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Abstnct 

This paper derives a subspace identification algorithm for a a-operator state-space 
model by using the methods due to Moonen et al. [11], [12], [21]. Since the a-operator 
model converges to a continuous-time model as the sampling interval goes to zero, the 
algorithm obtained is applicable to the identification of continuous-time medels. A method 
of computing the state vector from the block Hankel matrix is developed. Simulation 
studies show the present algorithm provides good results for the case of a low N/S ratio. 
Improvement of the algorithm for the case of a higher NIS ratio remains to be done. 

1. Introduction 

Some thirty years ago, Ho and Kalman [1] developed a basic minimal realization 

technique of the state-space model based on the block Hankel matrix constructed by 

Markov parameters, or the impulse responses. Also, Kung [2] derived an algorithm for 

obtaining a reduced order state-space model by using SVD (singular value decomposi­

tion) [3] of the Hankel matrix. To apply the above techniques, we must first estimate 

Markov parameters based on the input-output data. Since the estimation of the Markov 

parameters is not a trivial task [4], the techniques of [1] and [2] are not suitable for prac­

tical application. 

By defining the predictor space based on the CVA (canonical variate analysis), 

stochastic realization theory was initiated by the pioneering works of Akaike [4], [5], in 

which the block Hankel matrix is generated by the covariance matrices of input-output 

data. Also, Larimore [6], [7] has derived a general reduced order identification tech­

nique for MIMO linear state-space models by extending the CV A based technique of [4] 

so that the arbitrary control inputs can be included in the model. The computation 

associated with the CV A can effectively be performed by the SVD. 

More recently, the subspace method has received much interest in system identifica­

tion and signal processing [8], [9], [10). In the subspace method, the identification prob­

lem is formulated and solved on signal level; the main problem is thus the approximation 
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of a subspace spanned by the column or row vectors in block Hankel matrices formed by 

the array of input-output data. The most effective technique for solving this approxima­
tion problem is due to the SVD. In particular, subspace state-space identification techni­
ques have been developed based on the SVD of the block Hankel matrix by Moonen et al. 
[11], [12]. Verhaegen and Dewilde [13] have derived a subspace output error method for 
the identification of the state-space model based on QR decomposition. Also, the 

subspace methods are analyzed from a statistical point of view by Viberg et al. [14]. 
The classical system identification techniques are based on the least-squares (LS) 

method or iterative nonlinear optimization techniques (see [15], [16]). The drawbacks of 
this classical approach are the difficulty in model selection and the overparametrization 
of the model. For example, pole-zero cancellation in a polynomial model makes the 

model not identifiable, so that the multivariable ARMAX parametrization is inherently ill­
conditioned. For the linear time-invariant models, the subspace identification schemes 
are possible alternatives to the classical approach in that model selection is much simpler 

and the application to MIMO cases is almost trivial. Thus for the state-space models, 
the subspace approach has better numerical conditioning than the classical polynomial 
model identification, although the determination of the model order is not a trivial task 
for noisy input-output data. In the CV A approach [6], [7], the model order is selected 

based on the AIC [4]. 
Another recent interest in this area is the identification of continuous-time models 

from sampled data in the literature [17], [18], because the analysis and design of a control 
system are usually carried out by using continuous-time models since most physical 
systems are continuous-time. The indirect approach is to first estimate a discrete-time 

model using sampled-data by the classical approach and then convert it to a continuous­
time model. It is shown [18] that the continuous-time model obtained using this ap­
proach is highly sensitive to the choice of sampling interval, since the discrete-time and 
continuous-time models in frequency domain are connected by the transcendental rela­
tion z=e'~, where .:l is the sampling interval. This difficulty may be overcome by using a 

a-operator model rather than a standard shift-operator model [19], [20]. 
The direct approach is to estimate the parameters of a continuous-model based on 

the sampled data, without computing an intermediate discrete-time model. A basic idea 

is to obtain an equivalent discrete-time model whose parameters are identical to those of 
a continuous time model by using a numerical integration based on a digital filter [17], 
[18]. Also a direct SVD-based subspace identification method for continuous-time state­
space models is presented by Moonen et al. [21], in which state variable filters are used 
for approximate computing of higher order derivatives. 

In this paper, motivated by the works of [20] and [21], we derive a subspace iden­

tification algorithm for a a-operator state-space model. Since the a-operator model 
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reduces to the continuous-time model as the sampling interval tends to zero, the present 

technique may be applied to the identification of continuous-time state-space models 
[20]. In Section 2, we briefly describe the ti-operator model based on [19). In Section 3, 
based on [11], [12), [21], we present relevant block Hankel matrices formed by the input­
output data to determine the state vector of the model. A method of computing the state 
vector is developed by using the two SYDs, namely the SYD of the Hankel matrix formed 

by the input-output data and the SYD of a submatrix formed by the left singular vectors 
obtained from the first SYD. The system matrices are then determined by applying the 

LS method to an overdetermined system of equations. Section 5 considers the case 
where the input-output data are corrupted by white noise. A prefiltering scheme is 
developed in order to compute the higher order differences of the input-output data. 
The LS estimate of the block Hankel matrix is then derived by using the technique due to 

De Moor [23]. Numerical results are presented in Section 6 to show the feasibility of the 
present algorithm by using a version of the model from [20]. The conclusions are given 
in Section 7. Appendix includes a proof of Lemma 3. 

2. ().Operator Model 

Consider a continuous-time model 

x(t)=Ax(t)+ Bu(t) 

y(t)=Cx(t)+Du(t) 

(1) 

where x(t) E Rn is the state vector, u(t) E Rm is the input vector, y(t) E RP is the output 

vector, and A, B, C, Daren x n, n x m, p x n, p x m constant matrices, respectively. 
Suppose that the input u(t) is a staircase function of the form 

u(t)=u(kt..), kt..:s;t<(k+l)t.., k=0, 1, 2, ··· (2) 

where 6. is the sampling interval. It then follows that 

Thus we have 

x(t+ t..)=A,,x(t)+ Bqu(t), t=0, 6., 26., ·· · (3) 
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where 

(4) 

By using the shift operator q, we have the following discrete-time model relating the 

sampled input to the sampled output 

(5) 

y(t) =Cx(t)+Du(t), t=O, ll, 21l, ··· 

It follows from (4) that for ll-+0, we have Aq -+I, Bq -+O, so that the discrete-time 

model degenerates. Hence, in order to derive a model that has a better correspondence 
with the continuous-time model, we define the delta operator ([17], [19]) 

ax(t)=x(t+ ll)-x(t) 
ll 

(6) 

Note that this is the forward difference with a:=(q-1)/ll. Since q=l+M, it follows 
that (5) is reduced to 

(7) 

y(t) =Cx(t)+Du(t), t=O, ll, 21l, ··· 

where 

Since AJ-+A, BJ-+B as ll-+0, we see that the delta operator model of (7) reduces to the 
continuous-time model where the sampling interval is very small. This fact shows that 
the identification algorithm for the a-operator model is applicable to the identification of 
a continuous-time model of (1) (see [20]). 

3. State Vector and Block Hankel Matrix 

Consider the a-operator state-space model of (7), where AJ, Ba, C, Dare n x n, n x m, 

p x n, p x m matrices, respectively. We define the augmented controllability and observ­
ability matrices 
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where k is assumed to be larger than n. In the following, we assume that the state-space 

model is controllable and observable, so that we have rank Ck=n, rank (Jk=n. It is to be 
noted that (A., B0, C) is minimal if and only if (Aq, Bq, C) is minimal. 

By using higher order differences of the input-output variables, we now define two 
k x L block Hankel matrices 

and 

l 
oiu(t) oiu(t+ A) 

oi+ 1u(t) oi+ 1u(t+M 

oi+k~ 1u(t) oi+k-l~(t+A) 

oiu(t+(L- l)A) 1 
oi+ 1u(t+(L-1)A) 

oi+k- 1u(t~(L- l)A) 

- oi+ 1y(t) oi+ 1y(t+A) ... oi+ 1y(t+(L-l)A) 

l 

oiy(t) oiy(t+A) ··· oiy(t+(L-l)A) 1 
Y,J- oi+k~ 1y(t) oi+k-l~(t+ A) ... oi+k-ly(t~ (L- l)A) 

(8) 

(9) 

where both U,J and Y,J have k block rows and L columns, although k, L do not appear as 

indices of them. We also define the augmented state vector with L columns as 

It follows from (8)-(10) that 

where r k is the block Toeplitz matrix defined by 

0 
D 

CB0 

0 
0 
D 

0 0 
0 0 
0 0 

(10) 

(11) 

(12) 
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The above input-output matrix relations are used for defining the state vector by us­

ing external variables U 1J and YrJ• In the following, we assume that L::>max (km, kp), 

namely both U 1J and YrJ are rectangular. 
We define two block Hankel matrices H 1 and H 2 as 

Hi= [ Ur,o], H
2 
= [ Ur,k] 

Yr,o Yt.k 

Let W1 and W2 be subspaces spanned by the row vectors of H 1 and H 2, respectively. 

Then we have 

W1=Im (H'[), W2 =Im (Hp 

Lemma 1 ([111) Suppose that the following three conditions hold. 

1) rankX1,0 =n 

2) Im (X[0) nlm ( U[0) = s6 
3) rankU1,0=km 

Then it follows that 

rankH1 =km+ n 

Proof: See Moonen et al. [11). D 

(13) 

The following lemma gives a fundamental relation between the state vector and the 

subspaces defined by external variables. 
Lemma 2 ([11)) Suppose that the conditions in Lemma 1 hold. Then the subspace spanned 

by the row vectors of Xr,k coincides with the intersection of subspaces W1 and W2, name­

ly, under the assumption that rank [ ~·0] = 2km, 
t,k 

Im (X[k)= W1 n W2 (14) 

Proof: See Moonen et al. [11). D 

4. Determination of State Vector and System Matrices 

For convenience, we redefine H1 and H2 as 

u(t) 
y(t) 
ou(t) 

H 1= oy(t) 

u(t+A) 
y(t+A) 
ou(t+A) 
oy(t+ A) 

ok-lu(t) ok-lu(t+A) 
ok-ly(t) ok-ly(t+ A) 

u(t+(L- l)A) 
y(t+(L- l)A) 
ou(t+(L- l)A) 
oy(t+ (L - 1 )A) 

ok- 1u(t+(L- l)A) 
ok- 1y(t+(L- l)a) 

(15) 
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oku(t) 
oky(f) 

ok+ 1u(t) 
ok+ly(() 

oku(t+A) 
oky(t+A) 

ok+ 1u(t+A) 
ok+ 1y(t+A) 

oku(t+(L- l)A) 
oky(t+(L-l)A) 

ok+lu(t+(L-l)A) 
ok+ly(t+(L- l)A) 

o2k-lu(t) o2k-1u(t+A) ... o2k-lu(t+(L-1)A) 

02k-ly(t) 02k-1y(t+A) ... 02k-1y(t+(L-l)A) 

It is clear that Lemma 2 also holds for these block Hankel matrices. 

Define H = [¾:]. Let the SVD of H be given by 

where 

SH: 2k(m+p)xL; 

VH: LxL; 

U12, U22 : k(m+p) x (2kp-n) 

S11 : (2km+n)x(2km+n) 

Lemma 3 ([12]) The SVD of U12 of (17) is given by 

where 

and 

Q1: k(m+p)x(kp-n) 

Q2: k(m+p) x n 

Q3: k(m+p) X km 

W: (2kp-n) x (2kp-n) 

79 

(16) 

(17) 

(18) 

Proof: A proof is given in Appendix based on [22], since no proof is provided in [12]. D 

4.1 Determination of State Vector 
Lemma 4 ([11]) The subspace spanned by the row vectors of Ufi.H1 is included in W1 n W2, 
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namely 

Proof: Since U 8 is orthogonal, 

so that 

we see that the row spaces of both sides of (20) are included in W1 and W2 • D 
Lemma 5 The row space of U[2H 1 coincides with that of X,,kt namely 

(19) 

(20) 

(21) 

Proof: It follows from Lemmas 3 and 4 that Im {(Uf2H 1)T} elm (X[k). Moreover, from 

Appendix, we have rank (U[2H 1)=n. This implies (21). D 
There exist n independent rows among 2kp- n rows of U[iH, so that any n independ­

ent row basis vectors form the state vector. The SVD of U12 gives n independent bases of 

the state space. 

Theorem 1 ([12]) Suppose that the SVD of U12 is given by (18). Then a state vector is 

given by 

(22) 

Proof: This follows from Lemma 5 and (A 7) in Appendix. D 

4.2 Determination of System Matrices 

We introduce the "colon" notation [3]. Let A(p:q, r:s) be the submatrix of A at the in­

tersection of rows p, p+ 1, ···, q and columns r, r+ 1, ... , s. For example, 

Moreover, A(p:q, :) and A(:, r:s) denote submatrices of A consisting ofrowsp, p+ I, ·· ·, 

q and columns r, r+I, ... , s, respectively. 

Theorem 2 Suppose that SVDs of Hand U12 are given by (17) and (18), respectively. 
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Then the system matrices A 8, B8, C, and D are obtained by solving the following 
overdetermined equation by the LS technique. 

[ 
QfU~m+p+I:(k+l)(m+p), 1:2km+n)S11 ] 

U~k(m+p)+m+ l:(k+ l)(m+p), 1:2km+n)S11 

-[Aa B0] [ QfU~l:k(m+p), l:2km+n)S11 ] 

- C D U~k(m+p)+ 1:k(m+p)+m, 1:2km+n)S11 

Proof: It follows from Theorem I that 

and 

x,,k=QfH1 
=QfH(l:k(m+p), :) 

=QfU~I:k(m+p), :)SHJ!k 

x,,k+1 =QfH(m+p+ 1:(k+ l)(m+p), :) 

=QfUH(m+p+ 1:(k+ l)(m+p), :)SHJ!k 

Also, we have 

and 

[oku(t) Jku(t+d) ... Jku(t+(L-l)d)] 

=H(k(m+p)+I:k(m+p)+m, :) 

=U~k(m+p)+I:k(m+p)+m, :)SHJ!k 

[oky(t) Jky(t+d) ... Jky(t+(L-l)d)] 

=H(k(m+p)+m+I:(k+I)(m+p), :) 

=U~k(m+p)+m+l:(k+l)(m+p), :)SHJ!k 

Substituting the above equations into 

[
Jk+lx(t) Jk+lx(t+d) ... Jk+lx(t+(L-l)d)] 
oky(t) oky(t+a> ... Jky(t+(L-l)a) 

-[A· Ba] [okx(t) Jkx(t+d) ... Jkx(t+(L-I)a)] 
- C D Jku(t) Jku(t+ a) .. · Jku(t+ (L- l)a) 

yields 

(23) 
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[ 
QfU~m+p+1:(k+1)(m+p), :)SHY]; ] 

U~k(m+p)+m+ 1:(k+ 1)(m+p), :)SHY]; 

-[Aa Ba] [ QfU~1:k(m+p), :)SHY]; ] 
- C D U~k(m+p)+ 1:k(m+p)+m, :)SHY]; 

Since the orthogonal matrix Vft- has no effect on the LS estimate, it can be removed. 

Also, since SH has zeros except for Su, we have (23). D 
It should be noted that a considerable computational saving is achieved in the SVD 

of (17), since a large orthogonal matrix VH is not needed in actual computation. 

5. Generation of Block Hankel Matrices 

5.1 Prefiltering 
We need higher order differences of u(t) and y(t) to form the block Hankel matrices H 1 

and H 2 of (15) and (16). But since the raw differences are susceptible to noise, we instead 

use filtered differences. 
Define a stable polynomial with order 2k by 

(24) 

where ei, .. ·, e21c are constants. Also define 

(25) 

Pre-multiplying (7) by a stable filter 1/E(o) gives 

oxf(t)=A,,xf(t)+ Baul(t) 
(26) 

yf(t) =Cxl(t)+Duf(t), t=O, A, 2A, ··· 

Thus we can use the filtered differences aiuf(t+ iA), aiyf(t+ iA) in place of the raw 
differences aiu(t+ iA), aiy(t+ iA) in H 1 and H2• The block Hankel matrix thus obtained 

will be denoted by Hf= ~]. 

In order to form Hf, we define 
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It follows from (24) and (25) that 

(27) 

(28) 

These equations are respectively expressed as 

Solving the above equations with initial conditions <I>,,i:(0)=0, <I>.✓(O)=O, we get filtered 
I T1 

differences to form Hf. 

5.2 Least-Squares Estimate of Hf 
If the input-output data u(t) and y(t) are disturbed by noises, then Hf is corrupted by 
noise. In order to reduce the effect of noise, we consider the LS estimate of Hf under the 
assumption that Hf is perturbed by noise, namely 

Hf=H+N 

We assume that the unperturbed Hhas the SVD of (17), namely 

where 

U1: 2k(m+p) x (2km+n); Vi: L x (2km+n) 
U2: 2k(m+p) x (2kp-n); V2: L x (L-2km-n) 

S11 : (2km+n)x(2km+n) 

(29) 

(30) 
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In the following, we assume that 

(Al) NNT=a2I 

(A2) HNT=O 

Assumption (Al) implies that N is an orthogonal matrix where the norm of each row vec­
tor is a. Also, (A2) shows that the row spaces of N and Hare orthogonal. It should be 
noted that (Al) is not very realistic, since if the input-output data u(t) and y(t) are disturbed 

by white noise, then elements of Hf are perturbed by colored noise whose statistical 
characteristics are determined by the prefilterings. To cope with the colored noise, we 
can apply the techniques of (12), (21). 

Since [U1 U2] is orthogonal, 

Hf=H+N 

=U1SuVf+(U,U[+U2Uf)N 
I I 

=[U UJ [(Su+a2
/)2 OJ [(Su+a2J)-2(SuVf +U{N)] 

1 2 0 al u- 1CffN 
(31) 

We see that this is the SYD of Hf, so that we may write 

where 

Lemma 6 Let the singular values of Hf be µi, 

rankH=2km+n. Then the estimate of a2 is given by 

Proof: A proof is immediate from (34). D 
It follows from (33) that the estimate of Su is given by 

(32) 

(33) 

(34) 

µ21c<m+p>• Suppose that 

(35) 

(36) 
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We now wish to derive the LS estimate of H based on lff. Since the LS estimate Bis 
given by the orthogonal projection of H on the row space of Jff, this problem is 

equivalent to finding X such that 

min IIXH-HII}, q=2k(m+p) 
XERqxq 

where II· II} denotes the Frobenius norm. Note that Xis optimal if and only if Xlff-His 
orthogonal to Hf, namely (XHf-H)(Hf)T=O. Thus we get X=HHl[Hf(Hf)TJ- 1• 

Lemma 7 The LS estimate of H is given by 

Proof: It can be shown that 

H=XHf 

= H(lffY[lff(lffYJ- 1 lff 

=fflV11 Vj2] [~] 

=[U1 U2] [S~i ~] [:+] [(ViS11+.NTU1)(Si1+a2J)-½ a-1.NTU2] [~] 
I 

=[Ufl U12] [S~1 
~] [S11(Si11a2J)-2 ~] [~] 

By replacing S11 by S11 of (36), we get (37). D 

S.3 Identification Algorithm 

The identification algorithm is summarized as follows. 
Step 0: Set k, and E(o). 

Step 1: For given input-output data, generate Hf, and compute SVD of (32). 

Step 2: Compute B from (37), and put H: =H. 

Step 3: Compute SVD of Hand U12. 

Step 4: Solve the overdetermined equation (23) to get AJ, BJ, C, D. 

6. Example 

We consider the system of output error type shown in Fig. 1, where 

10s+5 
G(s) s3 +6s2 +21s+26 

(37) 

(38) 
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The above system is simulated over 15 seconds, where e(t) is the white Gaussian noise 

with mean zero and variance an and the input u(t) is a composite sine wave 

u(t)=IO cos 2t+4 sin irt+6 cos l.7t 

which is used in [20), where the equation error model is employed for numerical examples. 

Figs. 2 and 3 display the input u(t) and the output y(t) for a5=(0.1)2, respectively. 

We assume that k=3 and let the filter be given by 

1 1 
E(a) ca+3)(a+5)(a2 +2a+2)(a2 +4a+ 13) 

Thus we have a block Henkel matrix of 12 x L, where L is related to the data length used 

for identification. Tables 1 and 2 show the identification results for the sampling inter­

vals a=0.01 and 0.005, respectively, where 

In each case, 20 realizations are generated over 15 seconds. From the estimates obtained 

in each of 20 independent realizations, the sample mean and standard deviation (s.d.) are 

evaluated. For the noise variance at=(0.05)2 and (0.1)2, we see that the parameters so ob­

tained show good agreement with the true parameters. We also observed, although have 

not presented here, that if the noise variance is getting larger, the identification results are 

quite unsatisfactory. 

7. Conclusions 

This paper has developed a subspace identification algorithm for a a-operator model. As 

a tends to zero, the a-operator model converges to a continuous-time model, so the pres­

ent technique can be applied to the identification of a continuous-time model. We show 

by simulation studies that if the output N/S ratio is low, then the estimated parameters 

e(t) 

U(t) 
G<s) 

+ + Y(t) 

Fig. I. Continuous-time output-error model 
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211 ,-----,----r----...,...----,r----,-----,----,----, 

15 ···•·················+························+····················· 

10 ................... · I 
··-·················· ···············--

5 -·-·------- .... 

-5 ... 

-10 

-15 

·211 
0 2 4 • 8 10 12 14 18 

Time t (aec) 

Fig. 2. Input u(t) 

12 ,----....,...---~--....,...-------,----r-----,-----, 

ll-···················-+·······················l························+························f························+·······················I······················· 

• 
Time t (aec) 

Fig. 3. Output y(t) (a~=0.01) 
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Table 1. Identification results for .:1=0.01 

a~=(0.05)2 a~=(0.1)2 

true mean s.d. mean s.d. 

01 6 6.1006 0.1186 6.3067 0.3180 

02 21 20.9521 0.5845 21.5290 1.4872 

03 26 25.8184 1.0489 27.4145 2.6457 

bi 10 9.8501 0.3539 10.1494 0.8863 

b2 5 5.0422 0.2104 5.5250 0.5349 

NSR (%) 0.0104 0.0336 

d 0.0251 0.1321 

Table 2. Identification results for .:1=0.005 

true 

ai 6 

02 21 

03 26 

bi 10 

b2 5 

NSR (%) 

d 

s.d.: = standard deviation 
NSR: =var{e(t)} /var{y(t)} 

a~=(0.05)2 

mean s.d. 

6.0483 0.1146 

20.9930 0.5361 

25.8951 0.9802 

9.9386 0.3239 

5.0051 0.1960 

0.0069 

0.0109 

a~=(0.1)2 

mean 

6.1140 

21.2523 

26.4961 

10.0876 

5.1701 

0.0277 

0.0459 

s.d. 

0.2261 

1.1520 

2.0495 

0.7043 

0.4095 

show good agreement with the true parameters. For noisy cases, the algorithm remains 

to be improved, e.g., based on the canonical correlation approach. 
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Appendix: Proof of Lemma 3 

For simplicity, define 1c:=k(m+p), rr:=2kp-n, µ:=2km+n (2.t=rr+µ). Let 
U'= [~;: ~::], where U' is a 2.t x (rr + µ) orthogonal matrix. It follows from [22] that 
there exist four orthogonal matrices Q, VER'x', WERKxK, ZERµxµ such that 
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I, or 
c. s. 

Oc 1,-s-r [L12 Lu] 
Os 1,-x+r L22 L21 

s. -c. 
lx-s-r 0~ 

C,=diag(a,+i, ···, a,+,), l>a,+12···2a,+,>O 
S,=diag(;S,+1, ···, ;9,+,), O<;S,+1s···s;S,+,<l 

C;+S;=I, 
L12, L22ER<Xx; Lu, L21 ER<xµ 

Oc, Os: (,t-s-r) x (rr-s-r) and (.t-rr+r) x r zero matrices 

wheres, rare to be determined. From (Al), 

[
U12 U11]=[QL12W QL11Z7l 
u22 u21 YL22 wr YL21zr J 

(Al) 

(A2) 

Since Q, Ware orthogonal, the (1, 1) block of (A2) gives the SYD of U12. In the follow­

ing, we prove s=n, r=kp-n, showing that QL12 W gives the SYD of (18). 

(a) Partition Q=[Q1 Q2 Q3), where Q1ER<Xr, Q2ER<Xs, Q3ER<x(,-s-r). We show 

that Q1 is orthogonal to H 1• It follows from (20) and (A2) that 

(A3) 

Since QTQi=O, i'=Fj, we get 

(A4) 

This shows that Q1 is orthogonal to H 1• 

(b) We show that n2s. From (A2), (A3), 

Uf,lf,-WL[,Q'H,-{' C, OJ [;r,-,~,]QfH, (A5) 

Also from, (A3) 
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(A6) 

where Z=[Z, Z2 Z3], Z,ERµX(<-,+r), Z2ERµxs, Z3ERµx(,-s-r), S11ERµxµ, VJi,ERµxL. 

Since each matrix on the right-hand side of (A6) has full rank, we get rank(QfH1)=s. It 

also follows from (A5) that Im(U[zH1)TCim (QIH,Y. Partition W=[W1 W2 W3], where 
W1ER•xr, W2ER•xs, W3ER<X(<-s-r). Then, from (A5), we get c;1W'{UfzH1=QIH1, 

This implies that Im (QIH1)Tcim (U[iH1)T. Thus we have 

(A7) 

Hence, rank (UfzH1)=rank (QIH1)=s holds. Since, from Lemma 4, n::?::rank (U'fiH1), it 
follows that n::?::s. 

(c) We prove s::?::n. Note that H 1 is ,cxL and rankH1 =km+n. Thus we see from 
(A4) that rankQ1 is smaller than the rank deficiency of Hi, so that 

r<::;_,c-(km+n)=kp-n 

Similarly to the derivation of (A3), it follows that 

Since H 2 is a ,c x L matrix and rankH2 = km + n, its rank deficiency is kp- n. It therefore 
follows from (AS) that rankV3=ir-s-r<::;_kp-n, so that 

r::?::kp-s (A9) 

Hence, we see from (AS) and (A9) that kp-s<::;_r<::;_kp-n, or s::?::n. 

From the above, we see that n=s and r=kp-n hold. 




