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ABSTRACT. We give an interpretation of the (g,t)-deformed Cartan matrices of finite
type and their inverses in terms of bigraded modules over the generalized preprojective
algebras of Langlands dual type in the sense of Geif-Leclerc-Schréer [Invent. math. 209
(2017)]. As an application, we compute the first extension groups between the generic
kernels introduced by Hernandez-Leclerc [J. Eur. Math. Soc. 18 (2016)], and propose
a conjecture that their dimensions coincide with the pole orders of the normalized R-
matrices between the corresponding Kirillov-Reshetikhin modules.
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INTRODUCTION

Let g be a complex finite-dimensional simple Lie algebra and C' = (¢;5); er its Car-
tan matrix. In their seminal work [FR98|, Frenkel-Reshetikhin introduced a certain two-
parameter deformation C(q,t) of the Cartan matrix C, which we call the (g, t)-deformed
Cartan matriz. It is used to define a two-parameter deformation W, ;(g) of the W-algebra
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2 R. FUJITA AND K. MURAKAMI

associated with g (in type A, it was previously introduced by [AKOS96, FF96]), which is
expected to “interpolate” the representation ring of the quantum affine algebra U, (g) and
that of its Langlands dual U/(*g) through appropriate specializations of the parameters ¢
and t. Indeed, the specialization C(q) = C(q, 1) at t = 1, often called the quantum Cartan
matrix, or rather its inverse 5((]) appear ubiquitously as key combinatorial ingredients
in the representation theory of the quantum affine algebra U} (g) and the Yangian Y'(g).
For example, they play an important role in the study of g-characters [FR99, FM01] and
quantum Grothendieck rings [Nak04, VV03, Her04, HL.15], the description of the commu-
tative part of the universal R-matrices [KT96, GTL17] and denominator formulas of the
normalized R-matrices [Fuj22,FO21]. We also refer to [GW20,CL21] for their more recent
appearances. B

Among the properties of the matrix C(q), it is remarkable that the coefficients of its
formal Taylor expansion at ¢ = 0 show certain periodicity and positivity. At first, they
had been understood by experts merely as a consequence of case-by-case computation.
Recently, a unified proof using Weyl group combinatorics was given in [HL15, Fuj22] for
simply-laced type, and in [FO21] for general type. See also [GW20] for another proof.

On the other hand, it is known that some kinds of g-analogues of (symmetric) gen-
eralized Cartan matrices (GCM) appear as homological invariants arising from graded
modules over certain classes of associative algebras (e.g. [HKO01, ET20, 1Q18, Kel]). The
aim of the present paper is to give a new interpretation of the deformed Cartan ma-
trix C(q,t) and its inverse C(q,t) following a similar philosophy. Namely, we consider
a (bi)graded version of the generalized preprojective algebras introduced by Gei3-Leclerc-
Schroer [GLS17] and study its relation to the deformed Cartan matrices. In their stud-
ies [GLS17, GLS18a, GLS16, GLS18b, GLS18¢, GLS20], they generalize several connections
between the representation theory of quivers and Kac-Moody algebras associated with sym-
metric GCMs to symmetrizable settings, and they have introduced a 1-Iwanaga-Gorenstein
algebra and its “double” called the generalized preprojective algebra. These algebras are
given by specific quivers with relations, which depend on the choice of symmetrizable GCM
and its symmetrizer. If (and only if) the GCM is of finite type, the generalized prepro-
jective algebra becomes finite-dimensional and self-injective over a base field. Note that
the Lie algebra g in the present paper is Langlands dual to the one in the works of Geif3-
Leclerc-Schroer and the previous works [Murl9, Mur22| of the second named author. In
particular, our Cartan matrix is transposed to the one in [GLS17]. Remarkably, in their
work [GLS20], the root system of Langlands dual type has also appeared: They have classi-
fied finite bricks over their 1-Iwanaga-Gorenstein algebra in terms of Schur roots associated
with the transposed GCM in a viewpoint of the 7-tilting theory [Asa20, DILJ19].

As mentioned in [GLS17, §1.7.1], the definition of generalized preprojective algebras is
inspired in part by the previous work [HL16] of Hernandez-Leclerc on the representation
theory of quantum affine algebras. Indeed, a graded version of the generalized preprojective
algebra of finite type already appeared there in the disguise of the Jacobian algebra Jr
associated with a certain infinite quiver I' with potential W. (The same quiver with
potential also appeared in the context of theoretical physics, cf. [CDZ12, Cecl5].) This
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fact also motivates us to study a relationship between the deformed Cartan matrices and
(bi)graded modules over the generalized preprojective algebras.

Let us explain our results in the graded (i.e., t = 1) setting for simplicity. Let r € {1,2,3}
be the lacing number of g and D = diag(d; | ¢ € I) the minimal left symmetrizer of C.
They define the generalized preprojective algebra Il over an arbitrary field. We endow I1
with a grading following [HL16]. In the main body of this paper, we actually endow II
with a bigrading and work with bigraded II-modules to establish the (g, t)-versions of the
results below (see §2.3 for definitions).

There is a maximal indecomposable iterated self-extension FE; of the simple II-module
S; associated with each index ¢ € I, called the generalized simple module. Though the
algebra II has infinite global dimension and actually F; has infinite projective dimension,
the graded Euler-Poincaré pairing (E;, S;), makes sense as a formal Laurent series in g¢.
This is an advantage of our graded setting. Indeed, in terms of the matrix C(q), we obtain

q"

(B850 = 7= (Cul@) = 0™ Cors@)) 01)

in Z((q)) for each i,j € I, where h" is the dual Coxeter number of g, and i — i* is the
involution of I given by the longest element of the Weyl group. The denominator 1 — gzt
reflects the fact that the projective resolution of F; is periodic up to grading shift by degree
2rhY. We prove this fact by using a kind of reflection functors for graded II-modules
and its interpretation by the braid group action studied by Bouwknegt-Pilch [BP98] and
Chari [Cha02].

On the other hand, we consider a certain II-submodule I; of the i-th indecomposable
injective module I;, which is dual to F; with respect to the graded Euler-Poincaré pairing,
i.e., (B, I;),+ = ;. In the terminology of [HL16], this I; can be identified with the generic
kernel corresponding to the ¢-th fundamental Ué(ﬁ)—module. By an easy homological in-
vestigation, we deduce the following Theorem A from the above formula (0.1). Note that
we obtain a simple explanation for the aforementioned periodicity and positivity of the
matrix C(¢) as an immediate consequence of Theorem A.

\%

Theorem A (< Theorem 3.13 & Corollary 3.14). For any indices i,j € I, let @j(q) =
> uso Cij(w)q" € Z[q] denote the formal Taylor expansion at q =0 of the (i, j)-entry of the

matriz C(q). Then, we have

rhY
dimg e;1; = ¢~ Y @ (u)q",
u=0
~ qdj . _ BV 1. _
Cii(q) = m <d1mq eil; — ¢ dim, ein*> )

We believe that Theorem A shows one aspect of the relationship between the repre-
sentation theory of generalized preprojective algebras and that of affine quantum groups,
especially in non-simply-laced type. It seems interesting to relate our result with other
aspects studied in [YZ19,NW19] in a more geometric manner.
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As an application of Theorem A, we compute the first extension groups between the
generic kernels corresponding to the Kirillov-Reshetikhin (KR) modules in the sense of [HL16].
These generic kernels are certain modules over the Jacobian algebra Jr -, which can be
obtained as non-trivial self-extensions of the fundamental generic kernels ;. By Hernandez-
Leclerc’s geometric character formula, the F-polynomials of these generic kernels give the
g-characters of the KR modules. In this paper, we show that the dimension of the first
extension groups between these generic kernels can be written in terms of the coefficients
¢;j(u). Then we compare the result with the conjectural denominator formula of the nor-
malized R-matrices between the KR modules proposed in the previous work [FO21] of
Se-jin Oh and the first named author. As a result, we find several pieces of evidence for
the following conjecture, which we newly propose in this paper as a generalization of the
conjectural denominator formula in [FO21].

Conjecture B (= Conjecture 5.17). The dimensions of the first extension groups between
these generic kernels coincide with the pole orders of the normalized R-matrices between
the corresponding Kirillov- Reshetikhin modules.

Since the original definition of g-characters in [FR99] involves the R-matrices, it seems
natural that the generic kernels should contain some information of the R-matrices in light
of the geometric character formula. Conjecture B suggests one of concrete connections
between the generic kernels and the R-matrices.

We also believe that Conjecture B can be understood from a cluster-theoretic point
of view as follows: It is known that certain algebraic structures arising from the quiver
with potential (I', W) give rise to an additive categorification of the cluster algebra as-
sociated with T' (see e.g. [DWZ08, DWZ10, Ami09, FK10, KY11, BIRS11]). On the other
hand, essentially the same cluster algebra is monoidally categorified by a category of mod-
ules over the quantum affine algebra U;(ﬁ), as was originally conjectured in [HL16] and
proved very recently by Kashiwara-Kim-Oh-Park [KKOP20, KKOP21|. Roughly speak-
ing, the notion of a cluster corresponds to a maximal mutually Ext'-vanishing collection
of indecomposable rigid objects in an additive categorification, while it corresponds to a
maximal mutually commuting collection of prime real simple objects in a monoidal cate-
gorification. Note that the latter commutativity is essentially equivalent to the regularity of
the corresponding normalized R-matrices. Furthermore, it is also notable that normalized
R-matrices with non-trivial poles play an important role when we monoidally categorify
the exchange relations. On the other hand, in an additive categorification, the exchange
relations correspond to some non-trivial extensions of indecomposable rigid objects. Thus,
one may interpret Conjecture B as a suggestion of a partial coincidence of the numerical
characteristics between additive and monoidal categorifications of the same cluster algebra.

Recently, certain deformed Cartan matrices of more general types are considered in a
study of theoretical physics [KP18]. This kind of generalized deformed Cartan matrices
have appeared in the representation theory of deformed W-algebras beyond finite types
(cf. [FIMV21]). So, it seems interesting if we can find such a natural generalization of
deformed Cartan matrix as a homological invariant of the generalized preprojective algebra
other than of finite type. We plan to come back to this problem in the future.
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Organization. This paper is organized as follows. In Section 1, we define the (g,t)-
deformed Cartan matrices of finite type and discuss the braid group action arising from
them. Section 2 is a preliminary on the generalized preprojective algebras of finite type
in the bigraded setting. Section 3 is the main part of this paper. We discuss bigraded
projective resolutions of the generalized simple modules, E-filtrations of projective modules
and bigraded Euler-Poincaré pairings. We establish the (g, t)-versions of the formula (0.1)
and Theorem A in §3.5. In Section 4, we switch to consider the graded modules (rather
than bigraded modules) and prepare some materials we need in the sequel. In Section 5,
we study the generic kernels corresponding to the KR modules. We compute all the first
extension groups between them explicitly in terms of the matrix C(q). In §5.3, we compare
our computation with the conjectural denominator formula of normalized R-matrices, and
propose Conjecture B. Computations for a few exceptions are postponed in Appendix A.

Conventions and notation. Throughout this paper, we fix an arbitrary commutative
field k. We always refer to an algebra as a (not necessarily unital) associative algebra over
k. For an algebra A, we denote by A°P (resp. A*) its opposite algebra (resp. multiplicative
group of invertible elements). When we refer to a module over an algebra A, it means a
left A-module unless specified otherwise. We naturally identify a right A-module with an
A°?-module. We say that a subcategory C of an exact category £ is extension-closed (or
closed under extensions) if for any conflation 0 - L - M — N — 0,if L € £ and N € &,
then so does M. By a grading, we always mean a Z-grading, and hence by a bigrading, we
mean a Z*-grading. For a statement P, we set 6(P) to be 1 or 0 according that P is true
or not. As a special case, we set 0,y = d(x = y) (Kronecker’s delta).

1. DEFORMED CARTAN MATRICES

In this section, we introduce the (q,t)-deformed Cartan matrix of finite type following
Frenkel-Reshetikhin [FR99]. We also discuss the braid group actions arising from them
following Bouwknegt-Pilch [BP98]| and Chari [Cha02].

1.1. Notation. Let g be a complex finite-dimensional simple Lie algebra and let C' =
(¢ij)ijer be its Cartan matrix. We set n = #I. For any distinct ¢, j € I, we write ¢ ~ j if
cij < 0. Let r denote the lacing number of g, which is defined by

if g is of type A,,, Dy, or Eg 75,
if g is of type B,,, C,,, or Fy,

<
I
W N =

if g is of type Ga.

We say that g is of simply-laced type if r = 1. Let D = diag(d; | ¢ € I) denote the
minimal left symmetrizer of C' (see Table 1). Namely, (d;)ics is the unique I-tuple of
positive integers which are mutually coprime and satisfy d;c;; = d;cj; for all 4,5 € I. We
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have d; € {1,r} for any 7 € I, and the following relation holds:

2 if i = j,
0 else.
We set b;; := d;c;; for each 7,57 € I. Note that we have b;; = b;; for any ¢, 5 € I, and
] r \ type of g \ (dy)ier \ h hY
A, (1,...,1) n+1 n+1
1 D, (1,...,1) 2n — 2 2n — 2
E¢7s (1,...,1) |12,18,30 | 12,18,30
B, (2,...,2,1) 2n 2n — 1
2 C, (1,...,1,2) 2n n+1
F, (2,2,1,1) 12 9
3 Go (3,1) 6 4

TABLE 1. Basic numerical data

Remark 1.1. Note that the matrix rD~! = diag(r/d; | i € I) gives the minimal left
symmetrizer of the transposed Cartan matrix *C = (c¢j;); jer-

Let a; be the i-th simple root of g for each 7 € I and Q = €,.; Za; the root lattice.
For each i € I, the i-th simple reflection s; is defined to be the Z-linear transformation of
Q given by s;(a;) = a; — ¢;joy for any j € I. The Weyl group Wy of g is the subgroup of
Autz(Q) generated by the simple reflections {s;};c;. The pair (Wy, {s;}ier) forms a finite
Coxeter system. Let wy denote the longest element of W. It induces the involution ¢ — 7*
of the set I by wg(c;) = —ay+. This involution gives the non-trivial automorphism of the
Dynkin diagram of g if and only if g is either of type A,, (for any n), D,, (for n odd) or Eg.

1.2. Deformed Cartan matrices. Let ¢ and ¢ be indeterminates. For an integer k, we

set

=gt
[k]q T -1
q—q

which is an element of Z[¢*!]. Following [FR98], we consider the Z[¢*!, t*!]-valued I x I-
matrix C'(g,t) whose (4, j)-entry C;;(q,t) is given by
it g%t if i =g,

Cij(a,t) = {[Cij]q ifi#j.

Specializing (g,t) to (1,1), we get C(1,1) = C. Thus the matrix C(q,t) gives a (q,t)-
deformation of the Cartan matrix C' of g. Specializing ¢ to 1, we define C(q) = C(q, 1),

RBAFFHER)FD b

Kyoto University Research Information
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which is sometimes referred to as the quantum Cartan matrix of g. When g is of simply-
laced type, we have C(q,t) = C(qt™!). For general g, we have [d;],Ci;(¢,t) = [dicijl,
whenever i # j, and hence the matrix ([d;],Ci;(¢,t)): jer is symmetric.

Let ¢*P := diag(¢™®% | i € I). We see that the matrix C(g,t) can be written in the form

C(g,t) = (id — A(g, t))g ™"t
with some A(q,t) € qt=' - gl;(Z][g,t7]) (cf. [FO21, Lemma 4.3]). Therefore C(q,t) is

invertible as an element of GL;(Z[q,t][(¢¢t™)™"]). We write C(q,t) for its inverse. With
the above notation, we have

Clq,t) = ¢°t~ <1d+ > Agt ) . (1.3)
For each i, j € I, we express the (i, j)-entry Cij(q, t) of the matrix 5(q, t) as

Ciglat) = >, ylu,v)g"t"
u,WEZ
with ¢;;(u,v) € Z. The equation (1.3) implies the following.
Lemma 1.2. For each i,j € I, we have
(1) ¢j(u,v) =0 ifu<d; orv>—1 but (u,v) # (d;, —1),
(2) ¢;(di, —1) = 0;;.

Example 1.3. Let g be of type Cy (= Bg) and we set I = {1,2} with (d,ds) = (1,2). By
definition, we have

(2 =2 gt gt —(g+qt)
C= (_1 9 > and  C(g,1) = ( 1 Pt gt )
Since det C(q,t) = ¢®t72 + ¢ 7312 = ¢312(1 + ¢5t™*), we have

34—2 21—1 -2 -1
=~ q’t tT gt +
am———{q ! qq).

14 g6t 1 qgt—'+q it
Here, we observe that the expansion coeflicients exhibit a quasi-periodicity (¢;;(u+6, —v —
4) = —¢;j(u,—v) for any i,j € I and u,v € Zs() and that the entries of the matrix

(Pt™2 + q*3t2)5(q,t) are palindromic polynomials (i.e., invariant under the exchange
(q,t) <> (¢7',¢t71)) with non-negative coefficients. Later, we show that these remarkable
combinatorial properties hold for general g (see Corollary 3.15).

1.3. Braid group action. We consider an n-dimensional Q(q, t)-vector space by given

by
b, = Qlg,t) @2 Q = P Qlg, 1)
iel
We endow b; ; with a non-degenerate symmetric Q(g, t)-bilinear pairing (—, =), by

(i, ) gt = [di]qCij(g, 1)
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for each 7,5 € I. Let {o}ic; be another basis of b}, defined by o = ¢ %ta;/[d],.
We have (o), a;)q = ¢ %tCij(q,t) for any i,j € I. Let {w}; }ic; denote the dual basis of
{ei}ier with respect to (—, —),:. We also consider the element w; = [d;],w,’ for each i € I.
It is thought of a deformation of the i-th fundamental weight. With our conventions, we
have (w;, ) )gs = 0i;4~ %t for any i,j € I, and

@i = Z Cji(g, t)wm;, af =q "t Z Cij(q, t)wy
Jel jel

for each 7 € 1.
Let B, denote the braid group associated with the Coxeter system (W, {s;}ier). It is
the group presented by the generators {T;};c; which subject to the relations:

TT; =151, if ¢;; =0,
TT,T, = TTT,  if ey = 1,
(T;T‘])r = (T}T‘Z)r if CijCj; = T > 1.
For any w € W, we choose a reduced expression w = s;,s;, - - s;, and set T, = T; T3, - - - T}, €

By. The element T, is independent of the choice of reduced expression of w.
Following [BP98, §3] and [Cha02, §3], we define an action of the braid group By on the

Q(q, t)-vector space b, by
Tx =X — (o, N)grcui (1.4)

for any A € b} ;. Equivalently, in terms of the basis {;}icr, we have
T;:HO&]‘ =0y — q*ditilCij(q,t)Ozi. (15)

Thus the action (1.4) is a (g, t)-deformation of the action of the Weyl group W, on h* given
in §1.1. On the other hand, for the basis {«;’ };cs, we have

Tio = o) — ¢ %tChi(q, )y . (1.6)
Lemma 1.4. For any A\, p € b, and i € I, we have (Ti\, p1)gr = (A, Tipt) g,t-
Proof. A straightforward computation

g %t
[di]q

yields the assertion. O

(TiN, M)q,t = (/\; N)q,t - (O‘i’ /\)q,t(ai’ﬂ)q,t = ()\, Ti,u)q,t

Lemma 1.5. For any i € I, the above action of T; preserves the subset @jGIZ[q_l,t]wj.
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Proof. Let \ = Zjel Ajw; be an arbitrary element of by, and ¢ € I. If we write ;A =
> jer M), the equation (1.4) is expressed as

(), if ¢;; =0,
N+ g bt if ¢j; = —1,
pi = A+ (@ g )N if cj; = —2,
N+ (@ g3+ g0t if e = -3,
[ —q 22 )\ if j =1i.
This proves the assertion. [l

Let h and h" be the Coxeter number and the dual Coxeter number of g respectively (see
Table 1). We write v for the Q(q, t)-linear involution on b, given by v(a;) = a;-.

Theorem 1.6 (Bouwknegt-Pilch, Chari). For any A € b%,, we have

;?t7
T = —¢ " thw(N). (1.7)

Proof. The assertion is stated in [BP98, (3.45)] without a proof. Here we give a detailed
proof relied on its g-version [Cha02] for completeness. It is enough to show that the relation
(1.7) holds when A belongs to the integral lattice Q,; = Z[¢*',t*'] ® Q. Note that the
Bg-action preserves Q,; and, for any A € Q,,, one can consider its specialization [A],=; €
Q, = Z[¢*']® Q. With a Z[¢*!, t*']-endomorphism f of Q,;, we associate the Z[¢*!]-linear
endomorphism [f];=1 of Q, defined by [f]i=1A == [f(N)]i=1 for A € Q,. We linearly extend
[f]i=1 to be a Z[g*!, t*']-endomorphism of Q,;. It follows that [f o gli=1 = [f]i=1 © [gi=1-

It is known that the relation (1.7) holds if specialized at ¢ = 1 by [Cha02, Proposition 4.1]
combined with [FM01, Lemma 6.8]. (Note that ¢ in [Cha02, §3] is our ¢~*. Remarkably,
this proof uses representation theory of the quantum affine algebras. An alternative, case-
by-case combinatorial proof is suggested in [CM05, Proposition 3.6], while ¢"" therein
should be replaced with qrhv.) More precisely, we have

Tunlimih = =" v(N) (1.8)

for any A € Q. When g is of simply-laced type, the relation (1.7) follows from (1.8)
because h = h" and we can replace (q,t) with (¢¢t~!,1). Now we assume that g is of non-
simply-laced type. In this case, the Coxeter number A is even and v = id. We choose a
decomposition [ = J U J’" such that i ~ j implies (¢,7) € J x J or (i,7) € J' x J. It yields
a Coxeter element ¢ = ww' € W, where w = H]EJ sj,w' = HjeJ, s;. It is well-known
that we have wo = ¢®/2 and T,,, = To'* = (T,,To)"? (see [Hum90, §3.17] for example).
Let t; denote the Z[g*!, t*!]-automorphism of Q,; given by t;a; = t°)q;. Then, from
the equation (1.5), it follows that

t;lthle - [Tw]tzlAa tJTw/tJA = tQ[Tw/]tzl)\

for any A € Qg;. Therefore, we have

h/2

Tuoh =ty (¢ Tt ;) (tsTuwts)) "t A
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10 R. FUJITA AND K. MURAKAMI

= "t ([T e [T )i=1)"? 5N
= thtJ[Two]tﬂt}l)"

Applying (1.8) to the right hand side, we obtain the desired relation (1.7). O

Remark 1.7. As mentioned in [BP98, (3.40)], we can easily check that the relation
(T = (T + %)X = 0

holds for any 7 € I and A € b;,. Therefore, the above Bg-action on by, descends to an
action of the Iwahori-Hecke algebra associated with g. When g is of simply-laced type,
this was also observed by Ikeda-Qiu [IQ18, Proposition A.5]. Note that the g-deformed
Cartan matrix Ag(q) in [IQ18] slightly differs from our matrix C(g). Indeed, Ag(q) de-
pends on a Dynkin quiver ). However, this difference is not essential because we have
Ag(q?) = ¢"*C(q)¢* with ¢* = diag(¢® | i € I), where £: I — Z is a height function of @
(cf. Remark 4.3 below).

2. GENERALIZED PREPROJECTIVE ALGEBRAS

In this preliminary section, we fix our conventions and give a brief review on the gener-
alized preprojective algebras of finite type by Geif-Leclerc-Schréer [GLS17] in a bigraded
setting.

2.1. Bigraded vector spaces. By an abuse of notation, ¢ and t denote the grading
shift functors for bigraded k-vector spaces. Namely, for a bigraded k-vector space V =
D..oez Vv, we define its shift ¢V (resp. tV) by (¢V )y, = Va1, (resp. (tV)up = Vio-1)
for any u, v € Z. For a Laurent polynomial a(q,t) = >, o, ar,q*t" in ¢, t with non-negative
integer coefficients, we set

V@a(q,t) — @ (qktl‘/)@ak’l.
klcZ

When every bigraded piece V,,, is finite-dimensional, we define the bigraded dimension
dim,; V to be a formal power series in ¢*!,#*! given by

dimg; V' = Z (dimy Vi) q"t".

uVEZ

With the above notation, we have dim,;(X®* %)) = a(q,t)dim,; V. We also define the
restricted dual D(V') of a bigraded k-vector space V' by D(V),, = Homy(V_, _,,k) for
each (u,v) € Z*. If each V,,, is finite-dimensional, we naturally have D?(V) = V and

dimq’t D(V) = dimq—l’t—l V.
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2.2. Bigraded quivers and algebras. A quiver is a directed graph. We understand it
as a quadruple @ = (Qo, Q1,s,t), where @y is the set of vertices, ()1 is the set of arrows
and s (resp. t) is the map @1 — @Qy which assigns each arrow with its source (resp. target).
By a bigraded quiver, we mean a quiver () endowed with a map deg: Q; — Z2.

For a quiver @), we set k@) = @ier ke; and k@, := ®a€Q1 ka. We endow k@)y with a
(possibly non-unital) k-algebra structure by e; - e; = d;5¢; for any i, j € ()p, and k@), with
a (kQo, kQo)-bimodule structure by e; - a = 0; y(a) and o - €; = 0; 5oy for any i € Qg and
a € (). Then the path algebra of () is defined to be the tensor algebra k@) = Ty, (k@1).
When @ is bigraded, its path algebra k@ naturally becomes a bigraded k-algebra. Note
that we necessarily have deg(e;) = (0,0) for any i € Q.

Let A be a (possibly non-unital) k-algebra obtained as a quotient of the path alge-
bra k@ of a quiver ). We always mean by an A-module M a left A-module satisfying
M = @z’er e; M. Assume that @) is bigraded and A inherits the bigrading. For bi-
graded A-modules M and N, we denote by Hom, (M, N) the space of homogeneous A-
homomorphisms and by Ext’y (M, N) the homogeneous m-th extension group. Then we
define the bigraded k-vector spaces hom4 (M, N) and ext’} (M, N) respectively by

hom (M, N)y, = Homy(¢“t"M,N) and ext’y(M,N),, = Ext}(¢"t"M,N)

for each u,v € Z. We understand Ext% (M, N) = Homu(M,N) and ext%(M,N) =
hom, (M, N) as usual.

2.3. Generalized preprojective algebras. We keep the notation in Section 1. We con-
sider a finite quiver Q (Qo, Ql, s,t) for any g given as follows:

Qo=1, Q=A{ai | (i) €I x Linj}U{e;|ieT},
s(aij) =7, tlauy) =1, s(&)=t(g) =1
We endow the quiver @ with a bigrading by
deg(cvj) = (bij, 1) = (— max(d;, d;), 1), deg(e;) = (b;,0) = (2d;,0). (2.1)
We also choose a sign w;; € {1, —1} for each (i, j) € I x I with i ~ j such that wy; = —wj;.
Then, we define the k-algebra II to be the quotient of ]kQ by the following two kinds of

relations:
(R1) &, “ayj = aijgj_cﬁ for any 4,7 € I with i ~ j;
—Cij—l
k 7Cij717k .
E E Wi Ol OLjiE, =0 for each 7 € I.
jelj~i k=0

Since the relations are homogeneous, the algebra II inherits the bigrading from kQN). Up to
bigraded k-algebra isomorphism, the algebra II does not depend on the choice of the signs
{wij}i~j. Therefore, we have suppressed its dependence from the notation.

Thanks to the relation (R1), the element

. r/di
5:5 gl e

i€l
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12 R. FUJITA AND K. MURAKAMI

is central in II. Note that ¢ is homogeneous of degree (2r,0). For each positive integer ¢,
we define the quotient algebra

T1(¢) = II/&"TL.
In other words, the k-algebra I1(¢) is defined as the quotient of ]k@ by the three kinds of
relations: (R1), (R2) and

(R3) /" = 0 for each i € I.

The algebra I1(¢) inherits the bigrading from kQ.

Remark 2.1. The algebra I1(¢) is identical to the generalized preprojective algebra denoted
by II(*C,¢rD~',Q) in [GLS17] and in the previous works [Murl9, Mur22] of the second
named author (recall Remark 1.1), where Q = {(i,j) € I x I | i ~ j,w;; = 1} is the
orientation corresponding to {wj; }i;-.

For each ¢ € I, let klg;] be the ring of polynomials in ¢; bigraded by deg(e;) = (2d;,0).
Given a positive integer ¢, we set H;({) = k[ei]/(gfr/di). For any II(¢)-module M, the
subspace e; M becomes a module over H;(¢) in the obvious way for each i € I.

Theorem 2.2 (Geif-Leclerc-Schréer). Let ¢ € Z.

(1) For any i,j € I, the space e;11({)e; is bigraded free of finite rank over the algebra
H;(0). In particular, the algebra I1(€) is finite-dimensional over k.
(2) If v > n(h+ 1), we have I1({),, = 0 for any u € Z.

Proof. These assertions follow from the results in [GLS17, §11]. O

There is an anti-involution of bigraded k-algebras ¢: II — II°P given by
p(ei) = e, P(aij) = i, p(ei) = &
For a bigraded II-module M , we always regard its restricted dual D(M) as a bigraded left
[I-module by twisting its natural right module structure with ¢. If each bigraded piece
M, is finite dimensional, we have the natural isomorphism D?(M) = M of bigraded II-

modules. The isomorphism ¢ naturally induces the isomorphism for the quotient II(¢) for
each ( € Z-y.

2.4. Bigraded modules. In what follows, for a bigraded algebra A, we denote by C(A) the
category of finitely generated bigraded A-modules. For ¢ € Z, we identify the category
C(II(¢)) with a full subcategory of C(II) via the canonical quotient map II — II(¢). The
category C(II(¢)) is the same as the category of finite-dimensional bigraded II(¢)-modules
by Theorem 2.2 (1). In particular, the duality functor I induces a contravariant involutive
auto-equivalence of C(I1(¢)).

For each i € I, let S; denote the associated simple module in C (ﬁ) concentrated in
bidegree (0,0). Given ¢ € Zg, we set Pi({) = II({)e; = (ﬁ/ﬁgfr/di)ei, which gives a
projective cover of S; in the category C(II(¢)). Its restricted dual I;(¢) := D(P;(¢)) gives
an injective hull of S; in C(I1(¢)). We use the following fact later.
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Theorem 2.3 ([GLS17, Corollary 12.7], [Mur22, paragraph after Theorem 3.18]). For
each U € Z~q, the algebra I1(€) is a self-injective algebra (i.e., II(£) is an injective module
as a I1(¢)-module) whose Nakayama permutation is identical to the involution i — i*. In
particular, the injective module I;(€) is isomorphic to the projective module Py (€) up to
bigrading shift for each i € 1.

For ¢ € Z-(, we say that a bigraded II(¢)-module M € C(II(¢)) is locally free if, for
each i € I, there is a Laurent polynomial f; = f;(q,t) € Zso[q™!,t*!] such that we have
e;M = H;(0)®)i as bigraded H;({)-modules. We denote by Ci¢ (I1(¢)) C C(II(¢)) the full
subcategory of locally free modules. Note that the category Cy ¢ (I1(¢)) is closed under taking
extensions, kernel of epimorphisms and cokernel of monomorphisms (see [GLS17, Proof of
Lemma 3.8]). By Theorem 2.2 (1), we have P;(¢), I;(¢) € C¢.(II(¢)) for any ¢ € Z~o and
1€ 1.

For ¢ € Z-y and ¢ € I, let E;({) denote the maximal quotient of P;(¢) such that
e;E;(¢) = 0 for any j # 4. From the definition of 1I(¢), we have e,F;(¢) = H;({) as
bigraded H;(¢)-modules. We call E;(¢) the generalized simple module associated with i.
Similarly, we can define the generalized simple modules in C(I1(¢)°P), for which we use
the symbol E!(¢). We say that a module M € C(II(¢)) is E-filtered if M has a bigraded
I1(¢)-module filtration whose associated graded is a direct sum of some bigrading shifts of
the generalized simple modules. We call this kind of filtrations E-filtrations. Let Cg(I1(¢))
denote the full subcategory of C(II(¢)) consisting of all the E-filtered modules. We have
natural inclusions Cg(I1(¢)) C Cit.(II(¢)) C C(I1(¢)) of extension-closed subcategories for
each { € Zy.

Remark 2.4. The category Cg(II(¢)) is not an abelian category in general. In particular,
Cr(II(¢)) is an abelian category if and only if C' is symmetric and ¢ = 1 (cf. [Eno21,
Corollary 2.8] for a more general result). In this case, three categories Cg(I1(¢)), Ci¢.(11(¢))
and C(I1(¢)) coincide.

2.5. Grothendieck groups. Fix /¢ € Z-y. We denote by K (II(¢)) the Grothendieck group
of the abelian category C(I1(¢)). For an object M € C(I1(¢)), we write [M] € K (I1(¢)) for its
isomorphism class. We endow K (I1(¢)) with a structure of Z[¢*!, t*!]-module by setting
q[M] = [gM] and t[M] = [tM] for any M € C(II(¢)). Then, K(II({)) becomes a free
Z[q*t, t*1]-module with the basis {[Si]}ic;. We also consider its localization:

K1) 1oc = K(IL(£)) @z 1) Qg 1)
For simplicity, we also write [M] for [M]® 1 € K(II(£))i.. Since we have

1— q%r

in K(II(¢)) for each i € I, the set {[E;(¢)]}ier forms a basis of K(II(¢)),.. Note that, if
M € Cis.(I1(0)) satisfies [M] = Y",; fil Ei(0)] in K(IL(€))0c, we have f; € Zso[g*", t*!] and
e;M = H;(0)®)i for each i € I.

[E:(£)]
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14 R. FUJITA AND K. MURAKAMI
2.6. The module I;. For each i € I, we define the bigraded II-module I; by
I; == D((II/I1g;)e;).
From the definition, it fits into the exact sequence
0— I; = L(0) =% ¢ 24 I(0) (2.2)
for any ¢ € Z~o. In particular, I; belongs to C(I1(¢)) for any ¢ € Z.

Lemma 2.5. Let { € Z~o,m € Z>o and i € 1. For any M € C(II({)), we have a natural
isomorphism of bigraded vector spaces

extry) (M, I) = extyy, o (€M, k). (2.3)

In particular, we have

(2.4)

m - 1k ifm=0andi=j,
extrr (Ei(0), I;) = {O otherwise

Proof. Since homyy(y) (M, I;(¢)) = D(e; M), the exact sequence (2.2) yields the isomorphism
homyyey (M, I;) = D(e;(M/e;M)) = homy, ) (e; M, k),

which is functorial in M € C(I1(¢)). This isomorphism extends to the desired isomorphism
(2.3) of the universal o-functors. O

Corollary 2.6. If M € Ci¢ (II({)), we have

[M] =" dimg-1 ;-1 hompye (M, I;) [ E;(0)]

i€l

in K (TL(£))ioc-

3. INTERPRETATION OF DEFORMED CARTAN MATRICES

In this section, we give a representation-theoretic interpretation of the (g, t)-deformed

Cartan matrix C(g,t) and its inverse C(g,t) in terms of bigraded modules over the gen-
eralized preprojective algebras. Along the way, we discuss bigraded projective resolutions
of the generalized simple modules (§3.1), E-filtrations of projective modules (§3.2) and
bigraded Euler-Poincaré pairings (§3.4).

Throughout this section, we fix a positive integer ¢ € Z-( and consider I1(£)-modules
only. It turns out that all the results are essentially independent of this fixed ¢ except for
Corollary 3.4 (1). For the sake of simplicity, we abbreviate II := II(¢) and X; := X;(¢) for
each i € I, where X € {H, P, I, E,E'}. Also, we set ®; := ®p, for each i € I.
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3.1. Bigraded projective resolutions. In this subsection, we develop the projective
resolution of F; in our bigraded category C(II). Following [GLS17, §5.1], for each i,j € [
with ¢ ~ j, we define the bigraded (H;, H;)-bimodule ;H; by

iHj = HiOéinj c I
It is free as a left H;-module and free as a right H;-module. Moreover, the relation (R1)
gives the following:

—Cji—l —Cij—l
iy = @ Hiloue)) = @ (i) H;.
k=0 k=0

In particular, we get the following lemma, which is essential to understand the relationship
between the deformed Cartan matrices and the generalized preprojective algebras:

Lemma 3.1. Fori,5 € I with i ~ j, we have two isomorphisms

I (H) o H@(—q—dthji(q,t)) (H )H ®(—q~%tC4j(q,t))
i\itlj) = , =

7 J

as bigraded left H;-modules and as bigraded right H;-modules respectively.

In the representation theory of (generalized) preprojective algebras, some bimodule
resolutions developed in Brenner-Butler-King [BBK02] and Geif-Leclerc-Schréer [GLS17,
GLS07] are very useful. Here we shall give a bigraded analogue of them by inspection.
Consider the following sequence of bigraded (II, IT)-bimodules:

@ q_2dit2H€Z’ X eiH i) @ Hej ®j jHi X 62'1_[ % @ Hei X €iH — I — 07 (31)
iel i,jElsing iel
where the morphisms ¥ and ¢ are given by

—cij—1
Ple@e) = Z Wij (5 iy ® ajie; T @ e+ e ®efay @ ozjﬁ?;_aj_l_k) ;
ji
ple; ®T® e;) 3=x®ei+ej®x.
The other arrows €, Ile; ®; ;11 — II — 0 are canonical. The relation (R2) ensures that

the sequence (3.1) forms a complex. For each i € I, applying (—) ®n E; to (3.1) yields the
following complex of bigraded (left) TI-modules:

. (4) ) (4) .
P 25 p 20, PO B0, (3.2)
where
Po(z) =P, @ P ~4itCy; qt))’ P2(z) _ q_QditQH
jr~i

by Lemma 3.1. The morphisms ¥ and ¢® are induced from 1 and ¢ respectively.

Theorem 3.2 ([GLS17, Proposition 12.1 and Corollary 12.2]). The complezes (3.1) and
(3.2) are ezact.
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By [Mur22, Theorem 3.16], we know that Ker(x®) is isomorphic to E; after forgetting
the bigrading. Our first aim is to prove the following:

Theorem 3.3. For any i € I, we have Ker(¢®) = ¢t E,. . In particular, each E; has
the bigraded projective resolution

- P(i) — P(i) — P(i) — P(i) — E;—0 (3.3)
which extends (3.2) and satisfies Pk+3 = q’ThvthP for any k € Zsy.
A proof of Theorem 3.3 is given in the next subsection.

Corollary 3.4. For each i € I, we have the following isomorphisms of bigraded T1(¢)-
modules:

(1) Pz@) ~ qr(%th)tth{i* (5),

(2) D(L,) = g4 h2 ..
Proof. Note that we have

) g, =~ Ker (E =N q—%Ei) C B (3.4)
as bigraded II(¢)-modules. Combining with Theorem 3.3, we have an embedding
qr(%_hv)th_QSZ‘* SN qui—rhvth—QEi* — P,
Since P; is isomorphic to I;+ up to bigrading shift by Theorem 2.3, it implies the iso-
morphism (1). Next, by applylng I; ®pg, (—) to (3.4) and recalling (2.2), we obtain
I @u, S; =2 ¢*%= ;. When i* = i, applying (—) ®p, S; to the isomorphism (1), we
have
D(I) P®HSN r2€h)th 2[ ®HSN 2d;—rhV tthji7

which is (2) in this case. When i # i*, g is necessarily of simply-laced type. Then, we
apply (—) ®kjej/(et) k to the isomorphism (1) and compute similarly, to obtain (2). O

3.2. E-filtrations of P,. First, we prepare additional notation. For each i € I, we set
J; = 1I(1 — ¢;)II. This is a bigraded two-sided ideal of II. For M € C(II) and ¢ € I,
let sub; M (resp. fac; M) be the largest bigraded submodule (resp. factor module) of M
such that e; sub; M = sub; M (resp. ¢; fac; M = fac; M). In what follows, we endow the
localized Grothendieck group K (IT);,. (see §2.5) with an action of the braid group B, via
the isomorphism K (I1);,. = b; , which identifies the class [£;] with the element ;" for each
i € I. Namely, recalling (1.6), we set

TE)] = [Ej] — ¢~ tCji(q, 1) E] (3.5)

in K(Il),, for 4,j € I. We can find an analogue of [GLS17, Proposition 9.4] by an
easy adaptation of arguments about relationships between idempotent ideals and reflection
functors in [BKT14, Kiil17] as follows.

Lemma 3.5. Let M € C; (II).
(1) If sub;(M) = 0, we have J; @n M € Ci¢.(I1) and [J; @ M] = T;[M].
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(2) If fac;(M) = 0, we have homy(J;, M) € Cy.(I1) and [homy(J;, M)] = T, ' [M].
Proof. We only prove the assertion (1) because the assertion (2) is dual to (1). Since
M € G; (M), we can write [M] = 37, f;[E;] in K(IT);,e with some f; € Zxo[g™, t*'].
Note that e;J; is the first syzygy of E! in C(II°?). We get the following exact sequence of
bigraded (H;, II)-bimodules by applying E! ®p (—) to (3.1) and taking a kernel:
q72dit2€iH — @’LH_] ®j GjH — eiJi — 0.
jri

We apply (—) ®n M to the above exact sequence to obtain a short exact sequence

0 — g 22, M & @z‘Hj ®j ;M — eJ; ®n M — 0.
i

Il

Here the map ( is injective because sub; M = 0. In particular, we have e;J; @ M =
Cok(¢) = HP*, where

a=—Y qYC(q.t)f; — q " f;
jri
by Lemma 3.1. Combined with the fact e;J; @q M = e; M for j # i, we obtain J; @ M €
Cir.(II) and an equality

ion M= filE) =) a 4tCi(q,t) i) — a8 fi[ E]

j#i joi
= [M] =) a“tCyila.t) f3[El]
Jjel
in K (IT);.. The right hand side is equal to T;[M] by (3.5). O

Lemma 3.6. Let (i1,...,4) be a reduced expression of wy. For anyi € I and 1 < k <1,
we have a bigraded I1-module isomorphism

wY Ty, T;, oy

Jik71 "'Jilei/‘]ik""]ilei & E,ij( ! ! k=1 k)%t.
Proof. We have an isomorphism J;,_ ---Jy, /Jy - -+ Jiy & B @n Ji,_, -+ J;, in C(II°P) by
a bigraded analogue of an argument in [Murl9, Proposition 3.8|. Then, the right module
version of Lemma 3.5 yields an isomorphism J;, , -+ - J;,e;/J;, -+ Jiye; = HP* in C(H;")
with a = q%t Y (w;, Tj, - - -Ti,_ 0, ) g4 (vecall the relation g%t (o, a)gs = 6ij). Thus, we
have

1— q%r

dimq,t(Jikfl cee Jil eZ/JZk s Jilei) =

1 _ q2di q

On the other hand, by a bigraded analogue of [Murl9, Lemma 3.10], we have an isomor-
phlsm ‘]ik—l s leeZ/Jzk te Jilei = EfEb in C(H) with some b € Zzo[qil, til]. This y1€1dS

St oy, Ty -+ Ty 0 ) gt (3.6)

lg—1 ik

20r
—q

1
o dyei)Ji - Jiei) = b

k—1
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Comparing (3.6) and (3.7), we obtain

1—¢* 4 Y% v
b= 1_—quiq t (wiv T - 'Ekflaik)%t = (wz , Ty - 'Ekflaik)%h
where we used the relations o) = ¢~ % tey, /[d;,], and w; = [d;],w; . O

Proof of Theorem 3.3. It is known that J;, ---J;; = 0 holds for any reduced expression
(i1,...,4;) of wy (cf. [FG19, Theorem 1.2] and [Murl9, Theorem 2.31]). Therefore, by
Lemma 3.6, we have .J;,_, ---J; e; = Ef?“ as bigraded (left) II-modules, where

_ \ _ \Y -1 _ 2d;—rhY  —2+h
a= (wz 7Ti1 o .ﬂl—lail)%t - (wz ’Tonil aiz)‘lﬂf =q t 51'*72'1'

Here, the last equality follows from Theorem 1.6 and the relation Til_lail = —¢*%ut2a,.
Now we choose a reduced expression (iy,...,4) of wy with 4, = ¢*. Then P; contains
Jiy o Jie; = @42 B as a submodule. Since T is self-injective (recall Theo-
rem 2.3), there are no ideals isomorphic to E;« other than J;,_, ---J; e; even if disregarding
the bigradings (cf. [Mizl4, Proof of Lemma 2.20]). On the other hand, we know that
Ker )@ in ¢4 P; is isomorphic to Ej- after forgetting the bigradings by [Mur22, Theo-
rem 3.16]. Therefore, we have
Ker@/)(i) ~ q—2dit2Jil_1 . Jilei ~ q_rhvthEi*
as bigraded II-modules. U
We have the following immediate corollary of Lemma 3.6, which we use later.

Corollary 3.7. For each v € I, the projective lI-module P; is E-filtered. Moreover, we

have l

[P] = Z(wz’vaTil Ty iy ) gt [ (3.8)
in K(IT)yp for any reduced expreslf;;n (i1, ...,14) of wp.
Proof. By Lemma 3.6, the filtration 0 = J;, --- J;,e; € --- C J;, - J;e; € -+ C Ile; gives
an E-filtration of P; for any reduced expression (i, ..., ) of wy. O

3.3. Bigraded dimension of I;. Let i € I. Applying Corollary 2.6 to the case M = P;,

we have B
[P] =) dimg (e [E)] (3.9)
jel
in K(II);.. Combining with (3.8), we obtain the following.

Proposition 3.8. Let (i1,...,4;) be a reduced expression of wy. For any i,j € I, we have
dimqflﬂf*l (ei[_j) = Z (’WZ\/, Til o .Ek—laj)Q7t' (310)
k:ix=j

Corollary 3.9. For any i,j € I, we have
gttt dim, ¢ e;l; € (qdit_lZ[q,t_l]) N (qrhv_d"t_hHZ[q_l,t]) .
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Proof. Keep the notation in Proposition 3.8. For any k with i; = j, we have
gt —q %

¢ —q (
by Lemma 1.4 and the relations w; = [d;],@), a; = q¥t~'[d;],. With Lemma 1.5, it

j
implies (@), T}, -+ Ty, @) qs € ¢ %Z[q ", t]. Therefore, by Proposition 3.8, we get

\Y% _ diz—1 _V
(wi 77—;1 ”'T‘ik—laj)%t - Ek—1 T‘lelvq 1 @ )q,t

¢“it™ dimy, e;1; € ¢Yit ™ Z[g, t 7).
Combining this with Corollary 3.4 (2), we obtain the assertion. O

3.4. Euler-Poincaré pairing. We consider the following finiteness condition for a pair
(M, N) of modules in C(II):
(Q) For each u,v € Z, the extension group Ext{f(¢“t"M, N) vanishes for m > 0.
If (M, N) satisfies the condition (©), their Euler-Poincaré pairing
(M, N)gy =Y (—1)"dimg extfj (M, N)

m=0

=Y ) (—1)"g"t” dimy Extfi (¢"t* M, N)
m=0u,vEZ

is well-defined as a formal power series in ¢*!, ¢*'. The following lemma is immediate from

the definition and the standard argument using the long exact sequences for ext](—, —)’s.

Lemma 3.10. Let M, N e C(II).

(1) If (M, N) satisfies (©), the pair (M®*, N®) also satisfies (V) for any a,b €
Zso|qF, 121 and we have (M®*, NP, = ab(M, N),, where a(q,t) = a(q~',t71).

(2) Suppose that there is an exact sequence 0 — M’ — M — M" — 0 in C(II), and the
both pairs (M',N) and (M",N) satisfy (V). Then the pair (M, N) also satisfies
(V) and we have (M, N)gs = (M',N)gr+ (M",N)g+.

(3) Suppose that there is an ezxact sequence 0 — N’ — N — N" — 0 in C(II), and the
both pairs (M, N') and (M, N") satisfy (V). Then the pair (M,N) also satisfies
(V) and we have (M, N),+ = (M, N")g+ + (M, N"),+.

Using Theorem 3.3, we can prove the following proposition. This is an advantage of
working with the bigrading. If we forget the ¢-degree and work only with the g-degree, the
analogous statement fails in general (see Example 3.12 below).

Proposition 3.11. For any M, N € C(II), the pair (M, N) satisfies the condition ().
Namely, the pairing (M, N),: only depends on their classes [M],[N] € K(C(II)).

Proof. In view of Lemma 3.10, it is enough to show that the pair (S;,S;) satisfies the
condition (©) for any 4,j € I. The simple module S; has the following “FE;-resolution”:
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where ¢ == lr/d; — 1, and p: Zso — Z>o is a strictly increasing function given by p(2k) =
2klr 4+ 2d; and p(2k — 1) = 2k{r. Using Theorem 3.3, let us take the projective resolution

of each term ¢?® E; to obtain a double complex (Péf%)u,vzo with Pq% = qp(“)Plgi), whose
total complex gives a bigraded projective Il-resolution of .S;. Since dim,, homn(qui), S;) €
t=*WZ[¢*!] with a strictly increasing function s, we observe that D o dimg ¢ homy (P, S;) €
Z(q ')[t '] holds. This implies the condition (V) for (S;, ;). O
Example 3.12. Let g be of type Cy (= By) and set [ = {1,2} with (dy,ds) = (1,2).
Taking the bigraded projective resolution of the simple module S as in the proof of Propo-
sition 3.11 above, we can directly compute

[2m/3]
dimg extif ) (S1,51) = ¢ " Z (¢°t2)!
1=0

for any m € Z>(. Therefore we have

00 [2m/3]
(S1,51)qt = Z(—qﬂ)m Z (¢°t2), (3.11)
m=0 =0

which gives a well-defined element of Z((¢~1))[t*]. On the other hand, specializing ¢ to 1 in
(3.11) does not give a well-defined element of Z[g*!]. This implies that the Euler-Poincaré
pairing between S and itself is ill-defined if we forget the ¢-grading.

3.5. Interpretation of (¢, t)-deformed Cartan matrices. For anyi,j € I, Theorem 3.3
implies that
dimg, extP*3(E;, 8;) = ¢ t7" dim,, ext?(Ey, S;)

holds for any m € Zx, and we have

51']‘ iftm= O,
dimg ¢ extif (E;, S;) = < (6;; — 1)g%t71C(g,t) if m =1,
(Sijq2dit_2 if m=2.
Therefore we get
qhit! rhY 4—h
(Ei, Sj)qt = T= ()2 (Cij(q, t)—q™t Cz‘*j(q,t)) (3.12)

as an element of Z[¢g='](t7")). Let v := (0;j« )i jer be the permutation matrix corresponding
to the involution ¢ — i*. Then the equation (3.12) can be expressed in the matrix identity

Dy—17: rhY 1—h
¢ t(id — g™ t7"v)
((E;, Sj>q7t)i,j61 - 1— (g e=N)2

in GL; (Z[gF'](t71))). If the involution i +— * is trivial, this identity (3.13) simplifies to

q
(<E’L7 Sj>q’t>i,j61 = WC(q’ t)a

C(q,t) (3.13)

thl
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which applies especially to the case of non-simply-laced type.
For any 4,5 € I, we have

0ij = (Pi Sj)gr = Y _(dimg eilx) (Ey, Sj)q1,
kel

where we used Corollary 3.7, Lemma 3.10 and (3.9). This can be expressed in an equation
of matrices:

ld = (dim%t eil_j)i,jel (<EZ, Sj><17t)i,jel
1

. 7 Dy—1(: rhY —h
- 1 — (qrhvt—h)2 (dlmqvt ei[j)i}je[ q t (ld —dq t V)C(qa t)?

where the second equality is due to (3.13). Therefore we have

~ 1

C(q,t) = 5 (dimg, eil_j)mel Pt (id — ¢ )

1— (gt
Comparing the (i, j)-entries, we obtain the following formula.
Theorem 3.13. For any 1,) € I, we have
djp—1

~ q it

Cij(g, ) = T (g2
If the involution i — i* is trivial (e.g. when g is of non-simply-laced type), it simplifies to

dj—1
~ q it

Cij(Qa t) - W dimq,t ei]j.

(dimq,t ed; — qmv th dimg eil_j*> ) (3.14)

Corollary 3.14. For any i,j € I, we have
rhY  h
dim, e;[; = "%t Z Z Cij(u, —v)g"t™".
u=0 v=0
Proof. 1t follows from Theorem 3.13 and Corollary 3.9. g

Corollary 3.15. The integers {¢;;(u,v)}i jeruvez Satisfy the following properties.
(1) ¢j(u,v) = =Cj«(u+rhY, v —h) for any uw >0 and v <0,
(2) ¢j(u,v) > 040 <u<rhY and —h <v <0,
(3) ¢;(rhY —u, —h —v) = ¢j=(u,v) for any 0 < u <rh¥ and —h < v <0.

Proof. 1f follows from Theorem 3.13, Corollary 3.14 and Corollary 3.4 (2). 0
As a by-product, we also obtain the following combinatorial formula.

Proposition 3.16. Let (i1,...,4) be a reduced expression of wy. We extend it to an
infinite sequence (i)rez-, such that ixy, =iy, for all k € Zso. Then, for any i,j € I, we
have

Cij(g,t) =%t > (@) T," Tt ag)gr.

k>0,ip=7
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Proof. Tt follows from Theorem 3.13, Proposition 3.8 and Theorem 1.6. Note that we
have (@), Ty, -+ T;,_ j)ge = (@), T -+ T; ' aj)qq for any k € Zso by (1.5), where

a(q,t) =alqg ', t71). O

Remark 3.17. When g is of simply-laced type and the reduced expression (i1, ...,%;) is
adapted to a Dynkin quiver, Proposition 3.16 recovers Hernandez-Leclerc’s formula [HL15,
Proposition 2.1]. For the other case, it seems new.

4. REMARKS ON ¢-VERSION AND PROJECTIVE LIMIT

In this complimentary section, we switch to consider the graded version of I1(¢) and II.
In §4.2, we summarize the g-version of our results obtained so far. In §4.3, we explain in
detail how to identify graded II-modules with modules over the Jacobian algebra studied
by Hernandez-Leclerc [HL16]. In §4.4, we discuss the projective limit of II(¢)’s, which we
need in the next section.

4.1. Change of conventions. In the remaining part of this paper (Sections 4 & 5 and

Appendix A), we regard Il as a graded k-algebra with respect to the degree map deg, =
pry o deg, where pr,: Z? — Z is the projection of the first factor. Explicitly, it is given by

deg; (aj) = b;; = —max(d;, d;), deg,(g;) = b; = 2d;.
We again write ¢ for the upward grading shift functor for graded k-vector spaces. For
a graded k-vector space V, its graded dimension dim,V and restricted dual D(V') are
defined in the analogous way as in §2.1. For a graded k-algebra A, we write Hom 4 (M, N)

for the space of homogeneous A-homomorphisms between graded A-modules M and N.
We define homy(M,N) = @, Homa(¢"M, N) as graded k-vector space. The same

convention applies to Ext’y (M, N) and ext’} (M, N) as well.

In the sequel, we work only on the category of graded ﬁ—modules, instead of bigraded II-
modules. To simplify the notation, for a bigraded [I-module M , we keep the same symbol
M to denote the graded II-module obtained from M by forgetting the “t-degree”. Namely,
we regard M as the graded II-module whose u-th graded piece is given by M, == @, .5 Mu.
for each v € Z. In particular, even if M and N are bigraded ﬁ—modules, we switch to use
the symbol Homg (M, N) to denote the space of graded ﬁ—homomorphisms, rather than
bigraded ones. The same convention applies to Extz' (M, N) and others.

4.2. Inverse of ¢-deformed Cartan matrix. We set C(¢) := C(q, 1). This is the inverse
of the g-deformed Cartan matrix C(q) = C(q,1). Its (i,j)-entry Ci;(¢) = Ci;(g,1) is
expanded at ¢ = 0 as

Ciilg) =Y G(w)g" € Z[g],  where &;(u) ==Y &;(u,v).

UEZL vEZ

Here we list some properties of C (q) for future reference. They immediately follow from
Corollaries 3.14 & 3.15 together with Lemma 1.2. See [FO21, Corollary 4.10] and [GW20,
§6.6] for alternative proofs of Proposition 4.2.
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Proposition 4.1. For each i,j € I, we have

rhY

dim, e;I; = ¢~% ZEM (u)q". (4.1)

u=0
In particular, the space e;I; is non-negatively graded.

Proposition 4.2. The expansion coefficients {¢;;(w) }i jeruez satisfy the following proper-
ties:

(
(
Cij(rhY —u) = ¢« (u) for 0 <u <rh".
Gij(u) =0 if lu — krhY| < d; — &;; for some k € Zy.

4.3. Comparison with Jacobian algebras. As remarked in [GLS17, §1.7.1], the defini-
tion of the algebra II is inspired in part by [HL16]. In particular, the category of graded

II-modules can be identified with the category of (non-graded) modules over the Jacobian
algebra Jpy associated with a certain quiver I" with potential W studied in [HL16]. In
this subsection, we explain this identification in detail for completeness.

Following [HL16], let us consider an infinite quiver I' = (I'g, I'1, s, t) given as follows:

Lo=1xZ, T'i={ayp)l|i,jel,i~jpecZiU{e(p)|icl pecly,
s(aii(p)) = (4,p),  t(aij(p)) = (i,p + bij), s(ei(p)) = (i,p), tlei(p)) = (4,p + 2d;).

Note that the quiver I' consists of two mutually isomorphic connected components. In
Figure 1, a connected component of I' is depicted in types As, Bs, C3 and Dy.

X

i) 1 2 3 4 5 P 12 3 2 1 i) 1 2 3 4 4 P\i) 1 2 3 4
8 e e e 16 e e e 8 e e e 8 ¢ e e
NN L NN L N ;N
6 ./ \./ \. 12 ./ \i\./ 6 ./ \. . 6 ./ \.\*.
5 \./ \./ 10 \./ﬁ/ \. 5 \./>< 5 \.‘//
4 ./ \./ \. 8 ./ \i\./ 4 ./ \. . 4 ./ \.\*.
5 \./ \./ 6 \_/ﬁ/ \. 5 \./ ) \.//
2 ./ \./ \. 4 ./ \i\./ 2 ./ \. \. 2 ./ \.\*.
. \./ \./ ) \./f/ \. . \./>< . \.//
0 SN N 0 /T\i\ e o SN ! o 1N

FIGURE 1. Component of I' in types As, B3, C3 and Dy (from left to right)
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Recall we have chosen a collection of signs {wj;}i~; (or equivalently, an orientation €2)
in §2.3. Let W be the potential given by

W= Z Z wij€i(p — 2d;)ei(p — 4d;) - - - £i(p + 2biz)vij(p + bij) i (p)
P ijeliing
and Jr  the Jacobian algebra associated with (I', W), i.e., Jrw = kI['/(OW), where (OW)
denote the two-sided ideal generated by all the cyclic derivations of W (see [DWZ08]).

Remark 4.3. In [HL16], a slightly different potential W’ was considered instead of W. It
is given by

p ijelsing
However the difference between W and W' is not essential. Indeed, the potential —W is
obtained from W' via an explicit automorphism of kI' given as follows. Let £: I — Z be
a function satisfying the condition: & = &; + w;;b;; if ¢ ~ j, where we write &; = (i) for
simplicity. (When g is of simply-laced type, such a function £ is the sane as a height function

of the Dynkin quiver (I,€)) appearing in [HL15, §2].) Then we define the automorphism
¢¢ of the path algebra kI' by the assignment

gi(p) = €i(p), aii(p) — (1)U P2l g (p)
for any p € Z and 1,5 € I with ¢ ~ 5. Since

F];]JJ N fi—(p—bij)J _ fj—PJ N fj—er&—fjerijJ

26” 2sz Qb” 2b2] 2b1]
_ &P §—p  wijtl
- { o | Ty, 2
= wij;— ! (mod 2),

we have

Ge(ij(p + bij)oyi(p)) = —wizai; (p + bij)ai(p)
for any p € Z and ¢, € I with i ~ j. Thus we obtain ¢¢(W') = —W. In particular, the
automorphism ¢, induces the isomorphism

Y

Jrw = Jr—w = Jrw.

In this paper, we work with the potential IV rather than W' because it matches with the
definition of II in §2.3 (see the proof of Proposition 4.4 below).

In what follows, for an algebra (resp. a graded algebra) A, we denote by A-mod (resp. A-gmod)
the category of all the A-modules (resp. graded A-modules). We naturally identify a graded
module M over the path algebra k@) with a graded representation of (), which consists of
an I-tuple of graded k-vector spaces (e; M );c; together with linear maps

M (g;) € Homy(¢*%e; M, e; M), M (ay;) € Homy(q"e; M, e; M)
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for each 7,5 € I with 7 ~ j.

For a graded k@—module M, we associate the representation ®(M) of I' over k given by
O(M) (i p) = e;M, and

O(M)(ei(p)) = M(ei)leins,,  P(M)(aii(p)) = M(ev;)le,m,

for any p € Z and i,j € I with j ~ i. This assignment M +— ®(M) defines an k-linear
functor ®: k@Q)-gmod — kI'-mod, which is an isomorphism of categories.

Proposition 4.4. Under the isomorphism & k@—gmod — kI'-mod, the category ﬁ-gmod
corresponds to the category Jryw-mod. Therefore there is an isomorphism of categories

ﬁ—gmod = Jrw-mod.

Proof. The category Jr y-mod is identical to the full subcategory of kI'-mod on which the
cyclic derivations Oy, W and 0., ,)W vanish for any p € Z and 4, j € I with ¢ ~ j. Under
the above isomorphism kI'-mod = kQ-gmod, the actions of the elements d, ,(p—s,,) W and
Oz, (p—2d,)W correspond to the restrictions to the p-th graded piece of the actions of the
elements
wijsgcjiaﬁ + wj‘,'OéjiE;Cﬁ and Z Z wijsfaijozjigi
jri kl=—cij—1

respectively. Therefore, under the isomorphism, the relation d,,,,)W = 0 corresponds to
the relation (R1), and the relation 0.,,yW = 0 corresponds to the relation (R2). This
completes the proof. O

4.4. Projective limit. In this subsection, we briefly discuss the projective limit of the
graded k-algebras II(¢), which we use in the next section. Taking the projective limit in
the category of graded k-algebras, we define

M(c0) == Lim T(¢) = lim T1/‘TL.
l )4

By construction, we have the canonical homomorphism of graded k-algebras I — I1(o0),
whose kernel is [, e'Tl. For each ¢ € Z,, we have II(c0)/eTl(c0) = TI//TI = TI(0).
We consider the projective module P;(c0) = II(c0)e; and the injective module [;(oc0) =
D(Pi(o0)) for each i € I. Note that we have I;(00) = (J,c;_, 1i(£) and hence it is not finitely
generated over II(co). Let a C II(co) denote the two-sided ideal generated by {c;}i~;-

Proposition 4.5. The followings hold.
(1) For anyi,j € I, the subspace e;11(c0)e; is graded free of finite rank over k[e;].
(2) The center of I1(co) contains k[e] and I1(c0) is graded free of finite rank as a k|e]-
module. In particular, we have dim, II(co) € Z((q)).
(3) For each k € Z, we have II(c0), = II(¢)y for € > 0. In particular, the canonical
homomorphism 1T — II(c0) is surjective.
(4) The ideal a is nilpotent. Indeed, we have a""*1) = 0.
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Proof. Since e;II(c0)e; = @eiﬂ(f)ej, (1) follows from Theorem 2.2. Since k[e;] is graded
free of finite rank over kle], (2) follows from (1). (3) is immediate from (2). (4) follows
from Theorem 2.2 (2). O

Proposition 4.6. Assume that g is of simply-laced type. Then the canonical homomor-
phism 11 — TI(c0) is an isomorphism. Moreover, we have 11 = TI(1) ® k[e] as graded
k-algebras.

One can expect that I is isomorphic to II(co) for general g, but we could not find a
proof.

Proof. Note that the algebra II(1) is the same as the usual preprojective algebra and hence
we have a graded k-algebra homomorphism (1) — I whose image is identical to the
subalgebra A of II generated by {eitier U{aij}tiny. In particular, A is finite-dimensional.
Since the element € is central, we have II = S oo efA. Thus the gradation of 1 is bounded
from below, which implies that Ker(IT — II(00)) = M=o eIl = 0. Combined with Propo-

sition 4.5 (3), we obtain the former assertion. Now the latter assertion follows from Propo-
sition 4.5 (2). O

In what follows, we identify the category I1(co0)-gmod with a full subcategory of ﬁ—gmod
via the canonical surjection IT — II(00).

Proposition 4.7. The category I1(c0)-gmod is identical to the full subcategory of ﬁ—gmod
consisting of graded 1I-modules M satisfying the following property: for each homogeneous
element y € M, the gradation of the submodule Ily C M is bounded from below.

Proof. Let B C II- gmod be the full subcategory in question, i.e., B consists of all the graded
[I-modules M such that Hy C M is bounded from below for any homogeneous y € M. The
inclusion II(co)-gmod C B follows from Proposition 4.5 (2). To see the opposite inclusion, it
is enough to show that zM = 0 holds for any M € B and z € Ker(Il — II(c0)) = M=o 1.
We may assume that z is homogeneous. For any ¢ > 0, we can write x = £’z, for some
2, € 11 such that deg,(xy) = deg,(z) — 2¢r. For any y € M, we have xyy = 0 for £ > 0
by the assumption M € B. Therefore we have ry = ‘(zy) = 0. This completes the
proof. O

Corollary 4.8. The category I1(co)-gmod is a Serre subcategory ofﬁ-gmod, i.e., I1(00)-gmod
18 closed under taking subobjects, quotients and extensions. In particular, we have the nat-
ural isomorphism Extll]( (M,N) = Extl%(M, N) for any M, N € II(c0)-gmod.

o0)
5. APPLICATION TO GENERIC KERNELS

In this section, we discuss the generic kernels corresponding to the Kirillov-Reshetikhin
(KR) modules introduced by Hernandez-Leclerc [HL16]. Since they yield the geometric
g-character formulas [HL16, Theorem 4.8] (see Remark 5.8 below), one can think of them
as an additive counterpart of KR modules in the context of the categorifications of clus-
ter algebras. In §5.1, we introduce the generic kernels as certain graded II-modules, and
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explain that our definition is equivalent to the one in [HL16]. We compute all the first ex-
tension groups among them explicitly in §5.2, and compare the results with the conjectural
denominator formula of the normalized R-matrices due to [FO21] in §5.3. Computations
for a few exceptional cases are postponed in Appendix A.

5.1. Generic kernels. For each 7 € [ and k € Z~(, we define the graded [I-module K ,ii)
by
K = "D ((I1/TIR)e;).

As special cases, we have K fi) =~ g% ], and K éi)/ 4 = q""I;(¢) for £ € Z~. From the definition,

the module K ,Ef) fits into the following short exact sequence:

. ok
0— K,EZ) — " I;(00) = ¢ *i [;(00) — 0. (5.1)

Here the surjectivity of -¥ follows from Proposition 4.5 (1). The modules K, ,gi) are referred
to as generic kernels after the following fact (see also Remark 5.2 below).

Proposition 5.1. For eachi € I and k € Z~y, the set of homomorphisms f: ¢**% I;(c0) —
I;(c0) satisfying Ker(f) = Ker(-e¥) is Zariski dense in the affine space Homg (¢*% I;(c0), I;(00)).

Proof. To simplify the notation, we set II := II(c0) and I; := I;(c0) in this proof. We have
the natural isomorphism

Homp (¢**% I;, I) = Homp(e;, ¢ %% Tle;) = (e;Ile;)ana, (5.2)
which transforms f € Homp(¢?*%I;, I;) into *f(e;) € (eille;)arg,. Note that the homo-
morphism -e¥: ¢?*% [; — I; simply corresponds to the element ¥ € (e;Ile;)arg, under the
isomorphism (5.2). The group Auty(l;) naturally acts on the space Homy (¢?*4 I;, I) from
the left. By the isomorphism (5.2), this action is translated into the natural right action
of the group (e;Ile;)y on (e;Ile;)orq,. Here we identify Auty(7;)°P with (e;Ile;)y via the
isomorphism (5.2) with k£ = 0. Since Ker(f) is invariant under this action, it is enough to
show that the orbit ¥ (e;Ile;)y is Zariski dense in the affine space (e;l1e;)opq,-

Recall that e;Ile; is graded free of finite rank as a left k[e;]-module by Proposition 4.5 (1).
Since the space ¢;1le; /e;e;lle; = e;(I1/e;I1)e; = e;D(I;) is non-positively graded by Proposi-
tion 4.1, we can choose a free k[e;|-basis {xg, z1, ..., 2, } of e;Ile; satisfying the followings:

(1) o = e,
(2) For each 1 <[ < m, we have u; := deg,(z;) <0 and z; € qa,
(3) There is an integer 0 < m’ < m such that we have

w € 2d;Z if0<Il<m,
w & 2d; 7 it m' <l <m.

Then we have

m/
_ 1k k—w /2d; _ _k
(eiHei)%di = kgi e; D @ kgi Xy = §g; (6,'1_[67;)0
=1
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—uy/2d;

for any k € Z>(. Since each ¢, ‘x; with 1 < [ < m/ is nilpotent in II by Proposi-

tion 4.5 (4), we have

(eiH€i>(>)< — kxei D @k{f;ul/miﬂ?l

=1
Therefore the orbit e¥(e;lle;)y is Zariski dense in (e;lle;)ora, = ¥(eille;)o as it is the
complement of a linear subspace of codimension 1. Il

Remark 5.2. Our terminology of generic kernels coincides with the one in [HL16] via the
isomorphism P: ﬁ—gmod — Jrw-mod in Proposition 4.4 in the following sense. In [HL16],
one actually concerns the full subcategory of Jp y-mod consisting of modules supported
on the “semi-infinite” full subquiver I'™ of I' given by I'y = {(i,p) € I X Z | p < —d;}.
If p < d; —rhY, we can easily see from Propositions 4 1 & 4.2 that e;j(¢PI;(c0)), = 0
holds unless (j,u) € I'y, and hence @(qp*kdiK,gi)) is supported on I'™ for any k& € Zo.
By Proposition 5.1, under the condition p < d; — rhY, the Jry-module ®(qP~*i K ,EZ)) is
identical to the generic kernel denoted by K’ O iy [HL16 4.3]. Note that the injective
module I; , in [HL16, 4.3] is identical to our @(qpl( )) in view of Proposition 4.7.

Lemma 5.3. For anyt,5 € I and k € Z~y, we have

rhv
k;d
dim, e; K (5.3)
Proof. By the definition of K ,ii), we have
D(K;") 2 ¢ *“T(00)e; ®ugey Kledd/(eF) = ¢ D(T) @ ki) (<)
as graded k-vector spaces. Therefore,
dim, e]-K,gi) = dim,—: ej]D)(K,gi))
= ¢" dim, e;1; - dim,-1 k[g;]/(eF)
rhV
. L B . 1— q—dei
=" (g chi(u)q T 24
u=0 1- q '
where the last equality is due to (4.1). This proves (5.3). O
5.2. First extension groups between generic kernels.
Proposition 5.4. For each i,j € I and k,l € Z~q, we have
extl (K]g ), Kl(J)> = eXt%(Kl(]), K]g )) = qikdzildj Ci—=—"= €5 (54)

eI+ ML

as graded k-vector spaces.



A Self-archived copy in RBAFEHWRY KT R Y

,f?: %B j( % Kyoto University Research Information Repository KU RENAI I{[
Kyolo Uniersity Ressarch Informaton Repositry

KYOTO UNIVERSITY https://repository.kulib.kyoto-u.ac.jp

DCM and GPA 29

Proof. We only have to show the second isomorphism thanks to the opposition ¢ and the
symmetry. Moreover, we know extl%(Kl(j),K,iZ)) = ext%l(oo)(Kl(]) ,K,ﬁ”) by Corollary 4.8.
Using the injective resolution (5.1) in II(co)-gmod, we have

(eh)e=

extllq(oo)(Kl(j), Klgi)) =~ Cok (homn(w)(Kl(j), "4 I;(00)) ——— homH(OO)(K(j) q " I (00 )))

=~ Cok <qkd Jel(H/Hg )e; —> g R e ( H/Ha >

where, for the second isomorphism, we used the facts homy(se)(—, ;(00)) = ¢;D(—), and
eiD(K h ) >~ g, (T1/ ng)ej. This yields the desired isomorphism. O

To compute the dimensions of these extension groups, we need the following lemma.
Lemma 5.5. Lett,j € I and k,l € Z~q. If kd; > ld;, we have
eielle; C eiﬁeéej (5.5)

unless the following condition is satisfied:
() g is either of type C,,, Fy or Gy, and we have d; =d; =1, k =1 € rZL.

Proof. 1t suffices to show that the inclusion (5.5) holds in the following four cases:

(1) at least one of the numbers kd; and Id; belongs to rZ, and kd; > ld;,
(2) gisof type C, or Fy, d; =d; =1, kl € 2Z, and k > [,
(3) gis of type B,,, di =d; =1, and k > [,

(4) g is of type Go, d; =d; =1, kl € 3Z, and k > .
Case (1): If kd; = mr for some m € Z~g, we have

mr/d;

Tl
e;c: Hej = g€ HeJ = elﬂg ej = € H&? ej C el-Hsjej.

If ld; = mr for some m € Z-, we have

kd;—1d; kd;—
’ mHeJ = e;E;

kd;—

ETT d; ldj Tl T
eig; lle; = e;e; ™ ej = €;g; lleje; C eillese;.

Case (2): There is a positive integer m such that & > 2m > [. Then we have
GiS?ﬁGJ‘ = 6i8§_2m€mﬁ6]’ = BiSf_QmﬁSmej = GiEf_2mﬁ€§m€j C eiﬁsé-ej.
Case (3): We identify I = {1,...,n} so that n is the single vertex with d,, = 1 and we

have n — 1 ~ n. Then ¢ = j = n and we have to prove that ensﬁﬁen C enﬁslnen under the
assumption k£ > [. Using the relations (R1) and (R2) at the vertices 1,...,n — 1, we can

easily see that the space e,lle, is spanned by the elements of the form
k k k k
P = €n€n005n’n,104n,17n8n1 O5n,n7104nfl,n€nQ e an,nflanfl,ngnm €n

for some m € Zsy and ko, ...,k € Z>o. On the other hand, the relation (R2) for the
vertex n yields
Enlipnn—10n—1n = —Opn_10n_1nEn.

Therefore we get ek p = (=1)™*pek € ¢, 11l e,.
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Case (4): If there is an integer m € Zs( satisfying k& > 3m > [, we get the desired
conclusion similarly as in the case (2). So it is enough to consider the case k = 3m + 2 and

I =3m + 1 for some m € Zxo. We identify I = {1,2} so that (di,ds) = (3, 1) Then we

have i = 7 = 2 and we have to prove that ese; m+2H€2 C 62H83m+162 Since eped™ = eye™
Jj= p )

it suffices to consider the case when m = 0. Since ajaa91 = 0 by the relation (R2) for the
vertex 1, we see that the space eslles is spanned by the elements of the form

_ ko k1 ko k.
P = €265 Qa1 (X12E5 Q21 (N12E5” * * + Qa1 (X12E59° €9

for some s € Z>g, ko, ks € Z>p and ky,...,ks_1 € Z~o. On the other hand, the relation
(R2) for the vertex 2 yields

2 2
E9lln1 12 = —E2(a1 (N 12E2 — (N21(X]12E5.

Using this relation, we can easily show that e3p € eslleqes holds by induction on s. This
completes the proof. O

Proposition 5.6. Leti,5 € I and k,l € Z~y. Assume kd; > ld;. Then we have

i - (ld;)g <=~
dim extt (KO, k) = g+ il § 7 ) (5.6)
unless the condition (&) in Lemma 5.5 is satisfied. Even if (&) is satisfied, the difference
(RHS) — (LHS) in (5.6) belongs to Zsolg*].
Proof. By Proposition 5.4, we have a surjection
D (e KD) = g, (/T e,
—» q’kdi’ldjei(ﬁ/(sfﬁ + ﬁéé-))ej o extl%(K,gi), Kl(j)).

Under the assumption kd; > Id;, it is an isomorphism unless the condition (&) is satisfied,
thanks to Lemma 5.5. Combined with Lemma 5.3, we obtain the assertion. Il

In Appendix A, we compute the difference (RHS) — (LHS) in (5.6) explicitly when the
condition () is satisfied. See Proposition A.1 below.

Corollary 5.7. For each v € I and k € Z~g, the II-module K,gi) 15 rigid, that is
Extk (K, K = 0.
Proof. Note that dimy Extf (K ,gi), K ,ff)) is the constant term of dim, ext: H(K ,gi), K ,gl)) By

Proposition 5.4, it is not greater than the constant term of ¢~ *% fdd]]q Zzh o Gii(w)g™, which
q

is zero. O
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5.3. Pole orders of normalized R-matrices. Let U/(g) be the (untwisted) quantum
affine algebra associated with our simple Lie algebra g. This is a Hopf algebra defined
over an algebraic closure k := Q(q) of the field of rational functions in q. The category
¢ of finite-dimensional U] (g)-modules (of type 1) forms an interesting k-linear monoidal
abelian category. Around U(g), we basically follow the convention of [FO21, §5 and §6]
except that we replace the quantum parameter ¢ therein with ¢" (and hence ¢4 therein is
q here).

It is well-known (see [CP94, Chapter 12] for example) that simple U} (g)-modules in &
are parametrized by the set (1 + zk[z])! of I-tuples of polynomials with constant terms
1, which are called Drinfeld polynomials. For a nonzero scalar a € k* and a module
M € €, we can define another module M, € ¢, called a spectral parameter shift of M, by
twisting its module structure with an automorphism of the Hopf algebra U (g). If L is a
simple module of 4" associated with Drinfeld polynomials 7(z) € (1 + zk[z])’, its spectral
parameter shift L, is associated with m(az). It defines an action of the group k* on the
monoidal category % .

For each i € I and k € Z~, we denote by Vk(z) the simple U (g)-module in € associated

with the Drinfeld polynomials 77,(:) (x) = (71',52 (x))jer given by

0 () = (1 — g*=Ddig)(1 — g*h=3)dig) ... (1 — g~h=Ddig) if j =,

1 if j #£ 1.
These modules {Vk(i)}ie Ikez~, and their spectral parameter shifts are called the Kirillov-
Reshetikhin modules (KR modules for short).

Remark 5.8. When k = C, Hernandez-Leclerc’s geometric character formula [HL16, The-
orem 4.8] tells us that the F-polynomial of the JFW module ®(¢PK,, (Z)) in the sense of

[DWZ10] gives the g-character of the KR module Vk » in the sense of [FR99]. To explain
it more precisely, we need some notation. Recall that each M € ¥ has a spectral decom-
position M = @Weg M., with respect to the action of the quantum analog of loop Cartan
part, whose spectra are parametrized by the Grothendieck group G of the multiplicative
monoid (1+ak[z])’. Then the g-character of M is the element x, (M) = >___;(dimy M, )y

of the group ring ZG. For each i € I and p € Z, we set Y;il = ﬂ“(q?’x)ﬂ € G and
Aip =Yip-a,Yipta, H Y H ng 1Y]_p+1 H Y;p oY, 1Y;+2
J: cgz—f J: C]z—* J: C]z—*

Note that the transformation from Y;,’s to A;,’s is given by the quantum Cartan matrix
C(q). Then the geometric character formula is expressed as

Vi) =@ > x(Gue@r)) T 4 (5.7)
VE(Zxo)t*2 (j,8)EIXZ

where Gr,(K) is the projective variety parametrizing the Jp y-submodules L C K satis-
fying dimc e; L = v;, for all (j,s) € I x Z, and x(Gr,(K)) is its Euler characteristic.
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As explained in [HL16, Remark 4.14], if we consider the case (k,p) = (1,0) and look at
the term with v, ; = dimce;, S@(K(Z)) = dimc(e;f;)s_qg; in (5 7), we obtain

7 OY;* ;rhY = H Ajhsri% esli
(4,8)EIXZ
by [FMO1, Lemma 6.8]. Taking [FMO1, Lemma 6.13] (or Corollary 3.9) into account,
it gives an alternative proof of Proposition 4.1 when k = C. By the similar argument,
Lemma 5.3 can also be deduced from (5.7).

Let z be an indeterminate and N, = N ®j k(z) the formal spectral parameter shift of
a module N € ¢. For any pair (M, N) of simple modules in %, we can associate the
normalized R-matriz as a U](g) ®y k(z)-isomorphism

RM’NM®NZ—>NZ®M

which sends a specific cyclic vector of M ® N, to that of N, ® M. Since Ry can be seen
as a matrix-valued rational function in z, one can consider its denominator dy; v(z) € k[2],
which is uniquely determined as a monic polynomial in the variable z with das 5 (0) # 0.
For any nonzero scalars a,b € k*, we have

du, N, (2) = dyn((b/a)z)  (mod k™). (5.8)
The denominator dysn(z) contains some important information of the structure of the

tensor product module M ® N (see [KKKO15] for example). For the denominators between
the KR modules, we have the following conjectural formula in terms of the matrix C(q).

Conjecture 5.9 (cf. [FO21, Conjecture 6.7]). Leti,j € I and k,l € Z~o. Assume kd; >
ld;. Then we have

-1 rhY W
. _ uthdi(2a—141)d; | Gia (1
dyy i) ) (2) = dy) o (2 =] |0 | |0 q" et ) (5.9)
a=V u

unless the condition (&) in Lemma 5.5 is satisfied.

Conjecture 5.9 is known to be true in the following cases:

e g is either of type A,,,B,,C,, D, or Gy (cf. [FO21, Theorem 6.9]),
e g is of any type and (k,l) = (r/d;, 1) (cf. [FO21, Proposition 6.5]).

Remark 5.10. Strictly speaking, the statement of [FO21, Conjecture 6.7] is slightly differ-
ent from that of Conjecture 5.9 above. Actually, it was conjectured in [FO21, Conjecture
6.7] that the equality (5.9) should hold also when
(%) g is of type CFG, and we have d; =d; = 1,k =1 € Z>, \ rZ=y.

Then it was claimed in [FO21, Theorem 6.9] that the equality (5.9) is indeed true for type
C, and Gy under the condition (x) based on the results of [OS19b]. However, after the
publication of [FO21], it has turned out that there are some gaps in the proofs in [OS19b]
for the case (*) (the authors thank Se-jin Oh for clarifying this point). Thus we have
excluded the case (x) in the statement of Conjecture 5.9.
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Definition 5.11.
(1) For a € k and f(z) € k[z], let zero.,—, f(z) denote the order of zeros of f(z) at
z = a. For f(z) € k[z] with f(0) # 0, we define its divisor Div f(z) to be an
element of the group ring Z[k*| given by Div f(2) = > i« (zero.—, f(2))a.
(2) For a pair (M, N) of simple modules in €, we set
o(M,N) = zero,—; dyr n(2), O(M, N) = Divdyn(z).
Note that o(M, N) is the coefficient of 1 € k* in O(M, N).
v V(]-)(z) belong to ¢ C k*. This
k 271
follows from [KKOP20, Propositions 2.11 & 2.12] and the known formulas of denominators

For any 7,7 € I and k,l € Z~q, all the zeros of d

and universal coefficients for the fundamental modules. In particular, D(Vk(i), Vl(j )) can be
thought of a Laurent polynomial in q.

Lemma 5.12. The equation (5.9) is equivalent to the equation

rhY
; : : ; ld. B .
oV V) = o9, vy qkdl% S ()t (5.10)
T y=0
Proof. Straightforward. O

Thanks to Proposition 5.4, Proposition 5.6 and Lemma 5.12, the following conjecture is
equivalent to Conjecture 5.9.

Conjecture 5.13 (< Conjecture 5.9). Let i,j € I and k,l € Z~o. Assuming kd; > ld;,
we have

OV V) = dimg1 ext (K, K1) (5.11)

unless the condition (&) in Lemma 5.5 is satisfied.

Moreover, we find that the equality (5.11) still holds in some cases when the condition
(&) is satisfied as in the next proposition, whose proof is given later in Appendix A.

Proposition 5.14. The equality (5.11) still holds even if g is either of type C,,, Fy or Ga,
and we have d; = d; = 1,k =1 <.

This motivates us to propose the following conjecture, which generalizes Conjecture 5.9.
Conjecture 5.15. For any i,j € I and k,l € Z~y, the equality (5.11) holds.
Lemma 5.16. The equation (5.11) holds if and only if the equation
o(V,, Vi) = dimy ExtL (¢ K\, ¢ k) (5.12)
holds for any p,s € Z.
Proof. Note that the left hand side of (5.12) is the constant term of
OV, Vi) = o, V),

l,q®
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where the equality follows from the property (5.8). On the other hand, the right hand side
of (5.12) is the constant term of

dim, extl%(qu,ii), qul(j)) = ¢" P dim, extl%(K,ii), Kl(j)).
From these observations, we obtain the assertion. ]
Thus, we can rephrase Conjecture 5.15 as follows.

Conjecture 5.17 (< Conjecture 5.15). For any i,j € I, k,l € Z~o and p,s € Z, the
equality (5.12) holds.

Remark 5.18. We can formally extend Conjecture 5.15 (or 5.17) beyond the KR modules.
In the context of monoidal categorification of cluster algebras, for each real simple module
M € ¢ corresponding to a cluster monomial, one can define the corresponding generic
kernel K, € II-gmod as discussed in [HL16, §5.2.2]. (Note that Conjecture 5.3 therein is
now a theorem thanks to the recent progress [KKOP21].) Then, as a generalization of the
conjectural equality (5.12), we may imagine that the equality

o(M, N) = dimy Ext (K, Ky) (5.13)

holds for any two simple modules M, N € € corresponding to cluster monomials. However,
we do not have any pieces of evidence for the validity of such an equality (5.13) except for
the KR modules at this moment.

APPENDIX A. COMPUTATIONS IN THE EXCEPTIONAL CASE (é)

In this appendix, we assume that our Lie algebra g is of type C,, F4 or Gs. Following
the convention of [Kac90, Chapter 4], we identify I with the set {1,2,...,n} so that we
have i ~ j if and only if |i — j| = 1, and

(1,...,1.2) if gis of type C,,
(dy,....d,) =< (2,2,1,1) if gis of type Fy,
(3,1) if g is of type Go.
Proposition A.1. Let g be either of type C,,, F4 or Go. Suppose thati,7 € I and k € Z~
satisfy d; = d; =1 and k & rZ. Then we have

rhY
dim, extL (K, K) = ¢7*[k], > e = Aylg), (A.1)
u=0

where Ayj(q) = ¢ dim 1 ei((e,11 + ﬁsj)/ﬁsj)ej, which is explicitly computed as follows:
(1) When g is of type C,, and 1 < i,j < n, we have

+j—n

Aij (Q) _ Z an—i—j+2a+2‘
a=1

Note that A;j(q) =0 if i +j < n.
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(2) When g is of type Fy, we have
Ags(q) = ¢'+ ¢ + ¢ + ¢, Asulg) = Aus(q) = ¢°,  Aulg) =0.
(3) When g is of type G, we have Agy(q) = ¢°.
We give a proof of Proposition A.1 in §A.2 below.

A.1. Proof of Proposition 5.14. By Proposition A.1, it is enough to show that the
equality
1— q2k rhY

T 2T = 80) (42)

holds under the assumption d; = d; = 1 and O < k: < r. We can check it directly using the
known formulas listed below. They are quoted from [FO21, §4.3 and Appendix A]. Note
that the denominators are originally computed in [AK97,0S19a].

Type C,: If 1 <4,5 < n, we have

oW V) =

rhY min(%,5)
Zaj(u)qu _ Z (Q\i—j|+2u—1 +qzn—i—j+2u+1)7
u=0 u=1
A ' min(%,j,n—i,n—j) o min(z,5) .
D(V’l(l)"/l(])): Z q\z—j|+2u+ Z q2n—z—]+2u+2.
u=1 u=1

Type F4: We have

Y (q+ ¢+ +207 +2¢° + 20" + ¢ + ¢ + ¢ if (i,5) = (3,3),
D Gt = P+ + ¢+ a0+ ¢+ g if {i,7} = {3,4},
u=0 g+ +q" +¢" if (i,7) = (4,4),
'q2 + q6 + q8 + ql() + 2q12 + q16 + q18 if (i,j) _ (37 3))
OV V) =3 ¢+ 47 + ' + ¢ + ¢ if {i,7} = {3,4},
¢+ ¢+ ¢+ if (4,5) = (4,4).

Type Go: We have
rhY

2022 wq" =q+¢ +q +q"

WD) = 4+ g
OV V) = ¢ +¢* +2¢° +q1°+q12+q14

A.2. Proof of Proposition A.1. We shall prove the equality (A.1) by applying dim,(—)
to the short exact sequence
ETT 4 TT ok T T
e 11 + 11 I1 I1
0= q e;———Te; = ¢ He=—re; = ¢ He—=——e; = 0

k 'Sk i k
Ie; Ie; &; 11+ 11e7

RBAFFHER)FD b
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and then by using Lemma 5.3 and Proposition 5.4. To this end, we need to show that
there is an isomorphism
. eI+ IIeh

q Fe——
k
Hej

_9 61'1_[ + H&j
Ci— =65

€; = =
J
e,

of graded k-vector spaces. Writing k = mr + s with m € Z>y and 0 < s < r, we have
ETT o TT-k
op i II + 1]

(511 + ﬁsj)sm
@G ﬁef

Hsjem

o ;fH + Ilef

—2ke, e;=q Te—=
S
Hsj

€ =4q g

6]'.

Therefore, when s = 1, we are done. When s = 2, it is necessarily the case when g is of
type Go and @ = j7 = 2. Then, by the similar argument as the proof of Lemma 5.5 (Case
(4)), we see that eyealles = eyealleges and hence

21T + TIe2 I+ 11 I+ 11
q_46252 ~—|—2 ., . (€2 + 252)526 " —o &l +1ley
ITe3 Il IIey
This completes the proof of the equality (A.1).
Next, we shall compute A;;(¢q) explicitly. By the symmetry, we may assume 1 < i <

j < n. Note that the graded vector space ¢~2e;((,11 + ﬁej)/ﬁej)ej is the image of the left
multiplication map

eir: e;(I1/Tle;)e; — q 2e;(I1/TIe; )e;.
We shall compute this map case-by-case by choosing an explicit k-basis of the space
e;(I1/Ile;)e; with the help of Proposition 4.1 and the explicit formulas of ¢;;(u) listed
in §A.1. To simplify the notation, for any a,b € I ={1,...,n}, we set

g a+10a+1,a+2 """ Ap—1b if a < ba
Qgp = § Oga—10g—1,a—2" " Xpt1p if a > b7
€q if a = 0.
Type C,: With 1 <17 < j < n fixed, we set
. /.
Pa — OéiaOéaj, Po = OémOéanOénj

for each 1 < a < 4, and regard them as elements of ei(ﬁ/ﬁaj)ej. Note that they are
homogeneous with deg,(p,) = 2a — i — j and deg,(p,,) = 2a —2n — ¢ + j — 2. Thanks
to Proposition 4.1 and the above explicit formula of ¢;;(u), we can easily see that the set

{pa, Pl }1<a<i gives a k-basis of ei(ﬁ/ﬁej)ej. Using the relations (R1) and (R2), we compute
gipa = 0 for any 1 < a <1, and
51’0; = iaiaaa,n—lan—l,n—Zan—Q,n—lan—l,j
0 if 1 <a < min(i,n — j),
Pa—nt+; fn—7<a<i.
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Therefore, we obtain
i+j—n
— deg; (o, 2n—i—j+2a+2
D)= 3 gt = 3 gz,
n—j<a<i a=1

Type Fy and Go: When (i, 7) = (4,4) in type Fy, the left multiplication map by &4 from
es(I1/Tey)ey to g %e4(I1/Tley)ey is zero because dim, e4(I1/Iley)es = ¢ L +q "+q 4717
Therefore we have Ayy(q) = 0. For the other case, we compute a homogeneous k-basis of

the space ei(ﬁ/ﬁej)ej and its image under the map = — ¢;x as in the Tables 2, 3 and 4
below. These computations yield the desired formulas of A;;(q).

| deg () | Dasis element z  — ;T
0 €3 — 0
—2 Q340043 — 0
—4 (320023 — tazs0y3
6 (e320r94(uq3 — 0
(340042123 > 0
_8 Q31013 = EQai0y3 = 3402003
0340900240043 — 0
10 (31140043 = 3402004003
Q340410013 — 340042040043
—12 340041 (V140043 —> 0
—14 (3111330310113 Fa3q01014003
—16 | agoao0u040490003 0

TABLE 2. (i,7) = (3,3) in type Fy

| deg, () | basis element . — €iT |
—1 Q34 — 0
-5 Q320094 — 0
-7 (34420024 — 0
-9 Q310014 Q40000
—11 3400410014 = 0
—15 Q3101363003114 > 0

TABLE 3. (i,7) = (3,4) in type Fy
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| deg, () | basis element 2 — x|
0 €92 — 0
—4 E90i1 (X192 —> 0
—6 Q21012 = E2021(V12
—10 Q21 (X 2E20021 (X1 > 0

TABLE 4. (i,7) = (2,2) in type G
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