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Abstract 

This paper presents several qualitative properties of dynamical systems. These 
qualitative properties include structures which may have periodic solutions, structures 
which may have constant solutions, a generalized version of sign stalibity and structures 
which have solutions whose sign patterns are invariant. These qualitative properties are 
useful for qualitative analysis of large-scale dynamical systems. We also present a method 
for classifying a given dynamical system by these qualitative properties. 

1. Introduction 
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After a qualitative model that states the qualitative constraints between variables 

is obtained by qualitative physics, we can reason the qualitative behavior on the 
model by: 

(i) Qualitative simulation [de Kleer & Bobrow 1984, Kuipers 1986]: propagating 

qualitative values (signs or some other quantized values) locally through the qualitative 
model, or 

(ii) Qualitative analysis [Weld 1988, Struss 1988, Lee and Kuipers 1988, Ishida 

1989, Sacks 1990]: analyzing the qualitative structures of the qualitative model. 

In (i), we can envision the qualitative behavior step by step as if the actual 
system is working through time. However, the step-by-step behavior includes the 

ambiguity intrinsic to qualitativeness. This feature is critical when trying to see 

the qualitative behavior of industrial systems, which are large-scale, and hence their 
simulations easily get stuck with ambiguity. In contrast, in (ii) we cannot get the 
detailed behavior of the discrete states or modes ordered through time. However, 

we can get global properties such as stability. Both (i) and (ii) are necessary for 
making qualitative reasoning sophisticated. They can help with each other. Quali­
tative analysis, for example, can restrict ambiguities in qualitative simulations. 

In this paper, we present a method for this qualitative analysis. We will show 
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how a qualitative model can be classified from the viewpoints of these qualitative 
properties. 

We can express or approximate dynamical systems by a linear differential 
equation: 

dx/dt=Ax,AeRnxn (1.1) 

In [Ishida 1989] we used the signed matrix A. 1 to express the qualitative 
model. In graphical expression of the model, an arc is directed from vertex i to vertex 
j with the sign (A.)ii. Most of the results of qualitative system theory are obtained 
for the state-space expression of this linear system. 

2. System Theoretic Interpretations of the Graph Coloring 

The necessary condition for sign stability is already known: 
Theorem [Quirk 1965] 
If the qualitative model is sign stable then its graph satisfies: 
(1) All the loops must have non-positive signs, and at least one loop must 

have a negative sign. 
(2) All the circuits of length two must have non-positive signs. 
(3) There must be no circuit of a leneth greater than three. 
If the qualitative model satisfies conditions (1) (2) and (3), it is known not to 

have divergent solutions. However, the model may have periodic or constant 
solutions (i.e. Its system matrix may have pure imaginaries or zero as its 
eigenvalues.). To guarantee that the qualitative model has only stable solutions 
(i.e. Its system matrix may have eigenvalues with negative real parts.), we must add 
some constraints to conditions (1) (2) and (3). 

The color test is a constraint to see whether or not the qualitative model has 
periodic solutions. 

We now explain how the color test is done [Jefferies 1974] for the graph, and 
the color test is used to see the qualitative stability. 

Definition (color test) [Jefferies 1974] 
The graph of a qualitative model is said to pass the color test when we can 

color every vertex satisfying the following conditions: 
(a) Each vertex that has a loop is black. 
(b) There must be at least one white vertex in the graph. 
(c) Each white vertex is connected to at least one other white vertex. 

1Signed matrix A, of A is a triple value matrix. It can be defined as follows: 
(A,)ii= +, -, 0 if (A)1;>0,<0,=0 respectively. 
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(d) Each black vertex connected to one white vertex is connected to at least 
one other white vertex. 

In this color test, a black vertex corresponds to non-oscillating elements and 
a white vertex corresponds to oscillating elements. Thus, we can interpret that 
passing the color test is having the periodic solution (i.e. the matrix A has pure 
imaginaries as its eigenvalues.). 

Whenever considering the qualitative models satisfying the conditions (1) (2) 

and (3), we suppose the partition of the system as: 

where the elements are renumbered so that A 11 contains all the elements with 
negative loops and A 22 those without the negative loops. The observability from 
elements with negative loops is determined by the observability matrix 

[ 

A12 l A12 A22 
: ···(2.2) 

A17A2 

Under conditions (1) (2) and (3), 

We can construct Lyapunov function 2 V(x) so that it satisfies: 

'°I 2 dl'{X)/dt = 2 L..; = 
1 

A.;a;;X. • • •(2.3) 
I 

Therefore, in order for the model to have an oscillating solution satisfying 
J'{x)=O by assigning black elements and white elements to zero elements and to 
oscillating elements, respectively, the coloring must satisfy the color test conditions 
(a)-(d). 

(a) This is because the element with a negative loop cannot be oscillating. 
(b) This is because elements cannot be oscillating with only one element in 
linear systems. (c) To cancel the oscillation, an oscillation pair must be connected 

2Lyapunov function is a generalized concept of the energy of a system with a quadratic form: 

L" c;n2• Because of its quadratic form,if we can obtain dJ,(x)/dt<O for all x;cO then we can know the 
i= 1 I 

system is stable. 
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to other oscillation pairs. It is for these reason that there is no model for n = 3,4 
that passes the color test. 

Example 2.1 

Figs. 1 show the qualitative model of one negative loop where the color test 
is already done. 

Pattern 1 does not have a constant solution, but may have a periodic 

solution. Pattern 2, on the other hand, has a constant solution, but does not have 
a periodic solution. Therefore, both models have solutions satisfying x 1 =0,x2 #0. 
In the next section, we present a systematic way to identify these structures. 

•i••· 
Pattern 1 Pattern 2 Pattern 3 

Figs. 1 Color Test Done for Several Graphs 

3. Qualitative models with specific sign structures 

In this section, we present several new qualitative concepts for specifying the 
modes of solutions. The new concepts include: potentially periodic (the sign structure 
that may have periodic solutions), potentially constant (the sign structure that may 

have constant solutions), and sign observable (the signal is always observable from 
elements with a negative loop for all instances of the sign structure). We suppose 
the sign structures discussed in this section satisfy conditions (1) (2) and (3) unless 
otherwise specified. We label theorems PP (PC or SO) if they are related to 
potentially stable (potentially constant or sign observable), respectively. Further, 

we label them T, S, or G if they state the graphical property, if they state the 
system composition rule, or if they state the typical sign structures of the property, 
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respectively. For example, the next theorem PP-T states a graphical test for the 
potentially periodic structures. 

By the arguments of color the relating test and by having periodic solutions 
in the previous section, the following theorem holds. The theorem states a condition 
holding for potentially periodic qualitative models. 

Theorem PP-T 

A qualitative model may have a periodic solution if and only if it passes the 
color test. 

Definition 3.1 

We say two systems S 1 and S2 are connected if two arcs between vertices i 
and j such that a;pi; < 0 are added (Figs. 2 (a)). 

(a) system connection (b) adding negative loop 
Figs. 2 

Using the definition of system connection and that of color test, the next 
theorem follows: 

Theorem PP-S 

A qualitative model obtained by connecting two potentially periodic models, 
is potentially periodic. 

Proof 

Let S1 and S 2 be potentially periodic models, then they must have passed the 
color test. B; corresponds to black vertices and W; to white vertices, respectively. 

(1) When connecting a vertex in B1 and a vertex in B2 , the original coloring 
will pass the color test. 

(2) When connecting a vertex in B 1 and a vertex in W2, the connected system 
will pass the color test by coloring all the vertices in S2 black. 

(3) When connecting a vertex in W1 and a vertex in W2, the original coloring 
will pass the color test. 

These three cases cover all the possible connections. Q.E.D. 
By the form of the characteristic equations, the next theorem follows: 
Theorem PP-G 

By connecting a chain of length three (Figs. 3 (c)) to the potentially periodic 
models, the connected system is also potentially periodic. 
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(a) an element with 

negative loop 

y oshiteru ISHIDA 

(b) a chain of 
length two 

Figs. 3 

Proofs of Theorems PP-G and PC-G 

axro 
(c) a chain of 

length three 

Theorems PP-G and PC-G follow by inspecting the characteristic equations 
for the connected system. Q.E.D. 

We have discussed composition rules to preserve the potential periodicity after 
the connection of subsystems. Also, we have shown some typical structures that 
potentially have periodic solutions. With these rules and typical structures, we can 
know, to some extent, whether or not a given model potentially has a periodic 
solution. We first identify the structural difference between a given model and the 
nearest typical models, and then apply the rules. This approach can apply not 
only to this property (potentially periodic), but to many other qualitative 
properties. In the following, we briefly show the composition rules and typical 
structures for other qualitative properties. They include potentially constant, sign 
observable (section 3), and inertia preservation (section 4) in this order. 

Under conditions (1) (2) and (3), there is a graphical method for investigating 
whether or not the qualitative model has a constant solution [Jefferies 1977]. 

Definition 3.2 [Anderson 1975] 
If we can decompose the graph of the qualitative model to independent circuits 

of length one (loop) and two (Figs. 3.2 (a) (b)) by removing some arcs, then the 
qualitative model does not have a constant solution. 

With this matching test, the next theorem by [Jefferies 1977] holds. 
Theorem PC-T [Jefferies 1977] 
If the graph of the qualitative model passes the matching test, then the model 

does not have a constant solution. 
By this theorem PC-T and the definition of the matching test, the next theorem 

follows: 
Theorem PC-S 
The qualitative model obtained by connecting two potentially constant models, 

is potentially constant. 
Proof 
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By the definition of the matching test, when connecting two models that pass 
the matching test,the connected model also passes the matching test. Q.E.D. 

Theorem PC-G 
By adding the chain of length two (Fig. 3.2 (b)) to the qualitative model that 

has (does not have) constant solutions, the resulting system also has (does not have) 
constant solutions. 

With the matching test and color test, the qualitative observable structure is 
characterized as follows: 

Theorem S0-T [Jefferies 1977] 
The sign observable structure is such that the graph does not pass the color 

test, and passes the matching test. 
Also for sign observability, we have the composition rules to preserve the 

property, and typical structures having the property. 
We noticed that the sign observable structure is equal to the structure that 

passes the matching test and that does not pass the color test under the conditions 
(1) (2) and (3). 

Theorem S0-G 1 
If a qualitative model is sign observable, then the model obtained by connecting 

any number of one element with a negative loop (Figs. 3.2 (a)) is also sign observable. 
Proof (By contraposition) 
Suppose a qualitative model obtained by connecting some number of one 

element with negative loops (Fig. 3.2 (a)) is not sign observable, then we have a 
solution x1 =0, x 2 #0 for the partition of (2.1). Then the original qualitative model 
before connecting n negative loops has also a solution of the form: x1

1 = 0, x 2 # 0 
where the dimension of x1

1 is reduced by the number of connected elements (1). Thus, 
the original model turns out to be not gisn observable. Q.E.D. 

By the almost similar arguments to the theorem SO-G 1, the next theorem holds. 
Theorem SO-G2 
If a qualitative model is sign observable, then the model obtained by adding 

a negative loop (Figs. 3.1 (b)) is also sign observable. 
The 'next theorem follows from theorems SO-T, PC-S, PP-S. 
Theorem S0-S 
The qualitative model obtained by connecting two qualitative models, both of 

which are not sign observable, is not sign observable. 
In the following discussion, we will consider the chain structure with only one 

negative loop. 
Theorem SO-G3 
A qualitative model of the chain structure with one negative loop at the end is 
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sign observable. 
Proof 

In the row vector A 2A~2 of the observability matrix (2.2), the element which 
are reachable in j + 1 steps from the element with negative loop is not zero. Thus, 
A 12A~ 2(i=0,···n-2) are all linearly independent. Q.E.D. 

Theorem SO-G4 

A qualitative model consisting of an element with a single loop, and more than 
two subsystems of the same structure connected to the element, is not sign observable. 

4. Generalization of qualitative stability 

Concepts of sign stability and potential stability are generalized with this inertia 3. 

Definition 4. 1 
I(p,n,i) is a class of qualitative models, all of whose instances have the same 

inertia (p,n,i). And P(p,n,i) is a class of qualitative models, at least one of whose 
instances has the same inertia (p,n,i). 

Sign stable and potentially stable qualitative models are considered as I(n,0,0) 

and P(n,0,0) respectively. 
We present some sufficient conditions for a qualitative model to be inertia 

preserving. The following theorem is obtained by the Ostrowski-Schneider's theorem 
[Ostrowski 1962]. 

Theorem IP-T[ 4] 
A qualitative model belongs to I(q,p,0) if a sign stable sign structure with all 

negative loops can be transformed to this sign structure by making all the signs of 
the arcs from q elements of the sign stable sign structure opposite. 

Theorem IP-G 1 
If the graph of a qualitative model is a circuit of length n then the qualitative 

model is inertia preserving. 
Proof 
This theorem directly follows from that the characteristic equation of the 

qualitative model is: 
A."=a- a- . ··•a .. 11 1213 1n11 

Theorem IP-G2 
If the graph of a qualitative model has no loop and no circuit of a length 

greater than two, and if every sign of a circuit of length two is negative, then the 

3lnertia of a matrix AeR" x • indicated by ln(A) is defined as triple (p,n,i) of three integers where p 
the number of eigenvalues of A with positive real part, n with negative real part, and i with zero real part. 
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qualitative model is of the inertia preserving class J(0,0,n). 

Proof 

As we have done in the previous section, we can classify the qualitative models 
by this inertia preserving class. 

The next theorem is a rule to identify the inertia preserving class. Identifying 
the inertia preserving class is done in the following two steps: (1) Find the nearest 
known class. (2) Analyze the difference between the given sign structure and the 
nearest known structure. 

Theorem IP-S 

A qualitative model belongs to P(p,q,0) if the model obtained by the deletion 
of arcs belongs to I(p,q,0). 

Proof 

This theorem follows from that the eigenvalues of matrix A of a given model 
change continuously when the value of the elements of matrix A changes 
continuously. Since the property that the eigenvalues have inertia (p,q,0) holds in 
an open set area of the parameter space (in this case, the parameters are the elements 
of matrix A), the property holds in the neighborhood of the point of parameters 
corresponding to I(p,q,0). 

The above theorem cannot be applied to the inertia preserving qualitative model 
P(p,q,i) (it, 0), because i will change even if the change of elements are sufficiently small. 

Theorem 4.1 

If a qualitative model belongs to both P(p,q,0) and P(p-1,q + 1,0) then it also 
belongs to P(p-1,q,l). 

Proof 

If a qualitative model belongs to both P(p,q,0) then this means that the sign 
structure allows one eigenvalue with a negative real part to continuously change 
to that with a positive real part. Hence, the sign structure must also allow to have 
the eigenvalve with zero real parts. Likewise, it also holds by the same argument 
that if a qualitative model belongs to both P(p,q,0) and P(p + l,q -1,0) then it also 
belongs to P(p,q -1,1). Q.E.D. 

Example 4.1 
Figs. 4 show how the qualitative models of two elements can be classified from 

the viewpoint of inertia preservation. In this full classification of models with two 
elements, J(0,2,0) and J(0,0,2) were given as known types, since their graphical 
conditions are already known. /(2,0,0) and /(1,1,0) are identified by changing some 
signs of /(0,2,0) by theorem IP-T. Some classes of P(p,q,n) are identified by 
determining whether it has I(p,q,n) as its subgraph by theorem IP-S. Other classes 
of P(p,q,n) are identified by theorem 4.1. 
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A mass-spring system with friction falls in J(0,2,0). This means the system is 

always stable. In contrast, a mass-spring system without friction falls in J(0,0,2). 

This means the system always has periodic solutions. 

I (0, 2,0) 

I (2, 0, O) 

I (1, 1, 0) 

o--=--0 I (0, 0, 2) 

/' (l, l,O)nP (2,0,0) (1/' 11,0, l) 

~ P(1.1,o)nl'(o,2.o>>nl'(o.1.1> 

I' (2. o. o) nl' (0,2,0) n/' (o. o, 2) n 
P (l, 1,0) nP (l,O, l) nl' (0, I, 1) 

Figs. 4 Qualitative Classification of Models with Two Elements 

5. Qualitative Models Having Solutions with Invariant Sign Patterns 

We have definied invariant sign pattern in [Ishida 1989] as follows: 

Definition (invariant sign pattern) 
We call a sign pattern x. invariant sign pattern of a qualitative model if the 

model stays at the sign pattern x. all the time, once it attains the state. 

We then discussed the graphical condition for a qualitative model to have an 

invariant sign pattern. The class of qualitative model, which has an invariant sign 

pattern, is related to the sign unstable class. In this section, we present a variation 

of invariant sign pattern which plays an important role in characterizing the 

potentially stable class. 
Definition 5.1 (invariant sign pattern with finite time) 
We say a qualitative model has an invariant sign pattern with finite time x. if 

the model stays at the sign pattern x. all the time [0,oo), once it attains the state, 

but converges to a sign pattern different from x. when t= oo. 
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The qualitative model dx/dt = - ax(a > 0) is an example having an invariant sign 

patern with finite time. In fact, (x.,dx/dt,)=(+,-) or=(-,+) are invariant in 
tE[0,oo), however they converge to (0,0) in t= oo. 

We have shown in [Ishida 1989] that the qualitative model dx/dt = Ax has an 
invariant sign pattern when the sign equation x, = Ax, has a solution. We also 
have shown that the solution itself is an invariant sign pattern. In a similar manner 
to this result, an invariant sign pattern with finite time is obtained by solving a 
sign equation. 

Theorem 5.1 
A qualitative model dx/dt=Ax has an invariant sign pattern with finite time if 

the sign equation x. = -Ax. has a solution. The solution is an invariant sign 
pattern with finite time. 

With this theorem, the graphical condition for a qualitative model to have an 
invariant sign pattern with finite time is obtained as follows: 

Theorem 5.2 
A strongly connected qualitative model dx/dt = Ax has an invariant sign pattern 

with finite time if 

(1) All the circuits have a negative sign, and 
(2) All the reconvergent fanout paths4 between two nodes have the same sign. 
Proof 
This theorem can be obtained by analyzing the graphical conditions under 

which the sign equation x.= -Ax. has a solution. Q.E.D. 
As stated before, this invariant sign pattern with finite time is related to the 

potentially stable class. By the definition of invariant sign pattern with finite time, 

the next theorem is almost immediately provable from the definitions of stability 
and invariant sign pattern with finite time. 

Theorem 5.3 If the qualitative model has an invariant sign pattern with finite 

time then the model is potentially stable. 

6. Conclusion 

We studied the qualitative properties of sign stability (and its generalized class 
of I(p,q,n)) and potential stability (and its generalized class of P(p,q,n)), which can 
be used extensively to analyze the global properties of a given qualitative model. Since 
graphical conditions for some of these classes have not yet been identified mathe-

4 Reconvergent fanout paths are paths that share the initial and terminal nodes. 
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matically, we present a systematic way to classify the qualitative models from the 
viewpoints of these qualitative properties. The classification method is carried out 
in two steps. General knowledge such that addition and deletion of interactions 
to I(p,q,0) or P(p,q,O) results in P(p,q,O). 
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