

TITLE:

Parametrization of All Stable Unbiased ∞ Estimators Based on Model Matching

AUTHOR(S):

TAKABA, Kiyotsugu; KATAYAMA, Tohru

CITATION:

TAKABA, Kiyotsugu ...[et al]. Parametrization of All Stable Unbiased ∞ Estimators Based on Model Matching. Memoirs of the Faculty of Engineering, Kyoto University 1993, 55(4): 155-170

ISSUE DATE: 1993-10-29

URL: http://hdl.handle.net/2433/281482 RIGHT:

Mem. Fac. Eng., Kyoto Univ., Vol. 55, No. 4 (1993)

Parametrization of All Stable Unbiased \mathscr{H}_{∞} Estimators Based on Model Matching

By

Kiyotsugu TAKABA* and Tohru KATAYAMA* (Received March 22, 1993)

Abstract

This paper considers the \mathscr{H}_{∞} estimation problem by using a model matching technique. For a given possibly unstable plant, the \mathscr{H}_{∞} estimation problem is reduced to a standard model matching problem by introducing a class of all stable and unbiased estimators. Based on Nehari's theorem, a necessary and sufficient condition for the existence of a solution of the \mathscr{H}_{∞} estimation problem is derived in terms of an \mathscr{H}_{∞} -type algebraic Riccati equation. The LFT representation of the class of all solutions is also developed.

1. Introduction

Recently considerable attention has been directed to \mathscr{H}_{∞} estimation problems [1]-[7]. The estimation with \mathscr{H}_{∞} criterion is appropriate when there is significant uncertainty in the spectral density of disturbance. Yaesh and Shaked have developed full-order estimators by using game theoretic approaches [1],[2] and the bounded real condition [3]. An operator theoretic LQ optimization technique in the time domain is employed to derive \mathscr{H}_{m} filters and smoothers by Nagpal and Khargonekar [4]. An \mathscr{H}_2 estimator with an \mathscr{H}_{∞} error bound is also developed in [5] based on a coupled system of modified Riccati equations. Fernandes et al. [6] have presented design techniques for robust estimators based on a parametrization of all stable unbiased estimators and $\mathscr{L}_1,$ \mathscr{L}_2 and \mathscr{L}_∞ optimizations. Recently, Limebeer and Shaked [7] considered a minimax terminal estimation and the \mathscr{H}_{∞} filtering problem by employing a game theoretic approach and the duality between estimation and control. In particular, for the infinite-horizon case, they derived a necessary and sufficient condition for the existence of stable estimators for a possibly unstable plant based on the bounded real condition and they parametrized all stable unbiased \mathscr{H}_{∞} estimators. It may be noted that although a parametrization of all \mathscr{H}_{∞} estimators is given as a solution to OE problem in [8], it cannot be directly applied to an unstable plant

^{*} Department of Applied Mathematics and Physics, Faculty of Engineering

due to the restriction of internal stability.

In this paper, we derive a state-space description of all solutions to the \mathscr{H}_{∞} estimation problem based on a model matching technique. Since the \mathscr{H}_{∞} estimation problem is not a standard model matching problem when the plant is unstable, we first reduce the \mathscr{H}_{∞} estimation problem to a standard model matching problem by using a parametrization of all stable unbiased estimators [6], [9]. We then derive a necessary and sufficient condition for the existence of a solution based on Nehari's theorem. Although the main result of the paper is also contained in [7], we present a straightforward proof based on a purely frequency domain approach [10]. Finally we develop an LFT (linear fractional transformation) representation of all solutions to the \mathscr{H}_{∞} estimation problem.

The notation used in this paper is standard. In particular, $[\cdot]_+$ and $[\cdot]_-$ are the stable and antistable parts of a transfer matrix by partial fraction expansion, respectively. And $G(s)^{\sim}$ denotes $G(-s)^T$. A transfer matrix G(s) in terms of state-space data is denoted by

$$\begin{bmatrix} \underline{A} & B \\ \hline C & D \end{bmatrix} := C(sI - A)^{-1}B + D$$

An LFT $\mathscr{F}_l(T, Q)$ with $T = \begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix}$ is defined by
 $\mathscr{F}_l(T, Q) := T_{11} + T_{12}Q(I - T_{22}Q)^{-1}T_{21}$

2. Problem Formulation

We consider a linear time invariant plant described by

$$\dot{x} = Ax + B_1 w + B_2 u \tag{2.1}$$

$$z = C_1 x \tag{2.2}$$

$$y = C_2 x + Dw \tag{2.3}$$

where x, y and z are the state, the measurement and the output to be estimated, respectively. We have two exogenous signals u and w. The signal u is the known control input, while w is the unknown disturbance that has finite energy, i.e. $w \in \mathscr{L}_2$. We assume that (A, B_1) is stabilizable and that (C_2, A) is detectable. Moreover, to simplify the discussion, we assume that $\begin{bmatrix} B_1\\ D \end{bmatrix} D^T = \begin{bmatrix} 0\\ I \end{bmatrix}$. This condition ensures that the process disturbance and measurement noise are

independent and that the measurement noise is normalized.

Let $T_{est}(s)$ be an estimator transfer matrix from $\begin{bmatrix} u \\ y \end{bmatrix}$ to the estimate \hat{z} , i.e. $\hat{z} = T_{est}\begin{bmatrix} u \\ y \end{bmatrix}$. Then the transfer matrix from w to the estimation error $e := z - \hat{z}$

is given as

$$T_{ew} = T_{zw} - T_{est} \begin{bmatrix} 0 \\ T_{yw} \end{bmatrix}$$
(2.4)

where $T_{zw}(s) = \left[\frac{A}{C_1} \middle| \frac{B_1}{0}\right]$ and $T_{yw}(s) = \left[\frac{A}{C_2} \middle| \frac{B_1}{D}\right]$ are the transfer matrices from w to z and y, respectively. Then the \mathscr{H}_{∞} estimation problem considered in this paper is stated as follows.

\mathscr{H}_{∞} Estimation Problem

For a given constant $\gamma > 0$, we wish to establish a necessary and sufficient condition for the existence of a stable unbiased estimator $T_{est}(s)$ that satisfies the \mathscr{H}_{∞} error bound $||T_{ew}||_{\infty} < \gamma$. Moreover, if the solvability condition holds, we derive a class of all stable unbiased estimators that satisfy the \mathscr{H}_{∞} norm bound $||T_{ew}||_{\infty} \le \gamma$.

3. Preliminaries

In this section, we summarize some useful results for the class of all stable unbiased estimators, the model matching problem and the \mathscr{H}_{∞} norm of a transfer matrix based on [8]–[10].

3.1 The class of all stable unbiased estimators

Definition 1 An estimator is stable if the estimate is generated by a stable proper linear time invariant system subject to the plant inputs and outputs.

Definition 2 An estimator is unbiased if the estimation error decays to zero for any plant inputs in the absence of modeling errors and disturbances.

Lemma 1 Consider the linear time invariant plant of (1), (2) and (3). Suppose that a stable unbiased state estimator is given by

$$\dot{x}_0 = A\dot{x}_0 + L(y - C_2\dot{x}_0) + B_2 u \tag{3.1}$$

where \hat{x}_0 is an estimate of x, and $A_L := A - LC_2$ is a stability matrix. Then a class of all stable unbiased estimators $T_{est}(s)$ is given by

$$T_{est}(s) = [T_{e1}(s) \ T_{e2}(s)] \tag{3.2}$$

$$T_{e1} = \left[\frac{A - LC_2}{C_1} \begin{vmatrix} B_2 \\ 0 \end{vmatrix} - K \left[\frac{A - LC_2}{C_2} \begin{vmatrix} B_2 \\ 0 \end{vmatrix} \right]$$
(3.3)

$$T_{e2} = \left[\frac{A - LC_2}{C_1} \left| \frac{L}{0} \right] + K \left[\frac{A - LC_2}{-C_2} \left| \frac{L}{L} \right] \right]$$
(3.4)

where K(s) is an arbitrary transfer matrix in \mathscr{RH}_{∞} . **Proof** See Appendix A.

3.2 Model matching problem

The model matching problem of the Nehari type is to approximate a given $R(s) \in \mathscr{RL}_{\infty}$ by $X(s) \in \mathscr{RH}_{\infty}$. It is well known as Nehari's theorem [10] that $\inf_{X \in \mathscr{RH}_{\infty}} ||R||_{H}$, where $||\cdot||_{H}$ denotes the Hankel norm.

Lemma 2 For a given $R(s) \in \mathscr{RL}_{\infty}$ such that $||R||_{H} < 1$, define $G(s) = \begin{bmatrix} I & [R] \\ 0 & I \end{bmatrix}$ and $J = \begin{bmatrix} I & 0 \\ 0 & -I \end{bmatrix}$ Then there exists a J-spectral factor $\Pi(s)$ such that

$$G^{\sim}JG = \Pi^{\sim}J\Pi, \quad \Pi, \ \Pi^{-1} \in \mathscr{RH}_{\infty}$$

Furthermore, a class of all $X(s) \in \mathscr{RH}_{\infty}$ satisfying $||R-X||_{\infty} \leq 1$ is given by

$$X = R - (L_1Q + L_2)(L_3Q + L_4)^{-1}$$

where $\begin{bmatrix} L_1 & L_2 \\ L_3 & L_4 \end{bmatrix} = G\Pi^{-1}$ and Q(s) is an arbitrary transfer matrix in $\Re \mathscr{H}_{\infty}$ such that $\|Q\|_{\infty} \leq 1$.

Proof A proof is given in [10].

3.3 \mathscr{H}_{∞} norm of a transfer matrix

Lemma 3 For a given $G(s) = \left[\frac{A}{C} | \frac{B}{0}\right]$ we assume that (A, B) is stabilizable and that (C, A) is detectable. Then $G \in \mathscr{RH}_{\infty}$ and $||G||_{\infty} < 1$ if and only if there exists a non-negative stabilizing solution M of the following algebraic Riccati equation (ARE).

$$AM + MA^T + MC^TCM + BB^T = 0$$

Proof See Lemma 4 in [8].

Lemma 4 Consider an LFT system $\mathscr{F}_{l}(T,Q)$, where $T(s) = \begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix}$ and Q(s) is a proper rational transfer matrix. Suppose $TT^{\sim} = I$ and $T_{12}^{-1} \in \mathscr{RH}_{\infty}$. Then the following are equivalent.

(i) The system is internally stable and $\|\mathscr{F}_{l}(T,Q)\|_{\infty} < 1$.

(ii) $Q(s) \in \mathcal{RH}_{\infty}$ and $||Q||_{\infty} < 1$.

Proof This lemma is dual to Lemma 15 in [8].

4. Solution to \mathscr{H}_{∞} Estimation Problem

The main result of this paper is summarized in the following theorem.

«Theorem»

(i) There exists a stable unbiased estimator $T_{est}(s)$ satisfying $||T_{ew}||_{\infty} < \gamma$ if and only if there exists a non-negative stabilizing solution P_{∞} to the following ARE.

$$AP_{\infty} + P_{\infty}A^{T} + P_{\infty}(\gamma^{-2}C_{1}^{T}C_{1} - C_{2}^{T}C_{2})P_{\infty} + B_{1}B_{1}^{T} = 0$$
(4.1)

(ii) The class of all stable unbiased estimators satisfying $||T_{ew}||_{\infty} \leq \gamma$ is given by

$$T_{est}(s) = \mathscr{F}_{l}(G, U) \tag{4.2}$$

$$G(s) = \begin{bmatrix} A_{\infty} & [B_2 & P_{\infty}C_2] - \gamma & P_{\infty}C_1 \\ \hline C_1 & [0 & 0] & I \\ C_2 & [0 & -I] & 0 \end{bmatrix}$$
(4.3)

where $A_{\infty} = A - P_{\infty} C_2^T C_2$, and U(s) is an arbitrary transfer matrix in \mathscr{RH}_{∞} such that $||U||_{\infty} \leq \gamma$. Furthermore, $||T_{ew}||_{\infty} < \gamma$ holds if and only if $||U||_{\infty} < \gamma$.

In the remainder of this section, we give a proof of Theorem based on Nehari's theorem.

4.1 Reduction to model matching problem

Since T_{zw} and T_{yw} may not be stable in general, the standard model matching approach cannot be directly applied to the \mathscr{H}_{∞} estimation problem. Thus, we first introduce a class of all estimators stabilizing T_{ew} . Suppose P_2 is the unique non-negative stabilizing solution to the following ARE.

$$AP_2 + P_2A^T - P_2C_2^TC_2P_2 + B_1B_1^T = 0 (4.4)$$

Then the \mathscr{H}_2 optimal estimator, or the steady-state Kalman filter, is given by

$$\dot{x}_{2} = A\dot{x}_{2} + P_{2}C_{2}^{T}(y - C_{2}\dot{x}_{2}) + B_{2}u$$
$$\dot{x}_{2} = C_{1}\dot{x}_{2}$$

where \hat{x}_2 and \hat{z}_2 are the estimate of x and z, respectively. Define $A_2 := A - P_2 C_2^T C_2$. Then from Lemma 1, a class of all stable unbiased estimators is given by

$$T_{est}(s) = [T_{e1}(s) \ T_{e2}(s)] \tag{4.5}$$

$$T_{e1}(s) = \left[\frac{A_2}{C_1} \left| \frac{B_2}{0} \right] - K \left[\frac{A_2}{C_2} \left| \frac{B_2}{0} \right]\right]$$
(4.6)

$$T_{e2}(s) = \left[\frac{A_2}{C_1} \left| \frac{P_2 C_2^T}{0} \right] + K \left[\frac{A_2}{-C_2} \left| \frac{P_2 C_2^T}{I} \right] \right]$$
(4.7)

where K(s) is an arbitrary transfer matrix in \mathscr{RH}_{∞} . Substituting (4.5) into (2.4) and some algebraic manipulations yield

$$T_{ew}(s) = \left[\frac{A_2}{C_1} \left| \frac{B_1 - P_2 C_2^T D}{0} \right] - K(s) \left[\frac{A_2}{C_2} \left| \frac{B_1 - P_2 C_2^T D}{D} \right] \right]$$
(4.8)

Since A_2 is a stability matrix, the \mathscr{H}_{∞} estimation problem is reduced to a standard model matching problem of finding $\hat{K} = \gamma^{-1} K \in \mathscr{RH}_{\infty}$ such that

$$\|\gamma^{-1}T_{ew}\|_{\infty} = \|T_1 - \hat{K}T_2\|_{\infty} < 1$$
(4.9)

where

$$C_{\gamma} = \gamma^{-1}C_{1}, \ T_{1}(s) = \left[\frac{A_{2}}{C_{\gamma}} \middle| \frac{B_{1} - P_{2}C_{2}^{T}D}{0} \right], \ T_{2}(s) = \left[\frac{A_{2}}{C_{2}} \middle| \frac{B_{1} - P_{2}C_{2}^{T}D}{D} \right]$$

4.2 Proof of Theorem

(Necessity) Since $T_2 T_2 = I$, it is easily seen that $EE^{\sim} = I$ with $E = [T_2^{\sim} I - T_2^{\sim}T_2]$, so that

$$\|T_1 - \hat{K}T_2\|_{\infty} = \|(T_1 - \hat{K}T_2)E\|_{\infty}$$
$$= \|[T_1T_2^{-} - \hat{K} T_1(I - T_2^{-}T_2)]\|_{\infty}$$

Therefore, if there exists $\hat{K}(s) \in \mathscr{RH}_{\infty}$ that satisfies (4.9), then $||Y||_{\infty} < 1$ holds, where $Y = T_1(I - T_2^{\sim}T_2)$.

Furthermore, if $||Y||_{\infty} < 1$, there exists a co-spectral factor $Y_o(s)$ such that

$$I - YY^{\sim} = Y_{o}Y_{o}^{\sim}, \quad Y_{o}, Y_{o}^{-1} \in \mathscr{RH}_{\infty}$$

We see from Lemma 8.2 of [10] that the following inequality also holds.

$$\|Y_{o}^{-1}T_{1}T_{2} - Y_{o}^{-1}\hat{K}\|_{\infty} < 1$$
(4.10)

We now derive the state-space representations of the conditions of $||Y||_{\infty} < 1$ and (4.10). After some algebraic manipulations, we get

$$T_{1}T_{1}^{\sim} = \left[\frac{A_{2}}{C_{\gamma}} \left| \frac{P_{2}C_{\gamma}^{T}}{0} \right] + \left[\frac{A_{2}}{C_{\gamma}} \left| \frac{P_{2}C_{\gamma}^{T}}{0} \right]^{\sim} \right]$$
$$T_{1}T_{2}^{\sim} = \left[\frac{-A_{2}^{T}}{C_{\gamma}P_{2}} \left| \frac{-C_{2}^{T}}{0} \right]\right]$$
$$T_{1}T_{2}^{\sim}T_{2}T_{1}^{\sim} = \left[\frac{A_{2}}{C_{\gamma}P_{2}R} \left| \frac{P_{2}C_{\gamma}^{T}}{0} \right] + \left[\frac{A_{2}}{C_{\gamma}P_{2}R} \left| \frac{P_{2}C_{\gamma}^{T}}{0} \right]^{\sim}\right]$$

where R is a unique non-negative definite solution to the following Lyapunov equation.

$$A_2^T R + RA_2 + C_2^T C_2 = 0 (4.11)$$

Thus,

Kiyotsugu TAKABA and Tohru KATAYAMA

$$YY^{\sim} = T_{1}(I - T_{2}T_{2})(I - T_{2}T_{2})^{T}T_{1}^{*}$$

= $T_{1}(I - T_{2}T_{2})T_{1}^{*} = T_{1}T_{1}^{*} - T_{1}T_{2}^{*}T_{2}T_{1}^{*}$
= $\left[\frac{A_{2}}{C_{\gamma}(I - P_{2}R)}\middle|\frac{P_{2}C_{\gamma}^{T}}{0}\right] + \left[\frac{A_{2}}{C_{\gamma}(I - P_{2}R)}\middle|\frac{P_{2}C_{\gamma}^{T}}{0}\right]^{*}$ (4.12)

In order to derive a condition for $||Y||_{\infty} < 1$, we introduce Lemmas 5 and 6.

Lemma 5 Let P_2 be a non-negative stabilizing solution to (4.4) and R be a non-negative solution to (4.11). Then $I-P_2R>0$ holds.

Proof See Appendix B.

Lemma 6
$$||Y||_{\infty} = \left\| \left[\frac{A_2}{C_{\gamma}(I - P_2 R)} \middle| \frac{(I - P_2 R)^{-1} B_1}{0} \right] \right\|_{\infty}$$

Proof See Appendix C.

Therefore, Lemmas 3 and 6 show that $||Y||_{\infty} < 1$ holds if and only if there exists an $M = M^T \ge 0$ satisfying

$$A_{2}M + MA_{2}^{T} + M(I - RP_{2})C_{\gamma}^{T}C_{\gamma}(I - P_{2}R)M + (I - P_{2}R)^{-1}B_{1}B_{1}^{T}(I - RP_{2})^{-1} = 0$$
(4.13)

with $A_M := A_2 + M(I - RP_2)C_{\gamma}^T C_{\gamma}(I - P_2 R)$ stable. A state-space realization of the co-spectral factor $Y_o(s)$ is then given by

$$Y_o(s) = \left[\frac{A_2}{C_{\gamma}(I - P_2 R)} \middle| \frac{M(I - RP_2)C_{\gamma}^T}{I} \right]$$

It therefore follows that

$$Y_{o}^{-1}T_{1}T_{2}^{\sim} = \left[\frac{A_{M}}{C_{\gamma}(I-P_{2}R)} \left| \frac{M(I-RP_{2})C_{\gamma}^{T}}{I} \right] \left[\frac{-A_{2}^{T}}{C_{\gamma}P_{2}} - C_{2}^{T}}{C_{\gamma}P_{2}} \right] \right]$$
$$= \left[\frac{A_{M}}{M(I-RP_{2})C_{\gamma}^{T}C_{\gamma}P_{2}} = 0 \\ \frac{0}{C_{\gamma}(I-P_{2}R)} - C_{\gamma}P_{2}} = 0 \\ \frac{1}{C_{\gamma}(I-P_{2}R)} - C_{\gamma}P_{2} = 0 \\ \frac{1}{C_{\gamma}(I-P$$

We define $S = M - P_2(I - RP_2)^{-1}$. Then S is a non-negative symmetric solution to the following Lyapunov equation.

$$A_{2}S + SA_{2}^{T} + M(I - RP_{2})C_{\gamma}^{T}C_{\gamma}(I - P_{2}R)M = 0$$
(4.15)

Furthermore, we get

$$A_{M}S + SA_{2}^{T} + M(I - RP_{2})C_{\gamma}^{T}C_{\gamma}(I - P_{2}R)P_{2} = 0$$
(4.16)

Applying the basis change $\begin{bmatrix} I & S \\ 0 & I \end{bmatrix}$ to (4.14) and using (4.16) yield

$$Y_{o}^{-1}T_{1}T_{2} = \left[\frac{A_{M}}{C_{\gamma}(I-P_{2}R)} \left|\frac{SC_{2}^{T}}{0}\right] + \left[\frac{-A_{2}^{T}}{C_{\gamma}(I-P_{2}R)M} \left|\frac{-C_{2}^{T}}{0}\right]\right]$$

Since A_M is stable and $-A_2^T$ is antistable, we get

$$\begin{bmatrix} Y_o^{-1}T_1T_2 \end{bmatrix}_{+} = \begin{bmatrix} A_M & \left| \frac{SC_2^T}{C_{\gamma}(I - P_2 R)} \right| & 0 \end{bmatrix}$$
$$\begin{bmatrix} Y_o^{-1}T_1T_2 \end{bmatrix}_{-} = \begin{bmatrix} -A_2^T & \left| -C_2^T \right| \\ \hline C_{\gamma}(I - P_2 R)M & 0 \end{bmatrix}$$

Here, the Hankel norm of $Y_o^{-1}T_1T_2$ can be computed by $||Y_o^{-1}T_1T_2||_H = \rho(L_oL_c)$ [10], where L_o and L_c are defined by

$$-A_{2}L_{o} - L_{o}A_{2}^{T} = M(I - RP_{2})C_{\gamma}^{T}C_{\gamma}(I - P_{2}R)M$$
$$-A_{2}^{T}L_{c} - L_{c}A_{2} = C_{2}^{T}C_{2}$$

From (4.11) and (4.15), we get $L_o = S$ and $L_c = R$. Therefore, it follows from Nehari's theorem that there exists $Y_o^{-1} \hat{K}$ that satisfies (4.10) if and only if $\rho(SR) < 1$ holds. Hereafter, we assume that there exists a non-negative stabilizing solution M to the ARE of (4.13) and that $\rho(SR) < 1$ holds.

We define $P_{\infty} := P_2 + (I - SR)^{-1}S$ [11]. Then P_{∞} is also non-negative definite since $P_2 \ge 0$ and $S \ge 0$. It is straightforward to show that P_{∞} satisfies

$$M(I - RP_{2}) = (I - SR)P_{\infty}$$

$$AP_{\infty} + P_{\infty}A^{T} + P_{\infty}(C_{\gamma}^{T}C_{\gamma} - C_{2}^{T}C_{2})P_{\infty} + B_{1}B_{1}^{T} = 0$$

$$A + P_{\infty}(C_{\gamma}^{T}C_{\gamma} - C_{2}^{T}C_{2}) = (I - SR)^{-1}A_{M}(I - SR)$$

Moreover, since A_M is a stability matrix, it follows from the above equations that $A + P_{\infty}(C_{\gamma}^T C_{\gamma} - C_2^T C_2)$ is stable, i.e. P_{∞} is a stabilizing solution to the ARE of (4.1).

(Sufficiency) Suppose that there exists a non-negative definite stabilizing solution

 P_{∞} to the ARE of (4.1) and $\rho(SR) < 1$. Then, it is easily seen that a unimodular matrix Π satisfying

$$\begin{bmatrix} I & \begin{bmatrix} Y_o^{-1}T_1T_2 \end{bmatrix}_{-} \\ 0 & I \end{bmatrix}^{-} J \begin{bmatrix} I & \begin{bmatrix} Y_o^{-1}T_1T_2 \end{bmatrix}_{-} \\ 0 & I \end{bmatrix} = \Pi^{-} J \Pi$$

is given by

$$\Pi = \begin{bmatrix} \frac{(I - SR)^{-1}A_2(I - SR) P_{\infty}C_{\gamma}^T (P_{\infty} - P_2)C_2^T}{C_{\gamma}P_{\infty}R(I - SR) & I & 0\\ -C_2 & 0 & I \end{bmatrix}$$

It therefore follows from Lemma 2 that $\hat{K}(s) \in \mathscr{RH}_{\infty}$ satisfying $||Y_o^{-1}T_1T_2^{-1} - Y_o^{-1}\hat{K}||_{\infty} \leq 1$ is expressed as

$$\hat{K}(s) = T_{1}T_{2} - Y_{o}(L_{1}Q + L_{2})(L_{3}Q + L_{4})^{-1}$$

$$L_{1} = \left[\frac{-A_{2}^{T}}{C_{\gamma}(I - P_{2}R)M} \middle| \frac{-RP_{\infty}C_{\gamma}^{T}}{I}\right]$$

$$L_{2} = \left[\frac{-A_{2}^{T}}{C_{\gamma}(I - P_{2}R)M} \middle| \frac{-(I - RS)^{-1}C_{2}^{T}}{0}\right]$$

$$L_{3} = \left[\frac{A_{2}}{C_{2}} \middle| \frac{P_{\infty}C_{\gamma}^{T}}{0}\right]$$

$$L_{4} = \left[\frac{A_{2}}{C_{2}} \middle| \frac{(P_{\infty} - P_{2})C_{2}^{T}}{I}\right]$$

where Q(s) is an arbitrary transfer matrix in \mathscr{RH}_{∞} such that $||Q||_{\infty} \leq 1$. We define

$$A_{\infty} := A - P_{\infty} C_2^T C_2, \quad U(s) = \gamma Q(s)$$
$$\bar{G}(s) := \begin{bmatrix} \gamma (T_1 T_2^- - Y_o L_2 L_4^{-1}) & Y_o (L_1 - L_2 L_4^{-1} L_3) \\ -L_4^{-1} & -\gamma^{-1} L_4^{-1} L_3 \end{bmatrix}$$

Then the LFT representation of K(s) is given by

$$K(s) = \gamma \hat{K}(s) = \mathscr{F}_l(\bar{G}, U) \tag{4.17}$$

$$\bar{G} = \begin{bmatrix} \frac{A_{\infty} | (P_{\infty} - P_2) C_2^T - \gamma^{-2} P_{\infty} C_1^T}{C_1 & 0 & I} \\ C_2 & -I & 0 \end{bmatrix}$$
(4.18)

Thus, from (4.6) and (4.7), we obtain

$$\begin{split} T_{e1} &= \left[\frac{A_2}{C_1} \left| \frac{B_2}{0} \right] - K \left[\frac{A_2}{C_2} \left| \frac{B_2}{0} \right] = \mathscr{F}_l \left(\begin{bmatrix} \frac{A_{\infty} \left| B_2 - \gamma^{-2} P_{\infty} C_1^T \right|}{C_1 \left| 0 \right|} \\ C_2 \left| 0 \right| & 0 \end{bmatrix}, U \right) \\ T_{e2} &= \left[\frac{A_2}{C_1} \left| \frac{P_2 C_2^T}{0} \right] + K \left[\frac{A_2}{-C_2} \left| \frac{P_2 C_2^T}{I} \right| \right] = \mathscr{F}_l \left(\begin{bmatrix} \frac{A_{\infty} \left| P_{\infty} C_2^T - \gamma^{-2} P_{\infty} C_1^T \right|}{C_1 \left| 0 \right|} \\ C_2 \left| -I \right| & 0 \end{bmatrix}, U \right) \end{split}$$

Substituting the above equations into (4.5) yields (4.2) and (4.3), as was to be shown.

Moreover, from (4.2) and (4.3), $\gamma^{-1}T_{ew} = T_1 - \hat{K}T_2$ is expressed as

$$\gamma^{-1}T_{ew} = T_1 - \hat{K}T_2 = \mathscr{F}_l(T,Q)$$
$$T(s) = \begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix} = \begin{bmatrix} A_{\infty} | B_1 - P_{\infty}C_2^T D - P_{\infty}C_{\gamma}^T \\ \hline C_{\gamma} & 0 & I \\ \hline C_{2} & D & 0 \end{bmatrix}$$

where $Q(s) = \gamma U(s)$ and $||Q||_{\infty} \leq 1$. It is straightforward to verify that $TT^{\sim} = I$ and $T_{12}^{-1} = \left[\frac{A + P_{\infty}(C_{\gamma}^{T}C_{\gamma} - C_{2}^{T}C_{2})}{C_{\gamma}} \middle| \frac{P_{\infty}C_{\gamma}^{T}}{I} \right]$. Since P_{∞} is a stabilizing solution to the ARE of (4.1), $T_{12}^{-1} \in \mathscr{RH}_{\infty}$. Therefore, it follows from Lemma 4 that $||T_{1} - \hat{K}T_{2}||_{\infty} < 1$ iff $||Q||_{\infty} < 1$, namely $||U||_{\infty} < \gamma$. It may be noted that the parametrization of (4.2) and (4.3) does not contain S and R. Thus, a sufficient condition for the existence of K(s) satisfying $||T_{ew}||_{\infty} < \gamma$ is that there exists a non-negative definite solution to the ARE of (4.1).

Remark The transfer matrix K(s) of (4.8) is very important in that it characterizes the relationship between \mathscr{H}_{∞} estimators and \mathscr{H}_2 optimal estimator, modifying the estimation error $z - \hat{z}_2$ using the innovation $y - C_2 \hat{x}_2$ so that $||T_{ew}||_{\infty} < \gamma$. Comparing (2.4) with (4.8), it is easily seen that K(s) must have the same estimator structure as $T_{est}(s)$ except for the control input term. In fact, we see from (4.17) and (4.18) that K(s) has the same form as $T_{est}(s)$ with the filter gain $(P_{\infty} - P_2)C_2^T$. Furthermore, P_{∞} tends to P_2 and U(s) becomes arbitrary in \mathscr{RH}_{∞} as γ tends to infinity. Therefore, if γ tends to infinity, K(s) tends to -U(s) and $T_{est}(s)$ becomes the \mathscr{H}_2 optimal estimator with U(s)=0.

5. Conclusion

In this paper, we have derived a necessary and sufficient condition for the existence of a solution to the \mathscr{H}_{∞} estimation problem in terms of the ARE of (4.1) and developed a class of all solutions based on the Nehari's theorem. The property of the transfer matrix K(s) that characterizes the relationship between \mathscr{H}_{∞} estimator and \mathscr{H}_2 optimal estimator has been examined.

References

- I. Yaesh and U. Shaked, Nondefinite least square and its relation to *H_w*-minimum error state estimation, *IEEE Trans. Automat. Contr.* AC-36 (1991) 1469-1472.
- [2] I. Yaesh and U. Shaked, Game theory approach to optimal linear state estimation and its relation to the minimim *H_w*-norm estimation, *IEEE Trans. Automat. Contr.* AC-37 (1992) 828-831.
- [3] I. Yaesh and U. Shaked, A transfer function approach to the problems of discrete-time systems: \mathscr{H}_{∞} -optimal linear control and filtering, *IEEE Trans. Automat. Contr.* AC-36 (1991) 1264–1271.
- [4] K.M. Nagpal and P.P. Khargonekar, Filtering and smoothing in an *H_∞* setting, *IEEE Trans.* Automat. Contr. AC-36 (1991) 152-166.
- [5] D.S. Bernstein and W.M. Haddad, Steady-state Kalman filtering with an \mathscr{H}_{∞} error bound, Syst. & Contr. Lett. 12 (1989) 9-16.
- [6] J.S. Fernandes, C.E. de Souza and G.C. Goodwin, Novel techniques for the design of robust state estimators, Proc. IFAC World Congress 1990 3 (1990) 41-46.
- [7] D.J.N. Limebeer and U. Shaked, Min-max terminal state estimation and \mathscr{H}_{∞} filtering, submitted for publication.
- [8] J.C. Doyle, K. Glover, P.P. Khargonekar and B.A. Francis, State-space solutions to standard *H₂* and *H_∞* control problems, *IEEE Trans. Automat. Contr.* AC-34 (1989) 831-846.
- [9] G.C. Goodwin and R.H. Middleton, The class of all stable unbiased state estimators, Syst. & Contr. Lett. 13 (1989) 161-163.
- [10] B.A. Francis, A course in \mathscr{H}_{∞} control theory (Springer-Verlag, New York, 1987).
- [11] T. Mita, K.Z. Liu and S. Ohuchi, Correction of the FI result in H_∞ control and parametrization of state feedback controllers, *IEEE Trans. Automat. Contr.*, AC-38 (1993) 343-347.

Appendix A: Proof of Lemma 1

We give a proof of Lemma 1 based on the technique of [9]. We first define $\hat{x}_0 = C_1 \hat{x}_0$ and $v_0 = y - C_2 \hat{x}_0$. Then, it follows from (3.1) that

$$\hat{z}_0 = \left[\frac{A - LC_2}{C_1} \left| \frac{L}{0} \right] y + \left[\frac{A - LC_2}{C_2} \left| \frac{B_2}{0} \right] u$$
(A.1)

$$v_0 = \left[\frac{A - LC_2}{-C_2} \middle| \frac{L}{I}\right] y - \left[\frac{A - LC_2}{C_2} \middle| \frac{B_2}{0}\right] u$$
(A.2)

(Sufficiency) From (3.2)-(3.4), (A.1) and (A.2), we get

$$\hat{z} = T_{est} \begin{bmatrix} y \\ u \end{bmatrix} = \hat{z}_0 + K v_0$$

Here, we assume that there exist no modeling errors and disturbance. Then, since \hat{x}_0 is an unbiased estimate of x, v_0 and $z - \hat{z}_0$ tend to zero as time t tends to infinity. Therefore, $z - \hat{z}$ also tends to zero, i.e. \hat{z} is unbiased.

The stability of $T_{est}(s)$ is immediate from the stabilities of K(s) and $A - LC_2$.

(Necessity) We assume that stable estimates \hat{z} and \hat{z}_0 are given by

$$\hat{z} = \Gamma u + \Lambda y \tag{A.3}$$

$$\hat{z}_0 = \Gamma_0 u + \Lambda_0 y \tag{A.4}$$

where $\Gamma(s)$ and $\Lambda(s)$ are \mathscr{RH}_{∞} matrices and

$$\Gamma_0(s) = \left[\frac{A - LC_2}{C_1} \middle| \frac{B_2}{0}\right], \quad \Lambda_0(s) = \left[\frac{A - LC_2}{C_1} \middle| \frac{L}{0}\right]$$
(A.5)

It then follows that

$$\hat{z} - \hat{z}_0 = (\Gamma - \Gamma_0)u + (\Lambda - \Lambda_0)y$$
$$= \{ (\Gamma - \Gamma_0) + (\Lambda - \Lambda_0)\tilde{N}\tilde{M}^{-1} \} u$$
(A.6)

where $\tilde{N}\tilde{M}^{-1}$ is a right coprime factorization of $T_{yu}(s) = \left[\frac{A}{C_2} \middle| \frac{B_2}{0}\right]$ Without modeling errors and disturbance, the left hand side of (A.6) is zero due to the unbiasedness of \hat{z} and \hat{z}_0 . Thus, we get

$$(\Gamma - \Gamma_0)\tilde{M} + (\Lambda - \Lambda_0)\tilde{N} = 0 \tag{A.7}$$

Since $\tilde{N}(s)$ and $\tilde{M}(s)$ are coprime in \mathscr{RH}_{∞} , $\Gamma(s)$ and $\Lambda(s)$ satisfying (A.7) are expressed as

$$\Gamma = \Gamma_0 + KT_{\nu_0 \mu} \tag{A.8}$$

$$\Lambda = \Lambda_0 + KT_{\nu_0 y} \tag{A.9}$$

where K(s) is an arbitrary transfer matrix in \mathscr{RH}_{∞} and

$$T_{v_{0}u}(s) = -\left[\frac{A - LC_2}{C_2} \middle| \frac{B_2}{0} \right], \quad T_{v_0y}(s) = \left[\frac{A - LC_2}{-C_2} \middle| \frac{L}{I} \right]$$
(A.10)

It should be noted that $T_{yu} = T_{voy}^{-1} T_{vou}$ is a left coprime factorization. Substituting (A.8) and (A.9) into (A.3) yields

$$\hat{z} = \Gamma u + \Lambda y$$
$$= (\Gamma_0 + KT_{v_0 u})u + (\Lambda_0 + KT_{v_0 y})y$$
(A.11)

Thus

$$T_{est} = [\Lambda_0 + KT_{\nu_0\nu} \quad \Gamma_0 + KT_{\nu_0\nu}] \tag{A.12}$$

Substituting (A.5) and (A.10) into (A.12) yields (3.2)-(3.4).

Appendix B: Proof of Lemma 5

Without loss of generality, we assume that the matrices A, B_1 and C_2 are of the forms

$$A = \begin{bmatrix} \bar{A}_{11} & 0 \\ \bar{A}_{21} & \bar{A}_{22} \end{bmatrix}, B_1 = \begin{bmatrix} \bar{B}_1 \\ \bar{B}_2 \end{bmatrix}, C_2 = [\bar{C} \ 0]$$

where $(\bar{A}_{11}, \bar{B}_1)$ is stabilizable, (\bar{C}, \bar{A}_{11}) is observable and \bar{A}_{22} is a stability matrix. Let $P_2 = \begin{bmatrix} \bar{P}_1 & \bar{P}_2 \\ \bar{P}_2^T & \bar{P}_3 \end{bmatrix}$ be a non-negative stabilizing solution to the ARE of (4.4). Then we get

$$\bar{A}_{11}\bar{P}_1 + \bar{P}_1\bar{A}_{11}^T - \bar{P}_1\bar{C}^T\bar{C}\bar{P}_1 + \bar{B}_1\bar{B}_1^T = 0$$
(B.1)

$$(\bar{A}_{11} - \bar{P}_1 \bar{C}^T \bar{C}) \bar{P}_2 + \bar{P}_2 \bar{A}_{22}^T + \bar{B}_1 \bar{B}_2^T = 0$$
(B.2)

$$\bar{A}_{22}\bar{P}_3 + \bar{P}_3\bar{A}_{22}^T + \bar{A}_{21}\bar{P}_2 + \bar{P}_2^T\bar{A}_{21}^T + \bar{B}_2\bar{B}_2^T = 0$$
(B.3)

Since P_2 is a non-negative stabilizing solution to (4.4), \bar{P}_1 is also a non-negative stabilizing solution to (B.1), i.e. $\bar{A}_{11} - \bar{P}_1 \bar{C}^T \bar{C}$ is stable. Moreover, we see from (B.2) and (B.3) that \bar{P}_2 and \bar{P}_3 are uniquely determined by \bar{P}_1 .

Similarly, let $R = \begin{bmatrix} \bar{R}_1 & \bar{R}_2 \\ \bar{R}_2^T & \bar{R}_3 \end{bmatrix}$ be a non-negative solution to the Lyapunov equation of (4.11). Then we get

$$(A_{11} - \bar{P}_1 \bar{C}^T \bar{C})^T \bar{R}_1 + \bar{R}_1 (A_{11} - \bar{P}_1 \bar{C}^T \bar{C}) + (\bar{A}_{22} - \bar{P}_2^T \bar{C}^T \bar{C})^T \bar{R}_2^T + \bar{R}_2 (\bar{A}_{22} - \bar{P}_2^T \bar{C}^T \bar{C}) + \bar{C}^T \bar{C} = 0$$
(B.4)

$$(\bar{A}_{11} - \bar{P}_1 \bar{C}^T \bar{C}) \bar{R}_2 + \bar{R}_2 \bar{A}_{22}^T + (\bar{A}_{21} - \bar{P}_2^T \bar{C}^T \bar{C})^T \bar{R}_3 = 0$$
(B.5)

$$\bar{A}_{22}^{T}\bar{R}_{3} + \bar{R}_{3}\bar{A}_{22} = 0 \tag{B.6}$$

We see from (B.6) that $\bar{R}_3 = 0$ since \bar{A}_{22} is stable. Since $\bar{A}_{11} - \bar{P}_1 \bar{C}^T \bar{C}$ and \bar{A}_{22} are stable, substituting $\bar{R}_3 = 0$ into (B.5) yields $\bar{R}_2 = 0$. Thus, (B.4) is reduced to the Lyapunov equation

$$(\bar{A}_{11} - \bar{P}_1 \bar{C}^T \bar{C})^T \bar{R}_1 + \bar{R}_1 (\bar{A}_{11} - \bar{P}_1 \bar{C}^T \bar{C}) + \bar{C}^T \bar{C} = 0$$
(B.7)

It follows from the observability of (\bar{C}, \bar{A}_{11}) that \bar{R}_1 is a unique positive definite solution to (B.7). Therefore, we obtain

$$I - P_2 R = \begin{bmatrix} I - \bar{P}_1 \bar{R}_1 & 0 \\ - \bar{P}_2^T \bar{R}_1 & I \end{bmatrix}$$

It remains to show $I - \bar{P}_1 \bar{R}_1 > 0$. Since $\bar{R}_1 > 0$ holds, we see from (B.7) that

$$(\bar{A}_{11} - \bar{P}_1 \bar{C}^T \bar{C} + \bar{R}_1^{-1} \bar{C}^T \bar{C}) \bar{R}_1^{-1} + \bar{R}_1^{-1} (\bar{A}_{11} - \bar{P}_1 \bar{C}^T \bar{C} + \bar{R}_1^{-1} \bar{C}^T \bar{C})^T - \bar{R}_1^{-1} \bar{C}^T \bar{C} \bar{R}_1^{-1} = 0$$
(B.8)

Since (\bar{C}, \bar{A}_{11}) is observable, $(\bar{A}_{11} - \bar{P}_1 \bar{C}^T \bar{C} + \bar{R}_1^{-1} \bar{C}^T \bar{C}, \bar{R}_1^{-1} \bar{C}^T)$ is stabilizable. Thus, it follows from $\bar{R}_1^{-1} > 0$ that $\bar{A}_{11} - \bar{P}_1 \bar{C}^T \bar{C} + \bar{R}_1^{-1} \bar{C}^T \bar{C}$ is antistable. Moreover, from (B.1), we get

$$(\bar{A}_{11} - \bar{P}_1 \bar{C}^T \bar{C} + \bar{R}_1^{-1} \bar{C}^T \bar{C}) \bar{P}_1 + \bar{P}_1 (\bar{A}_{11} - \bar{P}_1 \bar{C}^T \bar{C} + \bar{R}_1^{-1} \bar{C}^T \bar{C})^T$$

Kiyotsugu TAKABA and Tohru KATAYAMA

$$-\bar{R}_{1}^{-1}\bar{C}^{T}\bar{C}\bar{R}_{1}^{-1} + (\bar{P}_{1} - \bar{R}_{1}^{-1})\bar{C}^{T}\bar{C}(\bar{P}_{1} - \bar{R}_{1}^{-1}) + \bar{B}_{1}\bar{B}_{1}^{T} = 0$$
(B.9)

Subtracting (B.8) from (B.9) yields

$$(\bar{A}_{11} - \bar{P}_1 \bar{C}^T \bar{C} + \bar{R}_1^{-1} \bar{C}^T \bar{C}) (\bar{P}_1 - \bar{R}_1^{-1}) + (\bar{P}_1 - \bar{R}_1^{-1}) (\bar{A}_{11} - \bar{P}_1 \bar{C}^T \bar{C} + \bar{R}_1^{-1} \bar{C}^T \bar{C})^T + (\bar{P}_1 - \bar{R}_1^{-1}) \bar{C}^T \bar{C} (\bar{P}_1 - \bar{R}_1^{-1}) + \bar{B}_1 \bar{B}_1^T = 0$$
(B.10)

Since $\bar{A}_{11} - \bar{P}_1 \bar{C}^T \bar{C} + \bar{R}_1^{-1} \bar{C}^T \bar{C}$ is antistable and $(\bar{A}_{11} - \bar{P}_1 \bar{C}^T \bar{C} + \bar{R}_1^{-1} \bar{C}^T \bar{C}, [(\bar{P}_1 - \bar{R}_1^{-1}) \bar{C}^T \bar{B}_1])$ is controllable, $\bar{P}_1 - \bar{R}_1^{-1} < 0$. This implies $I - \bar{P}_1 \bar{R}_1 > 0$.

Appendix C: Proof of Lemma 6

From Lemma 5, there exists a matrix $V = P_2(I - RP_2)^{-1}$. It follows from (4.4) and (4.11) that V is a non-negative definite solution to the Lyapunov equation.

$$A_2V + VA_2^T + (I - P_2R)^{-1}B_1B_1^T(I - RP_2)^{-1} = 0$$
 (C.1)

We see from (4.12) that

$$YY^{\sim} = \left[\frac{A_{2}}{C_{\gamma}(I-P_{2}R)} \middle| \frac{P_{2}C_{\gamma}^{T}}{0}\right] + \left[\frac{A_{2}}{C_{\gamma}(I-P_{2}R)} \middle| \frac{P_{2}C_{\gamma}^{T}}{0}\right]^{\sim}$$
$$= \left[\frac{A_{2}}{0} \middle| \frac{P_{2}C_{\gamma}^{T}}{-(I-RP_{2})C_{\gamma}^{T}}\right]$$
$$(C.2)$$

Applying the basis change $\begin{bmatrix} I & V \\ 0 & I \end{bmatrix}$ to (C.2) yields

$$YY^{\sim} = \begin{bmatrix} A_{2} & -(I-P_{2}R)^{-1}B_{1}B_{1}^{T}(I-RP_{2})^{-1} & 0\\ 0 & -A_{2}^{T} & (I-RP_{2})C_{\gamma}^{T}\\ \hline C_{\gamma}(I-P_{2}R) & 0 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} A_{2} & |(I-P_{2}R)^{-1}B_{1}\\ \hline C_{\gamma}(I-P_{2}R) & 0 \end{bmatrix} \begin{bmatrix} A_{2} & |(I-P_{2}R)^{-1}B_{1}\\ \hline C_{\gamma}(I-P_{2}R) & 0 \end{bmatrix}^{\sim}$$

This completes a proof. \Box