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Abstract
Intelligent systems are applied in a wide range of areas, and computer-aided drug design is a highly important one. One major
approach to drug design is the inverse QSAR/QSPR (quantitative structure-activity and structure-property relationship), for
which a method that uses both artificial neural networks (ANN) and mixed integer linear programming (MILP) has been
proposed recently. This method consists of two phases: a forward prediction phase, and an inverse, inference phase. In the
prediction phase, a feature function f over chemical compounds is defined, whereby a chemical compound G is represented as a
vector f(G) of descriptors. Following, for a given chemical property�, using a dataset of chemical compounds with known values
for property �, a regressive prediction function is computed by an ANN. It is desired that ðf ðGÞÞ takes a value that is close to
the true value of property� for the compoundG for many of the compounds in the dataset. In the inference phase, one starts with a
target valuey� of the chemical property�, and then a chemical structureG� such that ðf ðG�ÞÞ is within a certain tolerance level of
y� is constructed from the solution to a specially formulated MILP. This method has been used for the case of inferring acyclic
chemical compounds.With this paper, we propose a new concept on acyclic chemical graphs, called a skeleton tree, and based on
it develop a new MILP formulation for inferring acyclic chemical compounds. Our computational experiments indicate that our
newly proposed method significantly outperforms the existing method when the diameter of graphs is up to 8. In a particular
example where we inferred acyclic chemical compounds with 38 non-hydrogen atoms from the set {C, O, S} times faster.

Keywords Artificial neural networks . Integer programming . QSAR/QSPR

1 Introduction

Computer-aided drug design is one of the most significant
areas for application of recently developed methods in artifi-
cial intelligence. One particular approach that has attracted
extensive studies is the inverse QSAR/QSPR (quantitative
structure-activity and structure-property relationship) [16,
23]. The task of QSAR/QSPR is to compute a regression
function between the structure of chemical compounds and
some chemical activity and/or property of interest. The struc-
ture of chemical compounds is commonly represented in the
form of undirected graphs, and the regression function is com-
puted by using statistical machine learning methods from a set
of training data of pairs of known molecular compounds and
their activities/properties. The inverse QSAR/QSPR then, giv-
en such a regression function, asks to infer the structure of a
chemical compound that would exhibit certain activity or
property, perhaps while obeying some additional constraints.
A common method to the inverse QSAR/QSPR is to formu-
late an optimization problem that asks to find a chemical graph
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that maximizes or minimizes a particular objective function
under various constraints.

Directly handling chemical graphs in statistical methods
and machine learning methods poses a difficult challenge,
and therefore it is common to represent chemical compounds
by numerical vectors, called a set of descriptors, or a set of
features. There have been several methods that have been
developed for deriving graph structures that are optimal or
close to optimal for a given objective function [10, 16, 20].
In addition to getting one solution that is optimal or close to
optimal, it is often required to infer or enumerate graph struc-
tures that satisfy a given feature vector. There have been var-
ious methods developed for solving the task of enumerating
graph structures [7, 11, 14, 18]. In addition, the computational
complexity of the enumeration task has been studied [1, 17].

1.1 Related work

Undoubtedly Artificial Neural Networks (ANNs) and their ap-
plication in deep learning have enjoyed unprecedentedly rapid
progress recently. Applications of these technologies to the prob-
lem of the inverse QSAR/QSPR include variational
autoencoders [8, 15], recurrent neural networks [22, 26], and
grammar variational autoencoders [13]. These applications stan-
dardly involve training a neural network with a set of known
compound/activity data. Then, the inverse QSAR/QSPR is
solved by solving the problem of inverting a trained neural net-
work, commonly done through statistical methods. However,
one of the major drawbacks of statistical methods is that there
is no guarantee that an obtained solution will be optimal or exact.

A recently proposed approach based on mixed integer lin-
ear programming (MILP) [3], comes with a mathematical
guarantee for the optimality of the derived solution. Since
the proposed method [3] relies on linear programming, the
activation functions of the neurons in an ANN are represented
as piece-wise linear functions, and therefore ReLU functions
can be represented without any loss, whereas sigmoid func-
tions must be approximated.

The MILP-based method for inverting trained ANNs [3]
has recently been combined with methods for efficient enu-
meration of tree-like graphs, e.g., the algorithm proposed by
Fujiwara et al. [7], into a two-phase framework for inverse
QSAR/QSPR [4, 6].

The first phase in the framework solves (I) PREDICTION

PROBLEM, by constructing a prediction, or a regression, func-
tion by using anANNN . In this phase, given a set of chemical
compounds, that is, chemical graphs G, and known values
a(G) for a certain chemical property �, each chemical com-
pound G in the set is represented by a feature vector f(G).
These feature vectors are used as inputs for training the
ANN N , to obtain a prediction function  N in such a way
that a(G) is predicted as  N ðf ðGÞÞ.

The second phase solves (II) INVERSE PROBLEM. Starting with
a given a target value y� for a chemical property�, in stage (II-a),
a feature vector x� is computed based on the trained ANN N
under the constraint that  N ðx�Þ is within a certain tolerance
range close toy�. Following, (II-b) a set of chemical structuresG�

is generated under the condition that f ðG�Þ ¼ x�. Stage (II-a) in
the methods of a combined framework [4, 6] is based on an
MILP formulation, which incorporates the one due to Akutsu
and Nagamochi [3]. In particular, the MILP formulation pro-
posed by Azam et al. [4] guarantees that for a given trained
ANNN and a desired target value y�, either:

(i) every feature vector x� inferred from ANN N in (II-a)
admits a corresponding chemical structure G�, or

(ii) no chemical structure exists for the given target value y�

when no feature vector is inferred from the ANN N .

Notable related works on the inverse QSAR/QSPR include
the frameworks and results reported by Sumita et al. [24], as
well as Takeda et al. [25]. However, there are certain draw-
backs to these frameworks as compared to the combined
framework described above [4, 6].

The work due to Sumita et al. [24] is noteworthy since it is
reported that the finally obtained structures have been synthe-
sized and their properties experimentally tested. A major
drawback of this approach is that it relies on a Monte-Carlo
based simulation, which is reported to take on the order of
days of computation time.

On the other hand, Takeda et al. [25] propose a framework for
constructing a regression function, solving the inverse problem
on the regression function to obtain the descriptors of a desired
chemical compound, and enumerating several chemical com-
pounds with some desired properties. In this work, the descrip-
tors used as arguments to construct a regression function are
general sub-structure frequency vectors, which is a disadvantage,
since such descriptors are dependent on the features of the train-
ing set. As opposed to general sub-structures, the framework on
which we build [4, 6] uses graph-theoretical descriptors, which
easily preserves explainability. Further, Takeda et al. [25] pro-
pose a custom-implemented gradient search method to solve the
problem of inverting the regression function, which is not guar-
anteed to arrive at a globally optimal, and hence, exact solution.
As opposed to that, using a solution to an MILP formulation
offers an exact solution to the problem of inverting the regression
function constructed by an ANN.

1.2 Our contribution

With this paper, we propose a new MILP formulation, which
when included in the combined framework for the inverse
QSAR/QSPR [4, 6], serves the purpose to infer acyclic chem-
ical compounds with a bounded degree. To this purpose, we
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introduce the concept of skeleton trees, which are trees with
the maximum number of vertices for a given diameter and
degree. Then, an acyclic chemical graph to be inferred is con-
structed as an induced subgraph of a skeleton tree.

The aim for introducing a new MILP formulation is due to
the fact that solving an MILP is known to be a computation-
ally difficult problem. Even though modern-day commercial
solvers such as CPLEX [9] are highly effective in practice, our
intuition is that there is room for improvement, especially by
taking into account the special structure of acyclic chemical
compounds with a limited degree. Here we note that chemical
graphs with diameter up to 11 and degree at most 3, and
diameter at most 8 and maximum degree equal to 4 account
for about 35% and 18%, respectively, out of all acyclic chem-
ical graphs with 200 or fewer non-hydrogen atoms registered
in the PubChem chemical database. Further, those figures are
about 63% and 40% with respect to the acyclic chemical
graphs with 200 or fewer non-hydrogen atoms with degree
at most 3 and maximum degree 4, respectively.

We report computation experiments comparing the perfor-
mance of our new approach with the method due to Azam
et al. [4] over several chemical properties. The results of our
experiments, presented in Section 6, indicate that the new
method proposed with this paper consistently outperforms
the previous method [4] in terms of running time for target
compounds with a limited number of chemical elements and a
small diameter.

2 Preliminaries

Let the sets of real and non-negative integer numbers be de-
noted by R and Z, respectively. For two integers a and b, let
[a, b] denote the closed interval between a and b, that is, the
set of integers i with a � i � b.

Graphs LetH ¼ ðV ;EÞ be a graph with a set V of vertices
and a set E of edges. For a vertex v 2 V, let NH ðvÞ denote
the set of neighbors of v in H. Then, the degree degHðvÞ of
v is defined to be the size jNH ðvÞj of NH ðvÞ. We define the
length of a path to be the number of edges in the path.
The distance distHðu; vÞ between two vertices u; v 2 V is
defined to be the minimum length of a path in H whose
endpoints are u and v. The diameter diaðHÞ of H is de-
fined to be the maximum distance between two vertices
in H. The sum-distance smdtðHÞ of H is defined to be the
sum of distances over all vertex pairs.

Chemical graphs We represent the graph structure of a
chemical compound in a hydrogen-suppressed model as a
vertex-labeled multi-graph. Let Λ be a set of labels, and each
label represent a chemical element, such as C (carbon), O
(oxygen), N (nitrogen), etc. Since we work with hydrogen-
suppressed models, we assume that Λ does not contain H
(hydrogen). For a chemical element a 2 Λ, let massðaÞ and
valðaÞdenote its mass and valence, respectively. In our model,
we round the ten-fold atomic mass value down to the nearest
integer, i.e., we take mass�ðaÞ ¼ b10 �massðaÞc, a 2 Λ. Let
the set Λ of labels be totally-ordered based on the mass of the
corresponding elements, and we write ab for chemical ele-
ments a; b 2 Λ with massðaÞmassðbÞ. For a tuple � ¼ ða; b;
kÞ 2 Λ� Λ� ½1; 3�, let � denote the tuple ðb; a; kÞ. Let Γ
� Λ� Λ� ½1; 3� be a set of tuples � ¼ ða; b; kÞ such that ab,
and set Γ> ¼ f� j � 2 Γ g, Γ¼ ¼ fða; a; kÞ j a 2 Λ; k 2 ½1;
3�g andΓ ¼ Γ [ Γ¼. We denote by a tuple� ¼ ða; b; kÞ 2 Γ
a pair of atoms with labels a and b which are connected by a
bond of multiplicity k.

We define a chemical graphs in a hydrogen-suppressed
model to be a tuple G ¼ ðH ; �; �Þ of a graph H ¼ ðV ;EÞ, a
mapping � : V ! Λ and a mapping � : E ! ½1; 3� such that
the following conditions are satisfied:

(i) H is connected; and
(ii) for each vertex u 2 V it holds that

P
e¼uv2E �ðeÞ � val

ð�ðuÞÞ.

We note that nearly 55% of the acyclic chemical graphs
with at most 200 non-hydrogen atoms that are registered in the
chemical database PubChem1 [12] have degree at most 3 in
their hydrogen-suppressed model. Figure 1 illustrates an ex-
ample of a chemical graph G ¼ ðH ; �; �Þ.

Descriptors To define feature vectors, we use only
graph-theoretical descriptors. This choice serves our pur-
pose to design an algorithm for constructing graphs.
Henceforth, we define the feature vector f(G) of a chemical
graphG ¼ ðH ¼ ðV ;EÞ; �; �Þ to be a numerical vector that
consists of the following eight kinds of descriptors:

n(H): the number of vertices in H;
ndðHÞ (d 2 ½1; 4� ): the number of vertices of degree d

in H;
diaðHÞ: the diameter of H divided by |V|;
smdtðHÞ: the sum of distances of H divided

by jV j3;

1 https://pubchem.ncbi.nlm.nih.gov/
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v1

v2 v5

v3

v6

v4

e1

e2
e5

e3

e4

f(G) = (n(H) = 6,  n1(H) = 3,  n2(H) = 3, n3(H) = 1, n4(H) = 0,  
dia(H) = 0.667,  smdt(H) = 0.1435, 

            nC(G) = 4,  nO(G) = 1,  nN(G) = 1, ms(G) = 13, 
            b2(G) = 1,  b3(G) = 0,

(C,C,1)(G) = 2, n(C,C,2)(G) = 1, n(C,O,1)(G) = 1, n(C,N,1)(G) = 1)

- -
 -

Fig. 1 A chemical graph
G ¼ ðH ; �; �Þ and its feature
vector f(G)

17060 F. Zhang et al.

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

https://pubchem.ncbi.nlm.nih.gov/


naðGÞ (a 2 Λ ): the number of vertices with labela 2 Λ
;

msðGÞ: the average of mass� of atoms in G;
biðGÞ (i ¼ 2; 3 ): the number of double and triple bonds;
n�ðGÞ (� ¼ ða; b; kÞ 2
Γ ):

the number of label pairs fa; bg with
multiplicity k.

Figure 1 gives an example of a feature vector f(G) of a
chemical graph G ¼ ðH ; �; �Þ.

3 A method for inferring chemical graphs

We review the framework for the inverse QSAR/QSPR [4]
that employs both ANNs and MILPs. The framework is sche-
matically illustrated in Fig. 2. Let G be a given chemical
compound, represented by a chemical graph G ¼ ðH ; �; �Þ,
and let � denote a specified chemical property such as boiling
point. We denote by a(G) the observed value of the property�
for chemical compound G. In the first phase of the two-phase
framework, we solve (I) PREDICTION PROBLEM for the inverse
QSAR/QSPR through the following three steps, as schemati-
cally illustrated in Fig. 2.

1. Gather a dataset D ¼ fðGi; aðGiÞÞ j i ¼ 1; 2; . . . ;mg of
pairs of a chemical graph Gi and the value aðGiÞ. We fix
two valuesa; a 2 R so thata � aðGiÞ � a, i ¼ 1; 2; . . . ;m.

2. Choose a class of graphs G to be a set of chemical graphs
such thatG � fGi j i ¼ 1;2; . . . ;mg. Introduce a feature
function f : G ! R

k for a positive integer k. We call f(G)
the feature vector of G 2 G, and call each entry of vector
f(G) a descriptor of G.

3. Using the dataset D, train an ANN N to construct a
regression prediction function  N that given a vector in

x 2 R
k , returns a real value  NðxÞ with a �  NðxÞ � a

and such that Nðf ðGÞÞ takes a value nearly equal to a(G)
for many of the chemical graphs in the dataset D.

In the second phase, we solve (II) INVERSE PROBLEM for the
inverse QSAR/QSPR through the following two inference
problems.

(II-a) Inference of Vectors
Input: A real y� 2 ½a; a�.
Output: Vectors x� 2 R

k and g� 2 R
h such that  N

ðx�Þ ¼ y� and g� forms a chemical graph G� 2 G with
f ðG�Þ ¼ x�.

(II-b) Inference of Graphs

Input: A vector x� 2 R
k .

Output: All graphs G� 2 G such that f ðG�Þ ¼ x�.

In order to tackle Problem (II-a), we use the following result.

Theorem 1 [3] Let N be an ANN with a piecewise-linear

activation function for an input vector x 2 R
k , nA denote

the number of nodes in the architecture and nB denote the
total number of break-points over all activation functions.
Then there is an MILP Mðx; y; C1Þ that consists of var-

iable vectors x 2 R
k , y 2 R , and an auxiliary variable

vector z 2 R
p for some integer p ¼ OðnA þ nBÞ and a set

C1 of OðnA þ nBÞ constraints on these variables such that
 N ðx�Þ ¼ y� if and only if there is a vector ðx�; y�Þ feasible
to Mðx; y; C1Þ.

In addition, we introduce a variable vector g 2 R
h, for

some integer h, and a set C2 of constraints on x and g
such that ðx�; g�Þ is feasible to the MILP Mðx; g; C2Þ if
and only if g� forms a chemical graph G� 2 G with f ðG�Þ
¼ x� (see [4] for details). Finally, we note that by using
MILPs, it is not difficult to introduce additional linear
constraints or to fix some of the variables to specified
constants.

To address Problem (II-b), we design a branch-and-bound
algorithm, akin to the work of Fujiwara et al. [7] for enumer-
ating acyclic chemical compounds.

The second phase comprises the following two steps.

G : a class of chemical
  graphs

Rk

x:=f(G)

x* 

a(G)
(x)

ANN 

MILP

f : feature 
    function 

N : prediction 
        function 

y*: target 
       value

 input

N

R

G

f(G*)
G*

G*
1 ,G*,...2

a: property 
    function 

Step 2Step 1 Step 3

f(G) N

M(x,y,g;C1,C2)

(x*,g*)

M(x,y;C1)

M(x,g;C2)f(G*)i
Step 5

g*

Step 4

(f(G*))=y*Nno G* G s.t.  
detect

deliver

Fig. 2 An illustration of a
property function a, a feature
function f, a prediction function
 N and an MILP that either
delivers a vector ðx�; g�Þ that
forms a chemical graph G� 2 G
such that  N ðf ðG�ÞÞ ¼ y� (or að
G�Þ ¼ y� ) or detects that no such
chemical graph G� exists in G
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4. Formulate Problem (II-a) as the above MILP Mðx; y; g;
C1; C2Þ taking into account the class G of graphs and the

trained ANN N . Reconstruct a set F� of vectors x� 2 R
k

such that ð1	 "Þy� �  Nðx�Þ � ð1þ "Þy� for a small
positive tolerance ".

5. To solve Problem (II-b), enumerate all graphs G� 2 G
such that f ðG�Þ ¼ x� for each vector x� 2 F�.

Figure 2 illustrates Steps 4 and 5.
In the MILP formulation Mðx; g; C2Þ proposed by Azam

et al. [4] in order to construct an acyclic chemical graphG�with n
vertices, we choose as edges a subset of n	 1 vertex pairs from
ann� n adjacencymatrix, that is, a subset ofn	 1 edges from a
complete graph Kn on n vertices. In Section 4, we introduce an
MILP formulation Mðx; g; C2Þ in which a graph G� is con-
structed as an induced subgraph of a larger acyclic graph, which
we call “a skeleton tree,” formally introduced in Section 4.

4 Skeleton trees

Before introducing our MILP formulation for inferring chem-
ical graphs in Step 4 of the framework outlined in Section 3,
we introduce the concept of skeleton trees. Based on this con-
cept, we effectively reduce the number of variables and con-
straints, and thus the computational complexity and time
needed to solve the formulation in practice.

For an integer D, let T ½D;3� (resp., T ½D;4� ) denote the set of

trees H with diaðHÞ ¼ D and whose maximum degree is at

most 3 (resp., equal to 4). We define the skeleton tree T y
½D;d� ,

d 2 f3; 4g, to be a tree inT ½D;d� with the maximum number of

vertices. LetnmaxðD; dÞdenote the number of vertices inT y
½D;d�.

Then, we assume that by convention the vertices and

the edges in the skeleton tree T y
½D;d� ¼ ðV y ¼ fv1; v2; . . . ;

vnmaxðD;dÞg;Ey ¼ fe1; e2; . . . ; enmaxðD;dÞ	1gÞ are indexed in an

ordering σ as follows:

(i) T½D;d� is rooted at vertex v1, and for any vertex vi and a

child vj of vi it holds that i < j;
(ii) Each edge ej joins two vertices vjþ1 and vk with k � j,

and tailðjÞ denotes the index k of the parent vk of vertex
vjþ1; and

(iii) For each i ¼ 1; 2; . . . ;D, it holds thatviviþ1 2 E, that is,

ðe1; e2; . . . ; eDÞ is one of the longest paths in the tree

T y
½D;d�.

Figure 3 gives an illustration of an ordering σ as described

above for the skeleton trees T y
½3;4� in Fig. 3(a) and T

y
½4;4� in Fig.

3(b). For each i ¼ 1; 2; . . . ; nmaxðD; dÞ, letNσðiÞdenote the set
of indices j of edges ej incident to vertex vi , and distσði; jÞ
denote the distance distTðvi; vjÞ in the tree T ¼ T y

½D;d�.

For a subtree H ¼ ðV ;EÞ of T y
½D;d� with fe1; e2; . . . ; eDg

� E , and an integer i ¼ 2; 3; . . . ;D, we denote by HðiÞ the

subtree ofH rooted atvi and induced by its descendants except
the vertex viþ1 and the descendants of viþ1. An illustration is
given in Fig. 4 (a).

For a rooted treeT ¼ ðV ;EÞ and a vertex v 2 V, we denote
by prtT ðvÞ the parent of v, and by CldT ðvÞ the set of children of
v in T.

Given integers n� 
 3, dia� 
 2 and dmax 2 f3; 4g, con-
sider an acyclic chemical graphG ¼ ðH ¼ ðV ;EÞ; �; �Þ such
that jV j ¼ n�, diaðHÞ ¼ dia� and the maximum degree inH is
at most 3 for dmax ¼ 3 (or equal to 4 for dmax ¼ 4 ).

4.1 A proper form for subtrees

For integersD 
 2 and d 2 f3; 4g, let T denoteT y
½D;d� and B its

base path. Let K be a rooted subtree of T with EðBÞ � EðKÞ.
For a vertexv 2 VðTÞnVðBÞ, we define the s-value s(v;K) of v
with respect to K as follows:

1. sðv; KÞ ¼ 0 if v=2VðKÞ;
2. sðv; KÞ ¼ 1 if “v is a leaf in K” or “v is a non-leaf vertex

and jCldðv;KÞj < jCldðv; TÞj ”; and
3. sðv; KÞ ¼ minu2Cldðv;KÞ sðu; KÞ þ 1 otherwise.

We give examples of the s-value of some vertices in the
subtree H from Fig. 4 (a). For vertex v14, we have sðv14;HÞ
¼ 0, since v14=2VðHÞ. The vertex v4 is a non-leaf vertex in H,
and we have Cldðv4;HÞ ¼ fv5; v10g , whereas Cldðv4; TÞ
¼ fv5; v10; v11g, therefore it holds that jCldðv4; HÞj < jCld
ðv4; TÞj and sðv4;HÞ ¼ 1. Similarly, the vertex v8 is a non-
leaf vertex in H and jCldðv8; HÞj< jCldðv8; TÞj, and there-
fore sðv8;HÞ ¼ 1. For vertex v9 , we have sðv9;HÞ ¼ 1,

v1 v2

v5

v3

v6

v4

v7
v14

v8

v16
v17v15

e1

e5

(a) T[3,4]

e6

e4

e7 e10e9e8

e13e12
e11

v1
v2 v5

v3

v6

v4

v7 v10
v9v8

v13
v12

v11

e1 e2

e5

e3

e6e4 e7

e14 e16e15

e2 e3

(b) T[4,4]
† †

Fig. 3 (a) T y
½3;4�, where nmaxð3; 4Þ

¼ 8; (b) T y
½4;4�, where

nmaxð4; 4Þ ¼ 17
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since v9 is a leaf in H. For the non-leaf vertex v3, we have
Cldðv3; HÞ ¼ Cldðv3; TÞ ¼ fv4; v8; v9g, and hence jCldðv3
; HÞj ¼ jCldðv3; TÞj . T h u s
ss v3;Hð Þ ¼ minu∈Cld v3;Hð Þs u;Hð Þ þ 1 ¼ 2, since IEQ259
s v4;Hð Þ ¼ s v8;Hð Þ ¼ s v9;Hð Þ ¼ 1:

We call K an s-left heavy tree if for each vertex v 2 VðKÞ
with two positive integers i and m such that Cldðv; TÞ ¼ fviþj

j j 2 ½1;m�g and each integer j 2 ½1;m	 1� it holds that sðviþj

; KÞ 
 sðviþjþ1; KÞ.
LetH be a subtree of TwithEðBÞ � EðHÞ. We callH an s-

proper tree, if for each integer i 2 ½2;D�, the subtreeHðiÞ is an

s-left heavy tree and one of the following conditions holds:

(a-1) d ¼ 3 and jVðHð2ÞÞj 
 jVðHðDÞÞj;

(a-2) d ¼ 4 and s vDþ2;H 2ð Þ
� �

; s vDþ3ð
�

;H 2ð ÞÞÞ⪰
s v3D−2;H Dð Þ
� �

; s v3D−1;H Dð Þ
� �� �

:

An illustration of an s-proper tree and non-s-proper trees is
shown in Fig. 4. Recall that B denotes the base path in T. We
define an s-proper form of H to be a subtree H 0 such that (i)
EðBÞ � EðH 0Þ; (ii) there is an isomorphism  from H 0 to H
such that ðuÞ 2 VðBÞ for any vertex u 2 VðBÞ; and (iii)H 0 is
an s-proper tree. Notice that an s-proper form of a subtreeH is
not necessarily unique.

Theorem 2 Every subtreeH ofT y
½D;d�withEðBÞ � EðHÞhas an

s-proper form.

Proof We set G :¼ H . If G is an s-proper tree then G is an s-
proper form ofH and we are done. Therefore, assume thatG is
not an s-proper tree. IfG has a subtreeGðiÞ for some i 2 ½2;D�
that is non-s-left heavy due to a vertex vj 2 VðGðiÞÞ, then we

can re-order the descendant subtrees of the children of vj so

that the s-value of its children from left to right is non-increas-
ing, since it will not change the s-value of vj. LetG� denote the
tree obtained by applying this re-ordering operation. Clearly
there exists an isomorphism  from G� to H such that  ðuÞ
2 VðBÞ for any vertex u 2 VðBÞ, since we only re-order the
descendant subtrees of the children of a vertex in G. Then set
G :¼ G� and repeat the same operation of re-ordering until all
subtrees GðiÞ; i 2 ½2;D� of G are s-left heavy trees. Next, for

the subtree G, if one of conditions (a-1) and (a-2) is satisfied,
thenG is an s-proper form ofH. Otherwise, i.e., when none of
conditions (a-1) and (a-2) is satisfied, we can get an s-proper
form of H by switchingGðiÞ andGðDþ2	iÞ, i 2 ½2; bD=2c þ 1�,
which completes the proof.

4.2 A proper set based on s-proper form

Let Pprc be a set of ordered index pairs (i, j) withDþ 2 � i<
j � nmax. We call Pprc proper if the next conditions hold:

(c-1) For each subtree H of T y
½D;d� with EðBÞ � EðHÞ, there

is at least one subtreeH 0 withEðBÞ � EðH 0Þ such that

1. there is an isomorphism  fromH 0 to H such that
 ðuÞ 2 VðBÞ for any vertex u 2 VðBÞ; and

2. for each pair ði; jÞ 2 Pprc, if ej 2 EðH 0Þ then ei
2 EðH 0Þ; and

(c-2) For each pair of edges ei and ej in T
y
½D;d� such that ei is

the parent ej, there exists a sequence ði1; i2Þ; ði2; i3Þ;
. . . ; ðik	1; ikÞ of index pairs inPprc such that i1 ¼ i and
ik ¼ j.

Note that a given skeleton tree does not necessarily have a
unique proper setPprc. In the remainder of this section, we give
a construction method for a proper set Pprc based on s-proper
form.

vv14 v16
v17v15

e1

e5 e6

e4

e7 e10e9e8

e13e12
e11

v1
v2 v5

v3

v6

v4

v7 v10
v9v8

v13
v12

v11e14 e16e15

e2 e3

(a) H, H(3)
v14 v16

v17v15

e1

e5 e6

e4

e7 e10e9e8

e13e12
e11

v1
v2 v5

v3

v6

v4

v7 v10
v9v8

v13
v12

v11e14 e16e15

e2 e3

(b) Hb

v14 v16
v17v15

e1

e5 e6

e4

e7 e10e9e8

e13e12
e11

v1
v2 v5

v3

v6

v4

v7 v10
v9v8

v13
v12

v11e14 e16e15

e2 e3

(c) Hc
v14 v16

v17v15

e1

e5 e6

e4

e7 e10e9e8

e13e12
e11

v1
v2 v5

v3

v6

v4

v7 v10
v9v8

v13
v12

v11e14 e16e15

e2 e3

(d) Hd

Fig. 4 Examples of s-proper tree and non-s-proper tree H. The vertices
and edges in H are shown in black. (a) An example of Hð3Þ for the tree

T y
½4;4� shown in Fig. 3 (b). The vertices and edges inH are shown in black,

while the remainder ofT y
½4;4� not included inH is in gray. The subtreeHð3Þ

is enclosed by a dashed boundary. (b)Hb is an s-proper tree; (c)Hc is not
an s-proper tree sinceHcð3Þ is not an s-left heavy tree; and (d)Hd is not an
s - p r o p e r t r e e s i n c e
ðsðvDþ2;Hdð2ÞÞ; sðvDþ3;Hdð2ÞÞÞ � ðsðv3D	2;HdðDÞÞ; sðv3D	1;HdðDÞÞÞ
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Let T denote T y
½D;d� . We define P0

prc of T to be the set of

ordered index pairs (i, j) such that either

(i) vjþ1 is the first child of viþ1 or;
(ii) j ¼ iþ 1 and viþ1 and viþ2 share the same parent in T.

In Fig. 5 (a) and (b), we illustrate an example of ordered index
pairs (i, j) that satisfy conditions (i) and (ii), respectively, with
ei at level t 	 1 and ej at level t, t 2 ½3; bD=2c þ 1�.

For d ¼ 3 and edges at level 2, we defineP00ð3Þ
2 to be the set

fðDþ 1; ðd 	 2ÞðD	 2Þ þ Dþ 1 ¼ 2D	 1Þg . For d ¼ 3

and edges at level 4, we define P00ð3Þ
4 to be the set of ordered

index pairs (i, j) such that

(i) viþ1; vjþ1 2 VðTðpÞÞ for some p 2 ½2;D�; and
(ii) viþ1 and vjþ1 are each the h-th child of their parents in T

for some h 2 ½1; d 	 1�.

For d ¼ 4 and edges at level 2, we defineP00ð4Þ
2 to be the set of

ordered index pairs fðDþ 1; ðd 	 2ÞðD	 2Þ þ Dþ 1 ¼ 3D
	3Þ; ðDþ 2; ðd 	 2ÞðD	 2Þ þ Dþ 2 ¼ 3D	 2Þg. For d ¼
4 and edges at level 3, we define P00ð4Þ

3 to the set of ordered
index pairs (i, j) such that

(i) viþ1; vjþ1 2 VðTðpÞÞ for some p 2 ½2;D� and;
(ii) viþ1 and vjþ1 are each the h-th child of their parents in T

for some h 2 ½1; d 	 1�.

Finally we define P00ð3Þ
prcP

00ð3Þ
2 [ P00ð3Þ4 and P00ð4Þ

prcP
00ð4Þ
2 [ P00ð4Þ3 .

Theorem 3 For two integers, D 
 2 and d 2 f3; 4g, the set P
0
prc [ P00ðdÞprc is proper for the tree T

y
½D;d�.

Proof Let T denote the treeT y
½D;d�, and letP ¼ P0

prc [ P00ðdÞprc. To
show that P is proper, we need to show that P satisfies condi-
tions (c-1) and (c-2). Let H be a subtree of T with fe1; e2; . . .
; eDg � EðHÞ. By Theorem 2, we know that there exists an s-
proper form ofH. LetH 0 ¼ ðV0;E0Þ be an s-proper form ofH.
Thus, H 0 is isomorphic to H, by the definition of s-proper
form. This implies that condition (c-1)(a) holds. Let G :¼ H 0

. We next show that condition (c-1)(b) holds forP0
prc andP00ðdÞ

prc

separately. Let ði; jÞ 2 P0
prc such that vjþ1 is the first child of

viþ1. Ifej 2 EðGÞbutei=2EðGÞ, thenGwould be disconnected,
which is a contradiction. Let ði; jÞ 2 P0

prc such that j ¼ iþ 1
and viþ1 and viþ2 share the same parent in T. This implies that
there exists an integerp 2 ½2;D� such thatviþ1; viþ2 2 VðTðpÞÞ.
Let K denote GðpÞ. If ej 2 EðGÞ but ei=2EðGÞ, then sðviþ1; KÞ

(b)

...

(a)

vi+1

vj+1 vj+2 vj+h

ej

ei

ej+1
ej+h ...

vi+1 vi+2

ei (ej=ei+1)...

1

2

(c)

e2D–1eD+1 ...

1

2

3

(d)

vp

4

ei ej

vi+1 vj+1

1

2

eD+1 ...e3D–3 e3D–2eD+2

(e)

1

2

(f)

vp

3
ei ej

vi+1 vj+1

t t

ej

Fig. 5 An illustration of elements

(i, j) of P0
prc;P0 0

ð3Þ
2 ; P0 0ð3Þ4 ; P00ð4Þ2

and P0 0ð4Þ
3 presented by

representing edges ei and ej with
thick lines. The dashed lines show

a level in T y
½D;d�. (a) An element of

P0
prc such thatvjþ1 is the first child

ofviþ1 and edgeej is at level t 
 3;
(b) An element of P0

prc such that
j ¼ iþ 1 and viþ1 and viþ2 share

the same parent in T y
½D;d� and edge

ej is at level t 
 2; (c) The element
ðDþ 1; ðd 	 2ÞðD	 2Þ þ D
þ1 ¼ 2D	 1Þ of P0 0ð3Þ

2 and edge
eDþ1 and e2D	1 are at level 2; (d)

An element (i, j) ofP0 0ð3Þ
4 such that

viþ1; vjþ1 2 VðTðpÞÞ for some p
2 ½2;D� andviþ1 andvjþ1 are each

the h-th child of their parents in

T y
½D;d� for some h 2 ½1; d 	 1�; (e)

The elements ðDþ 1; ðd 	 2ÞðD
	2Þ þ Dþ 1 ¼ 3D	 3Þ and ðD
þ2; ðd 	 2ÞðD	 2Þ þ Dþ 2

¼ 3D	 2Þ in P0 0ð4Þ
2 ; and (f) An

element (i, j) of P00ð4Þ
3 such that

viþ1; vjþ1 2 VðTðpÞÞ for some p
2 ½2;D� andviþ1 andvjþ1 are each

the h-th child of their parents in

T y
½D;d� for some h 2 ½1; d 	 1�
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¼ 0 and sðviþ2; KÞ 
 1 holds. This implies that sðviþ1; KÞ<
sðviþ2; KÞ, which contradicts the fact that K is an s-left heavy
tree. Hence, P0

prc satisfies condition (c-1)(b). Let d ¼ 3 and

ði; jÞ 2 P00ðdÞ
prc. This implies that ði; jÞ 2 P00ð3Þ

2 or ði; jÞ 2 P00ð3Þ
4 .

Let ði; jÞ 2 P00ð3Þ
2 , then i ¼ Dþ 1 and j ¼ ðd 	 2ÞðD	 2Þ

þDþ 1. Notice that viþ1 2 VðTð2ÞÞ and vjþ1 2 VðTðDÞÞ. If ej
2 EðGÞ but ei=2EðGÞ, then jVðGð2ÞÞj< jVðGðDÞÞjwould hold,
which contradicts the fact that G is an s-proper tree. Let ði; jÞ
2 P00ð3Þ

4 , then it holds that levelðeiÞ ¼ levelðejÞ ¼ 4 and viþ1

and vjþ1 are in the same rooted subtree TðpÞ for some integer

p 2 ½2;D� . Let K denote GðpÞ . Since d ¼ 3, there exists a

positive integer u such that the four edges eu; euþ1; euþ2 and
euþ3 are at level four. Note that ðu; uþ 1Þ and ðuþ 2; uþ 3Þ
are the elements of P0

prc since the vertices in the pairs ðvuþ1;

vuþ2Þ and ðvuþ3; vuþ4Þhave the same parents. This implies that
the condition viþ1 and vjþ1 are each the h-th child of their
parents in T for some h 2 ½1; d 	 1� can only be true for ði; jÞ
¼ ðu; uþ 2Þ or ðuþ 1; uþ 3Þ. Let ði; jÞ ¼ ðu; uþ 2Þ. If euþ2

2 EðGÞ but eu=2EðGÞ, then it holds that euþ1=2EðGÞ since ðu;
uþ 1Þ 2 P0

prc. Letvx andvy denote the parents ofvuþ1 andvuþ3

in T, respectively. Then sðvx; KÞ ¼ 1 and sðvy; KÞ 
 1 would
hold, which implies that sðvy; KÞ 
 sðvx; KÞ. Then we can get
another s-proper form H 00 ¼ ðV00;E00Þ by switching the two
subtrees rooted atvx and vy inG. Clearly by the construction of
H 00, it holds thateu 2 E00 ifeuþ2 2 E00 andE00 satisfies all those
conditions that are satisfied by E(G). In such a case, we set G
:¼ H 00. Let ði; jÞ ¼ ðuþ 1; uþ 3Þ. If euþ3 2 EðGÞ but euþ1=2
EðGÞ, then it holds that euþ2 2 EðGÞ since ðuþ 2; uþ 3Þ 2 P
0
prc and eu 2 EðGÞ since we have shown that ðu; uþ 2Þ 2 P0

0ðdÞ
prc . Let vx and vy denote the parents of vuþ1 and vuþ3 in T,
respectively. Then sðvy; KÞ 
 2 and sðvx; KÞ ¼ 1would hold,
which implies that sðvx; KÞ< sðvy; KÞ. Notice that vx and vy
have the same parent in T by the choice of u. This and sðvx;
KÞ< sðvy; KÞ contradicts the fact thatK is an s-left heavy tree.
This implies that euþ1 2 EðGÞ if euþ3 2 EðGÞ holds.

Let d ¼ 4 and ði; jÞ 2 P00ðdÞ
prc. This implies that ði; jÞ 2 P00ð4Þ

2

or ði; jÞ 2 P00ð4Þ
3 . Let ði; jÞ 2 P00ð4Þ

2 , then ði; jÞ ¼ ðDþ 1; ðd 	 2
ÞðD	 2Þ þ Dþ 1Þ or ði; jÞ ¼ ðDþ 2; ðd 	 2ÞðD	 2Þ þ D

þ2Þ by the definition of P00ð4Þ
2 . In both cases, viþ1 2 VðTð2ÞÞ

and vjþ1 2 VðTðDÞÞ. If ej 2 EðGÞ but ei=2EðGÞ , then it will

result in a contradiction with the fact that G is an s-proper tree

by the definition of an s-left heavy tree (a-2). Let ði; jÞ 2 P00ð4Þ
3 ,

then levelðeiÞ ¼ levelðejÞ ¼ 3 andviþ1 andvjþ1 are in the same
rooted tree TðpÞ for some integer p 2 ½2;D�. Let K denoteGðpÞ.

Since d ¼ 4, there exists a positive integer u such that the six
edgeseu; euþ1; euþ2; euþ3; euþ4 andeuþ5 are at level three. Here
ðu; uþ 1Þ; ðuþ 1; uþ 2Þ, ðuþ 3; uþ 4Þ and ðuþ 4; uþ 5Þ

are the elements of P0
prc since the vertices in the pairs ðvuþ1;

vuþ2Þ; ðvuþ2; vuþ3Þ; ðvuþ4; vuþ5Þ and ðvuþ5; vuþ6Þ have the
same parents. This implies that the condition viþ1 and vjþ1

are each the h-th child of their parents in T for some h 2 ½1; d
	1� can only be true for ði; jÞ ¼ ðu; uþ 3Þ; ðuþ 1; uþ 4Þ or
ðuþ 2; uþ 5Þ. Let ði; jÞ ¼ ðu; uþ 3Þ. If euþ3 2 EðGÞ but eu
=2EðGÞ, then it holds that euþ1; euþ2=2EðGÞ since ðu; uþ 1Þ; ð
uþ 1; uþ 2Þ 2 P0

prc. Let vx and vy denote the parents of vuþ1

and vuþ4 in T, respectively. Then sðvx; KÞ ¼ 1 and sðvy; KÞ

 1would hold, which implies that sðvy; KÞ 
 sðvx; KÞ. Then
we can get another s-proper formH 00 ¼ ðV00;E00Þby switching
the two subtrees rooted at vx and vy in G. Clearly by the
construction of H 00, it holds that eu 2 E00 if euþ3 2 E00 and E0
0 satisfies all those conditions that are satisfied by E(G). In
such a case, we set G :¼ H 00 . Let ði; jÞ ¼ ðuþ 1; uþ 4Þ. If
euþ4 2 EðGÞ but euþ1=2EðGÞ, then it holds that euþ3 2 EðGÞ
since ðuþ 3; uþ 4Þ 2 P0

prc, euþ2=2EðGÞ since ðuþ 1; uþ 2Þ
2 P0

prc and eu 2 EðGÞ since we have shown that ðu; uþ 3Þ
2 P00ðdÞ

prc. Let vx and vy denote the parents of vuþ1 and vuþ4 in T,
respectively. Then sðvx; KÞ ¼ 1 and sðvy; KÞ 
 1would hold,
which implies that sðvy; KÞ 
 sðvx; KÞ. Then we can get an-
other s-proper form H 00 ¼ ðV00;E00Þ by switching the two
subtrees rooted at vx and vy in G. Clearly by the construction
ofH 00, it holds that euþ1 2 E00 if euþ4 2 E00 and E00 satisfies all
those conditions that are satisfied by E(G). In such a case, we
set G :¼ H 00. Let ði; jÞ ¼ ðuþ 2; uþ 5Þ. If euþ5 2 EðGÞ but
euþ2=2EðGÞ, then it holds that euþ4; euþ3 2 EðGÞ since ðuþ 4
; uþ 5Þ; ðuþ 3; uþ 4Þ 2 P0

prc and euþ1; eu 2 EðGÞ since we
have shown that ðuþ 1; uþ 4Þ; ðu; uþ 3Þ 2 P00ðdÞ

prc. Let vx and
vy denote the parents of vuþ1 and vuþ4 in T, respectively. Then
sðvy; KÞ 
 2 and sðvx; KÞ ¼ 1would hold, which implies that
sðvx; KÞ< sðvy; KÞ. Notice that vx and vy have the same parent
in T by the choice of u. This and sðvx; KÞ< sðvy; KÞ contra-
dicts the fact that K is an s-left heavy tree. This implies that
euþ2 2 EðGÞ ifeuþ5 2 EðGÞholds. Hence, in each of the cases
P00ðdÞ

prc satisfies condition (c-1)(b).

Next we prove that P satisfies condition (c-2). Let i1 ¼ i,
i2 þ 1be the index of the first child ofviþ1 and i2; i3; . . . ; ik ¼ j
be consecutive integers. Then the sequence ði1; i2Þ; ði2; i3Þ; . . .
; ðik	1; ikÞ are ordered index pairs in P such that i1 ¼ i and ik
¼ j. Hence P is a proper set, which completes the proof.

4.3 An algorithm to calculate a proper set

In this section, we give an algorithm to compute a proper set
based on Theorem 3. In Algorithm GENPPRC(D , d), the vari-
ablesP1;P2;P3;P4 andP5 store the sets defined in Section 4.2,

P0
prc, P00ð3Þ

2 , P00ð3Þ
4 , P00ð4Þ

2 , and P00ð4Þ
3 , respectively. For an edge

e 2 EðT y
½D;d�Þ, the variable level[e] stores the level of e.
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5 MILPs for representing acyclic chemical
graphs

In this section, we propose a new MILP formulation Mðx; g
; C2Þ as used in Step 4 of the method introduced in Section 3.
For our purpose, we consider acyclic chemical graphs where
each vertex has degree at most 3 or the maximum degree is 4.

We formulate theMILPMðx; g; C2Þ so that the underlying
graph H is an induced subgraph of the skeleton tree T y

½dia�;dmax�
introduced in Section 4, and moreover, it holds that fv1; v2;
. . . ; vdia�þ1g � V. We remark that in order to reduce the num-
ber of graph-isomorphic solutions to this MILP, for a skeleton

tree, we make use of precedence constraints based on the
proper set Pprc as formalized in Section 4.2.

For a technical reason, we introduce a dummy chemical
element �, and denote by Γ 0 the set of dummy tuples ð�; �; kÞ
,ð�; a; kÞandða; �; kÞ (a 2 Λ,k 2 ½0; 3� ). To represent elements
a 2 Λ [ �f g [ Γ< [ Γ¼ [ Γ> in an MILP, we encode these
elementsa into some integers denoted by ½a�, where we assume
that ½�� ¼ 0. For simplicity, we also denote n� by n and nmaxð
dia�; dmaxÞ by nmax. Our new formulation is given as follows.
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6 Experimental results

The main aim of our experiments is to compare
implementations of the MILP formulations proposed in
Section 5 and the one due to Azam et al. [4] in Step 4 of the
method for the inverse QSAR/QSPR [4]. The results of this
main experiment are presented in Section 6.2, after giving our
findings on the construction of regression functions by train-
ing ANNs in Section 6.1.

We executed the experiments on a PC with Intel Core i5
CPU running at 1.6 GHz and 8 GB of RAM, under the Mac

OS 10.14.4 operating system. For a study case, we selected
three chemical properties: heat of atomization (HA), octanol/
water partition coefficient (KOW) and heat of combustion (HC).

6.1 Experiments on Phase 1

In this section we present our experiments conducted on
Phase 1, that is, the forward phase of the framework for the
inverse QSAR/QSPR.
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In Step 1, we collected a dataset D of acyclic chemical
graphs for HA made available by Roy and Saha [19]. For the
properties KOW and HC, we collected data available from the
hazardous substances data bank (HSDB) from PubChem. We
choose label setΛ to be such that each element inΛ appears as
a chemical element in at least one of the chemical graphs in the
datasetD; and similarly, we choose the setΓ to be the set of all
tuples� ¼ ða; b; kÞ 2 Λ� Λ� ½1; 3� appearing in at least one
of the chemical graphs indataset D. In Step 2, we set a graph
class G to be the set of all acyclic chemical graphs that are
possible to be constructed with elements from the setsΛ andΓ
chosen in Step 1. In Step 3, we used the MLPRegressor tool
from the Python package scikit-learn2 (version 0.24.2) to con-
struct ANNsN , and we set ReLU as the activation function of
neurons.We tested several different architectures of ANNs for
each chemical property. With simple preliminary experiments
we identified promising ranges for hyperparameter values,
and then performed a grid search over the following
hyperparameter values:

– number of hidden layers in f1; 2; 3; 4; 5g,
– number of nodes per hidden layer in f7; 10; 15; 30; 50g,
– learning rateη inf0:00025; 0:0005; 0:001; 0:002; 0:004g,

and
– regularization term � in f10	5; 2� 10	5; 4� 10	5; 8

�10	5; 1:6� 10	4g.

The maximum number of training epochs was set to108 due to
the moderately small number of training data. Since our initial
experiments derived satisfactory results, other model parame-
ters were used with their default values provided by scikit-
learn. We used 5-fold cross validation to evaluate the perfor-
mance of the trained ANNs, where a given dataset D is ran-
domly partitioned into five subsets Di, i 2 ½1; 5�. The evalua-
tion is given in terms of the coefficient of determination R2,
which for a collection ða1; a2; . . . ; apÞ of p real values with
average ba ¼ 1

p

Pp
i¼1 ai that are associated with a collection ð

y1; y2; . . . ; ypÞof values predicted by a regressionmodel, gives
a model error as

R2 ¼ 1	
Pp

i¼1
ðai	yiÞ2Pp

i¼1
ðai	baÞ2 :

Table 1 shows the size and range of values in the datasets that
we used for each chemical property, as well as results on
Phase 1. The notation and symbols used in Table 1 are as
follows:

�: the tested chemical property, one of HA, KOW, and
HC;

|D|: the number of data points in the collected dataset D
for a chemical property �;

Λ: the set of all chemical elements that appear in at least
one of the chemical graphs in the dataset D;

n; n: the minimum and maximum number of vertices in a
chemical graph G ¼ ðH ; �; �Þ over the dataset D;

a; a: the minimum and maximum values of a(G) over the
dataset D;

K: the number of descriptors in f(G) for a chemical
property �, where K ¼ jΛj þ jΓ j þ 12 for our
feature vector f(G);

Arch.: the size of hidden layers of ANNs, where h10i�1
(resp., h30i�2 ) means an architecture (K, 10, 1)
with an input layer with K nodes, one hidden layer
with 10 nodes (resp., two hidden layers, each with
30 nodes), and an output layer with a singe node;

η: the learning rate chosen for training the ANN;
�: the regularization term used for training the ANN;
L-
time:

the average time, in seconds (s), to construct ANNs
for each trial;

Test R2

:
the coefficient of determination averaged over the
five test sets for the corresponding combination of
hyperparameter values.

Note that the parameters given in Table 1 for Step 3 are
those that achieved the highest average coefficient of determi-
nation over the test set in the cross-validation trials. As can be
observed in Table 1, we cannot draw a conclusion as to wheth-
er a certain hyperparameter of an ANN has a predictable in-
fluence on the performance of the ANN model. For different
chemical properties, and in fact, for the case of property HC,
even for a single property observed over a different dataset of
chemical compounds, noticeably different hyperparameter
combinations achieve the best performance, i.e., the highest
coefficient of determination over an unobserved test set.

6.2 Experiments on Phase 2

In this section we delve into our main interest with this study,
namely the inverse phase of the combined framework for the
inverse QSAR/QSPR [4, 5], and in particular, Step 4,
inverting a trained ANN by solving an MILP formulation.

We call the MILP formulation due to Azam et al. [4] based
on an adjacency matrix the AM method, and the MILP for-
mulation based on skeleton tree presented in Section 5 the ST
method. We use the CPLEX (ILOG CPLEX version 12.9) [9]
solver to solve MILP instances formulated in the framework.
We performed experiments for each of the properties HA,

KOW, and HC as follows. For several pairs ðdmax; dia�Þ of
integers dmax 2 f3; 4g and dia� 2 ½6; 13�, choose each integer
n� 2 ½14; nmaxðdia�, dmaxÞ� and six target values y�i , i 2 ½1; 6�.
We attempted to solve the six MILP instances by using the
AM and ST methods. We started by setting n� ¼ 14, and then
gradually increased n� up to nmaxðdia�; dmaxÞ. Whenever the
running time while solving at least one of the six instances2 https://scikit-learn.org/
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reached a time limit set to be 300 seconds, we stopped further
attempts to solve the MILP instances with each of the two
methods.

We present our findings in Tables 2 and 3, as well as
Figure 4, where we summarize the results from our experi-
ments, in particular, the computation time of the AM and ST
methods in Step 4 for property HA. The notation used is as
follows:

AM: the average time (s) to solve sixMILP instances based
on the AM method;

ST: the average time (s) to solve sixMILP instances based
on the ST method;

T.O.: indicates that the running time of one of the six
instances exceeded 300 seconds.

For property HA, additionally, we executed the AMmethod
for instances with n� ¼ 36, n� ¼ 38, and n� ¼ 40, dia� ¼ 6,
and dmax ¼ 4 without imposing a time limit. The respective
computation times were 21,962 seconds for n� ¼ 36, 124,903
seconds for n� ¼ 38 , and 148,672 seconds for n� ¼ 40 .
Meanwhile, the computation time for the ST method was
2.133 seconds for the instances with n� ¼ 38, which means
that for this range of instance size, the ST method was 58,557
times faster than the AM method.

We give a short comment summary on the results of the
experiments with instances of KOW and HC: The ST method
outperformed the AM method for the cases of ð�¼ KOW; jΛ
j¼ 3; dmax¼ 3; dia�� 11Þ, ð�¼ KOW; jΛj¼ 3; dmax¼ 4; dia
�� 7Þ, ð�¼ KOW; jΛj¼ 7; dmax¼ 3; dia�� 8Þ, ð�¼ KOW; jΛ
j¼ 7; dmax¼ 4; dia�� 5Þ, ð�¼ HC; jΛj¼ 3; dmax¼ 3; dia��
9Þ, ð�¼ HC; jΛj¼ 3; dmax¼ 4; dia�� 6Þ, ð�¼ HC; jΛj¼ 6;

Table 1 The results on Steps 1, 2 and 3

Steps 1 and 2 Step 3

� |D| Λ ½n; n� ½a; a� K Arch. η � L-time Test R2

HA 128 C,O,S [2,11] [450.3, 3009.6] 19 h7i�5 0.0005 10	5 5.74 0.999

KOW 229 C,O,S [1,36] [-3.1, 15.6] 26 h50i�1 0.004 4�10	5 0.596 0.967

430 C,Cl,O, [1,36] [-4.2, 15.6] 42 h30i�1 0.002 4�10	5 1.279 0.925

N,S,Br,F

HC 198 C,O,N [2, 63] [245.6, 35099.6] 27 h7i�3 0.00025 2�10	5 14.179 0.997

215 C,O,N, [2, 63] [245.6, 35099.6] 35 h30i�1 0.0005 8�10	5 14.655 0.987

F,S,Br

262 C,Cl,O,N,S, [2, 63] [245.6, 35099.6] 53 h7i�5 0.00025 2�10	5 3.226 0.927

Br,F,Si,B,P

Table 2 The computation time of the AM and ST methods for HA,
dmax ¼ 3

dia� ¼ 8 dia� ¼ 12 dia� ¼ 13

n� AM ST AM ST AM ST

14 0.037 0.244 0.020 0.471 0.012 0.185

16 0.600 0.237 0.160 1.829 0.096 1.664

18 1.620 0.076 0.496 2.228 0.360 3.529

20 3.886 0.493 1.254 5.576 0.920 6.531

22 6.074 0.370 3.384 6.647 2.035 6.238

24 25.661 0.510 6.413 7.810 6.192 19.055

26 50.422 0.539 10.713 17.758 8.613 32.541

27 T.O. 0.346 16.249 19.495 12.724 88.068

28 - 0.551 40.771 11.795 17.194 84.688

29 - 0.601 24.904 13.587 T.O. 94.952

30 - 0.845 85.709 16.896 - 90.501

31 - 0.491 T.O. 23.497 - 99.171

32 - 0.554 - 25.978 - 121.37

34 - 0.577 - 20.866 - 76.159

36 - 0.252 - 46.940 - 77.627

38 - 0.722 - 19.028 - 139.25

40 - 1.469 - 23.707 - 86.610

42 - 0.766 - 44.204 - 176.51

44 - 0.152 - 60.771 - T.O.

46 - 0.034 - 57.769 - -

48 n.a. n.a. - 59.224 - -

50 n.a. n.a. - 72.139 - -

52 n.a. n.a. - 35.022 - -

53 n.a. n.a. - T.O. - -
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dmax¼ 3; dia�� 8Þ, ð�¼ HC; jΛj¼ 6; dmax¼ 4; dia�� 7Þ, ð�
¼ HC; jΛj¼ 10; dmax¼ 3; dia�� 7Þ and ð� ¼ HC; jΛj ¼ 10;
dmax ¼ 4; dia� � 5Þ.

From the experimental results, we observe that the ST
method completed Step 4 in shorter time than the AMmethod
did when the diameter of graphs was up to around 11 for dmax

¼ 3, and 8 for dmax ¼ 4. In particular, it can be seen from
Tables 2 and 3, as well as Fig. 6, that under such conditions,
the ST method could handle chemical graphs with number n�

of non-hydrogen vertices up to 48 in reasonable CPU time,
whereas the AM method could only handle chemical graphs
with n�< 30. Therefore, the results of computational experi-
ments suggest that the ST method can handle a much larger
number of chemical graph than the AM method can. Finally,
recall that chemical graphs with diameter up to 11 for dmax

¼ 3 and 8 for dmax ¼ 4 account for about 35 % and 18 %,
respectively, out of all acyclic chemical graphs with 200 or
fewer non-hydrogen atoms registered in the PubChem chem-
ical database, and about 63 % and 40 % out of the acyclic

chemical graphs with 200 or fewer non-hydrogen atoms with
dmax ¼ 3 and dmax ¼ 4, respectively.

7 Concluding remarks

With this work, we presented a new MILP formulation for
inferring acyclic chemical graphs. Our MILP formulation
can be directly incorporated in the method for the inverse
QSAR/QSPR proposed to Azam et al. [4]. One drawback of
the formulation given by Azam et al. [4] is that in order to
represent a tree on n vertices, subsets of vertex pairs over an
n� n adjacency matrix are used, requiring the same number
of variables in the MILP formulation. With the aim to reduce
the number of variables in the MILP formulation, we intro-
duced the concept of skeleton trees, which are trees with the
maximum number of vertices for fixed diameter and maxi-
mum degree. Then, in our method, a target tree is chosen as
an induced subgraph of a skeleton tree. In this way, whenever

Table 3 The computation time of
the AM and ST methods for HA,
dmax ¼ 4

dia� ¼ 6 dia� ¼ 8 dia� ¼ 9

n� AM ST AM ST AM ST

14 0.503 0.146 0.218 3.375 0.212 7.242

16 1.285 0.938 0.700 6.475 0.644 8.805

18 3.112 0.163 1.526 4.698 1.320 8.983

20 8.628 1.326 3.648 13.317 3.770 27.347

22 9.197 0.484 5.968 20.760 5.964 T.O.

24 37.190 1.339 11.050 17.506 12.046 -

26 73.451 1.522 22.141 24.742 20.998 -

27 T.O. 0.980 42.833 25.958 29.748 -

28 - 1.858 52.711 44.286 T.O. -

29 - 1.206 66.298 40.580 - -

30 - 1.395 T.O. 49.729 - -

32 - 1.572 - 33.445 - -

34 - 1.640 - 64.993 - -

36 (2×1042) 1.391 - 35.968 - -

38 (1×1055) 2.133 - 42.081 - -

40 - 1.916 - 25.675 - -

42 - 1.252 - 27.439 - -

44 - 1.258 - 41.772 - -

46 - 0.750 - 63.170 - -

48 - 0.947 - 43.488 - -

49 - 0.633 - T.O. - -

50 - 0.445 - - - -

51 - 0.459 - - - -

52 - 0.124 - - - -

53 - 0.050 - - - -
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the target acyclic graphs have a limited diameter, we signifi-
cantly reduce the number of variables used in our MILP for-
mulation, and thereby also the time needed to solve it in prac-
tice when the number of chemical elements is relatively small.
The results on some computational experiments confirm this,
i.e., we observe that the proposed method is more efficient
than the previously proposed method.

Even though the MILP formulation presented in this paper
targets the class G of acyclic chemical graphs, we note that a
similar formulation can be applied to the acyclic part of any
chemical graph, regardless of the number of cycles it has.
Based on the idea of prescribing a tree that serves as a
supergraph of a target acyclic chemical graph, Azam et al. [5]
and Akutsu and Nagamochi [2] have developed methods for
inferring chemical acyclic graphs with a larger diameter and
cyclic chemical graphs with any cycle index, respectively,
where the proposed method/systems are available at GitHub
https://github.com/ku-dml/mol-infer.

As future work it would be interesting to explore a way of
defining the graph topology of a desired chemical graph, i.e.,
generate target chemical graphs with a fixed scaffold [21].
Another line of research would be to explore different
methods for constructing a regressive prediction function,
for example convolutional ANNs, different types of multiple
linear regression, or decision trees.
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