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DEFORMED CARTAN MATRICES AND GENERALIZED
PREPROJECTIVE ALGEBRAS I: FINITE TYPE

RYO FUJITA AND KOTA MURAKAMI

Abstract. We give an interpretation of the (q, t)-deformed Cartan matrices of finite
type and their inverses in terms of bigraded modules over the generalized preprojective
algebras of Langlands dual type in the sense of Geiß-Leclerc-Schröer [Invent. math. 209
(2017)]. As an application, we compute the first extension groups between the generic
kernels introduced by Hernandez-Leclerc [J. Eur. Math. Soc. 18 (2016)], and propose
a conjecture that their dimensions coincide with the pole orders of the normalized R-
matrices between the corresponding Kirillov-Reshetikhin modules.
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Introduction

Let g be a complex finite-dimensional simple Lie algebra and C = (cij)i,j∈I its Car-
tan matrix. In their seminal work [FR98], Frenkel-Reshetikhin introduced a certain two-
parameter deformation C(q, t) of the Cartan matrix C, which we call the (q, t)-deformed
Cartan matrix. It is used to define a two-parameter deformation Wq,t(g) of the W-algebra
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2 R. FUJITA AND K. MURAKAMI

associated with g (in type A, it was previously introduced by [AKOS96,FF96]), which is
expected to “interpolate” the representation ring of the quantum affine algebra U ′

q(ĝ) and

that of its Langlands dual U ′
t(
Lĝ) through appropriate specializations of the parameters q

and t. Indeed, the specialization C(q) := C(q, 1) at t = 1, often called the quantum Cartan

matrix, or rather its inverse C̃(q) appear ubiquitously as key combinatorial ingredients
in the representation theory of the quantum affine algebra U ′

q(ĝ) and the Yangian Y (g).
For example, they play an important role in the study of q-characters [FR99,FM01] and
quantum Grothendieck rings [Nak04,VV03,Her04,HL15], the description of the commu-
tative part of the universal R-matrices [KT96,GTL17] and denominator formulas of the
normalized R-matrices [Fuj22,FO21]. We also refer to [GW20,CL21] for their more recent
appearances.

Among the properties of the matrix C̃(q), it is remarkable that the coefficients of its
formal Taylor expansion at q = 0 show certain periodicity and positivity. At first, they
had been understood by experts merely as a consequence of case-by-case computation.
Recently, a unified proof using Weyl group combinatorics was given in [HL15, Fuj22] for
simply-laced type, and in [FO21] for general type. See also [GW20] for another proof.

On the other hand, it is known that some kinds of q-analogues of (symmetric) gen-
eralized Cartan matrices (GCM) appear as homological invariants arising from graded
modules over certain classes of associative algebras (e.g. [HK01, ET20, IQ18, Kel]). The
aim of the present paper is to give a new interpretation of the deformed Cartan ma-

trix C(q, t) and its inverse C̃(q, t) following a similar philosophy. Namely, we consider
a (bi)graded version of the generalized preprojective algebras introduced by Geiß-Leclerc-
Schröer [GLS17] and study its relation to the deformed Cartan matrices. In their stud-
ies [GLS17,GLS18a,GLS16,GLS18b,GLS18c,GLS20], they generalize several connections
between the representation theory of quivers and Kac-Moody algebras associated with sym-
metric GCMs to symmetrizable settings, and they have introduced a 1-Iwanaga-Gorenstein
algebra and its “double” called the generalized preprojective algebra. These algebras are
given by specific quivers with relations, which depend on the choice of symmetrizable GCM
and its symmetrizer. If (and only if) the GCM is of finite type, the generalized prepro-
jective algebra becomes finite-dimensional and self-injective over a base field. Note that
the Lie algebra g in the present paper is Langlands dual to the one in the works of Geiß-
Leclerc-Schröer and the previous works [Mur19,Mur22] of the second named author. In
particular, our Cartan matrix is transposed to the one in [GLS17]. Remarkably, in their
work [GLS20], the root system of Langlands dual type has also appeared: They have classi-
fied finite bricks over their 1-Iwanaga-Gorenstein algebra in terms of Schur roots associated
with the transposed GCM in a viewpoint of the τ -tilting theory [Asa20,DIJ19].
As mentioned in [GLS17, §1.7.1], the definition of generalized preprojective algebras is

inspired in part by the previous work [HL16] of Hernandez-Leclerc on the representation
theory of quantum affine algebras. Indeed, a graded version of the generalized preprojective
algebra of finite type already appeared there in the disguise of the Jacobian algebra JΓ,W
associated with a certain infinite quiver Γ with potential W . (The same quiver with
potential also appeared in the context of theoretical physics, cf. [CDZ12, Cec15].) This
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DCM and GPA 3

fact also motivates us to study a relationship between the deformed Cartan matrices and
(bi)graded modules over the generalized preprojective algebras.

Let us explain our results in the graded (i.e., t = 1) setting for simplicity. Let r ∈ {1, 2, 3}
be the lacing number of g and D = diag(di | i ∈ I) the minimal left symmetrizer of C.
They define the generalized preprojective algebra Π over an arbitrary field. We endow Π
with a grading following [HL16]. In the main body of this paper, we actually endow Π
with a bigrading and work with bigraded Π-modules to establish the (q, t)-versions of the
results below (see §2.3 for definitions).

There is a maximal indecomposable iterated self-extension Ei of the simple Π-module
Si associated with each index i ∈ I, called the generalized simple module. Though the
algebra Π has infinite global dimension and actually Ei has infinite projective dimension,
the graded Euler-Poincaré pairing 〈Ei, Sj〉q makes sense as a formal Laurent series in q.
This is an advantage of our graded setting. Indeed, in terms of the matrix C(q), we obtain

〈Ei, Sj〉q =
qdi

1− q2rh∨
(
Cij(q)− qrh

∨
Ci∗j(q)

)
, (0.1)

in Z((q)) for each i, j ∈ I, where h∨ is the dual Coxeter number of g, and i 7→ i∗ is the
involution of I given by the longest element of the Weyl group. The denominator 1− q2rh∨

reflects the fact that the projective resolution of Ei is periodic up to grading shift by degree
2rh∨. We prove this fact by using a kind of reflection functors for graded Π-modules
and its interpretation by the braid group action studied by Bouwknegt-Pilch [BP98] and
Chari [Cha02].

On the other hand, we consider a certain Π-submodule Īi of the i-th indecomposable
injective module Ii, which is dual to Ei with respect to the graded Euler-Poincaré pairing,
i.e., 〈Ei, Īj〉q,t = δij. In the terminology of [HL16], this Īi can be identified with the generic
kernel corresponding to the i-th fundamental U ′

q(ĝ)-module. By an easy homological in-
vestigation, we deduce the following Theorem A from the above formula (0.1). Note that
we obtain a simple explanation for the aforementioned periodicity and positivity of the

matrix C̃(q) as an immediate consequence of Theorem A.

Theorem A (⇐ Theorem 3.13 & Corollary 3.14). For any indices i, j ∈ I, let C̃ij(q) =∑
u≥0 c̃ij(u)q

u ∈ Z[[q]] denote the formal Taylor expansion at q = 0 of the (i, j)-entry of the

matrix C̃(q). Then, we have

dimq eiĪj = q−dj
rh∨∑
u=0

c̃ij(u)q
u,

C̃ij(q) =
qdj

1− q2rh∨
(
dimq eiĪj − qrh

∨
dimq eiĪj∗

)
.

We believe that Theorem A shows one aspect of the relationship between the repre-
sentation theory of generalized preprojective algebras and that of affine quantum groups,
especially in non-simply-laced type. It seems interesting to relate our result with other
aspects studied in [YZ19,NW19] in a more geometric manner.
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4 R. FUJITA AND K. MURAKAMI

As an application of Theorem A, we compute the first extension groups between the
generic kernels corresponding to the Kirillov-Reshetikhin (KR) modules in the sense of [HL16].
These generic kernels are certain modules over the Jacobian algebra JΓ,W , which can be
obtained as non-trivial self-extensions of the fundamental generic kernels Īi. By Hernandez-
Leclerc’s geometric character formula, the F -polynomials of these generic kernels give the
q-characters of the KR modules. In this paper, we show that the dimension of the first
extension groups between these generic kernels can be written in terms of the coefficients
c̃ij(u). Then we compare the result with the conjectural denominator formula of the nor-
malized R-matrices between the KR modules proposed in the previous work [FO21] of
Se-jin Oh and the first named author. As a result, we find several pieces of evidence for
the following conjecture, which we newly propose in this paper as a generalization of the
conjectural denominator formula in [FO21].

Conjecture B (= Conjecture 5.17). The dimensions of the first extension groups between
these generic kernels coincide with the pole orders of the normalized R-matrices between
the corresponding Kirillov-Reshetikhin modules.

Since the original definition of q-characters in [FR99] involves the R-matrices, it seems
natural that the generic kernels should contain some information of the R-matrices in light
of the geometric character formula. Conjecture B suggests one of concrete connections
between the generic kernels and the R-matrices.
We also believe that Conjecture B can be understood from a cluster-theoretic point

of view as follows: It is known that certain algebraic structures arising from the quiver
with potential (Γ,W ) give rise to an additive categorification of the cluster algebra as-
sociated with Γ (see e.g. [DWZ08,DWZ10, Ami09, FK10,KY11, BIRS11]). On the other
hand, essentially the same cluster algebra is monoidally categorified by a category of mod-
ules over the quantum affine algebra U ′

q(ĝ), as was originally conjectured in [HL16] and
proved very recently by Kashiwara-Kim-Oh-Park [KKOP20, KKOP21]. Roughly speak-
ing, the notion of a cluster corresponds to a maximal mutually Ext1-vanishing collection
of indecomposable rigid objects in an additive categorification, while it corresponds to a
maximal mutually commuting collection of prime real simple objects in a monoidal cate-
gorification. Note that the latter commutativity is essentially equivalent to the regularity of
the corresponding normalized R-matrices. Furthermore, it is also notable that normalized
R-matrices with non-trivial poles play an important role when we monoidally categorify
the exchange relations. On the other hand, in an additive categorification, the exchange
relations correspond to some non-trivial extensions of indecomposable rigid objects. Thus,
one may interpret Conjecture B as a suggestion of a partial coincidence of the numerical
characteristics between additive and monoidal categorifications of the same cluster algebra.

Recently, certain deformed Cartan matrices of more general types are considered in a
study of theoretical physics [KP18]. This kind of generalized deformed Cartan matrices
have appeared in the representation theory of deformed W-algebras beyond finite types
(cf. [FJMV21]). So, it seems interesting if we can find such a natural generalization of
deformed Cartan matrix as a homological invariant of the generalized preprojective algebra
other than of finite type. We plan to come back to this problem in the future.
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Organization. This paper is organized as follows. In Section 1, we define the (q, t)-
deformed Cartan matrices of finite type and discuss the braid group action arising from
them. Section 2 is a preliminary on the generalized preprojective algebras of finite type
in the bigraded setting. Section 3 is the main part of this paper. We discuss bigraded
projective resolutions of the generalized simple modules, E-filtrations of projective modules
and bigraded Euler-Poincaré pairings. We establish the (q, t)-versions of the formula (0.1)
and Theorem A in §3.5. In Section 4, we switch to consider the graded modules (rather
than bigraded modules) and prepare some materials we need in the sequel. In Section 5,
we study the generic kernels corresponding to the KR modules. We compute all the first

extension groups between them explicitly in terms of the matrix C̃(q). In §5.3, we compare
our computation with the conjectural denominator formula of normalized R-matrices, and
propose Conjecture B. Computations for a few exceptions are postponed in Appendix A.

Conventions and notation. Throughout this paper, we fix an arbitrary commutative
field k. We always refer to an algebra as a (not necessarily unital) associative algebra over
k. For an algebra A, we denote by Aop (resp. A×) its opposite algebra (resp. multiplicative
group of invertible elements). When we refer to a module over an algebra A, it means a
left A-module unless specified otherwise. We naturally identify a right A-module with an
Aop-module. We say that a subcategory C of an exact category E is extension-closed (or
closed under extensions) if for any conflation 0→ L→M → N → 0, if L ∈ E and N ∈ E ,
then so does M . By a grading, we always mean a Z-grading, and hence by a bigrading, we
mean a Z2-grading. For a statement P , we set δ(P ) to be 1 or 0 according that P is true
or not. As a special case, we set δxy := δ(x = y) (Kronecker’s delta).

1. Deformed Cartan matrices

In this section, we introduce the (q, t)-deformed Cartan matrix of finite type following
Frenkel-Reshetikhin [FR99]. We also discuss the braid group actions arising from them
following Bouwknegt-Pilch [BP98] and Chari [Cha02].

1.1. Notation. Let g be a complex finite-dimensional simple Lie algebra and let C =
(cij)i,j∈I be its Cartan matrix. We set n := #I. For any distinct i, j ∈ I, we write i ∼ j if
cij < 0. Let r denote the lacing number of g, which is defined by

r :=


1 if g is of type An,Dn, or E6,7,8,

2 if g is of type Bn,Cn, or F4,

3 if g is of type G2.

We say that g is of simply-laced type if r = 1. Let D = diag(di | i ∈ I) denote the
minimal left symmetrizer of C (see Table 1). Namely, (di)i∈I is the unique I-tuple of
positive integers which are mutually coprime and satisfy dicij = djcji for all i, j ∈ I. We
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6 R. FUJITA AND K. MURAKAMI

have di ∈ {1, r} for any i ∈ I, and the following relation holds:

cij =


2 if i = j,

−ddj/die if i ∼ j,

0 else.

(1.1)

We set bij := dicij for each i, j ∈ I. Note that we have bij = bji for any i, j ∈ I, and
bij = −diddj/die = −max(di, dj) if i ∼ j. (1.2)

r type of g (di)i∈I h h∨

An (1, . . . , 1) n+ 1 n+ 1
1 Dn (1, . . . , 1) 2n− 2 2n− 2

E6,7,8 (1, . . . , 1) 12, 18, 30 12, 18, 30
Bn (2, . . . , 2, 1) 2n 2n− 1

2 Cn (1, . . . , 1, 2) 2n n+ 1
F4 (2, 2, 1, 1) 12 9

3 G2 (3, 1) 6 4

Table 1. Basic numerical data

Remark 1.1. Note that the matrix rD−1 = diag(r/di | i ∈ I) gives the minimal left
symmetrizer of the transposed Cartan matrix tC = (cji)i,j∈I .

Let αi be the i-th simple root of g for each i ∈ I and Q :=
⊕

i∈I Zαi the root lattice.
For each i ∈ I, the i-th simple reflection si is defined to be the Z-linear transformation of
Q given by si(αj) = αj − cijαi for any j ∈ I. The Weyl group Wg of g is the subgroup of
AutZ(Q) generated by the simple reflections {si}i∈I . The pair (Wg, {si}i∈I) forms a finite
Coxeter system. Let w0 denote the longest element of Wg. It induces the involution i 7→ i∗

of the set I by w0(αi) = −αi∗ . This involution gives the non-trivial automorphism of the
Dynkin diagram of g if and only if g is either of type An (for any n), Dn (for n odd) or E6.

1.2. Deformed Cartan matrices. Let q and t be indeterminates. For an integer k, we
set

[k]q :=
qk − q−k

q − q−1
,

which is an element of Z[q±1]. Following [FR98], we consider the Z[q±1, t±1]-valued I × I-
matrix C(q, t) whose (i, j)-entry Cij(q, t) is given by

Cij(q, t) :=

{
qdit−1 + q−dit if i = j,

[cij]q if i 6= j.

Specializing (q, t) to (1, 1), we get C(1, 1) = C. Thus the matrix C(q, t) gives a (q, t)-
deformation of the Cartan matrix C of g. Specializing t to 1, we define C(q) := C(q, 1),
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which is sometimes referred to as the quantum Cartan matrix of g. When g is of simply-
laced type, we have C(q, t) = C(qt−1). For general g, we have [di]qCij(q, t) = [dicij]q
whenever i 6= j, and hence the matrix ([di]qCij(q, t))i,j∈I is symmetric.
Let q±D := diag(q±di | i ∈ I). We see that the matrix C(q, t) can be written in the form

C(q, t) = (id− A(q, t))q−Dt
with some A(q, t) ∈ qt−1 · glI(Z[q, t−1]) (cf. [FO21, Lemma 4.3]). Therefore C(q, t) is

invertible as an element of GLI(Z[[q, t−1]][(qt−1)−1]). We write C̃(q, t) for its inverse. With
the above notation, we have

C̃(q, t) = qDt−1

(
id +

∞∑
k=1

A(q, t)k

)
. (1.3)

For each i, j ∈ I, we express the (i, j)-entry C̃ij(q, t) of the matrix C̃(q, t) as

C̃ij(q, t) =
∑
u,v∈Z

c̃ij(u, v)q
utv

with c̃ij(u, v) ∈ Z. The equation (1.3) implies the following.

Lemma 1.2. For each i, j ∈ I, we have

(1) c̃ij(u, v) = 0 if u ≤ di or v ≥ −1 but (u, v) 6= (di,−1),
(2) c̃ij(di,−1) = δij.

Example 1.3. Let g be of type C2 (= B2) and we set I = {1, 2} with (d1, d2) = (1, 2). By
definition, we have

C =

(
2 −2
−1 2

)
and C(q, t) =

(
qt−1 + q−1t −(q + q−1)
−1 q2t−1 + q−2t

)
.

Since detC(q, t) = q3t−2 + q−3t2 = q−3t2(1 + q6t−4), we have

C̃(q, t) =
q3t−2

1 + q6t−4

(
q2t−1 + q−2t q + q−1

1 qt−1 + q−1t

)
.

Here, we observe that the expansion coefficients exhibit a quasi-periodicity (c̃ij(u+6,−v−
4) = −c̃ij(u,−v) for any i, j ∈ I and u, v ∈ Z≥0) and that the entries of the matrix

(q3t−2 + q−3t2)C̃(q, t) are palindromic polynomials (i.e., invariant under the exchange
(q, t) ↔ (q−1, t−1)) with non-negative coefficients. Later, we show that these remarkable
combinatorial properties hold for general g (see Corollary 3.15).

1.3. Braid group action. We consider an n-dimensional Q(q, t)-vector space h∗q,t given
by

h∗q,t := Q(q, t)⊗Z Q =
⊕
i∈I

Q(q, t)αi.

We endow h∗q,t with a non-degenerate symmetric Q(q, t)-bilinear pairing (−,−)q,t by
(αi, αj)q,t := [di]qCij(q, t)
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8 R. FUJITA AND K. MURAKAMI

for each i, j ∈ I. Let {α∨
i }i∈I be another basis of h∗q,t defined by α∨

i := q−ditαi/[di]q.

We have (α∨
i , αj)q,t = q−ditCij(q, t) for any i, j ∈ I. Let {$∨

i }i∈I denote the dual basis of
{αi}i∈I with respect to (−,−)q,t. We also consider the element $i := [di]q$

∨
i for each i ∈ I.

It is thought of a deformation of the i-th fundamental weight. With our conventions, we
have ($i, α

∨
j )q,t = δijq

−dit for any i, j ∈ I, and

αi =
∑
j∈I

Cji(q, t)$j, α∨
i = q−dit

∑
j∈I

Cij(q, t)$
∨
j

for each i ∈ I.
Let Bg denote the braid group associated with the Coxeter system (Wg, {si}i∈I). It is

the group presented by the generators {Ti}i∈I which subject to the relations:

TiTj = TjTi if cij = 0,

TiTjTi = TjTiTj if cijcji = 1,

(TiTj)
r = (TjTi)

r if cijcji = r > 1.

For any w ∈ Wg, we choose a reduced expression w = si1si2 · · · sil and set Tw := Ti1Ti2 · · ·Til ∈
Bg. The element Tw is independent of the choice of reduced expression of w.

Following [BP98, §3] and [Cha02, §3], we define an action of the braid group Bg on the
Q(q, t)-vector space h∗q,t by

Tiλ := λ− (α∨
i , λ)q,tαi (1.4)

for any λ ∈ h∗q,t. Equivalently, in terms of the basis {αi}i∈I , we have

T±1
i αj = αj − q∓dit±1Cij(q, t)αi. (1.5)

Thus the action (1.4) is a (q, t)-deformation of the action of the Weyl groupWg on h∗ given
in §1.1. On the other hand, for the basis {α∨

i }i∈I , we have

Tiα
∨
j = α∨

j − q−dj tCji(q, t)α∨
i . (1.6)

Lemma 1.4. For any λ, µ ∈ h∗q,t and i ∈ I, we have (Tiλ, µ)q,t = (λ, Tiµ)q,t.

Proof. A straightforward computation

(Tiλ, µ)q,t = (λ, µ)q,t −
q−dit

[di]q
(αi, λ)q,t(αi, µ)q,t = (λ, Tiµ)q,t

yields the assertion. □

Lemma 1.5. For any i ∈ I, the above action of Ti preserves the subset
⊕

j∈I Z[q−1, t]$j.
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Proof. Let λ =
∑

j∈I λj$j be an arbitrary element of h∗q,t and i ∈ I. If we write Tiλ =∑
j∈I µj$j, the equation (1.4) is expressed as

µj =



λj if cij = 0,

λj + q−ditλi if cji = −1,
λj + (q−1 + q−3)tλi if cji = −2,
λj + (q−1 + q−3 + q−5)tλi if cji = −3,
−q−2dit2λi if j = i.

This proves the assertion. □
Let h and h∨ be the Coxeter number and the dual Coxeter number of g respectively (see

Table 1). We write ν for the Q(q, t)-linear involution on h∗q,t given by ν(αi) = αi∗ .

Theorem 1.6 (Bouwknegt-Pilch, Chari). For any λ ∈ h∗q,t, we have

Tw0λ = −q−rh∨thν(λ). (1.7)

Proof. The assertion is stated in [BP98, (3.45)] without a proof. Here we give a detailed
proof relied on its q-version [Cha02] for completeness. It is enough to show that the relation
(1.7) holds when λ belongs to the integral lattice Qq,t := Z[q±1, t±1] ⊗ Q. Note that the
Bg-action preserves Qq,t and, for any λ ∈ Qq,t, one can consider its specialization [λ]t=1 ∈
Qq := Z[q±1]⊗Q. With a Z[q±1, t±1]-endomorphism f of Qq,t, we associate the Z[q±1]-linear
endomorphism [f ]t=1 of Qq defined by [f ]t=1λ := [f(λ)]t=1 for λ ∈ Qq. We linearly extend
[f ]t=1 to be a Z[q±1, t±1]-endomorphism of Qq,t. It follows that [f ◦ g]t=1 = [f ]t=1 ◦ [g]t=1.

It is known that the relation (1.7) holds if specialized at t = 1 by [Cha02, Proposition 4.1]
combined with [FM01, Lemma 6.8]. (Note that q in [Cha02, §3] is our q−1. Remarkably,
this proof uses representation theory of the quantum affine algebras. An alternative, case-
by-case combinatorial proof is suggested in [CM05, Proposition 3.6], while qh

∨
therein

should be replaced with qrh
∨
.) More precisely, we have

[Tw0 ]t=1λ = −q−rh∨ν(λ) (1.8)

for any λ ∈ Qq,t. When g is of simply-laced type, the relation (1.7) follows from (1.8)
because h = h∨ and we can replace (q, t) with (qt−1, 1). Now we assume that g is of non-
simply-laced type. In this case, the Coxeter number h is even and ν = id. We choose a
decomposition I = J t J ′ such that i ∼ j implies (i, j) ∈ J × J ′ or (i, j) ∈ J ′× J . It yields
a Coxeter element c = ww′ ∈ Wg, where w :=

∏
j∈J sj, w

′ :=
∏

j∈J ′ sj. It is well-known

that we have w0 = ch/2 and Tw0 = T
h/2
c = (TwTw′)h/2 (see [Hum90, §3.17] for example).

Let tJ denote the Z[q±1, t±1]-automorphism of Qq,t given by tJαi = tδ(i∈J)αi. Then, from
the equation (1.5), it follows that

t−1
J Twt

−1
J λ = [Tw]t=1λ, tJTw′tJλ = t2[Tw′ ]t=1λ

for any λ ∈ Qq,t. Therefore, we have

Tw0λ = tJ
(
(t−1
J Twt

−1
J )(tJTw′tJ)

)h/2
t−1
J λ
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10 R. FUJITA AND K. MURAKAMI

= thtJ ([Tw]t=1[Tw′ ]t=1)
h/2 t−1

J λ

= thtJ [Tw0 ]t=1t
−1
J λ.

Applying (1.8) to the right hand side, we obtain the desired relation (1.7). □

Remark 1.7. As mentioned in [BP98, (3.40)], we can easily check that the relation

(Ti − 1)(Ti + q2dit−2)λ = 0

holds for any i ∈ I and λ ∈ h∗q,t. Therefore, the above Bg-action on h∗q,t descends to an
action of the Iwahori-Hecke algebra associated with g. When g is of simply-laced type,
this was also observed by Ikeda-Qiu [IQ18, Proposition A.5]. Note that the q-deformed
Cartan matrix AQ(q) in [IQ18] slightly differs from our matrix C(q). Indeed, AQ(q) de-
pends on a Dynkin quiver Q. However, this difference is not essential because we have
AQ(q

2) = q1−ξC(q)qξ with qξ = diag(qξi | i ∈ I), where ξ : I → Z is a height function of Q
(cf. Remark 4.3 below).

2. Generalized preprojective algebras

In this preliminary section, we fix our conventions and give a brief review on the gener-
alized preprojective algebras of finite type by Geiß-Leclerc-Schröer [GLS17] in a bigraded
setting.

2.1. Bigraded vector spaces. By an abuse of notation, q and t denote the grading
shift functors for bigraded k-vector spaces. Namely, for a bigraded k-vector space V =⊕

u,v∈Z Vu,v, we define its shift qV (resp. tV ) by (qV )u,v := Vu−1,v (resp. (tV )u,v := Vu,v−1)

for any u, v ∈ Z. For a Laurent polynomial a(q, t) =
∑

k,l∈Z ak,lq
ktl in q, t with non-negative

integer coefficients, we set

V ⊕a(q,t) :=
⊕
k,l∈Z

(qktlV )⊕ak,l .

When every bigraded piece Vu,v is finite-dimensional, we define the bigraded dimension
dimq,t V to be a formal power series in q±1, t±1 given by

dimq,t V :=
∑
u,v∈Z

(dimk Vu,v)q
utv.

With the above notation, we have dimq,t(X
⊕a(q,t)) = a(q, t) dimq,t V . We also define the

restricted dual D(V ) of a bigraded k-vector space V by D(V )u,v := Homk(V−u,−v,k) for
each (u, v) ∈ Z2. If each Vu,v is finite-dimensional, we naturally have D2(V ) ∼= V and

dimq,tD(V ) = dimq−1,t−1 V.
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2.2. Bigraded quivers and algebras. A quiver is a directed graph. We understand it
as a quadruple Q = (Q0, Q1, s, t), where Q0 is the set of vertices, Q1 is the set of arrows
and s (resp. t) is the map Q1 → Q0 which assigns each arrow with its source (resp. target).
By a bigraded quiver, we mean a quiver Q endowed with a map deg : Q1 → Z2.

For a quiver Q, we set kQ0 :=
⊕

i∈Q0
kei and kQ1 :=

⊕
α∈Q1

kα. We endow kQ0 with a

(possibly non-unital) k-algebra structure by ei · ej = δijei for any i, j ∈ Q0, and kQ1 with
a (kQ0,kQ0)-bimodule structure by ei · α = δi,t(α)α and α · ei = δi,s(α)α for any i ∈ Q0 and
α ∈ Q1. Then the path algebra of Q is defined to be the tensor algebra kQ := TkQ0(kQ1).
When Q is bigraded, its path algebra kQ naturally becomes a bigraded k-algebra. Note
that we necessarily have deg(ei) = (0, 0) for any i ∈ Q0.
Let A be a (possibly non-unital) k-algebra obtained as a quotient of the path alge-

bra kQ of a quiver Q. We always mean by an A-module M a left A-module satisfying
M =

⊕
i∈Q0

eiM . Assume that Q is bigraded and A inherits the bigrading. For bi-

graded A-modules M and N , we denote by HomA(M,N) the space of homogeneous A-
homomorphisms and by ExtmA (M,N) the homogeneous m-th extension group. Then we
define the bigraded k-vector spaces homA(M,N) and extmA (M,N) respectively by

homA(M,N)u,v := HomA(q
utvM,N) and extmA (M,N)u,v := ExtmA (q

utvM,N)

for each u, v ∈ Z. We understand Ext0A(M,N) = HomA(M,N) and ext0A(M,N) =
homA(M,N) as usual.

2.3. Generalized preprojective algebras. We keep the notation in Section 1. We con-

sider a finite quiver Q̃ = (Q̃0, Q̃1, s, t) for any g given as follows:

Q̃0 = I, Q̃1 = {αij | (i, j) ∈ I × I, i ∼ j} ∪ {εi | i ∈ I},
s(αij) = j, t(αij) = i, s(εi) = t(εi) = i.

We endow the quiver Q̃ with a bigrading by

deg(αij) := (bij, 1) = (−max(di, dj), 1), deg(εi) := (bii, 0) = (2di, 0). (2.1)

We also choose a sign ωij ∈ {1,−1} for each (i, j) ∈ I × I with i ∼ j such that ωij = −ωji.
Then, we define the k-algebra Π̃ to be the quotient of kQ̃ by the following two kinds of
relations:

(R1) ε
−cij
i αij = αijε

−cji
j for any i, j ∈ I with i ∼ j;

(R2)
∑

j∈I:j∼i

−cij−1∑
k=0

ωijε
k
i αijαjiε

−cij−1−k
i = 0 for each i ∈ I.

Since the relations are homogeneous, the algebra Π̃ inherits the bigrading from kQ̃. Up to

bigraded k-algebra isomorphism, the algebra Π̃ does not depend on the choice of the signs
{ωij}i∼j. Therefore, we have suppressed its dependence from the notation.

Thanks to the relation (R1), the element

ε :=
∑
i∈I

ε
r/di
i ei
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12 R. FUJITA AND K. MURAKAMI

is central in Π̃. Note that ε is homogeneous of degree (2r, 0). For each positive integer `,
we define the quotient algebra

Π(`) := Π̃/εℓΠ̃.

In other words, the k-algebra Π(`) is defined as the quotient of kQ̃ by the three kinds of
relations: (R1), (R2) and

(R3) ε
ℓr/di
i = 0 for each i ∈ I.

The algebra Π(`) inherits the bigrading from kQ̃.

Remark 2.1. The algebra Π(`) is identical to the generalized preprojective algebra denoted
by Π(tC, `rD−1,Ω) in [GLS17] and in the previous works [Mur19,Mur22] of the second
named author (recall Remark 1.1), where Ω := {(i, j) ∈ I × I | i ∼ j, ωij = 1} is the
orientation corresponding to {ωij}i∼j.

For each i ∈ I, let k[εi] be the ring of polynomials in εi bigraded by deg(εi) = (2di, 0).

Given a positive integer `, we set Hi(`) := k[εi]/(εℓr/dii ). For any Π(`)-module M , the
subspace eiM becomes a module over Hi(`) in the obvious way for each i ∈ I.

Theorem 2.2 (Geiß-Leclerc-Schröer). Let ` ∈ Z>0.

(1) For any i, j ∈ I, the space eiΠ(`)ej is bigraded free of finite rank over the algebra
Hi(`). In particular, the algebra Π(`) is finite-dimensional over k.

(2) If v > n(h+ 1), we have Π(`)u,v = 0 for any u ∈ Z.

Proof. These assertions follow from the results in [GLS17, §11]. □

There is an anti-involution of bigraded k-algebras φ : Π̃→ Π̃op given by

φ(ei) := ei, φ(αij) := αji, φ(εi) := εi.

For a bigraded Π̃-module M , we always regard its restricted dual D(M) as a bigraded left

Π̃-module by twisting its natural right module structure with φ. If each bigraded piece

Mu,v is finite dimensional, we have the natural isomorphism D2(M) ∼= M of bigraded Π̃-
modules. The isomorphism φ naturally induces the isomorphism for the quotient Π(`) for
each ` ∈ Z>0.

2.4. Bigraded modules. In what follows, for a bigraded algebra A, we denote by C(A) the
category of finitely generated bigraded A-modules. For ` ∈ Z>0, we identify the category

C(Π(`)) with a full subcategory of C(Π̃) via the canonical quotient map Π̃ → Π(`). The
category C(Π(`)) is the same as the category of finite-dimensional bigraded Π(`)-modules
by Theorem 2.2 (1). In particular, the duality functor D induces a contravariant involutive
auto-equivalence of C(Π(`)).
For each i ∈ I, let Si denote the associated simple module in C(Π̃) concentrated in

bidegree (0, 0). Given ` ∈ Z>0, we set Pi(`) := Π(`)ei = (Π̃/Π̃ε
ℓr/di
i )ei, which gives a

projective cover of Si in the category C(Π(`)). Its restricted dual Ii(`) := D(Pi(`)) gives
an injective hull of Si in C(Π(`)). We use the following fact later.
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Theorem 2.3 ([GLS17, Corollary 12.7], [Mur22, paragraph after Theorem 3.18]). For
each ` ∈ Z>0, the algebra Π(`) is a self-injective algebra (i.e., Π(`) is an injective module
as a Π(`)-module) whose Nakayama permutation is identical to the involution i 7→ i∗. In
particular, the injective module Ii(`) is isomorphic to the projective module Pi∗(`) up to
bigrading shift for each i ∈ I.

For ` ∈ Z>0, we say that a bigraded Π(`)-module M ∈ C(Π(`)) is locally free if, for
each i ∈ I, there is a Laurent polynomial fi = fi(q, t) ∈ Z≥0[q

±1, t±1] such that we have
eiM ∼= Hi(`)

⊕fi as bigraded Hi(`)-modules. We denote by Cl.f.(Π(`)) ⊂ C(Π(`)) the full
subcategory of locally free modules. Note that the category Cl.f.(Π(`)) is closed under taking
extensions, kernel of epimorphisms and cokernel of monomorphisms (see [GLS17, Proof of
Lemma 3.8]). By Theorem 2.2 (1), we have Pi(`), Ii(`) ∈ Cl.f.(Π(`)) for any ` ∈ Z>0 and
i ∈ I.

For ` ∈ Z>0 and i ∈ I, let Ei(`) denote the maximal quotient of Pi(`) such that
ejEi(`) = 0 for any j 6= i. From the definition of Π(`), we have eiEi(`) ∼= Hi(`) as
bigraded Hi(`)-modules. We call Ei(`) the generalized simple module associated with i.
Similarly, we can define the generalized simple modules in C(Π(`)op), for which we use
the symbol E ′

i(`). We say that a module M ∈ C(Π(`)) is E-filtered if M has a bigraded
Π(`)-module filtration whose associated graded is a direct sum of some bigrading shifts of
the generalized simple modules. We call this kind of filtrations E-filtrations. Let CE(Π(`))
denote the full subcategory of C(Π(`)) consisting of all the E-filtered modules. We have
natural inclusions CE(Π(`)) ⊂ Cl.f.(Π(`)) ⊂ C(Π(`)) of extension-closed subcategories for
each ` ∈ Z>0.

Remark 2.4. The category CE(Π(`)) is not an abelian category in general. In particular,
CE(Π(`)) is an abelian category if and only if C is symmetric and ` = 1 (cf. [Eno21,
Corollary 2.8] for a more general result). In this case, three categories CE(Π(`)), Cl.f.(Π(`))
and C(Π(`)) coincide.

2.5. Grothendieck groups. Fix ` ∈ Z>0. We denote byK(Π(`)) the Grothendieck group
of the abelian category C(Π(`)). For an objectM ∈ C(Π(`)), we write [M ] ∈ K(Π(`)) for its
isomorphism class. We endow K(Π(`)) with a structure of Z[q±1, t±1]-module by setting
q[M ] := [qM ] and t[M ] := [tM ] for any M ∈ C(Π(`)). Then, K(Π(`)) becomes a free
Z[q±1, t±1]-module with the basis {[Si]}i∈I . We also consider its localization:

K(Π(`))loc := K(Π(`))⊗Z[q±1,t±1] Q(q, t).

For simplicity, we also write [M ] for [M ]⊗ 1 ∈ K(Π(`))loc. Since we have

[Ei(`)] =
1− q2ℓr

1− q2di
[Si]

in K(Π(`)) for each i ∈ I, the set {[Ei(`)]}i∈I forms a basis of K(Π(`))loc. Note that, if
M ∈ Cl.f.(Π(`)) satisfies [M ] =

∑
i∈I fi[Ei(`)] in K(Π(`))loc, we have fi ∈ Z≥0[q

±1, t±1] and
eiM ∼= Hi(`)

⊕fi for each i ∈ I.
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14 R. FUJITA AND K. MURAKAMI

2.6. The module Īi. For each i ∈ I, we define the bigraded Π̃-module Īi by

Īi := D((Π̃/Π̃εi)ei).

From the definition, it fits into the exact sequence

0→ Īi → Ii(`)
·εi−→ q−2diIi(`) (2.2)

for any ` ∈ Z>0. In particular, Īi belongs to C(Π(`)) for any ` ∈ Z>0.

Lemma 2.5. Let ` ∈ Z>0,m ∈ Z≥0 and i ∈ I. For any M ∈ C(Π(`)), we have a natural
isomorphism of bigraded vector spaces

extmΠ(ℓ)(M, Īi) ∼= extmHi(ℓ)
(eiM, k). (2.3)

In particular, we have

extmΠ(ℓ)(Ei(`), Īj)
∼=

{
k if m = 0 and i = j,

0 otherwise.
(2.4)

Proof. Since homΠ(ℓ)(M, Ii(`)) ∼= D(eiM), the exact sequence (2.2) yields the isomorphism

homΠ(ℓ)(M, Īi) ∼= D(ei(M/εiM)) ∼= homHi(ℓ)(eiM,k),

which is functorial in M ∈ C(Π(`)). This isomorphism extends to the desired isomorphism
(2.3) of the universal δ-functors. □

Corollary 2.6. If M ∈ Cl.f.(Π(`)), we have

[M ] =
∑
i∈I

dimq−1,t−1 homΠ(ℓ)(M, Īi)[Ei(`)]

in K(Π(`))loc.

3. Interpretation of deformed Cartan matrices

In this section, we give a representation-theoretic interpretation of the (q, t)-deformed

Cartan matrix C(q, t) and its inverse C̃(q, t) in terms of bigraded modules over the gen-
eralized preprojective algebras. Along the way, we discuss bigraded projective resolutions
of the generalized simple modules (§3.1), E-filtrations of projective modules (§3.2) and
bigraded Euler-Poincaré pairings (§3.4).

Throughout this section, we fix a positive integer ` ∈ Z>0 and consider Π(`)-modules
only. It turns out that all the results are essentially independent of this fixed ` except for
Corollary 3.4 (1). For the sake of simplicity, we abbreviate Π := Π(`) and Xi := Xi(`) for
each i ∈ I, where X ∈ {H,P, I, E,E ′}. Also, we set ⊗i := ⊗Hi

for each i ∈ I.
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3.1. Bigraded projective resolutions. In this subsection, we develop the projective
resolution of Ei in our bigraded category C(Π). Following [GLS17, §5.1], for each i, j ∈ I
with i ∼ j, we define the bigraded (Hi, Hj)-bimodule iHj by

iHj := HiαijHj ⊂ Π.

It is free as a left Hi-module and free as a right Hj-module. Moreover, the relation (R1)
gives the following:

iHj =

−cji−1⊕
k=0

Hi(αijε
k
j ) =

−cij−1⊕
k=0

(εki αij)Hj.

In particular, we get the following lemma, which is essential to understand the relationship
between the deformed Cartan matrices and the generalized preprojective algebras:

Lemma 3.1. For i, j ∈ I with i ∼ j, we have two isomorphisms

Hi
(iHj) ∼= H

⊕(−q−dj tCji(q,t))
i , (iHj)Hj

∼= H
⊕(−q−di tCij(q,t))
j

as bigraded left Hi-modules and as bigraded right Hj-modules respectively.

In the representation theory of (generalized) preprojective algebras, some bimodule
resolutions developed in Brenner-Butler-King [BBK02] and Geiß-Leclerc-Schröer [GLS17,
GLS07] are very useful. Here we shall give a bigraded analogue of them by inspection.
Consider the following sequence of bigraded (Π,Π)-bimodules:⊕

i∈I

q−2dit2Πei ⊗i eiΠ
ψ−→

⊕
i,j∈I:i∼j

Πej ⊗j jHi ⊗i eiΠ
φ−→
⊕
i∈I

Πei ⊗i eiΠ→ Π→ 0, (3.1)

where the morphisms ψ and ϕ are given by

ψ(ei ⊗ ei) :=
∑
j∼i

−cij−1∑
k=0

ωij

(
εki αij ⊗ αjiε

−cij−1−k
i ⊗ ei + ei ⊗ εki αij ⊗ αjiε

−cij−1−k
i

)
,

ϕ(ej ⊗ x⊗ ei) := x⊗ ei + ej ⊗ x.

The other arrows
⊕

i∈I Πei⊗i eiΠ→ Π→ 0 are canonical. The relation (R2) ensures that
the sequence (3.1) forms a complex. For each i ∈ I, applying (−)⊗Π Ei to (3.1) yields the
following complex of bigraded (left) Π-modules:

P
(i)
2

ψ(i)

−−→ P
(i)
1

φ(i)

−−→ P
(i)
0 → Ei → 0, (3.2)

where

P
(i)
0 = Pi, P

(i)
1 =

⊕
j∼i

P
⊕(−q−di tCij(q,t))
j , P

(i)
2 = q−2dit2Pi

by Lemma 3.1. The morphisms ψ(i) and ϕ(i) are induced from ψ and ϕ respectively.

Theorem 3.2 ([GLS17, Proposition 12.1 and Corollary 12.2]). The complexes (3.1) and
(3.2) are exact.
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By [Mur22, Theorem 3.16], we know that Ker(ψ(i)) is isomorphic to Ei∗ after forgetting
the bigrading. Our first aim is to prove the following:

Theorem 3.3. For any i ∈ I, we have Ker(ψ(i)) ∼= q−rh
∨
thEi∗. In particular, each Ei has

the bigraded projective resolution

· · · → P
(i)
3 → P

(i)
2 → P

(i)
1 → P

(i)
0 → Ei → 0 (3.3)

which extends (3.2) and satisfies P
(i)
k+3 = q−rh

∨
thP

(i∗)
k for any k ∈ Z≥0.

A proof of Theorem 3.3 is given in the next subsection.

Corollary 3.4. For each i ∈ I, we have the following isomorphisms of bigraded Π(`)-
modules:

(1) Pi(`) ∼= qr(2ℓ−h
∨)th−2Ii∗(`),

(2) D(Īi) ∼= q2di−rh
∨
th−2Īi∗.

Proof. Note that we have

q2(ℓr−di)Si ∼= Ker
(
Ei

·εi−→ q−2diEi

)
⊂ Ei (3.4)

as bigraded Π(`)-modules. Combining with Theorem 3.3, we have an embedding

qr(2ℓ−h
∨)th−2Si∗ ↪→ q2di−rh

∨
th−2Ei∗ ↪→ Pi.

Since Pi is isomorphic to Ii∗ up to bigrading shift by Theorem 2.3, it implies the iso-
morphism (1). Next, by applying Ii ⊗Hi

(−) to (3.4) and recalling (2.2), we obtain
Ii ⊗Hi

Si ∼= q2(di−ℓr)Īi. When i∗ = i, applying (−) ⊗Hi
Si to the isomorphism (1), we

have
D(Īi) ∼= Pi ⊗Hi

Si ∼= qr(2ℓ−h
∨)th−2Ii ⊗Hi

Si ∼= q2di−rh
∨
th−2Īi,

which is (2) in this case. When i 6= i∗, g is necessarily of simply-laced type. Then, we
apply (−)⊗k[ε]/(εℓ) k to the isomorphism (1) and compute similarly, to obtain (2). □

3.2. E-filtrations of Pi. First, we prepare additional notation. For each i ∈ I, we set
Ji := Π(1 − ei)Π. This is a bigraded two-sided ideal of Π. For M ∈ C(Π) and i ∈ I,
let subiM (resp. faciM) be the largest bigraded submodule (resp. factor module) of M
such that ei subiM = subiM (resp. ei faciM = faciM). In what follows, we endow the
localized Grothendieck group K(Π)loc (see §2.5) with an action of the braid group Bg via
the isomorphism K(Π)loc ∼= h∗q,t which identifies the class [Ei] with the element α∨

i for each
i ∈ I. Namely, recalling (1.6), we set

Ti[Ej] := [Ej]− q−dj tCji(q, t)[Ei] (3.5)

in K(Π)loc for i, j ∈ I. We can find an analogue of [GLS17, Proposition 9.4] by an
easy adaptation of arguments about relationships between idempotent ideals and reflection
functors in [BKT14,Kül17] as follows.

Lemma 3.5. Let M ∈ Cl.f.(Π).
(1) If subi(M) = 0, we have Ji ⊗Π M ∈ Cl.f.(Π) and [Ji ⊗Π M ] = Ti[M ].
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(2) If faci(M) = 0, we have homΠ(Ji,M) ∈ Cl.f.(Π) and [homΠ(Ji,M)] = T−1
i [M ].

Proof. We only prove the assertion (1) because the assertion (2) is dual to (1). Since
M ∈ Cl.f.(Π), we can write [M ] =

∑
j∈I fj[Ej] in K(Π)loc with some fj ∈ Z≥0[q

±1, t±1].

Note that eiJi is the first syzygy of E ′
i in C(Πop). We get the following exact sequence of

bigraded (Hi,Π)-bimodules by applying E ′
i ⊗Π (−) to (3.1) and taking a kernel:

q−2dit2eiΠ→
⊕
j∼i

iHj ⊗j ejΠ→ eiJi → 0.

We apply (−)⊗Π M to the above exact sequence to obtain a short exact sequence

0→ q−2dit2eiM
ζ−→
⊕
j∼i

iHj ⊗j ejM → eiJi ⊗Π M → 0.

Here the map ζ is injective because subiM = 0. In particular, we have eiJi ⊗Π M ∼=
Cok(ζ) ∼= H⊕a

i , where

a = −
∑
j∼i

q−dj tCji(q, t)fj − q−2dit2fi

by Lemma 3.1. Combined with the fact ejJi ⊗ΠM ∼= ejM for j 6= i, we obtain Ji ⊗ΠM ∈
Cl.f.(Π) and an equality

[Ji ⊗Π M ] =
∑
j ̸=i

fj[Ej]−
∑
j∼i

q−dj tCji(q, t)fj[Ei]− q−2dit2fi[Ei]

= [M ]−
∑
j∈I

q−dj tCji(q, t)fj[Ei]

in K(Π)loc. The right hand side is equal to Ti[M ] by (3.5). □
Lemma 3.6. Let (i1, . . . , il) be a reduced expression of w0. For any i ∈ I and 1 ≤ k ≤ l,
we have a bigraded Π-module isomorphism

Jik−1
· · · Ji1ei/Jik · · · Ji1ei ∼= E

⊕(ϖ∨
i ,Ti1 ···Tik−1

αik
)q,t

ik
.

Proof. We have an isomorphism Jik−1
· · · Ji1/Jik · · · Ji1 ∼= E ′

ik
⊗Π Jik−1

· · · Ji1 in C(Πop) by
a bigraded analogue of an argument in [Mur19, Proposition 3.8]. Then, the right module
version of Lemma 3.5 yields an isomorphism Jik−1

· · · Ji1ei/Jik · · · Ji1ei ∼= H⊕a
i in C(Hop

i )
with a = qdit−1($i, Ti1 · · ·Tik−1

α∨
ik
)q,t (recall the relation qdit−1($i, α

∨
j )q,t = δij). Thus, we

have

dimq,t(Jik−1
· · · Ji1ei/Jik · · · Ji1ei) =

1− q2ℓr

1− q2di
qdit−1($i, Ti1 · · ·Tik−1

α∨
ik
)q,t. (3.6)

On the other hand, by a bigraded analogue of [Mur19, Lemma 3.10], we have an isomor-
phism Jik−1

· · · Ji1ei/Jik · · · Ji1ei ∼= E⊕b
ik

in C(Π) with some b ∈ Z≥0[q
±1, t±1]. This yields

dimq,t(Jik−1
· · · Ji1ei/Jik · · · Ji1ei) = b

1− q2ℓr

1− q2dik
. (3.7)
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Comparing (3.6) and (3.7), we obtain

b =
1− q2dik
1− q2di

qdit−1($i, Ti1 · · ·Tik−1
α∨
ik
)q,t = ($∨

i , Ti1 · · ·Tik−1
αik)q,t,

where we used the relations α∨
ik
= q−dik tαik/[dik ]q and $i = [di]q$

∨
i . □

Proof of Theorem 3.3. It is known that Jil · · · Ji1 = 0 holds for any reduced expression
(i1, . . . , il) of w0 (cf. [FG19, Theorem 1.2] and [Mur19, Theorem 2.31]). Therefore, by
Lemma 3.6, we have Jil−1

· · · Ji1ei ∼= E⊕a
il

as bigraded (left) Π-modules, where

a = ($∨
i , Ti1 · · ·Til−1

αil)q,t = ($∨
i , Tw0T

−1
il
αil)q,t = q2di−rh

∨
t−2+hδi∗,il .

Here, the last equality follows from Theorem 1.6 and the relation T−1
il
αil = −q2dil t−2αil .

Now we choose a reduced expression (i1, . . . , il) of w0 with il = i∗. Then Pi contains
Jil−1

· · · Ji1ei ∼= q2di−rh
∨
t−2+hEi∗ as a submodule. Since Π is self-injective (recall Theo-

rem 2.3), there are no ideals isomorphic to Ei∗ other than Jil−1
· · · Ji1ei even if disregarding

the bigradings (cf. [Miz14, Proof of Lemma 2.20]). On the other hand, we know that
Kerψ(i) in q−2dit2Pi is isomorphic to Ei∗ after forgetting the bigradings by [Mur22, Theo-
rem 3.16]. Therefore, we have

Kerψ(i) ∼= q−2dit2Jil−1
· · · Ji1ei ∼= q−rh

∨
thEi∗

as bigraded Π-modules. □
We have the following immediate corollary of Lemma 3.6, which we use later.

Corollary 3.7. For each i ∈ I, the projective Π-module Pi is E-filtered. Moreover, we
have

[Pi] =
l∑

k=1

($∨
i , Ti1 · · ·Tik−1

αik)q,t[Eik ] (3.8)

in K(Π)loc for any reduced expression (i1, . . . , il) of w0.

Proof. By Lemma 3.6, the filtration 0 = Jil · · · Ji1ei ⊆ · · · ⊆ Jik · · · Ji1ei ⊆ · · · ⊆ Πei gives
an E-filtration of Pi for any reduced expression (i1, . . . , il) of w0. □
3.3. Bigraded dimension of Īi. Let i ∈ I. Applying Corollary 2.6 to the case M = Pi,
we have

[Pi] =
∑
j∈I

dimq−1,t−1(eiĪj)[Ej] (3.9)

in K(Π)loc. Combining with (3.8), we obtain the following.

Proposition 3.8. Let (i1, . . . , il) be a reduced expression of w0. For any i, j ∈ I, we have

dimq−1,t−1(eiĪj) =
∑

k : ik=j

($∨
i , Ti1 · · ·Tik−1

αj)q,t. (3.10)

Corollary 3.9. For any i, j ∈ I, we have

qdj t−1 dimq,t eiĪj ∈
(
qdit−1Z[q, t−1]

)
∩
(
qrh

∨−dit−h+1Z[q−1, t]
)
.
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Proof. Keep the notation in Proposition 3.8. For any k with ik = j, we have

($∨
i , Ti1 · · ·Tik−1

αj)q,t =
qdj − q−dj
qdi − q−di

(Tik−1
· · ·Ti1$i, q

dj t−1α∨
j )q,t

by Lemma 1.4 and the relations $i = [di]q$
∨
i , αj = qdj t−1[dj]qα

∨
j . With Lemma 1.5, it

implies ($∨
i , Ti1 · · ·Tik−1

αj)q,t ∈ qdj−diZ[q−1, t]. Therefore, by Proposition 3.8, we get

qdj t−1 dimq,t eiĪj ∈ qdit−1Z[q, t−1].

Combining this with Corollary 3.4 (2), we obtain the assertion. □

3.4. Euler-Poincaré pairing. We consider the following finiteness condition for a pair
(M,N) of modules in C(Π):

(♥) For each u, v ∈ Z, the extension group ExtmΠ (q
utvM,N) vanishes for m� 0.

If (M,N) satisfies the condition (♥), their Euler-Poincaré pairing

〈M,N〉q,t :=
∞∑
m=0

(−1)m dimq,t ext
m
Π (M,N)

=
∞∑
m=0

∑
u,v∈Z

(−1)mqutv dimk Ext
m
Π (q

utvM,N)

is well-defined as a formal power series in q±1, t±1. The following lemma is immediate from
the definition and the standard argument using the long exact sequences for extmΠ (−,−)’s.

Lemma 3.10. Let M,N ∈ C(Π).
(1) If (M,N) satisfies (♥), the pair (M⊕a, N⊕b) also satisfies (♥) for any a, b ∈

Z≥0[q
±1, t±1] and we have 〈M⊕a, N⊕b〉q,t = āb〈M,N〉q,t, where a(q, t) := a(q−1, t−1).

(2) Suppose that there is an exact sequence 0→M ′ →M →M ′′ → 0 in C(Π), and the
both pairs (M ′, N) and (M ′′, N) satisfy (♥). Then the pair (M,N) also satisfies
(♥) and we have 〈M,N〉q,t = 〈M ′, N〉q,t + 〈M ′′, N〉q,t.

(3) Suppose that there is an exact sequence 0→ N ′ → N → N ′′ → 0 in C(Π), and the
both pairs (M,N ′) and (M,N ′′) satisfy (♥). Then the pair (M,N) also satisfies
(♥) and we have 〈M,N〉q,t = 〈M,N ′〉q,t + 〈M,N ′′〉q,t.

Using Theorem 3.3, we can prove the following proposition. This is an advantage of
working with the bigrading. If we forget the t-degree and work only with the q-degree, the
analogous statement fails in general (see Example 3.12 below).

Proposition 3.11. For any M,N ∈ C(Π), the pair (M,N) satisfies the condition (♥).
Namely, the pairing 〈M,N〉q,t only depends on their classes [M ], [N ] ∈ K(C(Π)).

Proof. In view of Lemma 3.10, it is enough to show that the pair (Si, Sj) satisfies the
condition (♥) for any i, j ∈ I. The simple module Si has the following “Ei-resolution”:

· · · → qp(3)Ei
εci−→ qp(2)Ei

εi−→ qp(1)Ei
εci−→ qp(0)Ei

εi−→ Ei → Si → 0,
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where c := `r/di − 1, and p : Z≥0 → Z≥0 is a strictly increasing function given by p(2k) =
2k`r + 2di and p(2k − 1) = 2k`r. Using Theorem 3.3, let us take the projective resolution

of each term qp(k)Ei to obtain a double complex (P
(i)
u,v)u,v≥0 with P

(i)
u,v = qp(u)P

(i)
v , whose

total complex gives a bigraded projective Π-resolution of Si. Since dimq,t homΠ(P
(i)
v , Sj) ∈

t−s(v)Z[q±1] with a strictly increasing function s, we observe that
∑

u,v≥0 dimq,t homΠ(P
(i)
u,v, Sj) ∈

Z((q−1))[[t−1]] holds. This implies the condition (♥) for (Si, Sj). □
Example 3.12. Let g be of type C2 (= B2) and set I = {1, 2} with (d1, d2) = (1, 2).
Taking the bigraded projective resolution of the simple module S1 as in the proof of Propo-
sition 3.11 above, we can directly compute

dimq,t ext
m
Π(1)(S1, S1) = q−2m

⌊2m/3⌋∑
l=0

(q6t−2)l

for any m ∈ Z≥0. Therefore we have

〈S1, S1〉q,t =
∞∑
m=0

(−q−2)m
⌊2m/3⌋∑
l=0

(q6t−2)l, (3.11)

which gives a well-defined element of Z((q−1))[[t−1]]. On the other hand, specializing t to 1 in
(3.11) does not give a well-defined element of Z[[q±1]]. This implies that the Euler-Poincaré
pairing between S1 and itself is ill-defined if we forget the t-grading.

3.5. Interpretation of (q, t)-deformed Cartan matrices. For any i, j ∈ I, Theorem 3.3
implies that

dimq,t ext
m+3
Π (Ei, Sj) = qrh

∨
t−h dimq,t ext

m
Π (Ei∗ , Sj)

holds for any m ∈ Z≥0, and we have

dimq,t ext
m
Π (Ei, Sj) =


δij if m = 0,

(δij − 1)qdit−1Cij(q, t) if m = 1,

δijq
2dit−2 if m = 2.

Therefore we get

〈Ei, Sj〉q,t =
qdit−1

1− (qrh∨t−h)2

(
Cij(q, t)− qrh

∨
t−hCi∗j(q, t)

)
(3.12)

as an element of Z[q±1]((t−1)). Let ν := (δij∗)i,j∈I be the permutation matrix corresponding
to the involution i 7→ i∗. Then the equation (3.12) can be expressed in the matrix identity

(〈Ei, Sj〉q,t)i,j∈I =
qDt−1(id− qrh∨t−hν)

1− (qrh∨t−h)2
C(q, t) (3.13)

in GLI (Z[q±1]((t−1))). If the involution i 7→ i∗ is trivial, this identity (3.13) simplifies to

(〈Ei, Sj〉q,t)i,j∈I =
qDt−1

1 + qrh∨t−h
C(q, t),
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which applies especially to the case of non-simply-laced type.
For any i, j ∈ I, we have

δij = 〈Pi, Sj〉q,t =
∑
k∈I

(dimq,t eiĪk)〈Ek, Sj〉q,t,

where we used Corollary 3.7, Lemma 3.10 and (3.9). This can be expressed in an equation
of matrices:

id =
(
dimq,t eiĪj

)
i,j∈I (〈Ei, Sj〉q,t)i,j∈I

=
1

1− (qrh∨t−h)2
(
dimq,t eiĪj

)
i,j∈I q

Dt−1(id− qrh∨t−hν)C(q, t),

where the second equality is due to (3.13). Therefore we have

C̃(q, t) =
1

1− (qrh∨t−h)2
(
dimq,t eiĪj

)
i,j∈I q

Dt−1(id− qrh∨t−hν)

Comparing the (i, j)-entries, we obtain the following formula.

Theorem 3.13. For any i, j ∈ I, we have

C̃ij(q, t) =
qdj t−1

1− (qrh∨t−h)2

(
dimq,t eiĪj − qrh

∨
t−h dimq,t eiĪj∗

)
. (3.14)

If the involution i 7→ i∗ is trivial (e.g. when g is of non-simply-laced type), it simplifies to

C̃ij(q, t) =
qdj t−1

1 + qrh∨t−h
dimq,t eiĪj.

Corollary 3.14. For any i, j ∈ I, we have

dimq,t eiĪj = q−dj t
rh∨∑
u=0

h∑
v=0

c̃ij(u,−v)qut−v.

Proof. It follows from Theorem 3.13 and Corollary 3.9. □
Corollary 3.15. The integers {c̃ij(u, v)}i,j∈I,u,v∈Z satisfy the following properties.

(1) c̃ij(u, v) = −c̃ij∗(u+ rh∨, v − h) for any u ≥ 0 and v ≤ 0,
(2) c̃ij(u, v) ≥ 0 if 0 ≤ u ≤ rh∨ and −h ≤ v ≤ 0,
(3) c̃ij(rh

∨ − u,−h− v) = c̃ij∗(u, v) for any 0 ≤ u ≤ rh∨ and −h ≤ v ≤ 0.

Proof. If follows from Theorem 3.13, Corollary 3.14 and Corollary 3.4 (2). □
As a by-product, we also obtain the following combinatorial formula.

Proposition 3.16. Let (i1, . . . , il) be a reduced expression of w0. We extend it to an
infinite sequence (ik)k∈Z>0 such that ik+l = i∗k for all k ∈ Z>0. Then, for any i, j ∈ I, we
have

C̃ij(q, t) = qdj t−1
∑

k>0,ik=j

($∨
i , T

−1
i1
· · ·T−1

ik−1
αj)q,t.
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Proof. It follows from Theorem 3.13, Proposition 3.8 and Theorem 1.6. Note that we
have ($∨

i , Ti1 · · ·Tik−1
αj)q,t = ($∨

i , T
−1
i1
· · ·T−1

ik−1
αj)q,t for any k ∈ Z>0 by (1.5), where

a(q, t) := a(q−1, t−1). □
Remark 3.17. When g is of simply-laced type and the reduced expression (i1, . . . , il) is
adapted to a Dynkin quiver, Proposition 3.16 recovers Hernandez-Leclerc’s formula [HL15,
Proposition 2.1]. For the other case, it seems new.

4. Remarks on q-version and projective limit

In this complimentary section, we switch to consider the graded version of Π(`) and Π̃.
In §4.2, we summarize the q-version of our results obtained so far. In §4.3, we explain in

detail how to identify graded Π̃-modules with modules over the Jacobian algebra studied
by Hernandez-Leclerc [HL16]. In §4.4, we discuss the projective limit of Π(`)’s, which we
need in the next section.

4.1. Change of conventions. In the remaining part of this paper (Sections 4 & 5 and

Appendix A), we regard Π̃ as a graded k-algebra with respect to the degree map deg1 :=
pr1 ◦ deg, where pr1 : Z2 → Z is the projection of the first factor. Explicitly, it is given by

deg1(αij) := bij = −max(di, dj), deg1(εi) := bii = 2di.

We again write q for the upward grading shift functor for graded k-vector spaces. For
a graded k-vector space V , its graded dimension dimq V and restricted dual D(V ) are
defined in the analogous way as in §2.1. For a graded k-algebra A, we write HomA(M,N)
for the space of homogeneous A-homomorphisms between graded A-modules M and N .
We define homA(M,N) :=

⊕
u∈ZHomA(q

uM,N) as graded k-vector space. The same
convention applies to ExtmA (M,N) and extmA (M,N) as well.

In the sequel, we work only on the category of graded Π̃-modules, instead of bigraded Π̃-

modules. To simplify the notation, for a bigraded Π̃-module M , we keep the same symbol

M to denote the graded Π̃-module obtained fromM by forgetting the “t-degree”. Namely,

we regardM as the graded Π̃-module whose u-th graded piece is given byMu :=
⊕

v∈ZMu,v

for each u ∈ Z. In particular, even if M and N are bigraded Π̃-modules, we switch to use

the symbol HomΠ̃(M,N) to denote the space of graded Π̃-homomorphisms, rather than
bigraded ones. The same convention applies to Extm

Π̃
(M,N) and others.

4.2. Inverse of q-deformed Cartan matrix. We set C̃(q) := C̃(q, 1). This is the inverse

of the q-deformed Cartan matrix C(q) = C(q, 1). Its (i, j)-entry C̃ij(q) = C̃ij(q, 1) is
expanded at q = 0 as

C̃ij(q) =
∑
u∈Z

c̃ij(u)q
u ∈ Z[[q]], where c̃ij(u) :=

∑
v∈Z

c̃ij(u, v).

Here we list some properties of C̃(q) for future reference. They immediately follow from
Corollaries 3.14 & 3.15 together with Lemma 1.2. See [FO21, Corollary 4.10] and [GW20,
§6.6] for alternative proofs of Proposition 4.2.
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Proposition 4.1. For each i, j ∈ I, we have

dimq eiĪj = q−dj
rh∨∑
u=0

c̃ij(u)q
u. (4.1)

In particular, the space eiĪi is non-negatively graded.

Proposition 4.2. The expansion coefficients {c̃ij(u)}i,j∈I,u∈Z satisfy the following proper-
ties:

(1) c̃ij(u+ rh∨) = −c̃ij∗(u) for u ≥ 0.
(2) c̃ij(u) ≥ 0 for 0 ≤ u ≤ rh∨.
(3) c̃ij(rh

∨ − u) = c̃ij∗(u) for 0 ≤ u ≤ rh∨.
(4) c̃ij(u) = 0 if |u− krh∨| ≤ di − δij for some k ∈ Z≥0.

4.3. Comparison with Jacobian algebras. As remarked in [GLS17, §1.7.1], the defini-
tion of the algebra Π̃ is inspired in part by [HL16]. In particular, the category of graded

Π̃-modules can be identified with the category of (non-graded) modules over the Jacobian
algebra JΓ,W associated with a certain quiver Γ with potential W studied in [HL16]. In
this subsection, we explain this identification in detail for completeness.

Following [HL16], let us consider an infinite quiver Γ = (Γ0,Γ1, s, t) given as follows:

Γ0 = I × Z, Γ1 = {αij(p) | i, j ∈ I, i ∼ j, p ∈ Z} ∪ {εi(p) | i ∈ I, p ∈ Z},
s(αij(p)) = (j, p), t(αij(p)) = (i, p+ bij), s(εi(p)) = (i, p), t(εi(p)) = (i, p+ 2di).

Note that the quiver Γ consists of two mutually isomorphic connected components. In
Figure 1, a connected component of Γ is depicted in types A5,B3,C3 and D4.
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Figure 1. Component of Γ in types A5,B3,C3 and D4 (from left to right)
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Recall we have chosen a collection of signs {ωij}i∼j (or equivalently, an orientation Ω)
in §2.3. Let W be the potential given by

W :=
∑
p

∑
i,j∈I;i∼j

ωijεi(p− 2di)εi(p− 4di) · · · εi(p+ 2bij)αij(p+ bij)αji(p)

and JΓ,W the Jacobian algebra associated with (Γ,W ), i.e., JΓ,W := kΓ/〈∂W 〉, where 〈∂W 〉
denote the two-sided ideal generated by all the cyclic derivations of W (see [DWZ08]).

Remark 4.3. In [HL16], a slightly different potential W ′ was considered instead of W . It
is given by

W ′ :=
∑
p

∑
i,j∈I;i∼j

εi(p− 2di)εi(p− 4di) · · · εi(p+ 2bij)αij(p+ bij)αji(p).

However the difference between W and W ′ is not essential. Indeed, the potential −W is
obtained from W ′ via an explicit automorphism of kΓ given as follows. Let ξ : I → Z be
a function satisfying the condition: ξi = ξj + ωijbij if i ∼ j, where we write ξi := ξ(i) for
simplicity. (When g is of simply-laced type, such a function ξ is the sane as a height function
of the Dynkin quiver (I,Ω) appearing in [HL15, §2].) Then we define the automorphism
φξ of the path algebra kΓ by the assignment

εi(p) 7→ εi(p), αij(p) 7→ (−1)⌊(ξj−p)/2bij⌋αij(p)
for any p ∈ Z and i, j ∈ I with i ∼ j. Since⌊

ξj − p
2bij

⌋
+

⌊
ξi − (p− bij)

2bij

⌋
=

⌊
ξj − p
2bij

⌋
+

⌊
ξj − p
2bij

+
ξi − ξj + bij

2bij

⌋
=

⌊
ξj − p
2bij

⌋
+

⌊
ξj − p
2bij

+
ωij + 1

2

⌋
≡ ωij + 1

2
(mod 2),

we have

φξ(αij(p+ bij)αji(p)) = −ωijαij(p+ bij)αji(p)

for any p ∈ Z and i, j ∈ I with i ∼ j. Thus we obtain φξ(W
′) = −W . In particular, the

automorphism φξ induces the isomorphism

JΓ,W ′ ∼= JΓ,−W = JΓ,W .

In this paper, we work with the potential W rather than W ′ because it matches with the

definition of Π̃ in §2.3 (see the proof of Proposition 4.4 below).

In what follows, for an algebra (resp. a graded algebra)A, we denote byA-mod (resp.A-gmod)
the category of all the A-modules (resp. graded A-modules). We naturally identify a graded

module M over the path algebra kQ̃ with a graded representation of Q̃, which consists of
an I-tuple of graded k-vector spaces (eiM)i∈I together with linear maps

M(εi) ∈ Homk(q
2dieiM, eiM), M(αij) ∈ Homk(q

bijejM, eiM)

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



DCM and GPA 25

for each i, j ∈ I with i ∼ j.

For a graded kQ̃-module M , we associate the representation Φ(M) of Γ over k given by
Φ(M)(i,p) := eiMp and

Φ(M)(εi(p)) :=M(εi)|eiMp , Φ(M)(αij(p)) :=M(αij)|ejMp

for any p ∈ Z and i, j ∈ I with j ∼ i. This assignment M 7→ Φ(M) defines an k-linear
functor Φ: kQ̃-gmod→ kΓ-mod, which is an isomorphism of categories.

Proposition 4.4. Under the isomorphism Φ: kQ̃-gmod→ kΓ-mod, the category Π̃-gmod
corresponds to the category JΓ,W -mod. Therefore there is an isomorphism of categories

Π̃-gmod ∼= JΓ,W -mod.

Proof. The category JΓ,W -mod is identical to the full subcategory of kΓ-mod on which the
cyclic derivations ∂αji(p)W and ∂εi(p)W vanish for any p ∈ Z and i, j ∈ I with i ∼ j. Under

the above isomorphism kΓ-mod ∼= kQ̃-gmod, the actions of the elements ∂αji(p−bij)W and
∂εi(p−2di)W correspond to the restrictions to the p-th graded piece of the actions of the
elements

ωijε
−cji
j αji + ωjiαjiε

−cji
i and

∑
j∼i

∑
k+l=−cij−1

ωijε
k
i αijαjiε

l
i

respectively. Therefore, under the isomorphism, the relation ∂αji(p)W = 0 corresponds to
the relation (R1), and the relation ∂εi(p)W = 0 corresponds to the relation (R2). This
completes the proof. □

4.4. Projective limit. In this subsection, we briefly discuss the projective limit of the
graded k-algebras Π(`), which we use in the next section. Taking the projective limit in
the category of graded k-algebras, we define

Π(∞) := lim←−
ℓ

Π(`) = lim←−
ℓ

Π̃/εℓΠ̃.

By construction, we have the canonical homomorphism of graded k-algebras Π̃ → Π(∞),

whose kernel is
⋂
ℓ>0 ε

ℓΠ̃. For each ` ∈ Z>0, we have Π(∞)/εℓΠ(∞) ∼= Π̃/εℓΠ̃ ∼= Π(`).
We consider the projective module Pi(∞) := Π(∞)ei and the injective module Ii(∞) :=
D(Pi(∞)) for each i ∈ I. Note that we have Ii(∞) =

⋃
ℓ∈Z>0

Ii(`) and hence it is not finitely

generated over Π(∞). Let a ⊂ Π(∞) denote the two-sided ideal generated by {αij}i∼j.

Proposition 4.5. The followings hold.

(1) For any i, j ∈ I, the subspace eiΠ(∞)ej is graded free of finite rank over k[εi].
(2) The center of Π(∞) contains k[ε] and Π(∞) is graded free of finite rank as a k[ε]-

module. In particular, we have dimq Π(∞) ∈ Z((q)).
(3) For each k ∈ Z, we have Π(∞)k = Π(`)k for ` � 0. In particular, the canonical

homomorphism Π̃→ Π(∞) is surjective.
(4) The ideal a is nilpotent. Indeed, we have an(h+1) = 0.
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Proof. Since eiΠ(∞)ej = lim←− eiΠ(`)ej, (1) follows from Theorem 2.2. Since k[εi] is graded
free of finite rank over k[ε], (2) follows from (1). (3) is immediate from (2). (4) follows
from Theorem 2.2 (2). □
Proposition 4.6. Assume that g is of simply-laced type. Then the canonical homomor-

phism Π̃ → Π(∞) is an isomorphism. Moreover, we have Π̃ ∼= Π(1) ⊗k k[ε] as graded
k-algebras.

One can expect that Π̃ is isomorphic to Π(∞) for general g, but we could not find a
proof.

Proof. Note that the algebra Π(1) is the same as the usual preprojective algebra and hence

we have a graded k-algebra homomorphism Π(1) → Π̃ whose image is identical to the

subalgebra A of Π̃ generated by {ei}i∈I ∪ {αij}i∼j. In particular, A is finite-dimensional.

Since the element ε is central, we have Π̃ =
∑∞

ℓ=0 ε
ℓA. Thus the gradation of Π̃ is bounded

from below, which implies that Ker(Π̃ → Π(∞)) =
⋂
ℓ>0 ε

ℓΠ̃ = 0. Combined with Propo-
sition 4.5 (3), we obtain the former assertion. Now the latter assertion follows from Propo-
sition 4.5 (2). □
In what follows, we identify the category Π(∞)-gmod with a full subcategory of Π̃-gmod

via the canonical surjection Π̃→ Π(∞).

Proposition 4.7. The category Π(∞)-gmod is identical to the full subcategory of Π̃-gmod

consisting of graded Π̃-modules M satisfying the following property: for each homogeneous

element y ∈M , the gradation of the submodule Π̃y ⊂M is bounded from below.

Proof. Let B ⊂ Π̃-gmod be the full subcategory in question, i.e., B consists of all the graded

Π̃-modulesM such that Π̃y ⊂M is bounded from below for any homogeneous y ∈M . The
inclusion Π(∞)-gmod ⊂ B follows from Proposition 4.5 (2). To see the opposite inclusion, it

is enough to show that xM = 0 holds for anyM ∈ B and x ∈ Ker(Π̃→ Π(∞)) =
⋂
ℓ>0 ε

ℓΠ̃.
We may assume that x is homogeneous. For any ` > 0, we can write x = εℓxℓ for some

xℓ ∈ Π̃ such that deg1(xℓ) = deg1(x) − 2`r. For any y ∈ M , we have xℓy = 0 for ` � 0
by the assumption M ∈ B. Therefore we have xy = εℓ(xℓy) = 0. This completes the
proof. □
Corollary 4.8. The category Π(∞)-gmod is a Serre subcategory of Π̃-gmod, i.e., Π(∞)-gmod
is closed under taking subobjects, quotients and extensions. In particular, we have the nat-
ural isomorphism Ext1Π(∞)(M,N) ∼= Ext1

Π̃
(M,N) for any M,N ∈ Π(∞)-gmod.

5. Application to generic kernels

In this section, we discuss the generic kernels corresponding to the Kirillov-Reshetikhin
(KR) modules introduced by Hernandez-Leclerc [HL16]. Since they yield the geometric
q-character formulas [HL16, Theorem 4.8] (see Remark 5.8 below), one can think of them
as an additive counterpart of KR modules in the context of the categorifications of clus-

ter algebras. In §5.1, we introduce the generic kernels as certain graded Π̃-modules, and
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explain that our definition is equivalent to the one in [HL16]. We compute all the first ex-
tension groups among them explicitly in §5.2, and compare the results with the conjectural
denominator formula of the normalized R-matrices due to [FO21] in §5.3. Computations
for a few exceptional cases are postponed in Appendix A.

5.1. Generic kernels. For each i ∈ I and k ∈ Z>0, we define the graded Π̃-module K
(i)
k

by

K
(i)
k := qkdiD((Π̃/Π̃εki )ei).

As special cases, we haveK
(i)
1
∼= qdi Īi andK

(i)
ℓr/di
∼= qℓrIi(`) for ` ∈ Z>0. From the definition,

the module K
(i)
k fits into the following short exact sequence:

0→ K
(i)
k → qkdiIi(∞)

·εki−→ q−kdiIi(∞)→ 0. (5.1)

Here the surjectivity of ·εki follows from Proposition 4.5 (1). The modules K
(i)
k are referred

to as generic kernels after the following fact (see also Remark 5.2 below).

Proposition 5.1. For each i ∈ I and k ∈ Z>0, the set of homomorphisms f : q2kdiIi(∞)→
Ii(∞) satisfying Ker(f) = Ker(·εki ) is Zariski dense in the affine space HomΠ̃(q

2kdiIi(∞), Ii(∞)).

Proof. To simplify the notation, we set Π := Π(∞) and Ii := Ii(∞) in this proof. We have
the natural isomorphism

HomΠ(q
2kdiIi, Ii)

≃−→ HomΠ(Πei, q
−2kdiΠei)

≃−→ (eiΠei)2kdi , (5.2)

which transforms f ∈ HomΠ(q
2kdiIi, Ii) into tf(ei) ∈ (eiΠei)2kdi . Note that the homo-

morphism ·εki : q2kdiIi → Ii simply corresponds to the element εki ∈ (eiΠei)2kdi under the
isomorphism (5.2). The group AutΠ(Ii) naturally acts on the space HomΠ(q

2kdiIi, Ii) from
the left. By the isomorphism (5.2), this action is translated into the natural right action
of the group (eiΠei)

×
0 on (eiΠei)2kdi . Here we identify AutΠ(Ii)

op with (eiΠei)
×
0 via the

isomorphism (5.2) with k = 0. Since Ker(f) is invariant under this action, it is enough to
show that the orbit εki (eiΠei)

×
0 is Zariski dense in the affine space (eiΠei)2kdi .

Recall that eiΠei is graded free of finite rank as a left k[εi]-module by Proposition 4.5 (1).

Since the space eiΠei/εieiΠei ∼= ei(Π̃/εiΠ̃)ei ∼= eiD(Īi) is non-positively graded by Proposi-
tion 4.1, we can choose a free k[εi]-basis {x0, x1, . . . , xm} of eiΠei satisfying the followings:

(1) x0 = ei,
(2) For each 1 ≤ l ≤ m, we have ul := deg1(xl) ≤ 0 and xl ∈ a,
(3) There is an integer 0 ≤ m′ ≤ m such that we have{

ul ∈ 2diZ if 0 ≤ l ≤ m′,

ul 6∈ 2diZ if m′ < l ≤ m.

Then we have

(eiΠei)2kdi = kεki ei ⊕
m′⊕
l=1

kεk−ul/2dii xl = εki (eiΠei)0
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for any k ∈ Z≥0. Since each ε
−ul/2di
i xl with 1 ≤ l ≤ m′ is nilpotent in Π by Proposi-

tion 4.5 (4), we have

(eiΠei)
×
0 = k×ei ⊕

m′⊕
l=1

kε−ul/2dii xl.

Therefore the orbit εki (eiΠei)
×
0 is Zariski dense in (eiΠei)2kdi = εki (eiΠei)0 as it is the

complement of a linear subspace of codimension 1. □

Remark 5.2. Our terminology of generic kernels coincides with the one in [HL16] via the

isomorphism Φ: Π̃-gmod→ JΓ,W -mod in Proposition 4.4 in the following sense. In [HL16],
one actually concerns the full subcategory of JΓ,W -mod consisting of modules supported
on the “semi-infinite” full subquiver Γ− of Γ given by Γ−

0 := {(i, p) ∈ I × Z | p ≤ −di}.
If p ≤ di − rh∨, we can easily see from Propositions 4.1 & 4.2 that ej(q

pIi(∞))u = 0

holds unless (j, u) ∈ Γ−
0 , and hence Φ(qp−kdiK

(i)
k ) is supported on Γ− for any k ∈ Z>0.

By Proposition 5.1, under the condition p ≤ di − rh∨, the JΓ,W -module Φ(qp−kdiK
(i)
k ) is

identical to the generic kernel denoted by K
(i)
k,p in [HL16, 4.3]. Note that the injective

module Ii,p in [HL16, 4.3] is identical to our Φ(qpIi(∞)) in view of Proposition 4.7.

Lemma 5.3. For any i, j ∈ I and k ∈ Z>0, we have

dimq ejK
(i)
k =

[kdi]q
[di]q

rh∨∑
u=0

c̃ji(u)q
u. (5.3)

Proof. By the definition of K
(i)
k , we have

D(K(i)
k ) ∼= q−kdiΠ(∞)ei ⊗k[εi] k[εi]/(ε

k
i )
∼= q−kdiD(Īi)⊗k k[εi]/(εki )

as graded k-vector spaces. Therefore,

dimq ejK
(i)
k = dimq−1 ejD(K(i)

k )

= qkdi dimq ej Īi · dimq−1 k[εi]/(εki )

= qkdi

(
q−di

rh∨∑
u=0

c̃ji(u)q
u

)
1− q−2kdi

1− q−2di
,

where the last equality is due to (4.1). This proves (5.3). □

5.2. First extension groups between generic kernels.

Proposition 5.4. For each i, j ∈ I and k, l ∈ Z>0, we have

ext1
Π̃
(K

(i)
k , K

(j)
l ) ∼= ext1

Π̃
(K

(j)
l , K

(i)
k ) ∼= q−kdi−ldjei

Π̃

εki Π̃ + Π̃εlj
ej (5.4)

as graded k-vector spaces.
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Proof. We only have to show the second isomorphism thanks to the opposition φ and the

symmetry. Moreover, we know ext1
Π̃
(K

(j)
l , K

(i)
k ) ∼= ext1Π(∞)(K

(j)
l , K

(i)
k ) by Corollary 4.8.

Using the injective resolution (5.1) in Π(∞)-gmod, we have

ext1Π(∞)(K
(j)
l , K

(i)
k ) ∼= Cok

(
homΠ(∞)(K

(j)
l , qkdiIi(∞))

(·εki )◦−−−−−→ homΠ(∞)(K
(j)
l , q−kdiIi(∞))

)
∼= Cok

(
qkdi−ldjei(Π̃/Π̃ε

l
j)ej

εki ·−→ q−kdi−ldjei(Π̃/Π̃ε
l
j)ej

)
,

where, for the second isomorphism, we used the facts homΠ(∞)(−, Ij(∞)) ∼= ejD(−), and
eiD(K(j)

l ) ∼= q−ldjei(Π̃/Π̃ε
l
j)ej. This yields the desired isomorphism. □

To compute the dimensions of these extension groups, we need the following lemma.

Lemma 5.5. Let i, j ∈ I and k, l ∈ Z>0. If kdi ≥ ldj, we have

eiε
k
i Π̃ej ⊂ eiΠ̃ε

l
jej (5.5)

unless the following condition is satisfied:

(♣) g is either of type Cn, F4 or G2, and we have di = dj = 1, k = l 6∈ rZ.

Proof. It suffices to show that the inclusion (5.5) holds in the following four cases:

(1) at least one of the numbers kdi and ldj belongs to rZ, and kdi ≥ ldj,
(2) g is of type Cn or F4, di = dj = 1, kl 6∈ 2Z, and k > l,
(3) g is of type Bn, di = dj = 1, and k ≥ l,
(4) g is of type G2, di = dj = 1, kl 6∈ 3Z, and k > l.

Case (1): If kdi = mr for some m ∈ Z>0, we have

eiε
k
i Π̃ej = eiε

mΠ̃ej = eiΠ̃ε
mej = eiΠ̃ε

mr/dj
j ej ⊂ eiΠ̃ε

l
jej.

If ldj = mr for some m ∈ Z>0, we have

eiε
k
i Π̃ej = eiε

kdi−ldj
i εmΠ̃ej = eiε

kdi−ldj
i Π̃εmej = eiε

kdi−ldj
i Π̃εljej ⊂ eiΠ̃ε

l
jej.

Case (2): There is a positive integer m such that k > 2m > l. Then we have

eiε
k
i Π̃ej = eiε

k−2m
i εmΠ̃ej = eiε

k−2m
i Π̃εmej = eiε

k−2m
i Π̃ε2mj ej ⊂ eiΠ̃ε

l
jej.

Case (3): We identify I = {1, . . . , n} so that n is the single vertex with dn = 1 and we

have n− 1 ∼ n. Then i = j = n and we have to prove that enε
k
nΠ̃en ⊂ enΠ̃ε

l
nen under the

assumption k ≥ l. Using the relations (R1) and (R2) at the vertices 1, . . . , n − 1, we can

easily see that the space enΠ̃en is spanned by the elements of the form

ρ = enε
k0
n αn,n−1αn−1,nε

k1
n αn,n−1αn−1,nε

k2
n · · ·αn,n−1αn−1,nε

km
n en

for some m ∈ Z≥0 and k0, . . . , km ∈ Z≥0. On the other hand, the relation (R2) for the
vertex n yields

εnαn,n−1αn−1,n = −αn,n−1αn−1,nεn.

Therefore we get εknρ = (−1)mkρεkn ∈ enΠ̃εlnen.
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Case (4): If there is an integer m ∈ Z≥0 satisfying k > 3m > l, we get the desired
conclusion similarly as in the case (2). So it is enough to consider the case k = 3m+2 and
l = 3m + 1 for some m ∈ Z≥0. We identify I = {1, 2} so that (d1, d2) = (3, 1). Then we

have i = j = 2 and we have to prove that e2ε
3m+2
2 Π̃e2 ⊂ e2Π̃ε

3m+1
2 e2. Since e2ε

3m
2 = e2ε

m,
it suffices to consider the case when m = 0. Since α12α21 = 0 by the relation (R2) for the

vertex 1, we see that the space e2Π̃e2 is spanned by the elements of the form

ρ = e2ε
k0
2 α21α12ε

k1
2 α21α12ε

k2
2 · · ·α21α12ε

ks
2 e2

for some s ∈ Z≥0, k0, ks ∈ Z≥0 and k1, . . . , ks−1 ∈ Z>0. On the other hand, the relation
(R2) for the vertex 2 yields

ε22α21α12 = −ε2α21α12ε2 − α21α12ε
2
2.

Using this relation, we can easily show that ε22ρ ∈ e2Π̃ε2e2 holds by induction on s. This
completes the proof. □

Proposition 5.6. Let i, j ∈ I and k, l ∈ Z>0. Assume kdi ≥ ldj. Then we have

dimq ext
1
Π̃
(K

(i)
k , K

(j)
l ) = q−kdi

[ldj]q
[dj]q

rh∨∑
u=0

c̃ij(u)q
−u (5.6)

unless the condition (♣) in Lemma 5.5 is satisfied. Even if (♣) is satisfied, the difference
(RHS)− (LHS) in (5.6) belongs to Z≥0[q

±1].

Proof. By Proposition 5.4, we have a surjection

q−kdiD(eiK(j)
l ) ∼= q−kdi−ldjei(Π̃/Π̃ε

l
j)ej

↠ q−kdi−ldjei(Π̃/(ε
k
i Π̃ + Π̃εlj))ej

∼= ext1
Π̃
(K

(i)
k , K

(j)
l ).

Under the assumption kdi ≥ ldj, it is an isomorphism unless the condition (♣) is satisfied,
thanks to Lemma 5.5. Combined with Lemma 5.3, we obtain the assertion. □

In Appendix A, we compute the difference (RHS) − (LHS) in (5.6) explicitly when the
condition (♣) is satisfied. See Proposition A.1 below.

Corollary 5.7. For each i ∈ I and k ∈ Z>0, the Π̃-module K
(i)
k is rigid, that is

Ext1
Π̃
(K

(i)
k , K

(i)
k ) = 0.

Proof. Note that dimk Ext
1
Π̃
(K

(i)
k , K

(i)
k ) is the constant term of dimq ext

1
Π̃
(K

(i)
k , K

(i)
k ). By

Proposition 5.4, it is not greater than the constant term of q−kdi [kdi]q
[di]q

∑rh∨

u=0 c̃ii(u)q
−u, which

is zero. □
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5.3. Pole orders of normalized R-matrices. Let U ′
q(ĝ) be the (untwisted) quantum

affine algebra associated with our simple Lie algebra g. This is a Hopf algebra defined
over an algebraic closure k := Q(q) of the field of rational functions in q. The category
C of finite-dimensional U ′

q(ĝ)-modules (of type 1) forms an interesting k-linear monoidal
abelian category. Around U ′

q(ĝ), we basically follow the convention of [FO21, §5 and §6]
except that we replace the quantum parameter q therein with qr (and hence qs therein is
q here).

It is well-known (see [CP94, Chapter 12] for example) that simple U ′
q(ĝ)-modules in C

are parametrized by the set (1 + xk[x])I of I-tuples of polynomials with constant terms
1, which are called Drinfeld polynomials. For a nonzero scalar a ∈ k× and a module
M ∈ C , we can define another module Ma ∈ C , called a spectral parameter shift of M , by
twisting its module structure with an automorphism of the Hopf algebra U ′

q(ĝ). If L is a

simple module of C associated with Drinfeld polynomials π(x) ∈ (1 + xk[x])I , its spectral
parameter shift La is associated with π(ax). It defines an action of the group k× on the
monoidal category C .

For each i ∈ I and k ∈ Z>0, we denote by V
(i)
k the simple U ′

q(ĝ)-module in C associated

with the Drinfeld polynomials π
(i)
k (x) = (π

(i)
k,j(x))j∈I given by

π
(i)
k,j(x) :=

{
(1− q(k−1)dix)(1− q(k−3)dix) · · · (1− q−(k−1)dix) if j = i,

1 if j 6= i.

These modules {V (i)
k }i∈I,k∈Z>0 and their spectral parameter shifts are called the Kirillov-

Reshetikhin modules (KR modules for short).

Remark 5.8. When k = C, Hernandez-Leclerc’s geometric character formula [HL16, The-

orem 4.8] tells us that the F -polynomial of the JΓ,W -module Φ(qpK
(i)
k ) in the sense of

[DWZ10] gives the q-character of the KR module V
(i)
k,qp in the sense of [FR99]. To explain

it more precisely, we need some notation. Recall that each M ∈ C has a spectral decom-
position M =

⊕
γ∈G Mγ with respect to the action of the quantum analog of loop Cartan

part, whose spectra are parametrized by the Grothendieck group G of the multiplicative
monoid (1+xk[x])I . Then the q-character ofM is the element χq(M) :=

∑
γ∈G(dimkMγ)γ

of the group ring ZG. For each i ∈ I and p ∈ Z, we set Y ±1
i,p := π

(i)
1 (qpx)±1 ∈ G and

Ai,p := Yi,p−diYi,p+di
∏

j : cji=−1

Y −1
j,p

∏
j : cji=−2

Y −1
j,p−1Y

−1
j,p+1

∏
j : cji=−3

Y −1
j,p−2Y

−1
j,p Y

−1
j,p+2.

Note that the transformation from Yi,p’s to Ai,p’s is given by the quantum Cartan matrix
C(q). Then the geometric character formula is expressed as

χq(V
(i)
k,qp) = π

(i)
k (qpx)

∑
ν∈(Z≥0)I×Z

χ
(
Grν(Φ(q

pK
(i)
k ))

) ∏
(j,s)∈I×Z

A
−νj,s
j,s , (5.7)

where Grν(K) is the projective variety parametrizing the JΓ,W -submodules L ⊂ K satis-
fying dimC ej,sL = νj,s for all (j, s) ∈ I × Z, and χ(Grν(K)) is its Euler characteristic.
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As explained in [HL16, Remark 4.14], if we consider the case (k, p) = (1, 0) and look at

the term with νj,s = dimC ej,sΦ(K
(i)
1 ) = dimC(ej Īi)s−di in (5.7), we obtain

Yi,0Yi∗,rh∨ =
∏

(j,s)∈I×Z

A
dimC(ej Īi)s
i,s+di

by [FM01, Lemma 6.8]. Taking [FM01, Lemma 6.13] (or Corollary 3.9) into account,
it gives an alternative proof of Proposition 4.1 when k = C. By the similar argument,
Lemma 5.3 can also be deduced from (5.7).

Let z be an indeterminate and Nz = N ⊗k k(z) the formal spectral parameter shift of
a module N ∈ C . For any pair (M,N) of simple modules in C , we can associate the
normalized R-matrix as a U ′

q(ĝ)⊗k k(z)-isomorphism

RM,N : M ⊗Nz → Nz ⊗M
which sends a specific cyclic vector of M ⊗Nz to that of Nz ⊗M . Since RM,N can be seen
as a matrix-valued rational function in z, one can consider its denominator dM,N(z) ∈ k[z],
which is uniquely determined as a monic polynomial in the variable z with dM,N(0) 6= 0.
For any nonzero scalars a, b ∈ k×, we have

dMa,Nb
(z) ≡ dM,N((b/a)z) (mod k×). (5.8)

The denominator dM,N(z) contains some important information of the structure of the
tensor product moduleM⊗N (see [KKKO15] for example). For the denominators between

the KR modules, we have the following conjectural formula in terms of the matrix C̃(q).

Conjecture 5.9 (cf. [FO21, Conjecture 6.7]). Let i, j ∈ I and k, l ∈ Z>0. Assume kdi ≥
ldj. Then we have

d
V

(i)
k ,V

(j)
l

(z) = d
V

(j)
l ,V

(i)
k
(z) =

l−1∏
a=0

rh∨∏
u=0

(
z − qu+kdi+(2a−l+1)dj

)c̃ij(u)
. (5.9)

unless the condition (♣) in Lemma 5.5 is satisfied.

Conjecture 5.9 is known to be true in the following cases:

• g is either of type An,Bn,Cn,Dn or G2 (cf. [FO21, Theorem 6.9]),
• g is of any type and (k, l) = (r/di, 1) (cf. [FO21, Proposition 6.5]).

Remark 5.10. Strictly speaking, the statement of [FO21, Conjecture 6.7] is slightly differ-
ent from that of Conjecture 5.9 above. Actually, it was conjectured in [FO21, Conjecture
6.7] that the equality (5.9) should hold also when

(∗) g is of type CFG, and we have di = dj = 1, k = l ∈ Z≥r \ rZ>0.

Then it was claimed in [FO21, Theorem 6.9] that the equality (5.9) is indeed true for type
Cn and G2 under the condition (∗) based on the results of [OS19b]. However, after the
publication of [FO21], it has turned out that there are some gaps in the proofs in [OS19b]
for the case (∗) (the authors thank Se-jin Oh for clarifying this point). Thus we have
excluded the case (∗) in the statement of Conjecture 5.9.
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Definition 5.11.

(1) For a ∈ k and f(z) ∈ k[z], let zeroz=a f(z) denote the order of zeros of f(z) at
z = a. For f(z) ∈ k[z] with f(0) 6= 0, we define its divisor Div f(z) to be an
element of the group ring Z[k×] given by Div f(z) :=

∑
a∈k×(zeroz=a f(z))a.

(2) For a pair (M,N) of simple modules in C , we set

o(M,N) := zeroz=1 dM,N(z), O(M,N) := Div dM,N(z).

Note that o(M,N) is the coefficient of 1 ∈ k× in O(M,N).

For any i, j ∈ I and k, l ∈ Z>0, all the zeros of d
V

(i)
k ,V

(j)
l

(z) belong to qZ ⊂ k×. This

follows from [KKOP20, Propositions 2.11 & 2.12] and the known formulas of denominators

and universal coefficients for the fundamental modules. In particular, O(V
(i)
k , V

(j)
l ) can be

thought of a Laurent polynomial in q.

Lemma 5.12. The equation (5.9) is equivalent to the equation

O(V
(i)
k , V

(j)
l ) = O(V

(j)
l , V

(i)
k ) = qkdi

[ldj]q
[dj]q

rh∨∑
u=0

c̃ij(u)q
u. (5.10)

Proof. Straightforward. □
Thanks to Proposition 5.4, Proposition 5.6 and Lemma 5.12, the following conjecture is

equivalent to Conjecture 5.9.

Conjecture 5.13 (⇔ Conjecture 5.9). Let i, j ∈ I and k, l ∈ Z>0. Assuming kdi ≥ ldj,
we have

O(V
(i)
k , V

(j)
l ) = dimq−1 ext1

Π̃
(K

(i)
k , K

(j)
l ) (5.11)

unless the condition (♣) in Lemma 5.5 is satisfied.

Moreover, we find that the equality (5.11) still holds in some cases when the condition
(♣) is satisfied as in the next proposition, whose proof is given later in Appendix A.

Proposition 5.14. The equality (5.11) still holds even if g is either of type Cn, F4 or G2,
and we have di = dj = 1, k = l < r.

This motivates us to propose the following conjecture, which generalizes Conjecture 5.9.

Conjecture 5.15. For any i, j ∈ I and k, l ∈ Z>0, the equality (5.11) holds.

Lemma 5.16. The equation (5.11) holds if and only if the equation

o(V
(i)
k,qp , V

(j)
l,qs) = dimk Ext

1
Π̃
(qpK

(i)
k , q

sK
(j)
l ) (5.12)

holds for any p, s ∈ Z.

Proof. Note that the left hand side of (5.12) is the constant term of

O(V
(i)
k,qp , V

(j)
l,qs) = qp−sO(V

(i)
k , V

(j)
l ),
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where the equality follows from the property (5.8). On the other hand, the right hand side
of (5.12) is the constant term of

dimq ext
1
Π̃
(qpK

(i)
k , q

sK
(j)
l ) = qs−p dimq ext

1
Π̃
(K

(i)
k , K

(j)
l ).

From these observations, we obtain the assertion. □
Thus, we can rephrase Conjecture 5.15 as follows.

Conjecture 5.17 (⇔ Conjecture 5.15). For any i, j ∈ I, k, l ∈ Z>0 and p, s ∈ Z, the
equality (5.12) holds.

Remark 5.18. We can formally extend Conjecture 5.15 (or 5.17) beyond the KR modules.
In the context of monoidal categorification of cluster algebras, for each real simple module
M ∈ C corresponding to a cluster monomial, one can define the corresponding generic

kernel KM ∈ Π̃-gmod as discussed in [HL16, §5.2.2]. (Note that Conjecture 5.3 therein is
now a theorem thanks to the recent progress [KKOP21].) Then, as a generalization of the
conjectural equality (5.12), we may imagine that the equality

o(M,N) = dimk Ext
1
Π̃
(KM , KN) (5.13)

holds for any two simple modulesM,N ∈ C corresponding to cluster monomials. However,
we do not have any pieces of evidence for the validity of such an equality (5.13) except for
the KR modules at this moment.

Appendix A. Computations in the exceptional case (♣)

In this appendix, we assume that our Lie algebra g is of type Cn, F4 or G2. Following
the convention of [Kac90, Chapter 4], we identify I with the set {1, 2, . . . , n} so that we
have i ∼ j if and only if |i− j| = 1, and

(d1, . . . , dn) =


(1, . . . , 1.2) if g is of type Cn,

(2, 2, 1, 1) if g is of type F4,

(3, 1) if g is of type G2.

Proposition A.1. Let g be either of type Cn, F4 or G2. Suppose that i, j ∈ I and k ∈ Z>0

satisfy di = dj = 1 and k 6∈ rZ. Then we have

dimq ext
1
Π̃
(K

(i)
k , K

(j)
k ) = q−k[k]q

rh∨∑
u=0

c̃ij(u)q
−u −∆ij(q

−1), (A.1)

where ∆ij(q) := q2 dimq−1 ei((εiΠ̃ + Π̃εj)/Π̃εj)ej, which is explicitly computed as follows:

(1) When g is of type Cn and 1 ≤ i, j < n, we have

∆ij(q) =

i+j−n∑
a=1

q2n−i−j+2a+2.

Note that ∆ij(q) = 0 if i+ j ≤ n.
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(2) When g is of type F4, we have

∆33(q) = q4 + q8 + q10 + q14, ∆34(q) = ∆43(q) = q9, ∆44(q) = 0.

(3) When g is of type G2, we have ∆22(q) = q6.

We give a proof of Proposition A.1 in §A.2 below.

A.1. Proof of Proposition 5.14. By Proposition A.1, it is enough to show that the
equality

O(V
(i)
k , V

(j)
k ) =

1− q2k

1− q2
rh∨∑
u=0

c̃ij(u)q
u+1 −∆ij(q) (A.2)

holds under the assumption di = dj = 1 and 0 < k < r. We can check it directly using the
known formulas listed below. They are quoted from [FO21, §4.3 and Appendix A]. Note
that the denominators are originally computed in [AK97,OS19a].

Type Cn: If 1 ≤ i, j < n, we have

rh∨∑
u=0

c̃ij(u)q
u =

min(i,j)∑
u=1

(q|i−j|+2u−1 + q2n−i−j+2u+1),

O(V
(i)
1 , V

(j)
1 ) =

min(i,j,n−i,n−j)∑
u=1

q|i−j|+2u +

min(i,j)∑
u=1

q2n−i−j+2u+2.

Type F4: We have

rh∨∑
u=0

c̃ij(u)q
u =


q + q3 + q5 + 2q7 + 2q9 + 2q11 + q13 + q15 + q17 if (i, j) = (3, 3),

q2 + q6 + q8 + q10 + q12 + q16 if {i, j} = {3, 4},
q + q7 + q11 + q17 if (i, j) = (4, 4),

O(V
(i)
1 , V

(j)
1 ) =


q2 + q6 + q8 + q10 + 2q12 + q16 + q18 if (i, j) = (3, 3),

q3 + q7 + q11 + q13 + q17 if {i, j} = {3, 4},
q2 + q8 + q12 + q18 if (i, j) = (4, 4).

Type G2: We have

rh∨∑
u=0

c̃22(u)q
u = q + q5 + q7 + q11,

O(V
(2)
1 , V

(2)
1 ) = q2 + q8 + q12,

O(V
(2)
2 , V

(2)
2 ) = q2 + q4 + 2q8 + q10 + q12 + q14.

A.2. Proof of Proposition A.1. We shall prove the equality (A.1) by applying dimq(−)
to the short exact sequence

0→ q−2kei
εki Π̃ + Π̃εkj

Π̃εkj
ej → q−2kei

Π̃

Π̃εkj
ej → q−2kei

Π̃

εki Π̃ + Π̃εkj
ej → 0

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



36 R. FUJITA AND K. MURAKAMI

and then by using Lemma 5.3 and Proposition 5.4. To this end, we need to show that
there is an isomorphism

q−2kei
εki Π̃ + Π̃εkj

Π̃εkj
ej ∼= q−2ei

εiΠ̃ + Π̃εj

Π̃εj
ej

of graded k-vector spaces. Writing k = mr + s with m ∈ Z≥0 and 0 < s < r, we have

q−2kei
εki Π̃ + Π̃εkj

Π̃εkj
ej ∼= q−2kei

(εsi Π̃ + Π̃εsj)ε
m

Π̃εsjε
m

ej ∼= q−2sei
εsi Π̃ + Π̃εsj

Π̃εsj
ej.

Therefore, when s = 1, we are done. When s = 2, it is necessarily the case when g is of
type G2 and i = j = 2. Then, by the similar argument as the proof of Lemma 5.5 (Case

(4)), we see that e2ε
2
2Π̃e2 = e2ε2Π̃ε2e2 and hence

q−4e2
ε22Π̃ + Π̃ε22

Π̃ε22
e2 = q−4e2

(ε2Π̃ + Π̃ε2)ε2

Π̃ε22
e2 ∼= q−2e2

ε2Π̃ + Π̃ε2

Π̃ε2
e2.

This completes the proof of the equality (A.1).
Next, we shall compute ∆ij(q) explicitly. By the symmetry, we may assume 1 ≤ i ≤

j ≤ n. Note that the graded vector space q−2ei((εiΠ̃+ Π̃εj)/Π̃εj)ej is the image of the left
multiplication map

εi· : ei(Π̃/Π̃εj)ej → q−2ei(Π̃/Π̃εj)ej.

We shall compute this map case-by-case by choosing an explicit k-basis of the space

ei(Π̃/Π̃εj)ej with the help of Proposition 4.1 and the explicit formulas of c̃ij(u) listed
in §A.1. To simplify the notation, for any a, b ∈ I = {1, . . . , n}, we set

αab :=


αa,a+1αa+1,a+2 · · ·αb−1,b if a < b,

αa,a−1αa−1,a−2 · · ·αb+1,b if a > b,

ea if a = b.

Type Cn: With 1 ≤ i ≤ j < n fixed, we set

ρa := αiaαaj, ρ′a := αiaαanαnj

for each 1 ≤ a ≤ i, and regard them as elements of ei(Π̃/Π̃εj)ej. Note that they are
homogeneous with deg1(ρa) = 2a − i − j and deg1(ρ

′
a) = 2a − 2n − i + j − 2. Thanks

to Proposition 4.1 and the above explicit formula of c̃ij(u), we can easily see that the set

{ρa, ρ′a}1≤a≤i gives a k-basis of ei(Π̃/Π̃εj)ej. Using the relations (R1) and (R2), we compute
εiρa = 0 for any 1 ≤ a ≤ i, and

εiρ
′
a = ±αiaαa,n−1αn−1,n−2αn−2,n−1αn−1,j

=

{
0 if 1 ≤ a ≤ min(i, n− j),
ρa−n+j if n− j < a ≤ i.
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Therefore, we obtain

∆ij(q) =
∑

n−j<a≤i

q− deg1(ρ
′
a) =

i+j−n∑
a=1

q2n−i−j+2a+2.

Type F4 and G2: When (i, j) = (4, 4) in type F4, the left multiplication map by ε4 from

e4(Π̃/Π̃ε4)e4 to q
−2e4(Π̃/Π̃ε4)e4 is zero because dimq e4(Π̃/Π̃ε4)e4 = q−1+q−7+q−11+q−17.

Therefore we have ∆44(q) = 0. For the other case, we compute a homogeneous k-basis of
the space ei(Π̃/Π̃εj)ej and its image under the map x 7→ εix as in the Tables 2, 3 and 4
below. These computations yield the desired formulas of ∆ij(q).

deg1(x) basis element x 7→ εix

0 e3 7→ 0
−2 α34α43 7→ 0
−4 α32α23 7→ ±α34α43

−6 α32α24α43 7→ 0
α34α42α23 7→ 0

−8 α31α13 7→ ±α32α24α43 ± α34α42α23

α34α42α24α43 7→ 0

−10 α31α14α43 7→ ±α34α42α24α43

α34α41α13 7→ ±α34α42α24α43

−12 α34α41α14α43 7→ 0
−14 α31α13ε3α31α13 7→ ±α34α41α14α43

−16 α32α24α42α24α42α23 7→ 0

Table 2. (i, j) = (3, 3) in type F4

deg1(x) basis element x 7→ εix

−1 α34 7→ 0
−5 α32α24 7→ 0
−7 α34α42α24 7→ 0
−9 α31α14 7→ ±α34α42α24

−11 α34α41α14 7→ 0
−15 α31α13ε3α31α14 7→ 0

Table 3. (i, j) = (3, 4) in type F4
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deg1(x) basis element x 7→ εix

0 e2 7→ 0
−4 ε2α21α12 7→ 0
−6 α21α12 7→ ε2α21α12

−10 α21α12ε2α21α12 7→ 0

Table 4. (i, j) = (2, 2) in type G2
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asked us about Jordan-Hölder filtrations of projective modules over the generalized prepro-
jective algebras. The idea for Corollary 3.7 was motivated from his question, and we thank
him. A part of this project was motivated by [HK01], on which the second named author
is assigned to give his lecture at Winter School “Koszul Algebra and Koszul Duality” at
Osaka City University. He thanks the organizers of the school for giving this opportunity.

References

[AK97] T. Akasaka and M. Kashiwara, Finite-dimensional representations of quantum affine algebras,
Publ. Res. Inst. Math. Sci. 33 (1997), no. 5, 839–867. MR1607008

[AKOS96] H. Awata, H. Kubo, S. Odake, and J. Shiraishi, Quantum WN algebras and Macdonald poly-
nomials, Comm. Math. Phys. 179 (1996), no. 2, 401–416. MR1400746

[Ami09] C. Amiot, Cluster categories for algebras of global dimension 2 and quivers with potential, Ann.
Inst. Fourier (Grenoble) 59 (2009), no. 6, 2525–2590. MR2640929

[Asa20] S. Asai, Semibricks, Int. Math. Res. Not. IMRN 16 (2020), 4993–5054. MR4139031
[BBK02] S. Brenner, M. C. R. Butler, and A. D. King, Periodic algebras which are almost Koszul,

Algebr. Represent. Theory 5 (2002), no. 4, 331–367. MR1930968
[BIRS11] A. B. Buan, O. Iyama, I. Reiten, and D. Smith,Mutation of cluster-tilting objects and potentials,

Amer. J. Math. 133 (2011), no. 4, 835–887. MR2823864
[BKT14] P. Baumann, J. Kamnitzer, and P. Tingley, Affine Mirković-Vilonen polytopes, Publ. Math.
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