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Projecting XRP price burst 
by correlation tensor spectra 
of transaction networks
Abhijit Chakraborty 1,2*, Tetsuo Hatsuda 2 & Yuichi Ikeda 1

Cryptoassets are becoming essential in the digital economy era. XRP is one of the large market cap 
cryptoassets. Here, we develop a novel method of correlation tensor spectra for the dynamical XRP 
networks, which can provide an early indication for XRP price. A weighed directed weekly transaction 
network among XRP wallets is constructed by aggregating all transactions for a week. A vector for 
each node is then obtained by embedding the weekly network in continuous vector space. From a 
set of weekly snapshots of node vectors, we construct a correlation tensor. A double singular value 
decomposition of the correlation tensors gives its singular values. The significance of the singular 
values is shown by comparing with its randomize counterpart. The evolution of singular values shows a 
distinctive behavior. The largest singular value shows a significant negative correlation with XRP/USD 
price. We observe the minimum of the largest singular values at the XRP/USD price peak during the 
first week of January 2018. The minimum of the largest singular value during January 2018 is explained 
by decomposing the correlation tensor in the signal and noise components and also by evolution of 
community structure.

Cryptoassets represent value that one can transfer, store, or trade digitally. It uses cryptography to protect data 
and distributed ledger technology to record transactions. A blockchain technology, which is a form of secure 
digital ledger, is used to store the records of crypto transactions. Recently, cryptoassets have been very popular 
as an investment, but cryptoasset prices are extremely volatile and unpredictable. The cryptomarket experienced 
severe price fluctuations from 2017, December to 2018, January. The presence of bubbles i.e., explosive price 
behavior in this asset has attracted attention from the researchers. At present, there are many cryptoassets. Some 
well-known of them are Bitcoin (BTC), Ethereum (ETH) and XRP. For the last one decade complex network 
theory has been widely used to analyze cryptoasset transaction data. Among the cryptoassets, networks of BTC 
and ETH transactions have been studied extensively1, which include different structural properties2,3, temporal 
evolution2,4–6 and market effect7–9 of these networks. In contrast, XRP transactions have been less explored. 
Ripple Labs Inc. created XRP as the native cryptocurrency for the Ripple network, which is designed to provide 
fast, efficient, and cost-effective financial transactions. The Ripple network is used for real-time gross settlement 
of financial transactions, currency exchange, and cross-border remittances. The goal of the Ripple network is 
to provide a stable and decentralized ledger system that can be used to facilitate cross-border transactions in a 
more efficient and cost-effective manner. XRP is used as a bridge currency in the network, helping to facilitate 
cross-border transfers and providing liquidity to the system. Moreno-Sanchez et al. uncovered community 
formation and clustering properties for the Ripple network10. Y. Ikeda studied the structural properties of XRP 
transaction network, which include the heavy tail nature of nodal strength distributions, low value of cluster-
ing coefficient and significant triangular motif11. More recently, the role of the most active nodes with respect 
to outgoing and incoming flows for a duration including bubble/crash period has been quantified for BTC and 
XRP transaction networks12.

Any statistical dependence between a pair of variables can be studied by cross correlation which is predictive 
and useful for empirical data. It can be measured in different ways: One of the simple and well-known methods 
is the Pearson correlation which represents the linear dependence between variables and is defined for a pair of 
variables x and y with n observations as ρ =

∑n
i=1

(xi − x)(yi − y)/((n− 1)σxσy) . Here x, y , and σx , σy indicate 
mean and standard deviations of x and y. The cross correlation methodology armed with random matrix theory 
(RMT) is mostly applied to time series data. The aim of such method is to analyze high dimensional data to find 
key factors for the collective dynamics of many quantities. For example, it is used to study the daily returns of 
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different stocks13–15 and foreign exchange rates16,17, monthly macroeconomic data18, or different medical data 
such as electroencephalogram, magnetoencephalography data recording19. Also, Kondor et al. applied principal 
component analysis on the matrices obtained from the daily network snapshots to show the relationship between 
the price of bitcoin with structural changes in the transaction network20. The application of cross correlation 
on stock market data shows the relationship between stock price changes and liquidity or trading volume21. 
Note that these are time series of variables that emerge due to interactions of different entities of the system. In 
most cases, we lack detail information of the interactions at the micro level. For example, we do not have detail 
information about the interaction among the individuals in stock markets.

In the case of XRP, we know the information for all transactions between wallets. Using this high-quality 
micro level data, we develop a method of cross correlation tensor which can be applied on dynamical XRP 
transaction networks. Our method relates the structural properties of XRP networks to the XRP/USD price. 
To calculate the correlation tensor, nodes of the networks are converted to vectors using network embedding 
techniques22,23. We use the DeepWalk embedding technique22, which uses a set of truncated random walks to 
learn latent features. The latent features capture neighborhood information and community memberships of 
the nodes. Using a network as the input, the algorithm provides a latent representation in a continuous vector 
space as an output. A generalization of the DeepWalk algorithm is node2vec23, which uses biased random walks 
to learn features that encode more complex relations of nodes, such as functional relationships. Using the vector 
representation for a subset of nodes present in every weekly XRP transaction networks, we calculate correlation 
tensors for different time periods. We perform a double singular value decomposition on the correlation tensors 
to obtain its spectra. We compare the results with reference correlation tensors to understand the significance. 
As a reference correlation tensor, one usually uses the RMT method. However, as we are using a small time 
window to calculate the correlation tensor, RMT method will not be suitable as reference. We use randomized 
and reshuffled correlation tensors as reference correlation tensors. The largest few singular values capture the 
impact of the bubble period or crash in XRP price. The largest singular value is found to be significant and has 
a strong negative correlation with XRP/USD price. Furthermore, it provides an early indication for XRP/USD 
price, including bubble periods or crashes.

Results
The weekly network obtained from XRP transactions between wallets evolves with time. We focus our study on 
the duration 2017 October 02 to 2018 March for which covers a bubble period in XRP price. It indicates 22 weekly 
networks. The number of nodes for each weekly network is shown in Fig. 1a. We observe that the number of 
nodes of the weekly networks increases rapidly from 45, 169 during the week of 2017, November 27–December 
04 to the peak value 209, 143 during the week of 2018, January 01–January 07 and later further falls to 27, 811 
during the week of 2018, February 26 to March 04. Figure 1b shows the decline in the number of links per node 
indicating the average nodal in- or out-degree from 2.15 to 1.20 during 2017, October 02–2018 March 04. The 
decline in the number of links per node indicates a reduction in the average frequency of transactions of a 
node with other distinct nodes. We note that XRP transaction volume was very high for three weeks between 
December 05–December 24 and also for the week during 2018, January 22–January 29, as shown in Fig. 1c. The 
three weeks of extremely high XRP transaction volume may have contributed to the bubble formation in XRP/
USD during 2017, December 25 to 2018 January 07. The daily XRP/USD price from October 2, 2017 to March 
4, 2018 is shown in Fig. 1d. The XRP/USD price had an extraordinary rise and fall between December 2017 and 
January 2018. This indicates a bubble period for XRP. We consider this period for our study because this is the 
most significant bubble period for the cryptoasset market. The chart of XRP/USD prices for a more extended 
period is shown in SI Fig. S1.

We have embedded each of these weekly networks using the well-known DeepWalk algorithm on D = 32
-dimensional space. For the details of the embedding technique, see “Data and methods” section. This gives a 
D-dimensional vector Vα

i  for each node of the networks. We use i, j as node indices and Greek letters α,β as 
components of the vectors on a D dimensional space. In weekly networks of XRP transactions, we found N = 71 
nodes does at least one transaction every week. We call these N = 71 nodes, regular nodes. Each regular node 
of weekly networks in the embedding space is represented by a D-dimensional vector time series Vα

i (t) , where 
i = 1, 2, 3, ...N , t = 1, 2, 3, ...T and α = 1, 2, 3, ...D . We have chosen D = 32 for our study. Other values of D give 
qualitatively similar results. Later, we provide the quantitative dependence on D in Eq. (11).

The correlation tensor between the different components of the regular nodes is defined as

where 
∑

 is taken over 5 weekly {t − 2, t − 1, t, t + 1, t + 2} networks with �T = 2 for our analysis. The 
Vα
i  and σVα

i
 represents mean and standard deviation of Vα

i  over a time window of (2�T + 1) = 5 weekly 
{t − 2, t − 1, t, t + 1, t + 2} networks. Note that lower the values of �T , more noise is present in the obtained 
correlation tensor. We also can not take �T too large as we are studying the dynamical evolution of the networks. 
We further discuss the dependence of the correlation tensor on the time window in the SI Text 2.

To understand the significance of the empirical correlation tensor, we consider the following two null hypoth-
eses. The null hypothesis of the components of embedding vectors for regular nodes, Vα

i  (randomize), are inde-
pendent, uniformly distributed, random variables within [−1, 1] . We obtained the randomized correlation tensor 
from Vα

i  (randomize). Another method to randomize the empirical correlation tenor is to remove the correlation 
present between the different components of the embedding vectors, by reshuffling the positions of the compo-
nents of embedding vectors Vα

i (reshuffle). We obtain the reshuffle correlation tensor from Vα
i  (reshuffle). The 

(1)M
αβ
ij (t) =

1

2�T

t+�T∑

t′=t−�T

[Vα
i (t

′)− Vα
i ][V

β
j (t

′)− V
β
j ]

σVα
i
σ
V
β
j

,
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distributions of the elements of empirical, randomize and reshuffle correlation tensor are shown in Fig. 2 for 
the week of 2017, November 06–November 12. We have taken the average of the data for the distributions with 
20 different runs of the embedding algorithm. The distributions from randomized and reshuffled correlation 
tensors are qualitatively identical. This is because the auto correlation for different components of the empirical 
embedding vectors vanishes when the lag is more than one week. These two distributions are symmetrical around 
zero, with an average value of the elements close to zero. The empirical correlation differs from the randomized 
and reshuffle correlation tensor. It is an asymmetric distribution having an average value of the elements 0.017. 
The correlation tensor has the dimension N × N × D × D . Since we have many elements in the correlation ten-
sor, we uncover the crucial information by diagonalizing it using a double singular value decomposition (SVD) 
method. The double SVD is a natural extension of the single SVD for the correlation of standard non-embedded 
vectors Vi . Since indices i and α correspond to the individual node and the embedding dimension, respectively, 
it is also natural to carry out SVD successively with the (i, j)-pair and with the (α,β)-pair separately as discussed 
in the “Data and methods” section.

A double SVD of the correlation tensor gives us N × D singular values ργ

k  , where i = 1, 2, 3, . . . ,N  and 
γ = 1, 2, 3, . . .D . For the details, refer to the “Data and methods” section. We compare the singular values ργ

k  of 
the empirical correlation tensor with the singular values of randomized correlation tensor ργ

k  (randomize) and 
reshuffled correlation tensor ργ

k  (reshuffle). The comparison is shown in Fig. 3 for the week of 2017, Novem-
ber 06–November 12. This shows that the largest singular value lies beyond the largest singular value of the 

Figure 1.   The variation of (a) total number of nodes (b) number of links per node and (c) total transaction 
volume in millions XRP for each weekly network. (d) The daily XRP/USD close price (source: https://​www.​
marke​twatch.​com/​inves​ting/​crypt​ocurr​ency/​xrpusd). The dotted grey vertical lines represent the weekly 
windows.
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randomized correlation tensor. Also, the spectral gap (ρ1
1 − ρ1

2 ) in the empirical correlation tensor is significantly 
large compared with its random counterpart.

The temporal variation of the largest singular values of empirical ργ

k (t) and reshuffle ρ̃γ

k (t) correlation ten-
sor for different weeks is shown in Fig. 4. It is evident that the largest singular value ρ1

1 is well above the largest 
singular values ρ̃1

1 of the randomized correlation tensor for all weeks. However, the second largest singular value 
ρ1
2 lies below the randomized counterpart. Similar to the largest singular value ρ1

1 , the spectral gap (ρ1
1 − ρ1

2 ) 
appears significantly higher than that of the randomized case. Moreover, we observe ρ̃γ

k (t) remains approximately 
constant with time. In a stark contrast, the largest two empirical singular values and as well as a few more sin-
gular values (not shown) vary distinctively for different weeks. Note that normalizing the spectral gaps by their 
maximum value would make the spectral gaps of the empirical and randomized data comparable in scale, but it 
would not adequately demonstrate the difference in their magnitudes.

To investigate the relationship between singular values ργ

k  and XRP/USD price, we compare the variation 
of XRP/USD daily price with the largest singular value ρ1

1 , the second largest singular value ρ1
2 and the spectral 

Figure 2.   The distributions of the elements of empirical, reshuffle and randomize correlation tensors calculated 
for the week, November 06 to November 12, 2017. The data are averaged over 20 uncorrelated embedding of the 
networks.

Figure 3.   Sorted singular values ργ

k  of the empirical, reshuffle and randomize correlation tensor for the week, 
November 06 to November 12, 2017. The values represent average over 20 uncorrelated embeddings of the 
network.
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gap (ρ1
1 − ρ1

2 ) in Fig. 5a–c. To quantify the dependence, we measure the correlation between the weekly XRP/
USD price and the two largest singular values ρ1

1 , ρ
1
2 respectively. The weekly XRP/USD price indicates the 

average daily closing price of XRP/USD for the week. Let us denote the weekly XRP/USD price as XRP/USD . 
The Pearson correlation between ρ1

1 (t) and XRP/USD(t + 1) is found r = −0.908 and p-value = 1.912× 10−7 . 
The Pearson correlation between ρ1

2 and XRP/USD(t + 1) is found r = 0.847 and p-value = 9.22× 10−6 . 
Furthermore, we perform a multi-linear regression of XRP/USD(t + 1) ∼ C0 + C1ρ

1
1 (t)+ C2ρ

1
2 (t) , gives 

C0 = 27.91,C1 = −0.033,C2 = 0.008 and only the variable ρ1
1 (t) is significant. We found R2

= 0.8091 and p-value 
= 1.581× 10−6 , indicating that the 80% variation of XRP/USD(t + 1) can be explained by the largest singular 
value ρ1

1 (t) . We also observe there are significant correlation between singular values and weekly XRP/USD price 
with two weeks lead XRP/USD(t + 2) and three weeks lead XRP/USD(t + 3) , which is described in detail in 
SI Text 3. Correlation between XRP/USD(t + 3) and ρ1

1 (t) is found to be r = −0.68 and p-value = 0.001 . This 
indicates that the largest singular value ρ1

1 can give an early signal for XRP/USD price.
We also observe that the minimum of ρ1

1 (t) appears during the week of 2017 December 25–December 31. 
The decomposition of the correlation tensor Mαβ

ij  into signal Mαβ
ij (signal)and noise component Mαβ

ij (noise)can 
explain the reason for this minima. The decomposition of correlation tensor Mαβ

ij  for the week of 2017, Novem-
ber 06–November 12 is shown in Fig. 6a, which indicates that the distribution of the elements of the signal 

Figure 4.   Evolution of the singular values for empirical ργ

k  and reshuffled ρ̃γ

k  correlation tensors for different 
weeks. (a) Variation of the largest singular value for empirical ρ1

1
 and reshuffled ρ̃1

1
 correlation tensors. (b) 

Variation of the second largest singular value for empirical ρ1
2
 , reshuffled ρ̃1

2
 correlation tensors. (c) Variation 

of spectral gap for empirical (ρ1
1
− ρ1

2
) and reshuffled (ρ̃1

1
− ρ̃1

2
) correlation tensors. The error bars indicate the 

standard deviation. The data are averaged over 20 uncorrelated embeddings of the networks. The dotted grey 
vertical lines represent the weekly windows.

Figure 5.   The comparison of daily XRP/USD price (black curves) with (a) the largest singular value ρ1
1
 , (b) the 

second largest singular value ρ1
2
 and (c) the spectral gap (ρ1

1
− ρ1

2
) of correlation tensors for different weeks (blue 

curves). The dotted grey vertical lines represent the weekly windows.
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component is much wider than the distribution of the elements of the noise component. Figure 6b shows the 
distributions of the elements of the signal component for three different weeks 2017, November 06–November 
12, 2018, January 01–January 07 and 2018, February 12–February 18. This reflects the fact that the distribution 
for 2018, January 01–January 07 has a largest peak at zero and it is narrower than the other distributions, indicat-
ing that the dependence among the components of node vectors decreases during this time. The peakedness of 
each distribution can be quantified by its fourth moment, which is known as kurtosis. The different moments for 
the elements of the signal component of correlation tensor are tabulated in Table 1. Clearly, the peakedness and 
spread of the distribution during 2018, January 01–January 07 are relatively higher and thinner, respectively. As 
the average dependence among the components of the node vectors decreases during 2018, January 01–January 
07, ρ1

1 (t) has the minima during this period.
To understand why the average dependence among the components of node vectors decreases during the 

bubble period, 2018, January 01–January 07, we investigate the change in community structure of the regular 
nodes. We use well known Infomap algorithm24 to detect the communities in the entire weekly directed weighted 
networks. We observe the evolution of the number of communities of the XRP weekly network that contains at 
least one regular node in Fig. 7a. It is observed that the number of such communities decreases from around 40 
to around 20 during the week 2017 December 04–December 10 and the week 2017 December 18–December 24. 
At the same duration, we observe that the maximum number of regular nodes in a community increases from 
around 10 to around 50, as shown in Fig. 7b. We further delve deeper into the community structure and observe 
the evolution of each regular node within the communities of the weekly networks. The evolution is shown in 
SI Figs. S3–S6. It shows that a big community of regular nodes forms during 2017, December 18 to December 
24, as shown in SI Figs. S4, S5. This big community got fragmented in subsequent weeks. Moreover, the large 
community of the regular nodes remains almost intact during the non-bubble period. This distinctive change in 
the community structure might be related to the decrease in the average dependence among the components of 
node vectors or the appearance of minima for the largest singular value ρ1

1 (t) during the bubble period compared 
with non-bubble period.

Finally, using RMT25–28, we show the relationship between the largest singular value and the standard devia-
tion for the correlation tensor with normally distributed elements in Fig. 8. For the detail calculation, see the 
“Data and methods” section. It also shows the deviation of the largest singular values for randomized correlation 
tensors calculated with different time windows. It is observed that as we increase the time window to measure 
the randomized correlation tensor, the largest singular value ρ1

1 approaches the theoretical value ρ1
1 = 2

√

NDσ . 

Figure 6.   The decomposition of the correlation tensor in the signal component and noise component. (a) 
Distributions for the elements of the correlation tensor, signal component and noise component for 2017, 
November 06–November 12. (b) Distributions for signal components of the correlation tensors before the 
bubble period ( 2017, November 06–November 12), during the bubble period (2018, January 01–January 07) 
and after the bubble period (2018 February 12–February 18). The legends indicate different components of 
correlation tensor in (a), and different periods in (b).

Table 1.   The mean (for the absolute values of the elements), standard deviation and kurtosis of the signal 
components of correlation tensors for three different weeks. The values within the brackets indicate standard 
deviations of the quantities.

2017, November 06–November 12 2018, January 01–January 07 2018, February 12–February 18

�|M
αβ
ij (signal)|� 0.343 (0.006) 0.324 (0.005) 0.334 (0.005)

Standard deviation 0.419 (0.006) 0.401 (0.005) 0.409 (0.005)

Kurtosis 2.447 (0.035) 2.538 (0.032) 2.500 (0.029)
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It reflects the fact that the noise arising from the smaller time window gradually decreases as we increase the 
window size.

Conclusion
In this work, we have used all the direct transactions between XRP wallets in a week to construct a weekly 
weighted directed network. Using the deep walk method, we have embedded weekly snapshots of the network in 
vector space. Deep walk encodes community information into nodal vectors using truncated random walks on 
the network. Once can explore other methods of embedding, such as node2vec, to study other regularities of the 
network. From the weekly snapshots of the regular nodal vector components, we calculate the correlation tensor 
at different time periods. We have used a double SVD to remove redundant information from the correlation 

Figure 7.   Evolution of regular nodes within the community structure. (a) Evolution of the number 
communities of the weekly XRP network that contains at least one regular node (blue curve). (b) Evolution of 
the maximum number of regular nodes in a community of the weekly XRP network (blue curve). The black 
curves in both the panels represent the daily XRP/USD price. The dotted grey vertical lines represent the weekly 
windows.

Figure 8.   Plot for the largest singular value ρ1
1
 with standard deviation of the correlation tensor elements 

σ . Black circles represent singular values for the randomized correlation tensors with time window 
(2�T + 1) = 5, 15, 30 and 50 (from right to left). Red triangles represent the largest singular values for 
correlation tensors, where the elements are drawn from a normal distribution with mean zero and standard 
deviation σ . The blue line represents ρ1

1
= 2

√

NDσ which is the analytical expression for the singular values as 
given in Eq. (11).
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tensor. The significance of our result is shown by comparing it with the results of a randomized counterpart. The 
evolution of the largest singular value ρ1

1 shows distinctive behavior and it correlates significantly with the XRP/
USD price. The decomposition of the correlation tensor into signal and noise components shows that correla-
tion in the signal component decreases significantly during the bubble period. We explain this decrease in the 
correlation during the bubble period by the evolution of community structure that shows disruptive behavior 
during the bubble period. The disruptive behavior of community structure has also been observed in the foreign 
exchange market during economic downturns17.

In summary, we have developed a method of correlation tensor spectra from XRP transactions. The eigenvalue 
decomposition of cross correlation matrix is extensively used to analyze time series data, such as daily stock price, 
foreign exchange rate, etc. However interactions between the agents in these systems have not been considered. 
On the other hand, we construct the correlation tensor from the network structure of XRP transactions. Then 
the double singular value decomposition of the correlation tensor reveals a connection between the network 
structure and XRP price. The method also provides crucial insights into the bubble period of the XRP price. 
While the main focus of this study is to demonstrate the feasibility of the method, further comprehensive analysis 
on other bubble and non-bubble periods will be studied in the future. Overall, this method has the potential to 
contribute to a better understanding and detection of bubbles in financial markets. Moreover, this method is 
very general and can be used to analyze the transactions of other assets.

Data and methods
Data description.  We collected all the direct transactions between different XRP wallets from October 2, 
2017 to March 4, 2018, which were recorded as ledger data using the Ripple Transaction Protocol. We grouped 
these data into T = 22 weekly XRP networks where wallets are the nodes and a direct transaction from a source 
wallet to a destination wallet forms a directed link between them. The link weight between a pair of wallets is 
determined by the sum of XRP amounts for all transactions between them in a given week. See11 for the struc-
tural properties of the XRP transaction network.

Network embedding.  We embedded weighted directed weekly networks using well-known node2vec 
method23 with parameters p = q = 1 , which is a special case of the node2vec method and represents the Deep-
Walk method. Based on a natural language model, these embedding methods capture structural regularities in 
the network. Particularly, the DeepWalk method encodes the community structure in the vector representation 
of the nodes. It uses a truncated random walks to extract the neighborhood information of nodes by generating 
a sequence of nodes S = {V1,V2,V3, ...VS} that is equivalent to a sentence in natural language. Furthermore, it 
applies SkipGram algorithm29 to map each node Vj to its vector representation �(Vj) ∈ R

D by maximizing the 
co-occurrence probability of its neighbours in the random walk.

Double singular value decomposition.  To find the spectrum of the correlation tensor, we perform a 
double SVD in the following way:

We conduct the diagonalization of Mαβ
ij  in terms of (ij)-index and (αβ)-index successively by the bi-unitary 

transformation or equivalently SVD.
The first step is

and the second step is

Then, altogether we have

    Here ργ

k  is the N × D generalized singular values. Also, note that all singular values are real and positive because 
the correlation tensor M is real.

Reference correlation tensors.  We examine the properties of the empirical correlation tensor by com-
paring the same quantity between the original correlation tensor and reference correlation tensors, which is 
analogous to random matrix theory. To get the reference correlation tensors, we have used two different tech-
niques to obtain a reshuffled correlation tensor and a randomized correlation tensor in the following way:

Reshuffle correlation tensor.  We reshuffle the components of embedding vectors Vα
i (t) within the time window 

(2�T + 1) . Then, calculate the correlation tensor using Eq. (1) with the reshuffled embedding vector compo-
nents.

(2)M
αβ
ij =

N∑

k=1

Likσ
αβ

k Rkj ,

(3)σ
αβ

k =

D∑

γ=1

L
αγ ρ

γ

k R
γβ .

(4)M
αβ
ij =

N∑

k=1

D∑

γ=1

ρ
γ

k (LikRkj)(L
αγ

R
γβ).
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Randomize correlation tensor.  We assign uniform random numbers between [−1, 1] to the components of 
embedding vectors and calculate the correlation tensor using Eq. (1).

Signal and noise components of the correlation tensor.  Equation (4) can be used for dimensionality 
reduction to capture important relationships in the data and it can be written as

where

and

   The signal component is calculated using the singular values that lie above the largest singular values of the 
randomized correlation tensor. In our study, we find that only ρ1

1 lies above the largest singular values of the 
randomized correlation tensor and it provides the dominant contributions to the correlation tensor.

Singular values of the correlation tensor with normally distributed elements.  Let us first con-
sider the case of a p× q random matrix R, where the elements of R are normally distributed with zero mean and 
standard deviation σR . The singular values s of such a matrix R follows the following distribution25,26

for smin < s < smax and zero otherwise, where

and

   When p = q = N and σR = σ , smax = 2σ
√

N  . Now consider the case of the (N × N × D × D) random cor-
relation tensor Mran , where its elements are normally distributed with zero mean and standard deviation σ . The 
random correlation tensor Mran contains D2 number of (N × N) random matrix R. Analogous to Eq. (2), SVD 
of the random correlation tensor will give σαβ

k (ran) , where σαβ
1 (ran) is a (D × D) matrix, where its elements are 

distributed with mean 2σ
√

N  . A further SVD of σαβ
1 (ran) corresponding to Eq. (3), will give27

   We show how the largest singular values of randomized correlation tensors deviate from the largest singular 
values of correlation tensors where its elements are drawn from a normal distribution with mean zero and 
standard deviation σ in Fig. 8.

Data availibility
We collected the data from the ripple data API at https://​xrpl.​org/​data-​api.​html#​payme​nt-​objec​ts.
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