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In the vicinity of the quantum critical point (QCP), thermodynamic properties diverge toward zero temperature
governed by universal exponents. Although this fact is well known, how it is reflected in quantum dynamics has
not been addressed. The QCP of the transverse Ising model on a triangular lattice is an ideal platform to test the
issue, since it has an experimental realization, the dielectrics being realized in an organic dimer Mott insulator,
κ-ET2X , where a quantum electric dipole represents the Ising degrees of freedom. We track the Glauber-type
dynamics of the model by constructing a kinetic protocol based on the quantum Monte Carlo method. The
dynamical susceptibility takes the form of the Debye function and shows a significant peak narrowing in
approaching a QCP due to the divergence of the relaxation timescale. It explains the anomaly of dielectric
constants observed in the organic materials, indicating that the material is very near the ferroelectric QCP. We
disclose how the dynamical and other critical exponents develop near QCP beyond the simple field theory.
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I. INTRODUCTION

Criticality is a phenomenon characterized by an al-
gebraically growing fluctuation that spreads throughout
the system and eventually manifests as a scale invariance of
the physical properties [1]. Thermodynamic properties be-
have critically as the system approaches the second-order
phase transition point, which is detected by the divergence
of the specific heat and susceptibility. In quantum many-body
systems, exponents of such divergence are known to follow
the universality that has one extra dimension higher than the
space dimension, and this additional dimensional degree of
freedom represented by the imaginary time axis is responsible
for quantum fluctuation. At low energies or low temperatures,
the field theory gives a good description of the states near the
quantum critical point (QCP) [2]. The knowledge about static
criticality is thus established in both quantum and classical
systems, providing reasonable interpretations to the experi-
mental observations in laboratories [3].

However, regarding the dynamics, how the physical prop-
erties react to the enhanced quantum fluctuation near the
QCP remains unexplored. The difficulty stems primarily from
a lack of theoretical tools for evaluating linear response
functions in quantum many-body systems [4]. Although it

Published by the American Physical Society under the terms of the
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is naively expected that the dynamical exponents will also
follow the universality with one extra dimension, quantum
relaxation processes remain hard to access even numerically.

In experiments, the dynamical response measurement in
an applied field is a very useful technique. Observations at
very low temperatures that appear to be influenced by quan-
tum criticality have been reported from time to time, while
unfortunately, they cannot be understood within the frame-
work of available theories. One of the intriguing examples
is the anomalous dielectric response in a series of triangular
lattice Mott insulators, κ-(ET)2X , X = Cu2(CN)3 [5], and
Cu[N(CN)2]Cl [6]. In these materials, the ET molecules are
structurally dimerized and form a triangular lattice in the
two-dimensional (2D) conducting layer as shown in Fig. 1(a).
Each dimer accommodates a single charge in a Mott insulating
phase at low temperature due to strong intradimer electronic
correlations [7]. The former material possibly hosts a quan-
tum spin liquid state in the same Mott insulating phase [8].
Deep inside this phase, the temperature-dependent dielectric
function shows a peak at Tm(ω) which shifts significantly to
lower temperature as the frequency ω is varied [5]. Although
such behavior is reminiscent of relaxer ferroelectrics found
typically in PMN [9], the frequency range where the peak shift
is observed is much wider, varying over more than two or-
ders of magnitudes. Physically, the peak temperature roughly
corresponds to the energy scale dominating the system, and a
single divergent peak structure generally suggests a ferroelec-
tric phase transition at that temperature. The observation of
frequency-dependent nondivergent peaks indicates a coexist-
ing broad-range distribution of characteristic time and energy
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FIG. 1. (a) Two-dimensional conducting plane of κ-(ET)2X . In
the insulating phase the electric dipole (right panel) is defined on
each dimer as arrows that could point in two different directions
depending on the location of the charges. As the charge hops between
two molecules, the dipole fluctuates quantum mechanically by �.
(b) Schematic description of the transverse Ising (TRI) model on
an anisotropic triangular lattice. Arrows indicate the Ising degrees
of freedom. Phase diagram (right panel) near QCP for the material
parameters of κ-(ET)2X extracted from our results (see Fig. 4). The
broken yellow line is the phenomenologically discussed crossover
line of the critical region, whereas the region marked with a red
dotted line is the one obtained from our calculation where the static
and dynamical properties, χ0 and τ , take enough large values.

scales. In relaxer ferroelectrics, this phenomenon had been
attributed to the polar-nano region induced by the artificial
impurity doping [9,10]. However, the organic crystals are
almost free of impurities.

The Mott dielectrics in organic crystals are attributed to
the quantum electric dipole [11]—the degree of freedom
of charge to stay at either of the dimerized two molecular
orbitals. A good description of this degree of freedom is pro-
vided by the transverse Ising (TRI) model [11,12], a canonical
model of quantum computation/annealing [13,14] as well as
of condensed matter theory. Each charge fluctuates back and
forth within the dimer by quantum tunneling via transfer inte-
grals as shown in Fig. 1(a), namely, a transverse electric field
is placed on the dipole, and the Coulomb interactions between
the charges are the Ising interactions between dipoles. If they
align in the same direction, they yield a quantum ferroelec-
tricity [see Fig. 1(b)]. The question is, what could be the
reason for the coexisting massive range of energy scales in
the dynamics of a disorder-free system at low temperature,
and would it be clarified by the microscopic calculation on
the TRI model without the aid of simplified phenomenology
[15]?

We construct a kinetic protocol based on Glauber dynamics
using the quantum Monte Carlo (QMC) method and obtain a
dynamic susceptibility, χ (q = 0, ω), of the TRI model. We
extract the relaxation timescale τ from the Monte Carlo dy-

namics and show that χ (q = 0, ω) turns out to be the Debye
function about ω at fixed kBT whose half-width is given
by τ−1. Since both τ and χ (q = 0, ω = 0) diverge toward
QCP in lowering the temperature, the peak narrowing occurs.
This χ (q = 0, ω), when viewed as a function of temperature
for fixed ω, takes a maximum at Tm(ω) which significantly
decreases with ω due to the peak-narrowing effect. Since
χ (q = 0, ω) corresponds to the dielectric function of quantum
electric dipoles, the aforementioned experimental observation
can be understood as the signature of dynamical quantum
criticality in the vicinity of the charge ordering transition.

II. MODEL AND FORMULATION

A. Transverse Ising model

Let us introduce the TRI model in a two-dimensional
anisotropic triangular lattice:

H =
∑
〈i, j〉

−Ji jσ
z
i σ z

j − �
∑

i

σ x
i . (1)

The z component of the Pauli operator, σ z
i = ±1, accounts

for the location of charges in the ith lattice site representing a
dimer, which we call either “pseudospin” or “quantum electric
dipole.” The transverse field � flips the pseudospins up and
down via σ x

i = σ+
i + σ−

i , where σ±
i represents the raising

and lowering operators. We consider the Ising interactions
between quantum dipoles Ji j on neighboring dimers, i and j.
In the anisotropic triangular lattice, we take Ji j = J and J ′ for
the bonds along the two directions and the rest, respectively, as
shown in Fig. 1(b). We take ferromagnetic J (> 0) while vary-
ing J ′ from antiferromagnetic to ferromagnetic values. This
model is obtained by the strong-coupling perturbation the-
ory at the lowest order from the so-called extended Hubbard
model [11], a basic model of κ-(ET)2X , which includes the
on-site and inter-site Coulomb interaction between electrons
and the transfer integrals.

Different configurations of electric dipoles on neighboring
dimers have different Coulomb energies, which is the origin
of Ji j (Appendix A). From the first-principles calculation, the
actual parameter values of the extended Hubbard model are
precisely evaluated [16–18], and we transform it to our Ji j and
� (see Appendix A). We could thus access the experimentally
observed phenomena without bias or assumption by referring
to our numerical results with these material parameters.

The dynamical response to the spatially uniform external
field h(t ), represented by the perturbation H ′(t ) = −σ z

i h(t )
added to Eq. (1), is calculated by the Kubo formula [4]. The
susceptibility for wave number q and frequency ω is given as

χ (q, ω) = χ (q, 0) + iω
∫ ∞

0
dteiωt�(q, t ), (2)

which is interpreted in the experiments as a dielectric func-
tion, ε(q, ω)/ε0 = 1 + χ (q, ω) (ε0 is the permittivity of free
space), in an applied electric field. Here, �(q, t ) is the relax-
ation function given in an imaginary-time(τ ) and real-time(t)
connected form as

�(q, t ) =
∫ β

0
dτ 〈σ z

−q(ih̄τ )σ z
q (t )〉, (3)

013186-2

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



QUANTUM CRITICAL DYNAMICS IN THE … PHYSICAL REVIEW RESEARCH 5, 013186 (2023)

where σ z
q (t ) = e

iHt
h̄ (

∑
j σ

z
j e−iqr j )e− iHt

h̄ is the interaction pic-
ture of the Ising operator of wave number q. The imaginary
time τ that appears as parameter ih̄τ in Eq. (3) runs from zero
to inverse temperature β = (kBT )−1. Since we consider the
ferroelectric order of the quantum dipoles, we focus on the
case of q = 0 in the following.

Conventionally, Eq. (3) is calculated using the finite-
temperature Green’s function. There one performs the analytic
continuation from τ to t , but it is reliable enough only when
the analytic form of Green’s function is available, which is not
the case for strongly correlated quantum systems [2]. Tracking
real-time dynamics using numerical time evolution is lim-
ited to very small system sizes in the exact diagonalization
and to one-dimensional systems by the density matrix renor-
malization group [19] and matrix product construction [20],
which allows for only short timescales. One of the authors
developed the nearly exact dynamics of the thermal pure state
for a long enough timescale [21], but it is applied so far for
N � 30. Recently, the dynamics of the imaginary time evolu-
tion is examined in the quantum Monte Carlo study [22,23],
which illustrates that the nonadiabatic quantum dynamics at
a leading order could be similar to the real-time ones [23].
The generalized dynamical scaling of the susceptibility-like
quantity obtained averaged along the imaginary time shows a
good collapse [24].

B. Kinetic protocol

Traditional statistical mechanics has provided an idea to
implement the dynamics in classical models; it is to consider
an isolated system and observe the process of relaxation to-
ward local equilibrium during “the time evolution.” Glauber
dynamics is one such realization using the Markov process
[25]; when you apply the Markovian update of the state, a
single target spin is locally relaxed quite immediately through
the interaction with its surrounding spins that serve as a heat
bath. Then “the time evolution” using the stochastic process,
regardless of whether it is a heat bath method, Metropolis
method, or its analogs, was proved to reproduce well the
critical behavior, where both static and dynamical exponents
are successfully extracted. This was possible because the en-
ergetics is determined strictly locally in the classical system
with short-range interaction, which does not apply to quantum
systems in general.

However, the TRI model exceptionally realizes a quantum
local equilibration, to which we can apply the idea of Glauber
dynamics. This is because the quantum fluctuation is mediated
by the transverse field, which is the on-site fluctuation that has
intrinsically the same role as the local thermal fluctuation in
that they work to flip the spins locally. Let us first overview
the quantum Monte Carlo description of the TRI model. The
partition function of the TRI model appears to be the ensemble
of world lines running along the imaginary time direction
τ = [0 : β] with a periodic boundary, as shown in Fig. 2(a).
Since we take the quantization axis parallel to σ z

i , each point
along the ith world line takes either σ z

i = ±1, and interacts
by Ji j with the pseudospins on the neighboring jth world line.
The quantum fluctuation represented by the transverse field
works independently for each site i, and when the pseudospin
flips at some imaginary time τ , it is represented by the kink

on the world line. The kinks are inserted stochastically fol-
lowing the Poisson distribution and separate the world lines
into segments. The weight each segment carries is the inte-
grated classical Boltzmann weight about the Ising interaction
with the neighboring pseudospins at the same τ . The Markov
process is summarized into the following steps:

1. Choose site i to update,
2. Stochastically generate a series of new kink candidates

along the ith world line via the Poisson process with �,
3. Separate the world line into segments by old kinks and

kinks candidates,
4. Update σ z

i on each segment τ ∈ [τs : τ f ] follow-
ing the thermal-bath method using the weight,
exp[

∫ τ f

τs

∑
j Ji jσ

z
i (τ )σ z

j (τ )dτ ].
5. We repeat these steps for i ∈ [1 : N].
The segments are locally updated independently of the rest

of the system other than its neighboring segments, which pro-
duces the situation of the classical Glauber dynamics. Namely,
the above-mentioned Markov process safely relaxes the TRI
model toward thermal equilibrium by making use only of the
local updates in a unit of segments. Importantly, this process
was empirically proved to successfully reproduce the dynam-
ical scaling relation of the TRI model on the square lattice
[26]. By taking � → 0, we find the smooth connection to the
Glauber dynamics of the classical Ising model.

We study the dynamical properties using this Markov pro-
cess which we call a kinetic TRI protocol. The evaluation
of Eq. (3) is straightforward. We approximate the two time
evolutions to be independent and denote the two variables
explicitly as σ z(τ, t ), where the Monte Carlo step, namely,
the algorithmic time t , is read off as real time. As in the
Glauber dynamics, t is not exactly real time but is regarded as
proportional to real time. We measure 〈σ z

j (τ, s)σ z
i (0, s + t )〉eq

between σ z
i of t = s at imaginary time τ and that of t = s + t

at imaginary time 0. We take an average over M time steps in
the equilibrium as

�(ri − r j, t ) =
∫ β

0
dτ

〈
σ z

j (τ, 0)σ z
i (0, t )

〉
eq

∼= 1

M

M∑
s=0

〈( ∫ β

0
dτσ z

j (τ, s)

)
σ z

i (0, s + t )

〉
, (4)

�(q, t ) = 1

N

N∑
i=1

N∑
j=1

e−iq(ri−r j )�(ri − r j, t ). (5)

Here the integration over imaginary time τ is made in-
dependent of the algorithmic time t . This approximation
becomes exact only in the t → ∞ limit. Our QMC calcu-
lation is performed for a N = L × L site cluster with L =
8, 16, 32, 64, 128, while taking L × kBT = 8, 4, 1, 0.5. This
is because near the QCP, the minimum temperature that cap-
tures the relatively size-free (L > ξ ) results is limited at each
L, and the correlation length ξ diverges in powers. Similarly,
the time correlation represented by the relaxation time τL

extends to more than 106 steps near QCP, so that we averaged
Eq. (5) over 16 runs, taking M = 107 time steps for each.

Finally, we notice that some other protocols are applied
to quantum annealing [27,28], while they do not fulfill the
condition for Glauber dynamics; Ref. [28] includes the loop
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FIG. 2. Results of QMC for the TRI model on an anisotropic triangular lattice given in units of � = 1. (a) Schematic illustration of
a set of world lines describing the partition function of the TRI model given on the place of space(i) and imaginary time(τ ), which are
periodic about τ = [0 : β]. Kinks (cross symbols) including old (black) and new (blue) ones separate the world lines into segments and the
highlighted/plain segments carry σ z = 1/ − 1. (b) Phase diagram on the plane of J , J ′, and kBT . The shaded region corresponds to the ordered
phase (ferroelectric order of dipoles). The material parameters of κ-(ET)2X (Appendix A) fall near the blue point (J ∼ 0.1, J ′ ∼ 0.5) in the
diagram at kBT = 0. The right panel shows the cross section of the phase diagram at J = 0.1 at low kBT in the vicinity of QCP. The case of
square lattice (J ′ = 0) in green cross section is given in Appendix C. (c) Relaxation function �(q = 0, t ) obtained by the QMC calculation
at L = 64 and J ′ = 0.47, J = 0.1 for several choices of kBT . (d) τL and χ0;L extracted from the relaxation function at several L, plotted as
functions of kBT . The envelope lines (broken lines) τ = c1(kBT )−z, χ0 = c2(kBT )−

γ
ν are their thermodynamic limit for fitted z = 2.11 and

γ /ν = 2.10. The solid line represents the same function using the 3D critical exponents z = 2.02 and γ /ν = 1.966 with c1 = 4.34, c2 = 4.61,
which is almost the same as the case of square lattice (Appendix C, Fig. 7). (e) Dynamical finite-size scaling analysis. Correlation time τint

is obtained for a series of L = 8, 16, 32, and 64 for kBT/� = 0.5, 0.25, 0.125, 0.0625, 0.031 25, 0.007 812 5, with �/kBT = 2L. The data
collapse to a single scaling function φ.

update, and Ref. [27] performs simultaneous flipping of a vari-
able along the whole imaginary time. Particularly in the latter,
the relaxation process may change and shall be discriminated
from Ref. [26]. We briefly note that there are some other trials,
like a phenomenological extension of the Glauber dynamics to
quantum systems [29], or variational Monte Carlo approaches
regarding time evolutions [30], and semiclassical approxima-
tion using the discrete Monte Carlo sampling in phase space
[31].

III. RESULTS

A. Phase diagram

We first overview the low-temperature properties of the
TRI model on an anisotropic triangular lattice. Overall, at
large enough Ji j/�, the system is in an ordered phase, while
the increase of � makes the system disordered, and the phase
transition between the two is typically second order. We show
the kBT − J − J ′ phase diagram in Fig. 2(b) in units of � = 1

obtained by the present QMC calculation. We made a Binder
plot of the pseudospin magnetization m = ∑

j σ
z
j /N to evalu-

ate the phase boundaries at low temperatures, and the higher
temperature Tc’s are evaluated by the specific heat data (see
Appendix B and Fig. 6 for details).

The ordered phase extends from the large J, J ′ > 0 region
toward slightly antiferromagnetic J ′. The case of the square
lattice (J ′ = 0) is well studied [26,32], and the phase boundary
at kBT = 0 (QCP) is evaluated as Jc/� = 0.3284(9) [26].
From a series of first-principles calculations, a family of κ-
(ET)2X is located at around J ∼ 0.1, J ′ ∼ 0.5 (Appendix A)
[16], which is marked in Fig. 2(b). One finds that it is near the
QCP.

B. Relaxation function

In the disordered phase relatively near the phase boundary,
the relaxation function �(q = 0, t ) shows a clear exponential
decay as a function of a QMC time step typically as in
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FIG. 3. Dynamical susceptibility χ (q = 0, ω) obtained by the kinetic TRI protocol as functions of ω and kBT . (a) Three-dimensional plot
showing a set of Debye functions about ω for different choices of kBT . We choose (J ′, J ) = (0.47, 0.1) that exhibits QCP in Fig. 2(b). Inset
shows the temperature dependence of τ and χ0 used for this plot and are extracted from the relaxation function. Small arrows indicate the
peak positions, Tm(ω). (b) ω dependence of χ (q = 0, ω) for several choices of kBT . The half-width of the q = 0 peak gives τ−1 and its peak
height gives χ0. (c, d) Temperature dependence of χ (q = 0, ω) for several choices of ω, ranging over 5 − 30 × 10−5 and 2 − 10 × 10−3. (e) ω

dependence of Tm for the QCP data [in panels (c, d)] and for slightly off QCP, (J ′, J ) = (0.48, 0.1). Solid and broken lines are ∝ ω1/2.03 fitted
by the QCP data and ω1/z, z = 2.095, respectively.

Fig. 2(c), which can be described as

�(q = 0, t ) = χ0;L exp(−t/τL ), (6)

using the static uniform susceptibility, χ0;L, and the relaxation
time τL at fixed kBT , J, J ′, and L. The extracted values of χ0;L

and τL are plotted in Fig. 2(d) for L = 8, 16, 32, and 64 as
functions of kBT at J ′ = J ′

c. Data points belonging to different
L follow different curvatures, which converge to an envelope
function: they are the values at the thermodynamic limit, given
as τ ∝ (kBT )−z and χ0 ∝ (kBT )−γ /ν . When the correlation
length ξ exceeds L at low kBT , the data points fall off from
the envelope function. Here we plot the case of z = 2.02 and
γ /ν = 1.966 as a solid line for the three-dimensional (3D)
universality class at the QCP, while the broken lines obtained
by leaving z and γ /ν as fitting parameters are shown as a
reference.

C. Finite-size scaling analysis

We now test the similarities between the present kinetic
TRI protocol and the original TRI model by the generalized
dynamical finite-size scaling analysis; the scale invariance is
expected in the dynamical critical phenomena, which results
in the finite-size scaling form of the relaxation timescale near
QCP, given as

τint (J
′, L) = Lzφ[(J ′ − J ′

c)L
1
ν ], (7)

where z is the dynamical critical exponent, and ν is the critical
exponent characterizing ξ ∝ |J ′ − J ′

c|−ν . We evaluate τint at

low temperatures available in a series of kBT = �/2L down
to kBT = 0.007 812 5� with � = 1 by varying J ′ in the phase
diagram of Fig. 2(b). We use the following integral:

τint =
∫ ∞

0
�(q = 0, t )

/
�(q = 0, 0)dt, (8)

which gives the value independent of the detailed functional
form of �(q = 0, t ). Figure 2(e) shows the finite-size scaling
plot using L = 8, 16, 32, and 64. One finds an almost perfect
collapse of the data points into a single functional form. The
exponent obtained by this plot is Jc/� = 0.4700, (z, 1/ν) =
[2.095, 1.56(3)], which is fully consistent with our Binder
analysis of TRI and the fitting of exponents on the kinetic TRI.
We thus think it to be properly interpreted as a 3D universality
class.

D. Susceptibility and critical exponents

We have shown that the relaxation function decreases ex-
ponentially with t as Eq. (6), and one can extract from a series
of χ0;L and τL, their L → ∞ limit, τ and χ0. Since the system
is near QCP, τ and χ0 diverge in powers toward the ordered
phase as [see the inset of Fig. 3(a)],

τ (kBT ) = c1(kBT )−z, χ0(kBT ) = c2(kBT )−
γ

ν , (9)

where γ is the magnetic critical exponent and ci are the
constant coefficients. This could be understood as follows:
Consider a quantum 2D system of size L × L with an ad-
ditional axis in the imaginary time direction [0 : β] that
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characterizes quantum fluctuation. As the system approaches
QCP, the correlation length ξ diverges. Suppose that L is large
enough to assume L > ξ , and then β becomes the upper bound
of the effective system length. For moderately low tempera-
tures, ξ cannot develop larger than β. From the scaling theory
we immediately find τ ∝ ξ z = (kBT )−z. The form Eq. (9) is
applied to laboratory systems as well as to theoretical models.

The criticality at QCP and off QCP in the ordered region
follows that of the 3D and 2D (kinetic) Ising universality
classes [1,2] [the two lines in the right panel of Fig. 2(b)], and
their exponents are evaluated as (z, γ , ν) = (2.02 [33],–2.03
[34], 1.237, 0.629 [35],–0.630 [36]) and (2.165 [37],–2.18
[38,39], 1.75,1), respectively. We analyzed the QMC data
precisely and found good agreement with these exponents
(Appendices C and D, Fig. 7). The envelope of Fig. 2(d)
follows these exponents. It is notable that c1 and c2 do not
seem to depend on the location of QCP in the phase diagram.

The dynamical susceptibility in Eq. (2) is a Fourier trans-
form of Eq. (6), which is given analytically in the Lorentzian
form as

χ (q = 0, ω) = χ0
τ−2

ω2 + τ−2
. (10)

It corresponds to the Debye function in dielectrics. The cross
sections of Fig. 3(a) at fixed values of kBT and ω are shown in
Figs. 3(b) and 3(c), respectively. The frequency dependence of
Tm(ω) near QCP is scalable, namely, if we take the tempera-
ture range one order of magnitude higher than that of the main
panel of Fig. 3(c), almost the same functional form is observed
by shifting the frequency to the higher energy [Fig. 3(d)].

Let us apply the scaling analysis to the dynamical suscep-
tibility. Remembering the form of χ0 in Eq. (9) at |J ′ − J ′

c| →
0, one can express Eq. (10) as χ (T, ω) = T −γ /νψ (ωτ ). In
finite-size systems, in approaching QCP the correlation length
cannot exceed ξ ∼ β and accordingly, τ ∝ ξ z ∼ T −z, which
means that χ (T, ω) = T −γ /νψ (ωT −z ). The peak position of
this function fulfills

Tm ∝ ω1/z. (11)

The data points shown in Fig. 3(e) obtained from Figs. 3(c)
and 3(d) indeed follow this power law dominated by the
dynamical critical exponent. As we discuss shortly, this be-
havior is in good agreement with the dielectric experiments
on κ-ET2Cu2(CN)3.

By precisely evaluating the data by the QMC calculation
and from the size scaling, we obtain a set of (χ0, τ ) in Eq. (10)
over the whole region of the phase diagram. Their contour
maps are given in Fig. 4. In the region τ < 10 we are no
longer able to perform the fitting of Eq. (6), which is marked
as a red broken line in Fig. 1(b). The corresponding behav-
ior for the case of the square lattice (J ′ = 0) is shown in
Appendix C, Fig. 7. In Fig. 1(b) we wrote two broken lines
that develop from QCP, generally expected as a naive and
schematic description of the crossover line from the critical
to the disordered region. However, our calculations show that
in reality, there is no discipline to determine such crossover.
Indeed, such behavior is only applied at extremely low kBT �
0.05, above which the contour lines show model-dependent
shapes that follow the phase boundary. Our calculations show
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FIG. 4. Density map of (a) static susceptibility χ0 and (b) the
relaxation time τ extracted from the envelope of the relaxation func-
tion, plotted as functions of kBT for the TRI model on a triangular
lattice taking � = 1 as a unit.

that the criticality that follows that conventional picture is
observed at a much lower temperature than usually expected.

IV. SUMMARY AND DISCUSSION

We have clarified how quantum criticality appears in the
dynamics of the quantum many-body system. As an ideal and
realistic platform, we chose the TRI model on an anisotropic
triangular lattice, whose Ising degrees of freedom represent
the quantum electric dipole degrees of freedom in the dimer
Mott insulating phase of the organic crystal, κ-ET2X . The
same set of calculations is also performed for the case of
the regular square lattice to confirm that the results are not
dependent on the model parameters. The model is known
to exhibit a quantum criticality and can be almost exactly
solved numerically by the quantum Monte Carlo method. We
developed a kinetic TRI protocol to study the quantum dy-
namics of the TRI model, which is built on the local quantum
Monte Carlo update of segments of world lines running in
the imaginary time directions. This Markov update enables a
rapid local equilibration of each segment that can be mapped
to the case of classical Monte Carlo updates of higher di-
mensions. Since the latter is known to capture the intrinsic
real-time Glauber-type dynamics, our Monte Carlo time can
mimic real-time relaxation in the same context, allowing us

013186-6

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



QUANTUM CRITICAL DYNAMICS IN THE … PHYSICAL REVIEW RESEARCH 5, 013186 (2023)

to study the semiclassical dynamics representing the quantum
dynamics of the original model.

In this protocol we obtained the dynamical suscepti-
bility by analyzing the Monte Carlo time dependence of
the correlation functions and showed that they have Debye
functional form with its peak heights and inverse of width
diverging algebraically in approaching QCP. This led to a
significant peak narrowing, and the obtained temperature de-
pendence of the dynamical susceptibility is found to show a
frequency-dependent peak shift reminiscent of the relaxor-
ferroelectric-like behavior observed in many experimental
studies of organic dimer Mott materials [40,41].

We briefly refer to some theoretical studies discussing this
relaxor-ferroelectric-like behavior of κ-ET2X . The extended
Hubbard model in one dimension is studied at the mean-field
level using the phase Hamiltonian [15], which they aim to
represent phenomenologically using the cross-section line of
the 2D systems. They discussed the kinks (the domains in 2D)
as the origin of frequency-dependent peaks, and by evaluat-
ing the dynamical correlation function of kinks, showed that
their relaxation timescale shall vary with frequency by orders
of magnitudes. This may give one simplified interpretation
of part of the phenomena; however, they do not explain a
temperature-dependent characteristic dynamical susceptibil-
ity, and the phenomena seem to have no relevance to the
criticality we observed.

The authors in Ref. [42] have studied the analog of
the effective model in Ref. [11] for κ-ET2X . They discarded
the quantum fluctuation term and performed the classical
Monte Carlo study, where they took account of the elec-
tron spin as a classical SO(3) vector which coupled with
the electric dipole described as Ising pseudospins, showing
that the two will generate a dynamical (classical) disorder
to each other. The dipole susceptibility shows broad peaks
in lowering the temperatures, which they attributed to the
glassiness; it may be relevant to the glassy behavior of
κ-ET2Cu2(CN)3 at T < 6 K [5]. Indeed, the coupling of two
different degrees of freedom can be a driving force of glassi-
ness. Recently, one of the authors and collaborators showed
that in a three-dimensional frustrated pyrochlore lattice, the
model including the spin and lattice-displacement coupling
can exhibit a thermodynamic glass transition at finite temper-
ature even without quenched disorder [43], which explained
the long-standing puzzle on the origin of the disorder-free
spin glass in Y2Mo2O7 [44]. Since the classical model in Ref.
[42] is 2D, the fluctuation disturbs the true glass transition
and the system remains glassy. If one deals with it quantum
mechanically, there shall be room for the true glass transition
[45].

We now compare the overall behavior of χ (q = 0, ω) with
the experimentally observed [5,6] dielectric constant ε′(ω)
of κ-(ET)2X . The material at ambient temperature is a good
conductor. At temperatures below 100 K, the charges start
to lose their conductance and localize on each dimer, and a
quantum electric dipole is spontaneously formed due to strong
electronic correlations [11]. This electric dipole emerges due
to the special modulation of wave function (charge distribu-
tion), which should be discriminated from the conventional
and semiclassical lattice-displacement types of dielectrics
[46]. As the frequency is varied from 1 to 100 kHz, the

peak position of the dielectric constant of κ-(ET)2Cu2(CN)3

shifts from about 20 to 50 K. By extracting ε′(ω) within this
temperature window and fitting them by Eq. (10), we find a
series of Debye curves belonging to different T that crosses in
a manner comparable to Fig. 3(b) (Appendix E). In the case
of κ-(ET)2Cu[N(CN)2]Cl, only slight variation of Tm(ω) ∼
25–30 K is found, with no such crossings, and is considered
to locate off the QCP.

One remaining issue is that we cannot directly determine
the laboratory timescale that corresponds to the Monte Carlo
time step. Still, we may safely assume that for each temper-
ature t = a(T )tlab holds, where a(T ) could become smaller
with lowering the temperature by a few factors. If we plot the
extracted value of τ for κ-(ET)2Cu2(CN)3 against (T − Tc),
taking Tc = 6 K where the Curie tail of ε′(ω) diverges [5], we
obtain τlab ∝ (T − Tc)zlabν with zlabν ∼ 2–3 (Appendix Fig. 9)
not too different from that of the 2D Ising ones expected for
the parameter region having nonzero Tc.

Although there had been a dispute on whether such seem-
ingly subtle dipole really exists [47,48], further examination
of κ-(ET)2Cu[N(CN)2]Cl after Ref. [6] for many samples
supported the picture of the order-disorder type of ferro-
electrics [49]. The dipoles have further proven to be present
in β-(ET)2ICl2, a similar 2D material showing the same
critical dynamics, via observation of pyrocurrent [50], col-
lective mode [51], and the polarization curve [52]. The
noise measurements on β-(ET)2ICl2 suggest an emergent
nanoscale polarized cluster [41] which is apparently not
due to impurities. The phenomenon is not restricted to ET
systems, as it is observed in another dimer Mott insulator,
β ′-type Pd(dmit)2 [40]. Similar dynamics is quite relevant
near the phase transition in a series of quasi-one-dimensional
organic materials TMTSF2X [53,54] based on dimerized
molecules, although its criticality was not really discussed
before.

The quantum nature of dielectrics has become a topic
in a series of materials. A geometrical frustration-induced
quantum paraelectric nature is found in the conventional
displacement-type of dipoles in a hexaferrite BaFe12O19 [55].
Critical behavior of the static dielectric function has been dis-
cussed in another displacement-type of quantum paraelectric,
SrTiO3, on the basis of a phenomenological φ4 theory, which
explains well the experimental observation in such a 3D sys-
tem with quantum fluctuation [56]. Then finally, the present
study reached the dynamics of dipoles in the presence of
strong quantum fluctuation characteristics of two dimensions.
The TRI model adopted here may serve as an intersection of
material science in laboratories and the modern theories of
computational science.
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APPENDIX A: MICROSCOPIC DERIVATION
OF THE MODEL PARAMETERS

We evaluate the model parameters of κ-ET2X based on
the first-principles calculation reported by one of the authors
[16]. Figure 5 shows the schematic description of the 2D
conducting layer of κ-ET2X , where the circle represents an
ET molecular orbital (which we call here “sites”) and the
oval a dimer. There are four sites and two dimers in the unit
cell. This family of material has an old history [7], and is
well described by the extended Hubbard model in a unit of

V2

4ele

3ele

2ele

1ele

0ele

UU V1

t1

(a)

extended Hubbard model

A B

(b)

(c)

FIG. 5. Schematic description of the models of κ-ET2X .
(a) Mapping of the extended Hubbard model based on molecules
(circles) to the TRI model based on dimers (ovals). The indices
on four independent bonds are those of ti,Vi, i = 1 ∼ 4. (b) The
16 basis of the extended Hubbard model on a single dimer, where
↑ and ↓ indicate the electrons of up and down spins, respectively.
The four different configurations with one electron per dimer form
the low-energy local Hilbert space at large V1,U . When the spin
degrees of freedom are neglected at the leading order of perturbation,
they are reduced to 2. (c) Configuration of electrons on adjacent
two dimers, where the arrows indicate the corresponding pseudospin
configuration. The second panel has energy V2 and others zero, which
yields the Ising interactions between pseudospins, see text.

molecular orbitals as [57]

H =
∑
〈i, j〉

∑
σ=↑,↓

−ti j (c
†
iσ c jσ + H.c.) +

N∑
i=1

Uni↑ni↓

+
∑
〈i, j〉

Vi jnin j, (A1)

where c†
iσ /ciσ is the creation/annihilation operator of

electrons on site i and spin σ , and niσ = c†
iσ ciσ , ni = ni↑ + ni↓

are their number operators. The transfer integrals ti j are
evaluated from the latest first-principles calculation as (Tables
I and II of Ref. [16]), (t2, t3, t4) = (0.46, 0.43,−0.08) and
(0.34, 0.51,−0.21) for X = Cu2(CN)3 and Cu[N(CN)2]Cl,
respectively, in units of t1, showing that the geometry of
t’s depends on materials. The intradimer transfer integral
is not much different between materials: t1 = 199 meV
and 207 meV for X = Cu2(CN)3 and Cu[N(CN)2]Cl,
respectively. They take 195–209 meV for all other κ-ET2X
studied in Ref. [16]. The on-site Coulomb U and the inter-site
Coulomb interactions Vi j are also evaluated based on the
molecular distances (x-ray structure) [16] referring to the
ab initio down-folding [17], which are U = 8,
(V1,V2,V3,V4) = (4.0, 2.0, 2.4, 2.0) in units of t1 = 200 meV
(or V2 ∼ 0.4 eV), also almost independent of X . While the
amplitudes of these interactions are overestimated, the ratio
between these interactions shall be safely adopted.

Let us consider the strong-coupling case, U,V1 � Vi, ti,
where the electrons do not occupy the same site nor the dimer.
There are 42 = 16 basis states in a dimer, but this is reduced
to 4 in the strong-coupling case [see Fig. 5(b)]. One of the au-
thors has derived the effective Hamiltonian by the perturbation
up to the fourth order [11], where the second-order pertur-
bation is responsible for the coupling of the spin and charge
degrees of freedom, whereas the leading order (namely, first
order in ti j) does not include the spin operator, as the spins
can only hop within dimers. Therefore taking only the lowest
order reduces the number of basis per dimer to 2, in which
the configuration of charge degrees of freedom in the dimer is
represented via the up and down of pseudospins, σ z

i = ±1/2.
The effective Hamiltonian is reduced to the representation of
m = 1 ∼ 2N basis,

H(1)
eff =

∑
m,m′

〈m|Hmm′ |m′〉 =
∑

i

−Ji jσ
z
i σ z

j + �

N∑
i=1

σ z
i , (A2)

where � = t1 and J = (V3 − V4)/4, J ′ = V2/4. The intradimer
transfer integral moves the charge back and forth, which
works as a transverse field that flips the pseudospins. Regard-
ing the interdimer interaction, the energy difference between
the two different classical configurations of pseudospins
amounts to 2Ji j , which are given by that of the original Hamil-
tonian as the difference of contributions from the interdimer
Coulomb terms. As shown in Fig. 5(c), there are four con-
figurations of the adjacent dimers A and B, and only the third
panel gives V2 and others zero, which is described by the pseu-
dospin operators as V2[1 + σ z

Aσ z
B (1 − σ z

A)/2]/2. As (σ z
A)2 = 1

and 〈∑N
i=1 σ z

i 〉 = 0, this term is reduced to V2σ
z
Aσ z

B/4 and we
find J ′ = V2/4. The relation J = (V3 − V4)/4 is constructed in
the same manner using V3 and V4.
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FIG. 6. (a) Phase diagram of the transverse Ising model in Eq. (1) at � = 1 on the triangular lattice. The cross sections of the J − J ′ − kBT
diagram [small square corresponds to the parameter region of Fig. 2(b) right panel] for several fixed J ′ on the plane of J and kBT and for fixed
J = 0.1–1.0 on the plane of J ′ and kBT are shown in two panels. The data points that mark the transition Tc are determined by the crossing
of the Binder ratio g for kBT � 0.5 (deep colored symbols) and as the peak position of the specific heat of L = 16 results at kBT � 0.8
(light colored symbols). (b) Binder parameter calculated for L = 8, 16, 32, 64 at J = 0.1 as a function of J ′ around the phase transition point
J ′

c ∼ 0.47 at two low temperatures. The right inset shows the Binder crossing as a function of kBT that almost coincides with the crossing point
of the middle panel, Tc = 0.125, J ′ ∼ 0.4796. (c) Specific heat c/kB of J ′ = 0.8, J = 0.1 with L = 16.

The TRI model Eq. (A2) is the natural low-energy effec-
tive model of Eq. (A1) and preserves the symmetry of the
original electronic model. Since σ z

i corresponds to the electric
dipole, the “total magnetization” (

∑
i σ

z
i ) is not the true total

magnetization of the electronic system but the total electric
polarization, which can take any value within the range al-
lowed. We also notice that the dimers A and B are equivalent
both in Eq. (A2) and Eq. (A1), although the dimers align in
different directions and the crystal inversion symmetry be-
tween A and B is slightly broken in real materials.

Substituting the first-principles values of V ’s to the
above relation yields J/� ∼ 0.1 and J ′/� ∼ 0.5 for � ∼
200 meV, and X = Cu2(CN)3 has slightly larger values than
Cu[N(CN)2]Cl. Importantly, it locates in the very vicinity of
the QCP (J/� = 0.1, J ′/� = 0.47) in the phase diagram we
obtained in Fig. 2(b). We briefly note that Ref. [42] performed
a higher-order perturbation with extra terms included com-
pared to Ref. [11].

APPENDIX B: DETAILS OF THE PHASE DIAGRAMS

We present the details of how we obtained the phase di-
agram given in Fig. 2(b). The cross sections of the phase
diagram for fixed J ′ and J are shown in the two panels of
Fig. 6(a). The phase boundaries of J < 0 and J > 0 are sym-
metric, and only the positive J part is presented in Fig. 2(b).
The square marks the critical region where we intensively
studied in the main text. Since we need to precisely evaluate
the phase boundaries at low temperatures, we calculated the
dimensionless Binder ratio,

g = 1

2

(
3 − 〈m4〉

〈m2〉
)

, (B1)

where m is the magnetization density. As shown in Fig. 6(b),
their crossing point is almost independent of L and gives a
good evaluation of the transition points at low temperatures.
The data points at kBT � 0.5 in Fig. 6(a) are obtained using
this analysis.

The overall phase boundaries at kBT � 0.8 are evaluated
as the peak position of the specific heat density, c/kB =
(〈e2〉 − 〈e〉2)N/(kBT )2 − 〈nk〉, in the quantum Monte Carlo
simulation, where the last term gives the expectation value
of kink density [see Fig. 2(a)] responsible for the quantum
fluctuation, required in addition to the fluctuation of energy
density e. The data in Fig. 6(c) shows the representative
data for J ′ = 0.8, J = 0.1 which gives Tc ∼ 0.75 in the right
panel (a).

APPENDIX C: SQUARE LATTICE TRANSVERSE
ISING MODEL

We study some other parameters in the phase diagram in
Fig. 2(b), i.e., the square lattice ferromagnetic TRI model
at J ′ = 0. Qualitatively the same results are obtained for the
square lattice. Figures 7(a) and 7(b) are the kBT dependences
of χ0;L and τL to be compared with Fig. 2(d). Here we show
both the case at QCP and just off QCP, which follow the expo-
nents of the 3D and 2D Ising universality classes, respectively.
The plots of τ and χ0 on the plane of J and kBT are shown
for a wider temperature range than Fig. 4 in the main text.
Although the contour lines are rather different, the overall
tendency does not depend on the parameters J and J ′. Also, τ

and χ0 extracted from the envelope function of Figs. 7(a) and
7(b) at QCP of the square lattice almost coincide with those
of the anisotropic triangular lattice, including the constant
coefficients.

We note that the temperature dependences of τ and χ0 at
J ′ > J ′

c, namely, when Tc > 0, are different from those of the
quantum critical point discussed in Eq. (9) in the main text.
They follow

τ ∝ (T − Tc)−zν, χ0 ∝ (T − Tc)−γ (C1)

with z ∼ 2.18, ν = 1, and γ = 1.75 (see the main text), which
belong to the 2D Ising universality class. When fixing the
temperature and approaching the phase boundary by varying
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FIG. 7. Results of QMC calculations for the square lattice, J ′ = 0. (a) Static susceptibility χ0;L and (b) relaxation time τL extracted from
the relaxation function �(q = 0, t ) at L = 8, 16, 32, 64, plotted as functions of kBT for J = 0.32840 and 0.33547 at QCP and slightly off
QCP. Error bars are smaller than the symbols. The solid and broken lines follow τ = c1(kBT )−z and χ0 = c2(kBT )−γ /ν . The red solid lines
follow the critical exponent (z, ν, γ ) = (2.02, 0.629, 1.2379) and (2.183,1,1.75) for J ′ = 0.32840 (top) and 0.33547 (bottom) of the 3D and
2D Ising universality class, respectively, where the former (top panel) yields c1 = 4.225, c2 = 4.623, which is similar to the case of the
anisotropic triangular lattice [Fig. 2(d)]. Broken lines are the fitted envelope functions describing the thermodynamic limit with an exponent
of (z, γ /ν ) = (2.04, 1.87) and (2.11,1.74) in the top and bottom panels, respectively. (c, d) Density map of the static susceptibility χ0 and the
relaxation time τ obtained from the Monte Carlo calculation at J ′ = 0 (square lattice), the latter from the kinetic TRI protocol.
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FIG. 8. Dynamic susceptibility, χ (q, ω), as a function of kBT for three different choices of J an J ′ with � = 1. (a) Square lattice at QCP,
J = 0.3284, J ′ = 0; (b) square lattice off QCP, J = 0.3354, J ′ = 0, with kBTc = 0.1206; and (c) triangular lattice at QCP, J = 0.1, J ′ = 0.48,
with kBTc = 0.1163. Panels (b) and (c) follow the 2D Ising universality class.

013186-10

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



QUANTUM CRITICAL DYNAMICS IN THE … PHYSICAL REVIEW RESEARCH 5, 013186 (2023)

(K)

0.5 kHz
1
5
10
50
100
500

1

5

10

0 10 20 30 40 50 60 70

(a)

1

10

1 10 100
100

1000

1 10 102 103 104

25K
27K
29K
31K
33K
35K
37K
39K
41K
43K
45K

(kHz)

100

200

300

400

(K)
0 10 20 30 40

2.1 Hz
20
121
469
1160
4460
11.1k
27.3k
100k

-(ET)2Cu[N(CN)2]Cl
(b)

32K
34K
36K
38K
40K
42K
44K
48K
50K

0.001

0.01

0.05

5010

(kHz)

-(ET)2Cu2(CN)3

2D

FIG. 9. Dielectric constant ε ′(ω) in units of ε0 of (a) κ-ET2Cu2(CN)3 and (b) κ-ET2Cu[N(CN)2]Cl, reported in Refs. [5,6]. Data is
provided by the courtesy of Sasaki and Lunkenheimer. Solid lines are the Lorentzian fit [Eq. (10)], and the value of τlab for (a) is given in
the inset as functions of (T − Tc ) with Tc = 6 K. The solid/broken lines in the inset show the function (T − Tc )−zν with z = 2.18 (2D Ising
universality) and 3, respectively.

the model parameters, g = J or J ′, they follow

τ ∝ |g − gc|−zν, χ0 ∝ |g − gc|−γ (C2)

where gc = Jc or J ′
c are the phase boundaries.

APPENDIX D: DYNAMICAL SUSCEPTIBILITY OFF QCP

We here show in Figs. 8(b) and 8(c) the dynamical sus-
ceptibility χ (q, ω) as a function of kBT when the model
parameter is slightly off QCP. The one at QCP for the square
lattice is given together in Fig. 8(a), which is almost the same
as that of Fig. 3(c) in the main text. In the case off QCP, χ0 and
τ diverge toward Tc > 0, and below Tc, enter the ferro-ordered
phase. A similar behavior as that of the QCP is observed, but
their critical exponents are that of the 2D universality class,
which we confirmed in the calculation in Fig. 7.

APPENDIX E: REEXAMINATION OF THE
EXPERIMENTAL RESULTS BY ABDEL-JAWAD et al.

AND LUNKENHEIMER et al.

Based on our theoretical findings, we here reex-
amine the previous reports on the dielectric measure-
ments of κ-ET2Cu2(CN)3 by Abdel-Jawad et al. and
κ-ET2Cu[N(CN)2]Cl by Lunkenheimer et al. In these mea-
surements, the dielectric constants in units of ε0 show a peak
at temperature Tm(ω) which distributes at 20–50 K in the
former and 25–30 K in the latter material, when the frequency
varies from the order of 1 Hz to 100 kHz (see the insets of
Fig. 9). These results shall be qualitatively compared to our
χ (q = 0, ω) besides the constant and the possible experimen-
tal background values of ε’s from a different origin. Let us fix
the value of T and extract the experimental data from these
figures, and by plotting them against ω we find Figs. 9(a) and
9(b). In the case of κ-ET2Cu2(CN)3, the successive crossing
of lines belonging to different T takes place over the fre-

quency range of 10–500 kHz to be compared with Fig. 3(b),
which can be the origin of the large frequency dependence
of Tm. These lines are a Lorentzian fit following Eq. (10)
in the main text, and the obtained τlab [inset of Fig. 9(a), in
units of (kHz)−1] varies by one order of magnitude during the
temperature change of 10 K. We plot τlab against (T − Tc)
with Tc = 6 K and draw a line proportional to (T − Tc)−zlabν

with ν = 1. While we cannot precisely determine the ex-
ponents as we are not able to extract reliable error bars in
fitting ε with relatively small numbers of data points, the
data seems to fall between zlab ∼ 2.18 (2D critical expo-
nent, solid line)–3 (broken line). By contrast, in the case of
κ-ET2Cu[N(CN)2]Cl, such crossing does not take place, and
τ stays extremely small, of order 10−6 (Hz)−1 with no signif-
icant variation against T .

We thus consider that κ-ET2Cu2(CN)3 is in the critical
region of the phase diagram, and the frequency dependence
is overall understood as a signature of the dynamical crit-
icality. The interpretation of κ-ET2Cu[N(CN)2]Cl, is not
straightforward. The almost frequency-independent behavior
indicates that the system is in the disordered phase slightly
away from the critical region, whereas τ is very large.
One way to reconcile these two tendencies is to notice that
κ-ET2Cu[N(CN)2]Cl has a Néel order at 27 K, which may
be related to the dielectric ordering. If the system is near
but off the critical point, the coupling of dipoles with spin
degrees of freedom may work as a perturbation to drive the
system to the first-order transition of dipoles and magnetism.
These couplings indeed emerge in the model one of the au-
thors discussed previously [11,42]. In fact, κ-ET2Cu2(CN)3

does not show magnetic ordering down to lowest temperature,
which supports this scenario. The first-principles calculation
shows that � = t1 is slightly larger, namely, J/� is smaller, for
κ-ET2Cu[N(CN)2]Cl than κ-ET2Cu2(CN)3. This is also con-
sistent with the fact that the former is away from the critical
point.
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