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Abstract 

The self calibration of a non-metric camera without object space information requires 
an assumption that the interior orientation is unchanged between more than two 
photographs taken of the same three-dimensional object. However, this criterion may 
not be valid for many non-metric cameras. On the other hand, it is not very difficult 
to manufacture high-quality front-surfaced mirrors with practically no undulation. Also, 
by placing such a plane mirror close to an object so that a non-metric camera can record 
not only the object directly but also its mirror reflection, the above assumption can be 
satisfied rigorously between the normal and satellite pictures taken on the same 
negative. In addition, constraints are generated among the exterior orientation parameters 
of the stereopair of mirror photographs. Based on both these findings and the potential 
theory of overlapped photographs (Okamoto [1986]), this paper discusses the self 
calibration problem of non-metric cameras employing plane mirrors in detail. Further, 
the constraints regarding the exterior orientation of overlapped mirror photographs prove 
to be replaced by coplanarity equations and object space information redundantly 
used. Finally, corrections techniques for mirror distortions are presented. 

INTRODUCTION 

241 

Mirrors have long been used mainly in close-range photogrammetry for the purpose 

of obtaining stereocoverage of hidden areas which cannot be registered in both photographs 

in a conventional manner. Further, spherical or round-surfaced objects can be reconstructed 

photogrammetrically by arranging a pair of cameras and two plane mirrors adequately 

(Kratky [1975], and Veress and Munjy [1983]). Little, however, has been done in the way 

of investigating the role of mirrors in central-projective geometry (Mikhail [1968]). Thus, 

the geometrical potential of mirrors has not been fully utilized in many close-range 

applications of mirror photographs. 

In our previous research (Okamoto and Akamatu [1992]), geometrical properties of 

mirror photographs have been explored fundamentally. Also, an orientation method of a 

stereopair of normal and satellite pictures taken on the same film has been presented, which 

has the following characteristics that 

(1) Parameters defining the mirror plane are employed as the orientation unknowns in 
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order to avoid the problem of expressing constraints among the exterior orientation 

elements of the stereopair in functional form, and 

(2) The general law of reflection is introduced in the orientation calculation. 

On the other hand, Kratky [1975] developed another orientation technique of such a 

stereopair of mirror photographs, which adopts the orientation elements of the reflected 

satellite picture (the mirror reflection of the satellite picture) as the orientation unknowns. 

In this paper, the self calibration problem of non-metric cameras using plane mirrors 

is discussed under the assumption that the mirrors are free of distortion, the two orientation 

methods of overlapped mirror photographs are compared, when all the orientation unknowns 

are determined simultaneously, and correction techniques of mirror distortions are proposed, 

when they are not negligibly small. 

SELF-CALIBRATION PROBLEM OF NON-METRIC CAMERAS USING 

PLANE MIRRORS 

In this section, the self calibration problem of non-metric cameras using plane mirrors 

will be discussed based on the orientation theory of mirror photographs presented in our 

previous paper (Okamoto and Akamatu [1992]). 

EXPLANATION OF THE PRINCIPLE 

Let two plane mirrors be placed close to an object in such a way that a non-metric 

camera can register not only the object directly but also their mirror reflections, as is 

Fig. I 
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Self calibration problem of one non-metric camera using two plane mirrors. 



Different Considerations in Mirror Photogrammetry 243 

demonstrated in Fig. 1. Under the assumptions that the same interior orientation 

parameters are valid throughout the image plane and that the two mirrors are free of 

distortion, the interior geometry of the normal picture and the two satellite pictures 1 and 

2 can be defined by the same central projective elements. Thus, the orientation problem 

of these three photographs can reduce to that for the case where the interior orientation 

is unchanged between three pictures taken of the same object. In the general case of 

photogrammetry, where a picture has 11 independent central projective parameters (the six 

exterior and five interior orientation elements), we have ten constraints among the interior 

orientation parameters of three such photographs. Further, these ten constraints can be 

classified into eight first-grouped and two second-grouped ones (Okamoto [1986]). It 

follows that all the interior orientation unknowns of the three photographs can be provided 

without object space information. When the linear part of the disturbing feature of 

non-metric cameras is negligibly small, as is the case in many close-range applications, the 

geometry of a picture can be determined by nine independent central-projective elements 

(the six exterior and three interior orientation elements). In this case, twelve constraints 

must be introduced for the interior orientation of the normal picture and the satellite 

pictures 1 and 2, namely, six constraints showing that we have non-linear systematic errors 

in measured image coordinates of the three pictures and six constraints describing that the 

three photographs have the same three conventional interior orientation parameters. In 

addition, these 12 constraints include eight first-grouped ones. From this fact it can be 

seen that the normal picture and the two satellite pictures 1 and 2 have the potential to 

provide all the interior orientation unknowns. 
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Fig. 2 Self calibration problem of two non-metric cameras using two plane mirrors. 
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Next, we will treat the case of employing two non-metric cameras and two plane 

mirrors (See Fig. 2). In this configuration, the normal picture 1 and the satellite picture 

I have the same interior orientation parameters. Also, the interior geometry of the satellite 

picture 2 is the same as that of the normal picture 2. Thus, in the general case of 

photogrammetry, this system can be specified by 10 constraints regarding the interior 

orientation of the four overlapped photographs. According to the potential theory of 

overlapped photographs (Okamoto [1986]), these 10 constraints can be divided into eight 

first-grouped and two second grouped ones. Consequently, the 10 interior orientation 

unknowns can be provided from the potential of the four pictures. In the usual case in 

close-range photogrammetry, 14 constraints are generated among the interior orientation 

elements of four such photographs. Eight among the 14 constraints describe the 

characteristics of the linear systematic errors and the remaining six pertain to the 

conventional interior orientation of the four pictures. In addition, the 14 constraints include 

eight first-grouped ones. This fact shows that the six interior orientation unknowns of the 

four photographs can be determined without object space information. 

THE SELF CALIBRATION CALCULATION 

This paragraph describes the self calibration calculation for the first example (Fig. 1) 

in the general case of photogrammetry. As for the five interior orientation parameters of 

\ 
\ 

\ 

Q,(~\ 
g,;rr,: 

Fig. 3 Self calibration calculation for the first example. The planimetric coordinates 
of the projection center of the image plane are given as (x,0 , y,0 ) with respect 
to the comparator coordinate system (x" y" z,). 
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a photograph, we can, without loss of generality, select the following elements; the planimetric 

coordinates (xeo, Yeo) of its projection center referred to the comparator coordinate system, 

its principal distance, c, and two rotation parameters (a, /3) defining the inclination of the 

comparator coordinate axes with respect to the image plane (See Fig. 3). Further, the 

model space coordinate system (XM, YM, ZM) is taken as a right-handed, rectangular

Cartesian system with its origin at the projection center of the picture and with its X M - YM 

plane parallel to the picture plane. The collinearity condition between an image point and 

the corresponding model point will be given, respectively, for the normal picture and satellite 

photographs I and 2 as follows. 

With regard to the normal picture, the transformed picture coordinates (MX P' M Yp, MZ p) 

are described in the form 

) ( 

(xe - Xeo + c · sin a cos {J)sec a - (Ye - Yeo+ c · sin {J)tan a tan /3) 
= (Ye - Yeo+ c · sin {J)sec f3 

-c 
(1) 

in which (xe, Ye) denote measured plate coordinates of an image point p(x, y) on the normal 

picture (Okamoto [1981, 1982]). Using Equation 1, direction cosines(/, m, n) of the imaging 

ray g can be obtained and the equation of g can be constructed in the model space 

coordinate system. Then, the collinearity condition relating the image point p(x, y) and 

the corresponding model point PM(XM, YM, ZM) can be expressed as 

(2) 

Equation 2 contains only the five interior orientation unknowns (xeo, Yeo, c, a, {3). 

An imaging ray for a satellite picture can be divided into a ray before reflection and 

a ray after reflection. Also, the equations of rays g1 and g2 before reflection for the 

satellite pictures I and 2 can be formed in the same manner as that of the g for the normal 

picture. Further, expressing the equations of the first and second mirror planes as 

(3) 

and 

(4) 

respectively, we can find the reflection points Qi(e 1 , t/i, (i) and Q2 (e2 , ti 2 , ( 2), and the 

direction cosines (1i. 1 , µ 1 , vi) and ().2 , µ2 , v2) of the normals to the first and second mirror 
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planes (Okamoto and Akamatu [1992]). Then, the direction cosines (Ii', m1 ', ii 1 ') and 

(ti', mz', iiz') of the rays g1' and gz' after reflection can be obtained from the general law 

of reflection and the equations of g1' and g2 can be constructed in the form 

g ,. XM-,, YM-'11 ZM-,1 
I. 

t,' mi' iii' 
(5) 

gz': 
XM-,2 YM - '12 ZM _ ,2 

iz' mi' iii' (6) 

Finally, the collineariry conditions regarding the reflected satellite pictures I' and 2' (the 

mirror reflections of the satellite pictures T and 2) can be described, respectively, as follows: 

(7) 

and 

(8) 

Equation 7 is functions of the five interior orientation parameters (xco, Yeo, c, IX, P) of the 

picture and the three elements (a,, b1 , di) of the first mirror plane. Also, Equation 8 

contains the three parameters (a 2 , b2 , d2 ) defining the second mirror plane in addition to 

the five interior orientation elements. 

The determination equations for the self calibration problem of a non-metric camera 

under consideration are constructed in the following manner. Equations 2 and 7 yield 

(9) 

which includes one equation equivalent to the coplanarity condition for the normal picture 

and the reflected satellite picture l'. Also, the coplanarity condition provides four 

independent orientation unknowns (two mirror parameters and two interior orientation 

elements). Further, from Equations 2 and 8 we obtain 
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(10) 

Equation 10 has the same geometrical characteristics as Equation 9. Regarding the 

overlapped part of the three photographs, we must apply the next equations obtained from 

Equations 2, 7, and 8; 

(11) 

Equation 11 contains mathematically one equation equivalent to the coplanarity condition 

for the normal picture and the reflected satellite picture I', one equation which corresponds 

to the coplanarity condition for the normal picture and the reflected satellite picture 2', 
and one equation required for the united model construction with the three overlapped 

photographs. Also, the model connection condition determines two independent orientation 

parameters (one mirror parameter (a scale factor) and one interior orientation element) (See 

Okamoto [1986]). 

The 11 orientation unknowns (xco, Yeo, c, IX, /3, a1 , b1 , d1 , a2 , b2 , d2) in this self calibra

tion problem of constructing a model congruent to the object will be calculated as follows. 

We set up Equation 9 for two model points in the overlapped part between the first satellite 

picture I and the normal picture, Equation 10 for two model points in the overlapped part 

between the normal picture and the second satellite picture 2, and Equation 11 for two model 

points which have been imaged on the three pictures at the same time (See Fig. 4). The 

space coordinates of the six model points are treated as unknowns in this orientation 

calculation. Then, we have 28 independent equations with respect to 29 unknowns (the 11 

orientation parameters plus 18 unknown coordinates of the six model points). This is an 

underdetermined system which is caused by the fact that two of the six mirror parameters 

pertain to a scale factor and one of these two unknowns cannot be thus determined in the 

process of the united model construction. Considering d 1 to be an arbitrary constant, we 

can, however, compute the five interior orientation elements of the non-metric camera by 

solving Equations 9, 10, and 11 with respect to 10 orientation parameters and the 18 

unknown model coordinates. The united model formed in this process is similar to the 

object. In order to determine all the 11 orientation unknowns simultaneously, one length 
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(a) Object part imaged on 
the satellite picture T 

(b) Object part imaged on 
the normal picture 

( c) Object part imaged on 
the satellite picture 2 

Fig. 4 Arrangement of orientation points and one length which 1s given as the 
object space control. 

must be available as the object space control. Assume that a distance from point 1 to point 

2 is known in the object space (See Fig. 4). The length L 12 can be expressed with respect 

to the model space coordinate system (XM, YM, ZM) as 

(12) 

Adding Equation 12 to the determination equations (Equations 9, 10, and 11), we obtain 

29 independent equations with respect to the 29 unknowns. Solving these 29 Equations, 

a united model congruent to the object can be constructed, which is very important in 

many close-range applications. 

MATHEMATICAL MEANINGS OF SIMULTANEOUS .DETERMINATION OF ALL 

ORIENTATION UNKNOWNS OF OVERLAPPED MIRROR PHOTOGRAPHS 

We have three different solution approaches to the analytical orientation problem of 

photographs; 

(1) Method to calculate orientation parameters of individual photographs based on the 

collinearity condition, 

(2) Technique to divide the orientation procedure of a stereopair of photographs into the 

two main processes, relative and absolute orientation, and 

(3) Method to determine all orientation unknowns of overlapped photographs simultane-

ously. 

Among these three orientation techniques, the third approach using the collinearity equations 

as the determination equations may be applied most easily and rigorously in analytical 

photogrammetry. In this section, the geometrical characteristics of the simultaneous 
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determination of all orientation unknowns of overlapped mirror pictures will be clarified in 

comparison with the first approach. 

We will consider the orientation problem of a stereopair of a normal picture and a 

satellite picture which have been taken on the same film by placing a plane mirror close 

to an object. First, three parameters defining the mirror plane are adopted as the 

orientation unknowns. When a metric camera is employed for this purpose, we have nine 

orientation unknowns (the six exterior orientation elements plus the three mirror 

parameters). Two mirror · parameters are provided during the phase of the relative 

orientation of the stereopair. The remaining seven elements can be determined in the process 

of the absolute orientation, if seven coordinates of three points are available as the object 

space controls. For the simultaneous determination of all the nine orientation unknowns, 

the collinearity equations for the stereopair are applied to the three control points (two points 

with the space coordinates given and a point with the height given). Then, we have 12 

equations with respect to the 11 unknowns (the six exterior orientation parameters, the 

three mirror parameters, and two unknown planimetric coordinates of the point which has 

the known height). This is an overdetermined system which is caused by the fact that one 

coplanarity equation is used redundantly. However, a least-squares adjustment can 

overcome this problem without difficulties. In the usual case in close-range photogrammetry, 

a stereopair of normal and satellite pictures on the same negative have 12 independent 

orientation unknowns, namely, the six exterior orientation parameters and three interior 

ones of the normal picture, and three mirror parameters, because the geometry of the normal 

and satellite photographs can be defined by the same central-projective elements. The 

coplanarity condition in this case provides four independent orientation unknowns (two 

mirror parameters and two interior orientation elements). Also, the central-projective 

one-to-one correspondence between the model and object spaces can be expressed in terms 

of eight independent elements, which means that the unique determination of this 

transformation requires three control points (two points with the space coordinates given 

and one point with the planimetric coordinates known). Setting up the collinearity equations 

of the stereopair for four points including the three control points, we have 16 equations 

to obtain the 16 unknowns (the six exterior and three interior orientation parameters of the 

normal picture, the three mirror parameters, and four unknown coordinates of the four 

orientation points used) simultaneously. The discussion can readily be extended to the 

general case of mirror photogrammetry. 

Next, we will analyze the normal and satellite pictures based on the orientation theory 

of a single photograph. However, unlike the previous case, orientation parameters of the 

reflected satellite picture (the mirror reflection of the satellite picture) are employed as the 

orientation unknowns. In metric photogrammetry, the orientation of the normal and 

reflected satellite pictures can be carried out separately, if we have three control points with 
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the space coordinates given. For the simultaneous determination of all the 12 orientation 

parameters, the collinearity equations for the stereopair are applied to the three control 

points in order to obtain 12 (independent) equations. It will be noted that, in this orientation 

calculation, no constraints are introduced among the exterior orientation parameters of the 

reflected satellite picture, though we must consider mathematically three constraints due to 

the reflection of imaging rays for the satellite picture (Okamoto and Akamatu [1992]). 

From this fact we can see that the three constraints among the exterior orientation elements 

of the reflected satellite picture can be replaced by one coplanarity equation and two object 

space coordinates redundantly used. In other words, the 12 exterior orientation parameters 

of the normal and reflected satellite pictures can be regarded as independent, if we have 

more than two control points redundantly (See Kratky [1975]). 

In the usual and general cases of mirror photogrammetry, the orientation problem of 

a stereopair of such photographs can be specified by two types of constraints; three 

constraints among the exterior orientation parameters of the stereopair and constraints 

describing that the interior orientation is unchanged between the normal and reflected 

satellite pictures. However, when the orientation theory of a single photograph is employed, 

these constraints can be replaced hy coplanarity equations and object space information 

redundantly used. 

CORRECTION FOR SYSTEMATIC ERRORS DUE TO MIRROR UNDULATION 

In the preceding sections, mirror photogrammetry has been discussed under the 

assumption that mirrors are free of distortion. However, this criterion cannot be satisfied 

completely in practice. Therefore, in this section, geometrical properties of the mirror 

distortion will be explored in detail. 

The general collinearity condition relating an object space (X, Y, Z) and the reflected 

satellite picture may be expressed in the form 

- ' A;x + A~ y + A;z + A~ 
Ye= A~X+A\ 0 Y+A\ 1Z+l 

(13) 

in which (.x;, y;) denote measured plate coordinates for the reflected satellite picture. 

Equation 13 can also be described in terms of six exterior orientation elements 

(w', if,', i<', Xb, Y0, Zb) and five interior orientation ones (.x;0 , .v:0 , c', ii.', /1') of the 

reflected satellite picture. Assume that the mirror distortion may be modeled in polynimial 

form, i.e., 



Different Considerations in Mirror Photogrammetry 251 

Ax'= e0 + e1x' + e2 y' + e3 (.x')2 + e4 .x'y' + e5(y')2 + .. . 

Ay' =ho+ h1x' + hi.Y' + h3(.x')2 + h4 x'y' + h5(y')2 + .. . 
(14) 

where (x', y') indicate ideal photo coordinates of the reflected satellite picture. The 

coefficients (e3 , e4 , e5 , ... , h3 , h4 , h5 , ... ) of the non-linear part of the mirror distortions cannot 

be absorbed by those A[ (i = 1, ... , 11) of Equation 13. On the other hand, the linear part 

of Equation 14 

(15) 

corresponds to a two-dimensional affine transformation whose parameters are absorbed by 

the coefficients of the general collinearity equations. In other words, the elements 

(e0 , e1 , e2 , h0 , h1, h2 ) defining the linear part of the mirror distortions give influences on 

the 11 photogrammetric orientation parameters (ro', </>', K1
, Xo, Yo, Zo, x:o, .v:o, c', ii', P') 

of the reflected satellite picture. 

From the discussions above, we can conclude as follows. 

(1) In the general case of mirror photogrammetry 

(a) When a satellite picture (or the reflected satellite picture) is analyzed based on the 

orientation theory of a single photograph, the linear part of the mirror distortions 

need not be considered, 

(b) In the orientation problem of a stereopair of normal and satellite pictures on the 

same film, constraints among the orientation parameters of the stereopair are 

disturbed by the linear part of the mirror distortions. Thus, the general collinearity 

condition in algebraic form may be applied effectively to both photographs, 

(c) Parameters defining the non-linear part of the mirror distortions can be provided 

from the coplanarity condition of corresponding rays. 

(2) With regard to the usual and metric cases of mirror photogrammetry 

(a) In the orientation problem of a single mirror photograph, the satellite picture (or 

the reflected satellite picture) has always eleven independent central projective 

unknowns, and 

(b) In the analysis of a stereopair of normal and satellite pictures on the same film, the 

11 coefficients A[ of the collinearity condition for the reflected satellite picture can be 

regarded as independent, if we have more control points than mathematically required. 

In the coordinate measurement of normal and satellite pictures on the same film, a problem 

may arise in that we cannot observe them stereoscopically. However, printing two types 

of diapositives (a side-reversed diapositive and a diapositive without reversal of position) 

from the negative, we can overcome this problem. In addition, the general collinearity 

condition could be applied to both normal and reflected satellite pictures in order to 
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eliminate all possible linear errors of the two diapositives. The non-linear errors due to 

Jens distortion, effects of lack of film flatness, mirror undulation, and so on can be removed 

by the potential of the overlapped mirror photographs. 

CONCLUSIONS 

The self calibration problem of non-metric cameras using plane mirrors has been 

discussed under the assumption that the mirrors are free of distortion, and the following 

properties have been clarified that 

(1) The use of two plane mirrors yields the potential to provide all interior orientation 

unknowns of three overlapped mirror photographs taken on the same film, and 

(2) A united stereo model congruent to the object can be formed if one length is available 

as the object space control. 

Next, two different types of orientation approaches of overlapped mirror photographs: 

(a) a method of employing parameters defining the mirror planes as the orientation 

unknowns, and 

(b) a technique of adopting orientation elements of the reflected satellite pictures (the mirror 

reflections of the satellite pictures at the exposure instant) as the orientation unknowns 

have been compared, when all the orientation parameters are determined simultaneously. 

Through this investigation, it has been revealed that constraints regarding the exterior 

orientation of the overlapped mirror photographs can be replaced by coplanarity equations 

and object space information redundantly used. Finally, the orientation problem of mirror 

photographs has been analyzed for the case where the mirror distortions are not negligibly 

small. The results obtained are follows: 

(1) Parameters describing the linear part of the mirror distortions are absorbed by the 

coefficients of the collinearity equations expressed in algebraic form, and 

(2) Elements of the non-linear part of the mirror distortions can be determined from the 

coplanarity and model connection conditions of overlapped mirror photographs. 
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