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Abstract 

Mirror photogrammetry is discussed fundamentally in this paper. First, the 
relationship between an object and the satellite picture (a photograph taken of the virtual 
object) is investigated and an interesting property of the satellite picture is clarified that 
parameters defining the mirror surface in the object space coordinate system are absorbed 
only by the exterior orientation elements of the reflected satellite picture (the mirror 
reflection of the satellite picture). Based on this fact, the orientation problem of 
overlapped mirror photographs is solved for various configurations of cameras and 
mirrors. In addition, the orientation calculation using mirror parameters as the 
orientation unknowns is described by introducing the law of reflection in terms of direction 
cosines. The non-central projective parameters such as those defining lens distortion, 
effect of lack of film flatness, and mirror undulation are considered separately. 

Introduction 
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In two-media photogrammetry, the refraction problem of imaging rays can be treated 

very easily by means of direction cosines (Rinner [1948, 1969]), Hoehle [1972]), Okamoto 

and Hoehle [1972]), Okamoto and Mori [1973]), and Okamoto [1982b, 1984]). The 

reflection problem of imaging rays in mirror photogrammetry may also be treated easily 

by using direction cosines, because the reflection and refraction are similar physical 

phenomena in optics. However, mirror photogrammetry is very different from two-media 

photogrammetry in that parameters describing refractive interfaces in the object space 

coordinate system pertain to the non-central projective ones and must thus be treated 

separately from the exterior and interior orientation elements of two-media photographs, 

while those of mirror surfaces belong to the central projective ones and are therefore 

absorbed by the coefficients of the collinearity condition relating an object point and its 

image point. Very little has been written that discusses mirror photogrammetry from such 

a point of view. Thus, the orientation problem of mirror photographs has not been fully 

solved, in particular, in the case of employing non-metric cameras. 

In this paper, the relationship between mirror parameters and the exterior and interior 

orientation ones of a photograph taken by using the reflection of the mirror is explored 

* Division of Global Environment Engineering Kyoto University Yoshida-Honmachi, Sakyo-ku Kyoto 
606----01 Japan 
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precisely, the characteristics of the orientation problem of mirror photographs are explained 

for various configurations of plane mirrors and non-metric cameras, and the orientation 

calculation is formulated by means of the law of reflection expressed in terms of direction 

cosines. 

Geometrical Characteristics of Satellite Pictures 

The Collinearity Condition 

We will assume that a plane mirror is placed close to an object in such a way that 

a camera registers not only the object but also its mirror reflection. The picture of the 

mirror reflection of the object is referred to as the satellite picture. The relationship between 

the object and the satellite picture will be considered as follows (See Fig. 1). When the 

camera records the object directly, the general collinearity condition is satisfied between an 

object point P(X, Y, Z) and measured image coordinates (xc, ye) of its image point p(x, y) as 

A 1X + A2 Y+ A3Z + A 4 
X = ---------

c A 9X + A 10 Y+ A 11Z + 1 
(1) 

A5 X + A6 Y+ A7Z + A8 Ye=---------
A9X + A 10 Y+ A 11Z + 1 

-· 
image 

1
0~ 

/ \ 

// I \ 
£_ \ - -;--~ 
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z 

0 actual object 

oint 

irror 
+bY+Z+d=O 
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)/ ' 
/ \ 
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\ I 
\ / , ____ / 

virtual object 

Fig. I Geometrical characteristics of a satellite picture for the case of using a camera 
and a plane mirror. 
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in which A;(i = 1, ... , 11) are independent coefficients, if the measured image coordinates 

include linear systematic errors such as linear film deformation and linear measurement 

errors (Abdel-Aziz and Karara [1971], and Okamoto [1981, 1982a]). The same relationship 

is valid between the virtual object point P(X, Y, Z) (the corresponding point on the mirror 

reflection of the object) and measured coordinates (xe, j,J of its satellite image point p(x, y), 

i.e., 

_ A1X + A2Y+ A3Z + A4 
X = --=----=----=---

e A9 X + A 10Y+ A 11Z + 1 
(2) 

_ A 5X + A 6 Y + A7Z + A8 Ye = -~---=----=---
A9X + A 10 Y + A 11 Z + 1 

On the other hand, the relationship relating an actual object point P(X, Y, Z) and its virtual 

object point P(X, Y, Z) is given by Veress and Munjy [1983] in the form 

X = U1X + U2Y+ U3Z + U4 

Y = V1X + V2 Y + V3Z + V4 

Z = W1X + W2Y+ W3Z + W4 

(3) 

which belong to the three-dimensional affine transformation. Also, the coefficients u;, v;, w; 

(i = 1, ... , 4) are functions of three parameters (a, b, d) of the mirror plane, if it is expressed 

in the object space coordinate system (X, Y, Z) as 

aX+bY+Z+d=O 

The inverse transformation of Equation 3 yields 

X = u1X + u2 Y+ u3Z + u4 

Y = iJ 1X + iJ2 Y + iJ3Z + iJ4 

Z = ¾\X + w2 Y + w3Z + w4 

We substitute Equation 5 into Equation 2 to obtain 

_ A1X + A2 Y+ A3Z + A4 
X = -=---=---=----

e A 9 X + A 10 Y+ A 11 Z + 1 

_ A5X + A6 Y+ A1Z + A8 Ye= -=---~------
A9X + A 10 Y+ A11 Z + 1 

(4) 

(5) 

(6) 

Coefficients A; ( i = 1, ... , 11) of Equation 6 are obviously independent, because they include 

the independent coefficients A; ( i = 1, ... , 11) of Equation 2. From this fact it can be seen 

that the general collinearity condition is also valid between the actual object point P(X, Y, Z) 

and the measured coordinates (xe, Ye) of its satellite image point p(x, y). It follows that 
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the orientation problem of a single satellite picture can be treated in the same manner as 

that of a conventional photograph. However, the position and attitude of the satellite 

picture at the exposure instant cannot be reconstructed, since Equations 2 and 6 have 

different coefficients, respectively. 

Characteristics of Parameters Defining the Mirror Plane 

In the preceding paragraph, we have seen that elements defining the mirror plane are 

absorbed by the orientation parameters of the satellite picture after the orientation. For 

the analysis of the orientation problem of the normal and satellite pictures which are taken 

on the same film at the same time, as is illustrated in Fig. 1, we need to explore more 

precisely the relationship between the three parameters of the mirror plane and the 

orientation elements of the satellite picture after the orientation (the photograph taken 

without the reflection of the mirror is termed here the normal picture.) For this purpose, 

we will employ the mirror reflection of the satellite picture at the exposure instant, which 

is referred to as the reflected satellite picture, because the collinearity condition relating an 

actual object point P(X, Y, Z) and its image point p'(x', y') on the reflected satellite picture 

can be considered much more easily (See Fig. 1). First, the relationship between measured 

coordinates (Xe, ye) of a satellite image point p(x, y) and the image coordinates (x', y') of 

its corresponding point p' on the reflected satellite picture will be investigated. In the 

general case where the geometry of a picture is determined by 11 independent central 

projective parameters, the five interior orientation parameters can be selected as the 

planimetric coordinates (xeo, Yeo) of its projection center referred to the comparator 

coordinate system, its principal distance c, and two rotation parameters (oc, P) defining the 

relationship between the picture and comparator coordinate systems (See Okamoto [1981].). 

The last two rotation parameters are introduced for the correction of linear systematic 

errors included in the measured picture coordinates. In the case of using a plane mirror, we 

can consider the five interior orientation elements of the reflected satellite picture to be 

identical to those of the satellite picture at the exposure instant. Thus, the satellite picture 

point p(x, y) and the corresponding point p' (x', y') on the reflected satellite picture may 

be assumed to be imaged on the same film, as is demonstrated in Fig. 2. Also, the satellite 

picture point p(x, y) is expressed with respect to the comparator coordinate system (xe, Ye, ze) 

in the form 

(7) 

in which dii ( i = 1, 2; j = 1, 2, 3) are functions of the rotation parameters ix and P about 

the comparator coordinate axes Ye and xe (See Okamoto [1981].). On the other hand, the 

following relationship 
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picture plane 
Fig. 2 The relationship between measured coordinates (i" ji,) of a satellite image 

point p(i, ji) and image coordinates (i', ji') of the corresponding point p' 
on the reflected satellite picture. 

- -, 
X= -X, 

is valid between p(x, y) and p'(x', y'). Then, Equation 7 can be rewritten as 

Equation 9 can be further modified as 
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(8) 

(9) 

in which s; ( i = 1, ... , 6) are functions of the five interior orientation parameters 

(x,0 , y,0 , c, ix, P) which are common to the satellite and reflected satellite pictures. 

From Equation 10, we can see that the image coordinates (x', y') of point p' on the 

reflected satellite picture can be expressed in terms of only the five interior orientation 

parameters, which means that the relationship (Equation 10) does not contain the three 

elements (a, b, d) describing the mirror plane. Furthermore, with the image coordinates 

(x', y') given, the orientation problem of the reflected satellite picture can be analyzed only 

with the exterior orientation parameters (</J', iil, i?, X 0 ', Y0', Z0 '). Consequently, we can 

conclude that the three elements of the mirror plane are absorbed only by the six exterior 

orientation elements of the reflected satellite picture. In other words, the six exterior 

orientation parameters (¢', w', i?, X 0 ', Y0', Z0 ') are functions of the three parameters 

(a, b, d) of the mirror plane and the six exterior orientation parameters(</>, w, K, X0 , Y0 , Z 0) 
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of the satellite picture at the exposure instant, i.e., 

i/ =fj(-r:;(i = 1, ... ,6), a, b, d) (j = 1, ... ,6) (11) 

in which 

r;(i = 1, ... ,6) : (</J, m, K, X0 , Y0 , Z0) 

It follows that the mirror parameters (a, b, d) are absorbed by the six exterior orientation 

parameters ( cp, w, K, XO, ¥0 , Z0) of the satellite picture after the orientation. 

Orientation Problem of a Pair of Photographs with Plane Mirror 

Basic Consideration 

In this section, metric cameras are assumed to be used for the spatial determination 

of an object by means of a plane mirror. Also, the orientation problem of the mirror 

pictures will be discussed for the following two cases: the case where two different 

photographs are taken in such a way that the first camera registers the object directly and 

the second camera records only the virtual object (See Fig. 3) and the case where a metric 

camera registers not only the object but also its mirror reflection (See Fig. 4). In the 

former case, parameters defining the mirror plane in the object space coordinate system are 

absorbed by the exterior orientation elements of the reflected satellite picture 2'. Thus, 

employing the normal picture 1 and the reflected satellite picture 2' enables one to perform 

----? \ 
2>~--- / S \ 

/' i~~'ii> 
/ fleeted satellite 

cture 2' 

Fig. 3 The orientation problem of a stereopair of normal and satellite pictures 
and 2 for the case of employing two cameras and one plane mirror. 
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icture 1 

z,..., ~-~Ke-· Xt,,t~f 
X,BY,BZ) 6-

lifeT .,? ', ;;,-
r .,:;;..;;;..:...:c...-=--' - /1 C ', 

/' I ' 
L ' 

I - ---~ 
/ p'(x;y') 

reflected satellite 
icture f' 

Mirror plane 
aX+bY+Z+d=O 

Fig. 4 The orientation problem of a stereopair of normal and satellite pictures I 
and I for the case of using a camera and a plane mirror. The six exterior 
orientation parameters (w', 4>', i', BX ', BY', BZ ') of the reflected satellite 

picture I' are newly defined with respect to the model space coordinate system 
(XM, YM, ZM)-

227 

the orientation in a conventional manner. In addition, the mirror plane need not be 

determined in the object space coordinate system. 

On the other hand, the orientation problem of the normal picture 1 and the reflected 

satellite photograph l' for the latter case must be analyzed in quite a different manner. Since 

the six exterior orientation parameters (q,', iil, i<', X 0 ', Y0', Z0 ') of the reflected satellite 

picture l' are functions of both the three parameters (a, b, d) of the mirror plane and the 

six exterior orientation elements (cf>, w, K, X0 , Y0 , Z0 ) of the normal picture 1 (the orientation 

parameters of the normal picture 1 are identical to those of the satellite picture I at the 

exposure instant), the reflected satellite picture I' has only three independent elements with 

respect to the normal picture 1. Under the assumption that the six exterior orientation 

elements of the normal picture 1 are equal to zero, those (q,', ii/, i<', Bx', By', Bz') of the 

reflected satellite picture l' can be expressed in terms of only the three parameters (a, b, d) 

of the mirror plane as 

S/ = Jj(a, b, d) (j = 1, ... ,6) (12) 

in which 

S/(j = 1, ... ,6): (q,', iil, i<', Bx', By', Bz') 

Equation 12 means that we have three constraints among the six exterior orientation 
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elements of the reflected satellite picture 1', i.e., 

(i = 1, 2, 3) (13) 

In addition, in the relative orientation process of a stereopair of photographs, the translation 

parameter along the X-axis of the model coordinate system can be taken arbitrarily. Hence, 

the five relative orientation elements of the reflected satellite picture 1' and the three 

constraints among them are given, respectively, as follows: 

fl/ = Jj(a, b, d) (j = 1, ... ,5) (14) 

and 

(i = 1, 2, 3) (15) 

From Equations 14 and 15, we can see that one of the three parameters (a, b, d) describing 

the mirror plane in the model coordinate system can be taken arbitrarily in the relative 

orientation of the normal picture 1 and the reflected satellite picture I'. It follows that 

the coplanarity condition of corresponding rays provides only two independent elements 

(Mikhail [1968] noted that the relative orientation of a stereopair of normal and satellite 

pictures can be determined by two independent elements, if the two photographs are taken 

on the same film.) 

The Case of Using Non-Metric Cameras 

Next, the orientation problem of mirror photographs will be discussed in the case of 

employing non-metric cameras instead of metric cameras. When we use two non-metric 

cameras and one plane mirror, as is shown in Fig. 3, the orientation theory in close-range 

photogrammetry can easily be applied to the analysis of the normal picture (the left picture) 

and the reflected satellite picture of the right photograph. On the other hand, when a 

non-metric camera registers both the object and its mirror reflection, the orientation problem 

of the normal and reflected satellite photographs must be considered under two kinds of 

constraints: the three constraints (Equation 13) among the exterior orientation parameters 

of the stereopair and constraints that the interior orientation parameters of the reflected 

satellite picture are identical to those of the normal picture. Also, these constraints have 

the following characteristics that 

( i) The constraints due to the reflection of the mirror affect only the relative orientation 

of the stereopair. Thus, they are independent of the absolute orientation. 

(ii) The constraints regarding the interior orientation of the stereopair are independent of 

the relative orientation of the stereopair and thus reduce the number of the absolute 

orientation parameters (Okamoto [1986]). 

With the geometrical properties of the constraints to be introduced known, the orientation 
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problem of the stereopair can readily be solved in the general case where a picture has 11 

independent central projective elements and · also in the usual case in close-range 

photogrammetry, where the geometry of a picture can be determined by nine independent 

central projective elements, 

(1) The general case 

In the general case of photogrammetry, a stereopair of photographs has 22 independent 

orientation unknowns. Seven among these 22 · parameters are determined from the 

coplanarity condition of corresponding rays and these seven relative orientation elements 

can be classified into five exterior and two interior ones. Further, the general central 

projective transformation between the model and object ~paces can be described in terms 

of the remaining 15 elements (seven exterior and eight interior 'orientation parameters). In 

mirror photogrammetry with a non-metric camera and a plane mirror, the normal and 

reflected satellite pictures have only 14 independent orientation unknowns because of the 

three constraints regarding the exterior orientation and the five constraints among the 10 

interior orientation parameters of the stereopair. The three constraints due to the reflection 

of the mirror are absorbed by the coplanarity condition. Thus, the relative orientation of 

the stereopair can be determined by only four independent elements (two exterior and two 

interior orientation parameters). The remaining 10 unknowns are provided during the phase 

of the absolute orientation of the stereopair, because the five constraints regarding the 

interior orientation must be introduced in this process. From this fact we can see that the 

one-to-one correspondence between the model and object spaces can be determined uniquely 

with four control points (three points with the space coordinates known and a point with 

one of the space coordinates given). 

(2) The usual case in close-range photogrammetry 

In the usual case, a stereopair of conventional pictures have 18 independent orientation 

unknowns. However, the coplanarity condition can also provide seven independent 

elements. Therefore, the absolute orientation of the stereopair can be determined by the 

remaining 11 independent orientation parameters (seven exterior and four interior). In 

mirror photogrammetry under consideration, the number of independent orientation 

unknowns of the normal and reflected satellite pictures reduces to 12 owing to the three 

constraints due to the reflection of the mirror and the three constraints regarding the interior 

orientation of the stereopair. Four orientation elements (two exterior and two interior) can 

be provided from the coplanarity condition and the remaining eight are determined in the 

process of the absolute orientation of the stereopair. This is because the three constraints 

among the interior orientation parameters affect only the cc;ntral projective one-to-one 

correspondence between the model and object spaces. The object space controls 

mathematically required are two points with the space coordinates known and one point 

with the planimetric coordinates given. 
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Use of Multiple Plane Mirrors 

In the preceding section, the orientation problem of mirror photographs has been 

discussed in the case of using only one plane mirror. However, in many close-range 

normal 

z 

/\ 
I \ 

second ref/~ted -• / \ _., 
satellite picture 1 /--E~A 

~--? 
---- _.,;...-.-'I 

----- s.,,p\X,y' ----

Fig. 5 The orientation problem of a stereopair of normal and satellite pictures 
and I for the case of employing a camera and two plane mirrors. 

icture r 

f 
satellite 

second mirror 

' ' ' ' ', second reflected T" 
, satellite icture 

' ' ' n" ~, ,,,,,..,,,..,...7 

~,9)' ..-\ I 
<, ', C I 

',,, .. , I • ,, OA 

Fig. 6 The orientation problem of a stereopair of two different satellite pictures 
I and I for the case of using a camera and two plane mirrors. 
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applications of mirror photogrammetry, the situation may often occur that we must employ 

multiple mirrors, as is demonstrated in Figs. 5 and 6. Considering that parameters defining 

the mirror planes in the object space coordinate system are absorbed by only exterior 

orientation elements of the reflected satellite pictures, it can be seen that these parameters 

affect only the relative orientation process of a stereopair of mirror photographs. In this 

section, the characteristics of the relative orientation of mirror photographs will be explained 

in the case where a camera records the object not only directly but also by using the 

reflection of multiple mirrors. 

First, we will assume that two plane mirrors are placed in the object space in such a 

way that the normal and satellite pictures can be taken with the same camera at the same 

time (See Fig. 5). With respect to the normal picture 1, the reflected satellite picture 1" 
regarding the second mirror has six independent orientation elements which are functions 

of the six parameters describing the two mirrors in the object space coordinate system. It 

will also be noted that interior orientation parameters of the reflected satellite picture l" 
are identical to those of the normal picture 1 and further that such constraints are 

independent of the relative orientation of the stereopair. Thus, the coplanarity condition 

of corresponding rays provides seven independent orientation elements (five exterior and 

two interior) in the general and usual cases of photogrammetry, and only five exterior 

orientation elements in the case of metric photogrammetry. 

The discussion mentioned above can also be verified as follows (See Fig. 5). In general, 

the projection center O A of the picture taken, an object point P, and the reflection point 

Q1 on the first mirror, and the reflection point Q2 on the second mirror do not lie in the 

same plane. Thus, the parallel translation of the second mirror along the Z-axis of the 

object space coordinate system (X, Y, Z) prevents the corresponding rays Q and 

Q;f, from intersecting. This means that three elements defining the second mirror plane 

with respect to the first mirror plane are necessary for constructing the stereo 

model. Further, the relative position and attitude of the first mirror plane with respect to 

the picture taken are given by two independent parameters. Consequently, in the case of 

metric photography, five independent orientation parameters are determined during the phase 

of the relative orientation of the normal picture 1 and the reflected satellite picture 1". 
Next, two plane mirrors are so arranged that a camera can register an object not only 

with the first mirror but also by using the reflection of two mirrors, as is illustrated in 

Fig. 6. In the orientation problem of a stereopair of pictures taken in such a mirror 

configuration, the first reflected satellite pictures l' and 1' may be regarded as the taken 

picture itself. Then, we can analyze the orientation problem of the two satellite pictures 

1 and 1 on the same film as that of the first reflected satellite picture 1' and the second 

reflected satellite picture 1". Accordingly, this orientation problem can be solved in the 

same manner as for the normal and reflected satellite pictures 1 and l' in Fig. 4. In the 
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case of metric photography, the stereo model can be constructed by determining two 

independent orientation parameters from the coplanarity condition of corresponding 

rays. The discussion on the case of using a non-metric camera in this mirror configuration 

is omitted here (See the preceding section.). 

The explanation above can also be confirmed by exploring the geometrical properties 
~ =----' 

of the corresponding rays Q1P~d Q2P in Fig. 6. Regarding the original photograph as 

the reference picture, the ray Q1P can be described with three parameters defining the first 
=------' 

mirror plane and the corresponding ray Q2P is a function of both th':_ three elements of 

the first mirror and three for the seco~ mirror plane. Thus, the ray Q2P has only three 

independent elements with respect to Q1P. In addition, a scale factor is involved in these 

parameters. Consequently, the intersection of the corresponding rays can be accomplished 

by providing two independent elements of the second mirror plane. 

The case of using more than two plane mirrors can be treated in the same manner 

as above, because all parameters defining the mirror planes are absorbed by exterior 

orientation parameters of the reflected satellite pictures. 

The Orientation Calculation 

This section describes the orientation calculation of mirror photographs for the usual 

case in close-range photogrammetry, where a picture has nine independent central projective 

elements (the six exterior and three interior orientation ones). Also, in many close-range 

applications of mirror photogrammetry, absolute positioning with respect to the reference 

coordinate system is not a matter of major importance. Of greater importance is the 

relative positioning accuracy of points on the surface to be measured. The construction of 

a stereo model congruent to the object can meet this requirement perfectly. Thus, the 

object space control is established only in terms of distances. Furthermore, the treatment 

in this section has the following characteristics that 

( i) The collinearity equations relating a model point and measured coordinat.es of its image 

point are employed as the determination equations, because the orientation calculation 

of solving the collinearity equations is much easier than using the coplanarity .and 

similarity conditions. 

(ii) The law of reflection is introduced, because constraints among the exterior orientation 

parameters of the reflected satellite picture are very difficult to express in functional form. 

The Case of Using a Non-Metric Camera and a Plane Mirror 

First, we will select a simple configuration of a non-metric camera and a plane mirror 

as is illustrated in Fig. 7. The model coordinate system (XM, YM, ZM) is taken as a 

right-handed, rectangular-Cartesian system with its origin at the projection center of the 
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, 

y 

0 ------x 

) 

) 
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Fig. 7 Orientation calculation for constructing a stereo model congruent to the 
object using a stereopair of normal and satellite pictures taken by means of a 
non-metric camera and a plane mirror. 
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picture and further with its X ,.,- YM plane parallel to the picture plane. Thus, six exterior 

orientation parameters of the picture are equal to zero with respect to the model space 

coordinate system. Regarding the interior orientation parameters of the picture, the principal 

point coordinates are defined as (xH, YH) in the measured image coordinate system and the 

principal distance is designated by c. By expressing measured plate coordinates of a normal 

picture point p as (x,, Ye) and those of the corresponding point p on the satellite picture 

as (xe, Ye), the collinearity condition between the model point PM(XM, YM, ZM) and the 

measured plate coordinates will be given for the normal and (reflected) satellite pictures, 

respectively, as follows. 

With regard to the normal picture, an imaging ray g(I, m, n) is described in the model 

space coordinate system as 

(16) 

in which (I, m, n) denote direction cosines of the ray g. In order to obtain the direction 
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cosines, we will first find space coordinates (MX P' M Yp, MZp) of the normal picture point p 

in the model space coordinate system, which are termed the transformed picture 

coordinates. They are given in the form 

(17) 

The direction cosines (I, m, n) can be described by means of Equation 17 as 

(18) 

in which 

Using the condition that the imaging ray must pass through the corresponding model point 

PM(XM, YM, ZM) leads to the collinearity condition: 

(19) 

Also, Equation 19 includes only three unknown orientation parameters (x8 , y8 , c). 

On the other hand, the imaging ray for the satellite picture is subject to the reflection 

of the mirror. The ray before reflection is designated by g(I, m, n) and can be given in 

the same manner as the imaging ray g for the normal picture, i.e., 

(20) 

in which (I, m, n) are direction cosines of g and p is an auxiliary parameter. The 

transformed picture coordinates (MX P' M Yp, MZp) of the satellite picture point p and the 

direction cosines are described, respectively, as follows. 

(21) 

and 

(22) 

in which 
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- ✓ 2 2 2 A = Mx i; + M Yi; + Mzp 

The ray g' (I', rii', n') after the reflection is found by using the law of reflection. The 

mirror plane is expressed in the model space coordinate system in the form 

(23) 

By means of Equations 20 and 23, we can calculate space coordinates (e, r,, ,) of the 

reflection point Q at which the ray g before reflection intersects the mirror plane, i.,e., 

in which 

e = pl, ,, = pm, , = pn 

-d p= ~---
al+ bm + n 

Further, direction cosines (J, µ, v) of the normal to the mirror plane become 

( 
a b 1 ) (J,µ,v)= ----, ---, 

~+~+1 ~+~+1 ~+~+1 

(24) 

(25) 

which is constant for all points on the mirror plane. By introducing the direction cosines 

(T, rii, n) of the ray i before reflection and those (l, µ, v) of the normal to the mirror plane 

into the law of reflection, we obtain direction cosines ( l', rii', n') of the ray g' after reflection 

as 

in which 

l' = l -Ucosi 

m' = rii - 2µcos i 

n' = n - 2vcosi 

cos i = u + riiµ + nv 

(26) 

The reflection point Q(e, r,, ,) and the direction cosines (f', rii', n') of the ray g' after 

reflection having been given, we can construct the equation of g' in the form 

(27) 

which is equivalent to the equation of the (fictitious) imaging ray for the reflected satellite 

picture. Then, the collinearity condition regarding the reflected satellite picture can be 

expressed as 
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(28) 

Also, Equation 28 includes six orientation unknowns (xH, YH, c, a, b, d). 

Writing down together the collinearity euations for the normal arid reflected satellite 

pictures, we obtain the determination equations in the construction problem of a stereo model 

congruent to the object, i.,e., 

(29) 

Equation 29 contains mathematically one equation equivalent to the coplanarity condition 

of corresponding rays. Also, the coplanarity condition provides four independent orientation 

parameters (two exterior and two interior). However, a stereo model constructed only by 

means of the coplanarity condition is not similar to the object. In order to make the 

stereo model congruent to the object, the following expn;ssion 

(30) 

must be valid for two distances given as the object space control, because the absolute 

orientation of the stereopair requires three control points (two points with the space 

coordinate given and one point with the planimetric coordinates known) and the degrees 

of freedom of such three points is two. Also, in the above expression, L,. denotes a distance 

from point r to point s in the object space and the right hand side is the corresponding 

length described in terms of the model space coordinate system (XM, YM, ZM). 

The six orientation unknowns (xH, YH, c, a, b, d) can be computed as follows. We set 

up Equation 29 for four model points at both ends of the two distances and Equation 30 

for two lengths given. The space coordinates of the four model points are treated as 

unknowns in this orientation calculation. Then, we obtain 18 independent equations with 

respect to 18 unknowns (the six orientation parameters plus 12 unknown coordinates of 

the four model points). 

The Case of Using Two Non-Metric Cameras and Two Plane Mirrors 

A photogrammetric model reconstruction of round-shaped objects must be based on 

the availability of more than one stereopair of photographs to allow viewing of the object 

in its entirety. For this purpose, Kratky [1975] devised such an arrangement of two cameras 
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normal icture 2 
satellite icture 2 

Fig 8 Orientation calculation for constructing a united stereo model congruent to 
the round-shaped object using two normal and two satellite pictures taken by 
means of two non-metric cameras and two plane mirrors. 
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and two plane mirrors as is shown in Fig. 8. Assuming that two cjifferent non-metric 

cameras are used in this measurement, we can discuss the problem of forming a united 

stereo model congruent to the object by using the two normal pictures and two reflected 

satellite pictures as follows. The parameters to be determined are six exterior orientation 

elements of the second camera, six interior orientation ones of the two non-metric cameras, 

and six coefficients describing the two plane mirrors, respectively, in the model space 

coordinate system, because six independent parameters of the two reflected satellite pictures 

can be replaced with the six coefficients of the two mirror planes by introducing the law 

of reflection. Further, we have six constraints regarding the interior orientation of the four 

overlapped pictures saying that the interior orientation elements of the reflected satellite 

photographs 1' and 2' are identical to those of the normal pictures 1 and 2, 

respectively. According to the potential theory (Okamoto [1986]), the introduction of such 

six constraints makes it possible to determine six unknown interior orientation parameters 

of the four pictures overlapped. Thus, a united model similar to the round-shaped object 

can be constructed without object space information. It follows that we can form the 

united stereo model congruent to the object, if only a distance is available as control. For 

further detailed discussion on this united model construction refer to the paper by Okamoto 

(1986)). 
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Concluding Discussions 

Mirror photogrammetry has been discussed fundamentally in this paper. First, the 

relationship between an object and the satellite picture (a photograph taken of the mirror 

reflection of the object) has been explored and the following interesting facts have been 

revealed that: 

(1) The collinearity condition is valid between the object and the satellite picture. 

(2) Parameters defining the mirror surfaces in the object space coordinate system are 

absorbed only by the exterior orientation elements of the reflected satellite picture (the 

mirror reflection of the satellite picture). 

(3) Consequently, the orientation of a single mirror photograph can be performed in the 

same manner as that for a conventional picture. 

Based on the characteristics of the satellite picture found, we can solve the orientation 

problem of a stereopair of mirror photographs as follows. 

(1) In the case of employing only one plane mirror 

In this case a camera records not only the object directly but also its mirror reflection. 

The coplanarity condition of corresponding rays for the normal and satellite photographs 

provides only two exterior orientation parameters for the case of metric photography, 

two exterior and two interior orientation elements in the usual case in close-range 

photogrammetry, where the geometry of a picture is determined by nine independent 

central projective parameters. In the general case of photogrammetry, where a 

photograph has eleven central projective parameters, two exterior and two interior 

orientation elements can also be determined from the coplanarity condition. 

Accordingly, the one-to-one correpondence relating the model and object spaces can be 

described by seven exterior orientation parameters in the case of metric photography, by 

eight orientation parameters in the usual case in close-range photogrammetry, and by ten 

in the general case. 

(2) In the case of adopting multiple plane mirrors 

When a camera registers the object not only directly but also by means of more than 

one plane mirrors, no constraints are generated among the exterior orientation elements 

of the satellite picture. Hence, the orientation of the normal and satellite pictures can 

be carried out in the same manner as for a stereopair of conventional photographs. 

However, when we have two different satellite pictures on the same film, the stereopair 

must be analyzed by means of the method described in (1) or by the technique above. 

The selection of the orientation methods depends on the arrangement of plane mirrors 

located in the path of imaging rays for the two satellite pictures, respectively. 

When we have constraints among the exterior orientation parameters of satellite pictures, 
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the orientation calculation for overlapped mirror photographs can be formulated easily and 

generally by introducing the law of reflection expressed in terms of direction cosines, because 

we can select elements describing the mirror planes in the orientation coordinate system as 

the orientation unknowns in place of the dependent exterior orientation parameters of the 

satellite pictures. 
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