (resp., 7 p ] ) denote the set of
trees H with dia(H)
most 3 (resp., equal to 4). We define the skeleton tree T, [TD d’
dc {3,4}, tobeatreeinTp

vertices. Let ripa (D, d) denote the number of vertices in T, [TD a

Then, we assume that by convention the vertices and

= D and whose maximum degree is at

D, with the maximum number of

the edges in the skeleton tree T[D q = (VT ={vi,vay. ..,

Vi (D) 1> ET = {e1,€2,... e (pa)-1}) are indexed in an

ordering o as follows:

(i) Tip, is rooted at vertex vy, and for any vertex v; and a
child v; of v; it holds that i < j;

(i)  Each edge e; joins two vertices v, and vy with k <,
and tail(j) denotes the index £ of the parent vy, of vertex
Vi+1; and

@ Springer
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(b) T4

(iii) Foreachi=1,2,...,D,itholds thatv;v;;| € E, thatis,

(e1,e,...,ep) is one of the longest paths in the tree

i
T[ D"

Figure 3 gives an illustration of an ordering o as described
above for the skeleton trees 7. 5.4 in Fig. 3(a) and T, [T4 4
3(b). Foreachi = 1,2, ..., nya (D, d), let N, (i) denote the set
of indices j of edges ¢; incident to vertex v;, and dist, (i, j)

denote the distance distr(vj, vj) in the tree 7' = T[D E

(V,E) of T[TD,d] with {ej,es,...,ep}
,D, we denote by H the
subtree of A rooted atv; and induced by its descendants except
the vertex v;, and the descendants of v; ;. An illustration is
given in Fig. 4 (a).

Forarooted tree T = (V, E) and a vertex v € V, we denote
by prtr(v) the parent of v, and by Cldr(v) the set of children of
vin 7.

Given integers n* > 3, dia* > 2 and dpu € {3,4}, con-
sider an acyclic chemical graph G = (H = (V,E), a, 3) such
that |V| = n*, dia(H) = dia* and the maximum degree in H is
at most 3 for dn,x = 3 (or equal to 4 for dix = 4).

in Fig.

For a subtree H =
C E, and an integer i = 2,3,...

4.1 A proper form for subtrees

Forintegers D > 2 andd € {3,4}, let T denote T[D 4 and Bits

base path. Let K be a rooted subtree of T'with E(B) C E(K).
Foravertexv € V(T)\V(B), we define the s-value s(v; K) of v
with respect to K as follows:

l. s(wK)=0ifwV(K);

2. s(vyK)=1if“visaleafin K or “v is a non-leaf vertex
and |Cld(v,; K)| < |Cld(v,; T)| ”; and

3. s(v; K) = min,ccignk) s(us K) + 1 otherwise.

We give examples of the s-value of some vertices in the
subtree H from Fig. 4 (a). For vertex vi4, we have s(v4; H)
= 0, since v14¢V (H ). The vertex vy is a non-leaf vertex in H,
and we have Cld(vq; H) = {vs,vio}, whereas Cld(vq; T)
= {vs,vi0, v11}, therefore it holds that |Cld(v,, H)| < |Cld
(v4; T)| and s(v4; H) = 1. Similarly, the vertex vg is a non-
leaf vertex in A and |Cld(vs, H)| < |Cld(vs; T)|, and there-
fore s(vg; H) = 1. For vertex vy, we have s(vo; H) =1,
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Fig. 4 Examples of s-proper tree and non-s-proper tree /. The vertices

and edges in / are shown in black. (a) An example of H 3 for the tree

T
Tua
while the remainder of 7 [IL, 4 Dot included in A is in gray. The subtree H 3

shown in Fig. 3 (b). The vertices and edges in / are shown in black,

since vg is a leaf in H. For the non-leaf vertex v;, we have
Cld(vs; H) = Cld(vs3,; T) = {v4,vs,ve}, and hence |Cld(v;
;H)| = |Cld(vs, T)| . Thus
ss(v3; H) = minyecig(,ms(us H) + 1 =2, since IEQ259
s(va; H) = s(vg; H) = s(vo; H) = 1.

We call K an s-leff heavy tree if for each vertex v € V(K)
with two positive integers i and m such that Cld(v; T') = {viy;
|/ € [1,m]} and each integer/ € [1,m — 1] it holds that s(v;;;
,'K) > S(Vi+j+1,'K).

Let H be a subtree of Twith E(B) C E(H). We call H an s-
proper tree, if for each integer i € [2, D], the subtree H(;) is an
s-left heavy tree and one of the following conditions holds:

(a'l) d =3 and |V(H(2>)| > |V(H<D))

(a-2) d=4and (S(VD+2;H(2)),S(VD+3 ;H<2)))Z
(s(vap2:H(p)),s(vap-1:H (1)) ).-

An illustration of an s-proper tree and non-s-proper trees is
shown in Fig. 4. Recall that B denotes the base path in 7. We
define an s-proper form of H to be a subtree H’ such that (i)
E(B) C E(H’); (ii) there is an isomorphism ) from H' to H
such that (1) € V(B) for any vertex u € V(B); and (iii) H' is
an s-proper tree. Notice that an s-proper form of a subtree H is
not necessarily unique.

Theorem 2 Every subtree H of 7, [TD" g WithE (B) C E(H)hasan
s-proper form.

Proof We set G := H. If G is an s-proper tree then G is an s-
proper form of H and we are done. Therefore, assume that G is
not an s-proper tree. If G has a subtree G(; for some i € [2, D]
that is non-s-left heavy due to a vertex v; € V(G; ), then we
can re-order the descendant subtrees of the children of v; so

ep V2 ey U3 ez U4 g

UIC

is enclosed by a dashed boundary. (b) H b is an s-proper tree; (c) H ¢ is not
an s-proper tree since H,(3) is not an s-left heavy tree; and (d) H d is not an
s-proper tree since
(s(vps2s Hy2)),8(vp+3: Ha2))) = (8(vsp—2; Hapy), S(vsp— 1 Haepy))

that the s-value of'its children from left to right is non-increas-
ing, since it will not change the s-value ofv;. Let G* denote the
tree obtained by applying this re-ordering operation. Clearly
there exists an isomorphism ¢ from G* to H such that )(u)
€ V(B) for any vertex u € V(B), since we only re-order the
descendant subtrees of the children of a vertex in G. Then set
G := G* and repeat the same operation of re-ordering until all
subtrees Gy;),i € [2,D] of G are s-left heavy trees. Next, for
the subtree G, if one of conditions (a-1) and (a-2) is satisfied,
then G is an s-proper form of H. Otherwise, i.e., when none of
conditions (a-1) and (a-2) is satisfied, we can get an s-proper
form of H by switching G;) and G(p2_y.i € [2, [D/2] + 1],
which completes the proof.

4.2 A proper set based on s-proper form

Let Py be a set of ordered index pairs (7, j) with D +2 < i<
J < Bmax. We call Py proper if the next conditions hold:

(c-1)  For each subtree H of T [TD7 g With E (B) C E(H), there

is at least one subtree H' with £(B) C E(H') such that

1. there is an isomorphism ¢ from H' to H such that
P(u) € V(B) for any vertex u € V(B); and

2. for each pair (i,/) € Py, if ¢; € E(H') then e;
€ E(H'); and

(¢-2)  For each pair of edges ¢; and ¢; in 7 [TQ 4 such that e; is

the parent e;, there exists a sequence (i1, 1), (2, i3),

<+, (fx—1, i) of index pairs in Ppy such thati; = iand

i = J.

Note that a given skeleton tree does not necessarily have a
unique proper set Ppr. In the remainder of this section, we give
a construction method for a proper set Py, based on s-proper
form.
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Let T denote T [Tu FE We define P’ prc Of T'to be the set of

ordered index pairs (7, j) such that either

(i) V41 is the first child of v, or;
(ii) j=1i+1and vy and v;;, share the same parent in 7.

In Fig. 5 (a) and (b), we illustrate an example of ordered index
pairs (i, j) that satisfy conditions (i) and (ii), respectively, with
e;atlevel 1 — 1 and ¢; at level ¢, ¢ € (3, [D/2] + 1].

Ford = 3 and edges at level 2, we define P (23) to be the set
{D+1,(d-2)(D—-2)+D+1=2D—1)}. For d=3

and edges at level 4, we define P ff) to be the set of ordered
index pairs (i, j) such that

(i) Vis1,v41 € V(T|)) for some p € [2,D]; and
(i) vi+1 and vy are each the A-th child of their parents in T
for some 1 € [1,d — 1].

Ford = 4 and edges at level 2, we define P §4) to be the set of
ordered index pairs {(D + 1,(d —2)(D—2)+D+1=3D
—3),(D+2,(d—2)(D—2)+D+2=3D—2)}.Ford =
4 and edges at level 3, we define P” g4> to the set of ordered

index pairs (7, j) such that

Fig. 5 An illustration of elements
. / 11(3) prr(3) pr4)
@) Oprr07P 2 ,P 4 P 2
and P’ 54) presented by
representing edges e; and e; with
thick lines. The dashed lines show
alevelin T, [TD_ aJ (a) An element of
P/ e such that vy ; is the first child
ofv;1 and edgee; is atlevelz > 3;
(b) An element of P’y such that
j=1i+ 1 and v;y; and v;;, share
the same parent in 7, [TD_ a and edge
ejisatlevelt > 2; (c) The element
(D+1,(d—2)(D—2)+D
+1=2D— 1) of P and edge
ep+1 and ep_; are at level 2; (d)
An element (i, j) of P” 513) such that
Vig1, Vip1 € V(T(y)) for some p
€ [2,D]andv;,| and v, are each
the A-th child of their parents in
T&M] forsome h € [1,d — 1]; (e)
The elements (D + 1, (d — 2)(D
—2)+D+1=3D-3)and (D
+2,(d-2)(D-2)+D+2
=3D—2)inP"{"; and (f) An
element (i, j) of P’ 54) such that
Vipl, Vip1 € V(T(p)) for some p
€ [2,D]andv; and v are each
the /-th child of their parents in

T[;),d] for some /1 € [1,d — 1]

@ Springer

(i) Vig1,vi41 € V(T(,)) for some p € [2,D] and;
(i) vi+1 and v are each the A-th child of their parents in T
for some 1 € [1,d — 1].

Finally we define P”SgP”(ZS) u P”EE) and P”}(,QP”?) U P”g4)~

Theorem 3 For two integers, D > 2 and d € {3, 4}, the set P

"ore UP” é‘:g is proper for the tree T, [TD? a

Proof Let T denote the tree T’ [TD-, e and let P = P’y UP” [()(ric). To
show that P is proper, we need to show that P satisfies condi-
tions (c-1) and (c-2). Let H be a subtree of T with {e;, ey, ...
,ep} C E(H). By Theorem 2, we know that there exists an s-
proper form of H. Let H' = (V’, E’) be an s-proper form of A.
Thus, H' is isomorphic to H, by the definition of s-proper

form. This implies that condition (c-1)(a) holds. Let G := H’
. We next show that condition (c-1)(b) holds for P’ and P’ (@

pre
separately. Let (i,/) € Py such that v;,; is the first child of
vit1. Ife; € E(G) bute E(G), then G would be disconnected,
which is a contradiction. Let (i, /) € P/ such thatj =i+ 1
and v, and v;;, share the same parent in 7. This implies that
there exists an integerp € [2, D]such thatv; 1, viy2 € V(T(,)).

Let K denote G,). If ¢; € E(G) but e £E(G), then s(viy 1, K)
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= 0 and s(v;42; K) > I holds. This implies that (v, K) <
s$(vir2, K), which contradicts the fact that K is an s-left heavy
tree. Hence, P’y satisfies condition (c-1)(b). Let ¢ = 3 and

(i,)) EP”prc This implies that (i,;) € P’é) or (i,j) € P”( )

Let (i,j) € P'", then i=D+ 1 and j = (d — 2)(D — 2)
+D + 1. Notice that v; | € V(T(z)) and v € V(T(p)). If ¢
E(G) buteE(G), then |V(G(2))| < [V(G(p))| would hold,

which contradicts the fact that G is an s-proper tree. Let (i)

epP’ f>, then it holds that level(e;) = level(e;) = 4 and vy
and vy are in the same rooted subtree 7{,,) for some integer
p € [2,D]. Let K denote G(,). Since d = 3, there exists a
positive integer u such that the four edges e,, ¢, 1, e,1» and
e,+3 are at level four. Note that (u,u + 1) and (u +2,u + 3)
are the elements of P’ since the vertices in the pairs (41,
Vut2)and (v, 3, v,+4) have the same parents. This implies that
the condition v,y and v;,; are each the A-th child of their
parents in 7 for some 4 € [1,d — 1] can only be true for (i)
= (u,u+2)or(u+1,u+3). Let (i,j) = (u,u +2).If e,

E(G) but ,£E(G), then it holds that e, 1¢E(G) since (u,
u+ 1) € Py Letv, and v, denote the parents of v, | and v,;3
in T, respectively. Then s(v,; K) = I and s(v,, K) > [ would
hold, which implies that s(v,, K) > s(v,, K). Then we can get
another s-proper form H” = (V' E") by switching the two
subtrees rooted at v, and v, in G. Clearly by the construction of
H",itholds thate, € E" ife,,» € E" and E" satisfies all those
conditions that are satisfied by E(G). In such a case, we set G
:=H".Let (i,j) = (u+ 1l,u+3). Ife,3 € E(G) but e,1¢
E(G), then itholds thate,., € E(G)since (u +2,u +3) € P
'orc and e, € E(G) since we have shown that (u,u +2) € P’

fmz Let v, and v, denote the parents of v, and v,43 in 7,

respectively. Thens(v,; K) > 2 and s(v,; K) = I would hold,
which implies that s(v,, K) <s(v,, K). Notice that v, and v,
have the same parent in 7 by the choice of u. This and s(v,,
K) < s(vy,; K) contradicts the fact that K is an s-left heavy tree.
This implies that e, | € E (G) ife,.3 € E(G) holds.

Letd = 4and (i,)) € P” o This implies that (i, /) € P”( )

or(i,j) € P”g >.Let( ,J) € P”g >,then(z,]) =[D+1,(d-2
WD—-2)+D+1) or (i,j))=D+2,(d-2)(D—-2)+D
+2) by the definition of P”g‘). In both cases, vi11 € V(T(2))
and v, € V(T(p)). If ¢; € E(G) but e£E(G), then it will
result in a contradiction with the fact that G is an s-proper tree
by the definition of an s-left heavy tree (a-2). Let (i, /) € P” 54),
thenlevel(e;) = level(e;) = 3and v,y and v, are in the same
rooted tree 7, for some integerp € [2, D]. Let K denote Gy,).
Since d = 4, there exists a positive integer « such that the six

edgese,, e,+1, €yt2, €443, eyraande, s are at level three. Here
(wyu+1),(u+Lu+2), (u+3,u+4)and (u+4,u+5)

are the elements of P’y since the vertices in the pairs (v,
Vu+2), (VM+2, V,H__O,), (Vu+4, Vu+5) and (Vu+5, Vu+6) have the
same parents. This implies that the condition v, and v
are each the A-th child of their parents in T for some / € [1,d
—1] can only be true for (i,j) = (u,u+3), (u+ 1,u+4) or
(u+2,u+5). Let (i,j) = (u,u +3). If e,43 € E(G) but g,
¢E(G), then it holds that e, 11, e, 2¢E(G) since (u,u + 1), (
u+1,u+2) € P Let vy and v, denote the parents of v, |
and v,4 in T, respectively. Then s(v,; K) = I and s(v, K)
> 1 would hold, which implies thats(v,, K) > s(v,; K). Then
we can get another s-proper form H” = (V" E") by switching
the two subtrees rooted at vy and v, in G. Clearly by the
construction of A", it holds thate, € E" ife, 3 € E” and E’
" satisfies all those conditions that are satisfied by E(G). In
such a case, we set G := H". Let (i,j) = (u+ L,u +4). If
eyt € E(G) but e,11¢E(G), then it holds that e,,3 € E(G)
since (4 + 3,u +4) € Py, €,2¢E(G) since (u + 1,u + 2)
€ Py and e, € E(G) since we have shown that (i, u + 3)

ep’ l(orc) Let v and v, denote the parents of v, and v,4 in T,
respectively. Thens(v,,; K) = I and s(v,; K) > I would hold,
which implies that s(v,,; K) > s(v; K). Then we can get an-
other s-proper form H” = (V" E"”) by switching the two
subtrees rooted at v, and v, in G. Clearly by the construction
of H”,itholds thate, | € E" ife,,4 € E"” and E" satisfies all
those conditions that are satisfied by E(G). In such a case, we
set G:=H". Let (i,j) = (u+2,u+5). If e,y s € E(G) but
e,2¢E(G), then it holds that e, 4, e,.3 € E(G) since (u + 4
u+5), (u+3,u+4) € Phcande,y,e, € E(G) since we
have shown that (u + 1,u +4), (u,u+3) € P”érg Letv, and
v, denote the parents of v, ; and v,.4 in 7, respectively. Then
s(vy, K) > 2and s(v,, K) = I would hold, which implies that
s(ves K) <s(w, K). Notice that v, and v, have the same parent
in T by the choice of u. This and s(v.; K) <s(v,, K) contra-
dicts the fact that K is an s-left heavy tree. This implies that
e 2 € E(G)ife, s € E(G)holds. Hence, in each of the cases
P’ 1@ ) satisfies condition (c-1)(b).

Next we prove that P satisfies condition (c-2). Let i; = i,
ip + 1be the index of the first child of v, and iy, 73, ..., i =
be consecutive integers. Then the sequence (i1, i), (i2,43), - - -
, (ik—1, it ) are ordered index pairs in P such that ij = i and i,
= j. Hence P is a proper set, which completes the proof.

4.3 An algorithm to calculate a proper set

In this section, we give an algorithm to compute a proper set
based on Theorem 3. In Algorithm GENPPRCD . d), the vari-
ables Py, P,, P53, P4and Ps store the sets defined in Section 4.2,

3 3 4
P/prc, P”; )’ P//i )’ P//(2 )
eckE (T D, d]) the variable level[e] stores the level of e.

,and P" 54), respectively. For an edge
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Algorithm GENPPrC(D, d)
Input: Two positive integers, D > 2 and d € 3, 4.
Output: A proper set Pprc of T[t:),d]'
T:= T[TD,d]; n:=|V(T)|; P :=0;
for eachi=D+1,...,n—2do
if v;y1 and v;4o have the same parent in 7' then
Pi=PU{(i,i+1)}
end if;
for each j=i+1,...,n—1do
if wv;1q is the first child of v;; then
P =P U {(Z,])}
end if
end for
end for;
if d =3 then
Py:={(D+1,(d—2)(D—-2)+D+1)}; P3 := 0;
for each pair (i,j), 4,7 € [D+1,n—1],i< j do
if levelle;] = levelle;] = 4,

Vi+1,Vj+1 are in the same descendant subtree rooted at vp, for some p € [2, D], and

vj41 and vjyq are each the h-th child of their parents in 7' for some h € [1,d — 1]

then
Ps = P3U{(i,5)}
end if
end for
else /*d=47%/

Pp:={(D+1,(d=2)(D~-2)+D+1),(D+2,(d=2)(D~2)+ D+2)}; P5:=0;

for each pair (4,5), 4, € [D+1,n—1],i<j do
if levelle;] = levelle;] = 3,

Vi+1,Vj4+1 are in the same descendant subtree rooted at vp, for some p € [2, D], and

vj41 and vjyq are each the h-th child of their parents in 7' for some h € [1,d — 1]

then
Ps:=PsU{(i,5)}
end if
end for;
P:=P,UP5
end if;
P:= P UP;
Output P as Pprc.

5 MILPs for representing acyclic chemical
graphs

In this section, we propose a new MILP formulation M (§, }
() Cc) as used in Step 4 of the method introduced in Section 3.
For our purpose, we consider acyclic chemical graphs where
each vertex has degree at most 3 or the maximum degree is 4.

We formulate the MILP M (§, }0) Cc) so that the underlying

graph H is an induced subgraph of the skeleton tree 7 [Eia*ﬁ d]
introduced in Section 4, and moreover, it holds that {v, v,
<oy Vdiar+1} € V. We remark that in order to reduce the num-

ber of graph-isomorphic solutions to this MILP, for a skeleton

@ Springer

tree, we make use of precedence constraints based on the
proper set Py as formalized in Section 4.2.

For a technical reason, we introduce a dummy chemical
element ¢, and denote by I’y the set of dummy tuples (e, ¢, k)
,(€,a,k)and (a, € k)@ € Ak € [0,3]). Torepresent elements
ac AU{e} UI'-UTI'_UTs inan MILP, we encode these
elements @ into some integers denoted by [a], where we assume
that [¢] = 0. For simplicity, we also denote n* by n and 7,x
dia*, dimax ) bY 7max. Our new formulation is given as follows.



A new approach to the design of acyclic chemical compounds using skeleton trees and ILP

A Self-archived copy in

MILP M(zx,g;C2)

variables for descriptors in z:

n(d) € [0,n] (d € [1,4]); smdt € [0,7°]; n(a) €
Mass € Z; b(k) € [0,n—1] (k€ [1,3]); n(y) €

variables for constructing H in g:
U(l) € {0’ 1} (7' € [anax]);
deg(i) € I
a(i) € {[a] |a € AU{e}} (i € [1,nmax]); B() €
6a(i, a) S {0, 1} (’L S [anax], ac AU {E});
6503, k) € {0,1} (4 € [1,nmax—1], k € [0,3]);
6-(4,7) € {0,1} (4 € [1,nmax—1],y € I'U I)

constraints in Cs:

Z v(i) =mn;

1€[1,Nmax]

o) > 0(3) (1) € Pore): Y

v(i) =1 (i € [1,dia" 4+ 1]);

[0,n] (a € A);
0,n—1] (e I'<UI-)

deg (4,d) € {0,1} (i € [1,nmax], d € [0,4]);
[0,4] (3 € [1,nmax]); dist(i,5) € [0,dia*] (1 <i < j < nmax);
[07 3] (] € [anax*l]);

5deg(i7 d) = n(d) (d € [074]);

1€ (1, max]
> dplik)=bk) (ke[1,3]); > dist(i,j) = smdt;
1€[1,Nmax—1] 1<z<j<nm1x
da(ia) =n(a) (a € A); Zmass a) -n(a) = Mass;
1€[1,Nmax] a€A
(- (i) +0: (7)) =n(7) (veT<); Y 6:(iy)=n(y) (veI);
1€ [1,Mmax—1] 1€ [1,Nmax—1]
For each i = 1,2,..., nmax,

Z v(j+1) = deg(i), Z bdeg(i,d) =1, Z(Sa i,a) = v(i),
JEN, (3) defo,4] acA

Z da(i,a) = n(a), Z B(j Zval 0o (i, a);
1€[1,nmax] JEN () ac/

For each pair (7,7) with 1 <4 < j < nmax,

dist(z,
dist(i,

j) < dia*
j) < dia*

(i), dist(i, ) > dists(4,7) — dia”
-v(4), dist(i, ) < diste(4,5) + dia®

For each j =1,2,...

,nmax_L

v(j+1) < B() < 3v(j+1),

Z 57’(]77) = 17 Z

yETUT, (a,b,k)elUT,

Z [b](ST(jv (avbvk)) :a(j"_l)v Z

(a,b,k)el'Uly (a,b,k)el'Uly

> 050 k) =v(i+1),

ke(1,3]

6 Experimental results

The main aim of our experiments is to compare
implementations of the MILP formulations proposed in
Section 5 and the one due to Azam et al. [4] in Step 4 of the
method for the inverse QSAR/QSPR [4]. The results of this
main experiment are presented in Section 6.2, after giving our
findings on the construction of regression functions by train-
ing ANNs in Section 6.1.

We executed the experiments on a PC with Intel Core i5
CPU running at 1.6 GHz and 8 GB of RAM, under the Mac

kor (7, (a,b,k))

(2 =v(d) —v(5)),
(2= 0(i) —v(5));

> ks k) = BG),
ke[1,3]
[2]67 (4, (2, b, k)) = a(tail(s)),

= B(j).

OS 10.14.4 operating system. For a study case, we selected
three chemical properties: heat of atomization (HA), octanol/
water partition coefficient (kow) and heat of combustion (HC).

6.1 Experiments on Phase 1
In this section we present our experiments conducted on

Phase 1, that is, the forward phase of the framework for the
inverse QSAR/QSPR.

@ Springer
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In Step 1, we collected a dataset D of acyclic chemical
graphs for HA made available by Roy and Saha [19]. For the
properties KOw and HC, we collected data available from the
hazardous substances data bank (HSDB) from PubChem. We
choose label set /A to be such that each element in A appears as
achemical element in at least one of the chemical graphs in the
dataset D; and similarly, we choose the set I"'to be the set of all
tuplesy = (a,b,k) € A x A x [1,3]appearing in at least one
of the chemical graphs indataset D. In Step 2, we set a graph
class G to be the set of all acyclic chemical graphs that are
possible to be constructed with elements from the sets Aand I
chosen in Step 1. In Step 3, we used the MLPRegressor tool
from the Python package scikit-learn® (version 0.24.2) to con-
struct ANNs A/, and we set ReLU as the activation function of
neurons. We tested several different architectures of ANNSs for
each chemical property. With simple preliminary experiments
we identified promising ranges for hyperparameter values,
and then performed a grid search over the following
hyperparameter values:

— number of hidden layers in {1,2,3,4,5},

— number of nodes per hidden layer in {7, 10, 15,30, 50},

— learning ratenin {0.00025, 0.0005, 0.001, 0.002, 0.004},
and

— regularization term « in {1073,2 x 1075,4 x 1075, 8
x1075,1.6 x 1074},

The maximum number of training epochs was set to 10® due to
the moderately small number of training data. Since our initial
experiments derived satisfactory results, other model parame-
ters were used with their default values provided by scikit-
learn. We used 5-fold cross validation to evaluate the perfor-
mance of the trained ANNs, where a given dataset D is ran-
domly partitioned into five subsets D;, i € [1, 5]. The evalua-
tion is given in terms of the coefficient of determination R?,
which for a collection (a1,as,...,a,) of p real values with
average a = [1) | a; that are associated with a collection (
V1,2, ..., ¥p)of values predicted by a regression model, gives
a model error as

R2— 1 2 0

Z:J 1 (ai—a)”

Table 1 shows the size and range of values in the datasets that
we used for each chemical property, as well as results on
Phase 1. The notation and symbols used in Table 1 are as
follows:

I the tested chemical property, one of HA, KOw, and
HC;
|D|: the number of data points in the collected dataset D

for a chemical property ;

2 https://scikit-learn.org/
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A: the set of all chemical elements that appear in at least
one of the chemical graphs in the dataset D;

nn the minimum and maximum number of vertices in a
chemical graph G = (H, a, §) over the dataset D;

a,a the minimum and maximum values of a(G) over the
dataset D;

K: the number of descriptors in f{G) for a chemical
property w, where K = |A| + |I'| + 12 for our
feature vector AG);

Arch.:  the size of hidden layers of ANNs, where (10) x 1
(resp., (30) X2 ) means an architecture (K, 10, 1)
with an input layer with K nodes, one hidden layer
with 10 nodes (resp., two hidden layers, each with
30 nodes), and an output layer with a singe node;

7 the learning rate chosen for training the ANN;

a: the regularization term used for training the ANN;

L- the average time, in seconds (s), to construct ANNs

time: for each trial;

Test R? the coefficient of determination averaged over the

: five test sets for the corresponding combination of
hyperparameter values.

Note that the parameters given in Table 1 for Step 3 are
those that achieved the highest average coefficient of determi-
nation over the test set in the cross-validation trials. As can be
observed in Table 1, we cannot draw a conclusion as to wheth-
er a certain hyperparameter of an ANN has a predictable in-
fluence on the performance of the ANN model. For different
chemical properties, and in fact, for the case of property HC,
even for a single property observed over a different dataset of
chemical compounds, noticeably different hyperparameter
combinations achieve the best performance, i.e., the highest
coefficient of determination over an unobserved test set.

6.2 Experiments on Phase 2

In this section we delve into our main interest with this study,
namely the inverse phase of the combined framework for the
inverse QSAR/QSPR [4, 5], and in particular, Step 4,
inverting a trained ANN by solving an MILP formulation.
We call the MILP formulation due to Azam et al. [4] based
on an adjacency matrix the AM method, and the MILP for-
mulation based on skeleton tree presented in Section 5 the ST
method. We use the CPLEX (ILOG CPLEX version 12.9) [9]
solver to solve MILP instances formulated in the framework.
We performed experiments for each of the properties HA,
Kow, and HC as follows. For several pairs (dpax, dia*) of
integers dmax € {3,4} and dia* € [6, 13], choose each integer
n* € [14, nmax (dia*, dmay )] and six target values y7, i € [1, 6].
We attempted to solve the six MILP instances by using the
AM and ST methods. We started by setting n* = 14, and then
gradually increased n* up to 7max (dia*, dypax ). Whenever the
running time while solving at least one of the six instances
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Table 1 The results on Steps 1, 2 and 3

Steps 1 and 2 Step 3
™ D A [n,7] [a,d] K Arch. n a L-time Test R?
HA 128 CO0S [2,11] [450.3, 3009.6] 19 (7)x5 0.0005 1073 5.74 0.999
KOW 229 CO0S [1,36] [-3.1, 15.6] 26 (50) x 1 0.004 4x1073 0.596 0.967
430 C,.ClLO, [1,36] [-4.2, 15.6] 42 (30) x 1 0.002 4x1073 1.279 0.925
N,S,Br,F
HC 198 CON [2, 63] [245.6, 35099.6] 27 (7)x3 0.00025 2x1073 14.179 0.997
215 C,O,N, [2, 63] [245.6, 35099.6] 35 (30) x 1 0.0005 8x1073 14.655 0.987
F.SBr
262 C.CLON.,S, [2, 63] [245.6, 35099.6] 53 (7) x5 0.00025 2x1073 3.226 0.927
Br,F,Si,B,P

reached a time limit set to be 300 seconds, we Stopped further Table 2 The computation time of the AM and ST methods for HA,
attempts to solve the MILP instances with each of the two  dpux =3

methods. dia* — 8 dig® — 12 dia® — 13
. . 1a = 1a = 1" =
We present our findings in Tables 2 and 3, as well as
Figure 4, where we summarize the results from our experi- n* AM ST AM ST AM ST

ments, in particular, the computation time of the AM and ST

methods in Step 4 for property HA. The notation used is as 14 0.037 0244 0.020 0471 0.012 0.185
follows: 16 0600 0237 0160 1829 009  1.664

18 1.620 0.076 0.496 2.228 0.360 3.529
20 3.886 0.493 1.254 5.576 0.920 6.531
22 6.074 0.370 3.384 6.647 2.035 6.238
24 25.661 0.510 6.413 7.810 6.192 19.055
26 50.422 0.539 10.713 17.758 8.613 32.541

AM: the average time (s) to solve six MILP instances based
on the AM method;

ST: the average time (s) to solve six MILP instances based
on the ST method;

T.O.: indicates that the running time of one of the six

. 27 T.O. 0.346 16.249 19.495 12.724 88.068
instances exceeded 300 seconds. 28 - 0.551 40771 11795  17.194  84.688
For property HA, additionally, we executed the AM method 29 - 0.601 24904 13587 T.O. 94.952
for instances with n* = 36, n* = 38, and n* = 40, dia* = 6, 30 - 0.845  85.709 16.896 - 90.501
and dpyax = 4 without imposing a time limit. The respective 31 - 0491  T.O. 23.497 - 99.171
computation times were 21,962 seconds for n* = 36, 124,903 32 - 0.554 - 25.978 - 121.37
seconds for n* = 38, and 148,672 seconds for n* = 40. 34 - 0577 - 20.866 - 76.159
Meanwhile, the computation time for the ST method was 36 - 0.252 - 46.940 - 77.627
2.133 seconds for the instances with #n* = 38, which means 38 - 0722 - 19.028 - 139.25
that for this range of instance size, the ST method was 58,557 40 - 1469 - 23707 - 86.610
times faster than the AM method. 42 - 0.766 - 44204 - 176.51
We give a short comment summary on the results of the 44 i, 0152 - 60.771 - T.O.
experiments with instances of Kow and HC: The ST method 44 _ 0034 - 57769 - _
outperformed the AM method for the cases of (t1= kow, |4 48  qa na. _ 59004 - )
|=3,dmax=3,dia" < 11), (m= KOW, |A|=3,dnax=4,dia 50 pa na. - 72139 - -
< 7), (m= KOW, [A|= 7, dnax = 3,dia” < 8), (m= Kow, [4 52 n.a. n.a. - 35.022 - -
|=7,dmax = 4,dia* < 5), (r= HC, |A| = 3, dpax = 3, dia* < 53 na. na. B T.O. B _

9), (r= HC,|A|=3,dmax = 4,dia* < 6), (r= HC,|A|= 6,
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Table 3 The computation time of
the AM and ST methods for HA, dia" =6 dia* =8 dia* =9
o =4 n* AM ST AM ST AM ST
14 0.503 0.146 0.218 3375 0.212 7242
16 1.285 0.938 0.700 6.475 0.644 8.805
18 3.112 0.163 1.526 4.698 1320 8.983
20 8.628 1326 3.648 13317 3.770 27347
22 9.197 0.484 5.968 20.760 5.964 T.O.
24 37.190 1.339 11.050 17.506 12.046 -
26 73.451 1.522 22.141 24742 20.998 -
27 T.O. 0.980 42.833 25.958 29.748 -
28 - 1.858 52711 44286 T.O. -
29 - 1.206 66.298 40.580 - -
30 - 1395 T.O. 49.729 - -
32 - 1572 - 33.445 - -
34 - 1.640 - 64.993 - -
36 (2x104%) 1.391 - 35.968 - -
38 (1x105%) 2.133 - 42.081 - -
40 - 1.916 - 25.675 - -
42 - 1252 - 27.439 - -
44 - 1.258 - 41.772 - -
46 - 0.750 - 63.170 - -
48 - 0.947 - 43.488 - -
49 - 0.633 - T.O. - -
50 - 0.445 - - - -
51 - 0.459 - - - -
52 - 0.124 - - - -
53 - 0.050 - - - -

dimax = 3, dia* < 8), (mr= HC, |A|= 6,dmax = 4,dia* < 7), (7
= HC, |A|= 10, dpax = 3,dia* < 7) and (7 = Hc,|4] = 10,
dinax = 4,dia* < 5).

From the experimental results, we observe that the ST
method completed Step 4 in shorter time than the AM method
did when the diameter of graphs was up to around 11 for dyyax
=3, and 8 for dy,x = 4. In particular, it can be seen from
Tables 2 and 3, as well as Fig. 6, that under such conditions,
the ST method could handle chemical graphs with number n*
of non-hydrogen vertices up to 48 in reasonable CPU time,
whereas the AM method could only handle chemical graphs
with n* < 30. Therefore, the results of computational experi-
ments suggest that the ST method can handle a much larger
number of chemical graph than the AM method can. Finally,
recall that chemical graphs with diameter up to 11 for dpx
= 3 and 8 for dpax = 4 account for about 35 % and 18 %,
respectively, out of all acyclic chemical graphs with 200 or
fewer non-hydrogen atoms registered in the PubChem chem-
ical database, and about 63 % and 40 % out of the acyclic

@ Springer

chemical graphs with 200 or fewer non-hydrogen atoms with
dmax = 3 and dpax = 4, respectively.

7 Concluding remarks

With this work, we presented a new MILP formulation for
inferring acyclic chemical graphs. Our MILP formulation
can be directly incorporated in the method for the inverse
QSAR/QSPR proposed to Azam et al. [4]. One drawback of
the formulation given by Azam et al. [4] is that in order to
represent a tree on n vertices, subsets of vertex pairs over an
n X n adjacency matrix are used, requiring the same number
of variables in the MILP formulation. With the aim to reduce
the number of variables in the MILP formulation, we intro-
duced the concept of skeleton trees, which are trees with the
maximum number of vertices for fixed diameter and maxi-
mum degree. Then, in our method, a target tree is chosen as
an induced subgraph of a skeleton tree. In this way, whenever
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Fig. 6 The average computation 300 dia'=8, duman=3 i dia’= 6, dyax=4
time of the AM and ST methods 2 20l |
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the target acyclic graphs have a limited diameter, we signifi-
cantly reduce the number of variables used in our MILP for-
mulation, and thereby also the time needed to solve it in prac-
tice when the number of chemical elements is relatively small.
The results on some computational experiments confirm this,
i.e., we observe that the proposed method is more efficient
than the previously proposed method.

Even though the MILP formulation presented in this paper
targets the class G of acyclic chemical graphs, we note that a
similar formulation can be applied to the acyclic part of any
chemical graph, regardless of the number of cycles it has.
Based on the idea of prescribing a tree that serves as a
supergraph of a target acyclic chemical graph, Azam et al. [5]
and Akutsu and Nagamochi [2] have developed methods for
inferring chemical acyclic graphs with a larger diameter and
cyclic chemical graphs with any cycle index, respectively,
where the proposed method/systems are available at GitHub
https://github.com/ku-dml/mol-infer.

As future work it would be interesting to explore a way of
defining the graph topology of a desired chemical graph, i.e.,
generate target chemical graphs with a fixed scaffold [21].
Another line of research would be to explore different
methods for constructing a regressive prediction function,
for example convolutional ANNS, different types of multiple
linear regression, or decision trees.
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