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The chiral susceptibility, or the first derivative of the chiral condensate with respect to the
quark mass, is often used as a probe for the QCD phase transition since the chiral conden-
sate is an order parameter of SU(2)L × SU(2)R symmetry breaking. However, the chiral
condensate also breaks the axial U(1) symmetry, which is usually not studied as it is already
broken by the anomaly and apparently has little impact on the transition. We investigate
the susceptibilities in the scalar and pseudoscalar channels in order to quantify how much
the axial U(1) breaking contributes to the chiral phase transition. Employing a chirally
symmetric lattice Dirac operator and its eigenmode decomposition, we separate the axial
U(1) breaking effects from others. Our result in two-flavor QCD indicates that both of the
connected and disconnected chiral susceptibilities are dominated by axial U(1) breaking at
temperatures T � 190 MeV after the quadratically divergent constant is subtracted.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Subject Index B01, B02, B64, D31

1. Introduction
The properties of phase transition are largely governed by symmetries that are broken/restored
at the transition. In quantum chromodynamics (QCD) with two degenerate dynamical quarks
(up and down), the relevant symmetry is that of flavor rotation of left- and right-handed quark
fields, i.e., SU(2)L × SU(2)R chiral symmetry, which is spontaneously broken at low tempera-
tures but is believed to be recovered at some high temperature experienced by our universe at its
early stage. The chiral condensate �(m) = −∑

x〈S0(x)〉/V, defined with a flavor singlet scalar
quark bilinear operator S0(x) and the four-volume V, as well as its derivative χ (m) = ∂

∂m�(m),
known as the chiral susceptibility, are often used to probe the so-called chiral phase transition
[1–9].

The condensate also breaks the flavor-singlet axial symmetry U(1)A but its relevance is not
immediately clear, since it is broken by the quantum anomaly, which exists at any energy scale.
The U(1)A anomaly may still affect the low-energy dynamics as it is related to the topology of
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the gluon field and the zero eigenstates of the Dirac operator through the index theorem. In
fact, the founders of QCD (see, e.g., Ref. [10]) strongly suggested that the SU(2)L × SU(2)R

breaking is triggered by the topologically nontrivial configuration of gluons and a quantitative
estimate was even made in Ref. [11]. However, this view of the U(1)A anomaly as the origin
of the SU(2)L × SU(2)R breaking is not widely appreciated today since early lattice simula-
tions reported survival of the axial U(1) anomaly near the critical temperature; thus, the U(1)A

anomaly apparently has little impact on the transition.
In this work, we revisit this issue, using lattice QCD with exactly chiral and flavor symmet-

ric quarks. The index theorem is satisfied on the lattice to good precision so that the relation
between topological gauge excitation and the fermion near-zero mode remains intact. By an
eigenmode decomposition of the Dirac operator and quark propagators [12–15], we can un-
ambiguously separate the U(1)A breaking effect from others in the chiral susceptibility χ (m) =∑

x〈S0(x)S0(0)〉 − V〈S0(0)〉2. With the exact chiral symmetry, we can avoid severe lattice arti-
facts that can induce large overestimates of the U(1)A breaking as demonstrated in Refs. [13,14].

We find that χ (m) in the high-temperature phase mostly probes the presence/absence of
the U(1)A symmetry: the connected part is dominated by the U(1)A susceptibility defined as∑

x〈Pa(x)Pa(0) − Sa(x)Sa(0)〉, where Sa(x) and Pa(x) are iso-triplet scalar and pseudoscalar
operators, and the disconnected part is governed by the topological susceptibility, which mea-
sures the instanton number variance. Meanwhile, the SU(2)L × SU(2)R susceptibilities remain
small even when the chiral condensate and U(1)A susceptibility become nonzero due to finite
quark masses.

This result suggests a possibility that the chiral phase transition is actually driven by the
U(1)A breaking as suggested in the early stage of QCD. In Ref. [16], it was argued that if the
U(1)A breaking is kept large at the critical temperature the transition is likely to be the second
order. But if the U(1)A symmetry effectively “emerges”, the order or the universality class of
the transition differs from the naive expectation, which would require changes in the current
understanding of the early universe.

2. Dirac eigenmode decomposition of susceptibilities
Let us start with the Nf-flavor QCD partition function with a nonzero vacuum angle θ ,

Z(m, θ ) =
∫

[dA] det(D(A) + m)Nf e−SG (A)+iθQ(A), (1)

where the path integral over the gauge field A is performed with a weight given by the gauge
action SG(A), topological charge Q(A), or equivalently the index of the Dirac operator D(A),
and the fermion determinant with a degenerate quark mass m. We have used a continuum
notation for simplicity. The lattice formulas in terms of the overlap-Dirac operator [17] will be
given later.

Denoting the eigenvalues of D(A) by iλ(A), among which every nonzero mode appears in a
pair with its conjugate −iλ(A), the chiral condensate at θ = 0 is decomposed as

�(m) = 1
Nf V

∂

∂m
ln Z(m, 0) = 1

V

〈∑
λ(A)

m
λ(A)2 + m2

〉
. (2)

Here and in the following, the expectation value of a quantity X(A) (with θ = 0) is written as
〈X(A)〉.
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The chiral susceptibility, defined as a derivative of �(m) with respect to m, may be decom-
posed into two parts. The “connected” susceptibility χ con.(m) is a derivative of the chiral con-
densate with respect to the valence quark mass mv, while the “disconnected” part χdis.(m) is
that with respect to the sea quark mass ms, setting mv = ms = m for both.

In the connected susceptibility, we have a term �(m)/m, which is a unique source of a
quadratic divergence, while other pieces are only logarithmically divergent. To remove this
quadratic divergence, we introduce a subtracted condensate �sub.(m),

�sub.(m)
m

=
[
�(m)

m
− 〈|Q(A)|〉

m2V

]
−

[
�(mref )

mref
− 〈|Q(A)|〉|m=mref

m2
refV

]
, (3)

with a reference quark mass mref . The term with |Q(A)| eliminates the contribution from chiral
zero modes, which is expected to vanish in the large-V limit.

The connected susceptibility (with the subtraction above) can be written as

χ con.
sub. (m) = −�con.

U (1)(m) + �sub.(m)
m

+ 〈|Q(A)|〉
m2V

, (4)

where

�con.
U (1)(m) = 1

V

〈∑
λ(A)

2m2

(λ(A)2 + m2)2

〉
(5)

is equivalent to the axial U(1) susceptibility
∑

x[〈Pa(x)Pa(0)〉 − 〈Sa(x)Sa(0)〉] (see Refs. [13,14]
for details). On the other hand, the eigenvalue decomposition of the disconnected part is

χdis.(m) = Nf

V

⎡
⎢⎣

〈⎛
⎝∑

λ(A)

m
λ(A)2 + m2

⎞
⎠

2〉
− (�(m)V )2

⎤
⎥⎦ . (6)

From the θ dependence of Z(m, θ ), we obtain the topological susceptibility:

χt (m) = − 1
V

∂2

∂θ2
ln Z(m, θ ) |θ=0 = 〈Q(A)2〉 − 〈Q(A)〉2

V
. (7)

Absorbing the angle θ into the mass term m → mexp (iγ 5θ /Nf), we can relate χ t(m) to the chiral
condensate and the pseudoscalar susceptibility

∑
x〈P0(x)P0(0)〉:

χt (m) = m
[

∂

∂θ
〈q̄iγ5eiγ5θ/Nf q〉θ

]∣∣∣∣
θ=0

= −
∑

x

〈P0(x)P0(0)〉 − �(m)
m

. (8)

We can now see that the U(1)A and SU(2)L × SU(2)R symmetries are intimately related [18,19].
Two possible probes of the SU(2)L × SU(2)R symmetry given by

�
(1)
SU (2)(m) ≡

∑
x

〈S0(x)S0(0) − Pa(x)Pa(0)〉 − V 〈S0(0)〉2 = χdis.(m) − �con.
U (1)(m), (9)

�
(2)
SU (2)(m) ≡

∑
x

〈Sa(x)Sa(0) − P0(x)P0(0)〉 = Nf

m2
χt (m) − �con.

U (1)(m) (10)

are actually written using the U(1)A related quantities �con.
U (1)(m), χ t(m), and χdis.(m). When the

axial U(1) anomaly is active so that �con.
U (1)(m) [20–26] is nonzero, the recovery of the SU(2)L ×

SU(2)R requires fine tuning:

lim
m→0

χdis.(m) = lim
m→0

�con.
U (1)(m) = lim

m→0

Nf

m2
χt (m), (11)

which is highly nontrivial.
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From Eqs. (4), (9), and (10), we can separate the U(1)A breaking contributions χ con.
A (m) and

χdis.
A (m) from the connected and disconnected parts of the chiral susceptibility, χ con.

sub.
(m) and

χdis.(m) respectively, as

χ con.
A (m) = −�con.

U (1)(m) + 〈|Q(A)|〉
m2V

, (12)

χdis.
A (m) = Nf

m2
χt (m). (13)

Then the remnants are χ con.
sub.

(m) − χ con.
A (m) = �sub.(m)/m and χdis.(m) − χdis.

A (m) =
�

(1)
SU (2)(m) − �

(2)
SU (2)(m), respectively.

These formulas can be promoted to those of lattice QCD with the overlap fermion [13]. De-
noting the eigenvalue of the massive overlap-Dirac operator γ 5((1 − m)Dov + m) by λm, the
eigenvalue decomposition can be obtained by replacing 1

λ(A)2+m2 with (1−λ2
m )

(1−m2 )λ2
m

(here and in the
following, we take the lattice spacing as unity). In the following we numerically study how much
the U(1)A-related pieces χ

con./dis.
A (m) dominate the signal of the chiral susceptibility in Nf = 2

lattice QCD. We employ a lattice fermion formulation that precisely preserves chiral symmetry,
which is essential in the above formulas with spectral decomposition.

3. Lattice simulation
We use the gauge field ensembles generated in Ref. [15]. We employ the tree-level improved
Symanzik gauge action and the Möbius domain-wall fermion [27,28] action for the simula-
tions. We include the overlap fermion determinant utilizing a reweighting technique in order
to eliminate systematics due to any violation of the chiral symmetry, as well as those due to
the mixed action. The lattice spacing is fixed to a = 0.074 fm, and four different temperatures
are chosen taking a set of the temporal lattice extent Lt = 8, 10, 12, and 14, which covers 190
≤ T ≤ 330 MeV. We fix the lattice size to L = 32, which corresponds to 2.4 fm. At T = 220
MeV, three different lattice sizes L = 24, 32, 40 are taken in order to check if the finite volume
effect is under control. The range of quark mass covers the physical up and down quark mass,
estimated to be m = 0.0014(2) from the pion mass mπ = 0.135(8) at T = 0 and m = 0.01. We
use m = 0.005, which is the highest quark mass at T = 190 MeV simulations, on L = 32 lattices
as the reference point mref for the subtraction of the connected chiral susceptibility.

We compute the 40 lowest eigenvalues of the massive overlap-Dirac operator, as well as those
of the 4D effective operator of the Möbius domain-wall fermion. For both operators, we can
identify the index Q(A) as the number of isolated chiral zero modes. At the lowest temperature,
the 40th eigenvalue is ∼0.08 (∼210 MeV).

Since the number of stored eigenvalues is limited, we truncate the summation in the spec-
tral decomposition of the chiral susceptibilities. In Fig. 1, we plot the cut-off dependence of
the (subtracted) chiral susceptibilities. We find for T ≤ 260 MeV, both χ con.

sub.
and χdis. with

the reweighted overlap fermion show a good saturation already at λ = 0.07 in all the simu-
lated ensembles. At T = 260 MeV, we also find a good agreement with a full measurement
without the truncation computed with the Möbius domain-wall Dirac operator. At T = 330
MeV, on the other hand, the low-mode approximation does not reproduce the full result, es-
pecially at heavier quark masses. In our previous study [15] we found that at this tempera-
ture the low-lying modes are almost absent and the observables are insensitive to the viola-
tion of the lattice chiral symmetry. Therefore, in the following analysis at T = 330 MeV, we
take the full computation with the Möbius domain-wall Dirac operator and use the low-mode
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Fig. 1. Cut-off λcut dependence of the chiral susceptibility at T = 260 MeV (top) and T = 330 MeV
(bottom). The result for χdis. is plotted by open symbols, while that for −χ con.

sub.
is shown by filled symbols.

The thick symbols plotted at the lattice cut-off =2 denote those obtained from the direct inversion of
the Möbius domain-wall operator.

approximation of the overlap-Dirac fermion at λcut = 0.07 (∼180 MeV) for other ensembles of
T ≤ 260 MeV.

The statistical uncertainty is estimated by the jackknife method after binning the data in every
1000 trajectories with which the autocorrelation is negligible.

4. Numerical results
We summarize our numerical results in Table 1.

In Fig. 2, we present the results for the connected part χ con.
sub.

(top) and disconnected data χdis.

(bottom) of the chiral susceptibility at T = 220 MeV on the L = 32 lattice (open squares).
The filled symbols are those of χ con.

A and χdis.
A , which dominate the signals. The other contri-

butions �sub.(m)/m (circles) and the SU(2) susceptibilities �
(1,2)
SU (2)(m) (circles and triangles) are

relatively small. This result indicates that the connected part of the subtracted chiral suscepti-
bility is essentially described by the axial U(1) susceptibility and the disconnected susceptibility
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Table 1. Summary of results.
T (MeV) L3 × Lt m χ con.

sub.
χ con.

A χdis. χdis.
A

190 323 × 14 0.005 − 0.074(07) − 0.074(12) 0.090(12) 0.077(17)
0.003 75 − 0.101(20) − 0.106(26) 0.144(39) 0.189(49)
0.0025 − 0.058(12) − 0.056(11) 0.087(15) 0.079(21)
0.001 − 0.0188(64) − 0.001 30(45) 0.0020(06) 1.6(16) × 10−7

220 243 × 12 0.01 − 0.0224(23) − 0.0202(34) 0.0399(75) 0.0338(68)
0.005 − 0.0367(87) − 0.0332(88) 0.066(20) 0.072(24)
0.003 75 − 0.0081(28) − 0.0041(27) 0.0079(52) 0.0070(53)
0.0025 − 0.0125(55) − 0.0095(54) 0.019(11) 0.018(11)
0.001 − 0.0033(25) − 0.0002(01) 0.000 33(24) 0(0)

323 × 12 0.01 − 0.0284(25) − 0.0325(38) 0.044(07) 0.049(11)
0.005 − 0.0311(42) − 0.0311(48) 0.065(11) 0.068(14)
0.003 75 − 0.006 82(83) − 0.002 70(70) 0.0050(13) 0.003 8(13)
0.0025 − 0.0073(49) − 0.0062(48) 0.0121(94) 0.0112(95)
0.001 − 0.0016(12) − 0.000 16(06) 0.000 30(12) 1.8(18) × 10−5

403 × 12 0.01 − 0.0270(15) − 0.0349(28) 0.0417(56) 0.0397(49)
0.005 − 0.0305(31) − 0.0371(56) 0.0526(65) 0.0433(54)

260 323 × 10 0.015 − 0.0039(13) − 0.0038(14) 0.0060(19) 0.0061(24)
0.01 − 0.0070(18) − 0.0077(24) 0.0148(48) 0.0141(43)
0.008 − 0.0064(20) − 0.0089(32) 0.0152(47) 0.0117(38)
0.005 − 0.0054(24) − 0.0054(24) 0.0100(43) 0.0103(45)

330 323 × 8 0.040 − 0.003 78(17) − 0.003 06(21) 0.003 28(70) 0.002 19(40)
0.020 − 0.001 50(29) − 0.001 45(30) 0.001 95(57) 0.001 48(49)
0.015 − 0.001 45(65) − 0.001 51(82) 0.0027(19) 0.0017(11)
0.01 − 0.000 386(95) − 0.000 183(62) 0.000 12(03) 0.000 44(31)
0.005 − 0.000 222(87) − 0.000 222(77) 2.33(53) × 10−5 0(0)
0.001 − 0.000 10(10) − 2.81(58) × 10−5 8.6(14) × 10−7 0(0)

is governed by the topological susceptibility1. The axial U(1) breaking contributions χ con.
A and

χdis.
A are strongly suppressed at the lightest quark mass. In the data with different lattice sizes

L = 24 (crosses) and 40 (stars), no significant volume dependence is seen. The data may indicate
a peak at m = 0.005.

These features are seen at all simulated temperatures and quark masses ranging from the
physical point to m ∼ 100 MeV. Figure 3 summarizes the quark mass dependence of the con-
nected (top) and disconnected (bottom) chiral susceptibility at four different temperatures on
the L = 32 lattices. The open symbols with solid lines are the data obtained from the eigenmode
decomposition of the reweighted overlap-Dirac operator, while those with dotted lines are from
direct measurement with the Möbius domain-wall fermion. At each temperature, the axial U(1)
breaking effect χ

con./dis.
A (filled symbols with dashed lines) dominates the signal of the suscepti-

bility. It is remarkable that this dominance is seen even at higher quark mass regions than the
peaks, where both SU(2)L × SU(2)R and U(1)A are expected to be sizably broken. In fact, we
find that simple sums of χ con.

A and χdis.
A over 26 simulated data points are −0.48(2) and 0.74(6),

respectively, while those of χ con.
sub.

and χdis. are −0.50(2) and 0.73(4). They differ by only 3% and
1% and within standard deviation. Also, we note that the axial U(1) breaking contributions are
strongly suppressed near the chiral limit.

We also plot the result obtained in our previous work with β = 4.24 on a coarser lattice (a =
0.084 fm) at T = 195 MeV (cross symbols). The result is consistent with our new data at a
similar temperature T = 190 MeV, which indicates that the cut-off effect is not significant.

1It was pointed out in Refs. [22,25] that χdis. is dominated by U(1)A breaking in the m = 0 limit, but the
concrete form (in terms of the topological susceptibility) at finite m was not discussed.
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Fig. 2. Quark mass dependence of the connected (top) and disconnected (bottom) chiral susceptibilities
on the L = 32 lattice (open squares). The contribution from the axial U(1) breaking (filled squares)
saturates the signal, while the remaining �sub.(m)/m and �

(1,2)
SU (2)(m) plotted by open circles and triangles

are small. The L = 24 (crosses) and L = 40 (stars) data show no significant volume dependence. Note
that the sign of the connected part is flipped.

In Fig. 3 the position of the peak moves towards heavier quark masses as temperature in-
creases. This indicates that our simulated temperatures cover the pseudocritical temperature,
which becomes higher for larger quark masses2.

In the total contribution χ con.
sub.

(m) + χdis.(m), however, the situation is not so simple. As shown
in Fig. 4, the U(1)A breaking dominance by

χ con.
A (m) + χdis.

A (m) = −�con.
U (1)(m) + Nf

m2
χt (m) + 〈|Q(A)|〉

m2V
(14)

is still visible. But the smallness of �
(1),(2)
SU (2) (m) implies �con.

U (1)(m) ∼ Nf

m2 χt (m) so that the quantity

is dominated by the last term 〈|Q(A)|〉
m2V , which is expected to vanish in the thermodynamical limit.

Therefore, in order to quantify the axial U(1) breaking effect in the total contribution, we need

2A strong increase of the pseudocritical temperature has been reported in 2+1-flavor lattice QCD sim-
ulations [9].
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Fig. 3. Chiral susceptibility at four different temperatures on the L = 32 lattices (open symbols).The
connected (top) and disconnected (bottom) parts are shown. The filled symbols are those from axial
U(1) breaking.

a careful analysis of the delicate cancellation between �con.
U (1)(m) and Nf

m2 χt (m), as well as their
large-volume limits. Although such a fine analysis is beyond the scope of this work, let us try to
raise two possible scenarios. The first one is that the signal of the total susceptibility gets smaller
as the volume increases and is eventually given by the tiny quark mass dependence of the SU(2)L

× SU(2)R breaking. The second is that even when 〈|Q(A)|〉
m2V disappears in the large-volume limit,

the near-chiral-zero modes in �sub.(m) compensate its absence and keep the total susceptibility
insensitive to the volume. In Fig. 5, we plot �sub.(m)

m + 〈|Q(A)|〉
m2V (open and solid symbols) and 〈|Q(A)|〉

m2V
(filled and dashed) as functions of the lattice size L. The consistency of the former at L = 32
and 40 in spite of the decrease of the latter may be support for the second scenario.

We conclude that the connected and disconnected chiral susceptibilities are dominated by
the axial U(1) breaking effects at temperatures T � 190 MeV, which covers the pseudocritical
temperature when the quark mass is finite. The connected part is described by the axial U(1)
susceptibility other than the m-independent quadratically divergent part, and the disconnected
part is governed by the topological susceptibility. The chiral limit of the U(1)A contributions is
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Fig. 4. Chiral susceptibility at four different temperatures on the L = 32 lattices (open symbols). The
filled symbols are those from axial U(1) breaking. The bottom panel is the same as the top but the result
at T = 330 MeV is shown on a fine scale.
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strongly suppressed. The picture of the QCD phase diagram [16], based on spontaneous SU(2)L

× SU(2)R breaking alone, may need to be reconsidered, or a delicate cancellation between the
connected and disconnected parts of the U(1)A breaking is, at least, required. It turns out that
axial U(1) breaking does play a crucial role.
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Appendix. Comparison with Ding et al. [25]
Recently, Ding et al. [25] investigated the disconnected part of chiral susceptibility in Nf = 2
+ 1 QCD using eigenvalues of the Dirac operator of highly improved staggered quark (HISQ)
action. At T = 207 MeV they obtained a nonzero continuum limit, which suggests that the axial
U(1) symmetry is still broken by an anomaly at 1.6 Tc. As their conclusion qualitatively differs
from ours, which becomes consistent with zero at the lightest simulated quark mass, here we
would like to compare the two.

In Fig. A1 we represent the data from Ref. [25] by open symbols and those of this work
by filled symbols. Since the strange quark is quenched in our simulations, we simply use the
physical value of the strange quark mass for ms. Note that the critical temperature is estimated
to be ∼130 MeV for Nf = 2 + 1, QCD while it is ∼170 MeV for Nf = 2. Interestingly, the
qualitative feature of sharp drops towards the chiral limit is similar. However, a significant cut-
off 1/a dependence is seen in Ref. [25]; the data at a = 0.06 fm are twice as large as those at a =
0.08 fm, while our data at a = 0.08 fm (T = 195 MeV) and a = 0.07 fm (T = 190 MeV) do not
show such a sizable discretization effect.

In Ref. [25] they obtained a continuum limit with a global fit with six parameters, which is
shown by the dashed curve in Fig. A1. It is clearly higher than the raw data at finite lattice
spacings. Specifically, the one at the second lightest quark mass at a = 0.12 fm is extrapolated
to a continuum limit that is 40 times larger, which suggests that their lattice data are not on
a proper scaling trajectory that allows continuum extrapolation assuming an expansion in a2.
Since the U(1)A anomaly does not correctly couple to the taste singlet component of the stag-
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qualitative feature of a sharp drop towards the chiral limit is similar. But the large scaling violation in
Ref. [25] leads to a continuum limit much larger than the raw values, as shown by the dashed curve.

gered fermion that Ref. [25] employed, the quantities that are strongly affected by the chiral
anomaly and index theorem may be subject to large discretization effects in their simulation.
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