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Abstract 

We define the "causality" which requires "time reference". With this causality, 
causal reasoning is carried out by verifying that any change is made by the causality. The 
verification is done by the comsumption of dt = + for each step. In order to make such 
causal reasoning possible, we carefully choose the base model, i.e. the dynamical model, 
which describes causality from what makes the change to what is changed. We also 
developed the qualitative similation algorithm using the causality built in the dynamical 
model. The power of the causality and simulation algorithm is demonstrated on two 
examples of the pressure regulator and the mass-spring system. 

1 Introduction 

141 

Qualitative reasoning [1, 2] and causal reasoning [3] have been studied recently to 
give a causal account for the behavior of processes and devices without using 
conventional physics. They pointed out that using logical proof for making causal 
accounts has some undesirable features. They also proposed mythical causality, 
which summarizes physical action at a lower level. Iwasaki and Simon [3] used a 
method of causal ordering in a static model to determine the direction from cause to 
effect. Variables in a set of equations are successively determined by a method of 
Gaussian elimination starting from given values of variables imposed as exogenous 
conditions. Thereby the variables are ordered in solving the equations. De Kleer 
and Bobrow use higher order derivatives in qualitative reasoning of change 
[4]. Kuipers [5] also developed a simulation algorithm taking higher order 
derivatives into account. We studied a causality characterized by "the time 
reference" other than event dependency for the discussion of physical 
causality. Physical causality (or equivalently "change" through physical time) is 
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intrinsically embedded in a dynamical model which states the causal relation 
between what is changed and what makes the change. 

Our way of qualitative reasoning is different from theirs in the following two 
points: 

(1) In reasoning; we defined another causality which refers to time 
strictly. Reasoning is done by tracking the behavior along the causality. 

(2) In modeling; since we use the causality built in the dynamical model, we 
skip the qualitative modeling process. That is, we use a dynamical model as a 
qualitative model and solve it qualitatively. 

Section 2 discussed the causality on the dynamical model. That causality is 
defined in terms of physical time. A cause-effect sequence is obtained by 
propagating signs along the time on the dynamical models. Section 3 discusses 
dynamical models as qualitative models. Section 4 presents a qualitative simulation 
algorithm based on the causality defined. 

2 Causality built in Dynamical Models 

2.1 Causality referring to time 
Causality has been discussed without a formal definition. This has raised much 
confusion as to the difference between causality and logical inducibility. We call it 
"the causality" to distinguish it from the conventional one. The causality has the 
following two requirements, which seem intuitively sound for a causality for the 
discussion of dynamical change. When we say "the event A caused the event B", we 
must admit 

(1) Time Reference: The even A occurred "before" the event B, 

(2) Event Dependency: The occurrence of event B must be "dependent on" 
the occurrence of event A. 

The "time reference" plays a crucial role in making a clear distinction between 
"the causality" and logical inducibility or algebraic derivability. In the original 
dynamical model of the form : 

Measure of "change" = Power to make that "change" 
contains the "built-in causal" direction from the right hand side to the left hand 
side. We restrict ourselves to interpretation of the form dY/dt = X as follows: X 

> 0 caused (dt > 0) or is capable of causing the event of Y increase (d. Y > 0) and not 
in the opposite way as to the causality. The consumption of time dt should be 
claimed to verify the "built-in causality". 
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2.2. Causality in dynamical models 
We formalize the "causality" by the propagation of signs in the dynamical 
model. In the propagation, time reference is included, since dt = + is always 
needed to be consumed to conclude the causation. 

Example 2.1. We use the same example of a pressure regulator as in that of 
[1]. In some level of abstraction, we have the variables expressing physical 
quantities as in Fig. 1. We can identify the causality in the feedback path. The 
flow also is caused by a driving force and by the available area for the 
flow. Further, the pressure at a point is caused by the flow through the point. 

dX./dt= -a·Po 

dQ/dt = b·(DP - c· Q2/Xs) 

dPo/dt = e·(Q 2 - f-Po) 

DP= Pi- Po 

where a, b, c, e, and fare appropriately chosen positive constants. Note that this 
model is valid only in a restricted situation. For example, the flow must not be 
reversed, the exit should not be completely blocked and so forth. 

Fig. 1 Pressure Regulator [1] 

Xs : availabel area for the flow through the 
valve 

Po : pressure at outlet 

Pi : pressure at inlet 

DP: pressure drop across the value 

Q : flow to the value 

We can induce a cause-effect sequence by this model. Suppose Pi is disturbed 
(c5Pi = + )1 when the system is in a stationary state (all the time derivatives are 
zeros) then the initial sign vector is (c5Pi, c5Po, c5DP, c5Q, c5Xs) = ( +, 0, +, 0, 0). This 
in turn, has the effect of increasing Q. At the expense of dt = +, this will cause 
( +, 0, +, +, 0) at time t0 + dt ( t0 is the initial time). Propagating the sign in the 
same manner, and by the consumption of dt, c5X s = - successfully results as show 
in Table 1. So far we haven't needed indirect proof. The necessity of indirect 
proof such as "reductio ad absurdum" (R.A.A.) in [1] may be due to the incomplete 

1 c'i x denotes the variance from the equilibrium point of x. 



144 Y oshiteru ISHIDA 

Table l. Qualitative state transition of pressure regulator exampe 

q-time 
8Pi dPildt 8Pa dPo/dt o'Q dQ/dt 8Xs dXsldt 

0 + 0 0 0 0 0 0 0 

0 + 0 0 0 0 + 0 0 

1 + 0 0 0 + + 0 0 

1 + 0 0 + + ? 0 0 

2 + 0 + + ? ? 0 0 

2 + 0 + ? ? ? 0 -
3 + 0 ? ? ? ? - -
3 + 0 ? ? ? ? - ? 

4 + 0 ? ? ? ? ? ? 

o'x indicates the variance from the initial stationary state x=xO A qualitative simulation 
showing the consequence of o'Pi= + 

setting of initial condition and ad hoc modeling. 
As another case, we will see the result of bPo = + and no other disturbance 

initially. Then this will cause bXs = -, bQi = -. Po and hence DP become 
ambiguous. In the next step, all the change except bPi = 0 become ambiguous. In 
the context this model describes, Pi is not affected by. other variables. We cannot 
make any further propagation because of ambiguity. Interestingly, we can know 
why dPo = + is obtained by propagating signs conversely along time. For the 
assignment (0, +, - , 0, 0), we do not find the assignment which consistently causes 
this assignment. Thus we conclude that this assignment is impossible in the context 
with which this model is concerned. However, the assignment ( +, +, ?, ?, - ) can 
be produced as the causal sequence of (0, 0, 0, +, 0). We will present an algorithm 
for qualitative simulation based on the built-in causality in the next section. 

Many models can be built for the same target system. However, in order to 
discuss the built-in causality, dynamical models are needed. We cannot use static 
equations to discuss the causality. For example, the definitional equation of DP 
= Pi - Po has nothing to do with time (and hence causality). Although we can 
make a dynamical model by simply taking derivatives of both sides, it does not give 
any "causal" account. Further, when DP = pl and Po = p0 are given, although we 
may say Pi= p2( = pl + p0) is derived, we cannot say that Pi= p2 is "caused". 

As for another example indicating the dynamical model is necessary, we cannot 
use a steady state equation: Q2 = f · Po which is obtained by assuming dPo/dt = 0 
in dPo/dt = e • (Q 2 

- f- Po). In fact, this equation only holds at the snapshot of the 
equilibrium point of dPo/dt = 0, thus the equation cannot be used to discuss the 
change using dPo/dt as done in [l]. In order to discuss the change of Po we must 
start from a dynamical model. 
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3 Dynamical Model as a Qualitative Model 

Kuipers' theory [5] starts from abstracting the mathematical model preserving 
qualitative information in the model. The original dynamical model in which the 
causality is built-in is constructed by observing the phyical system in terms of 
(dynamical) effects among the physical entities (as opposed to observing the physical 
system as constraint among the physical entities). As already discussed, the original 
dynamical model has desirable "causality" built-in the model itself. 

The original dynamical model is modeled whenever the causal direction that A 
= + together with time consumption dt > 0 will make (or have the effect) dB= +, 
is identified then it is described as: dB/dt = A + ... 

Thus, we use the original dynamical model as our qualitative model, and solve 
it qualitatively in a similar manner to the numerical methods such as Newton­
Raphson method for solving dynamical models. 

We have shown that the cause-effect sequences based on the built-in causality 
are obtained by propagating signs of the states as well as dt = +. Although causal 
direction from a state to the other states· can be obtained in the causal world, the 
constraints which come from the quantitative world are needed to see which variable 
reaches zero (or other landmark values) first among variables approaching 
zero. Constraints are used for ranking which variable reaches the specific point 
first. We will use whatever dynamical models, which can be equivalently derived 
from the original dynamical model, for such constraints. However, we use the 
following two heuristics to select the other dynamical models. (a) When x is 
approaching ex and y is approaching fl, and it is unknown which reaches first from 
the original model only, then another model must be derived by introducing a new 
variable R = (x - cx)/(y - fl). (b) When the convergence of the variable x to x 0 is of 
interest, then another model must be derived by introducing a new variable k1 (x 
- x0 )

2 + ki(d(x - x0 )/dt)2 + · · ·. 
We used the triple value separated by the point as in [6] for the qualitative 

values of a variable and its higher order derivatives. The variable and its 
derivatives may have many points as their landmark values. For example, R has 
the important points l 1, l 2 in the example 4.1. 

4 Qualitative Simulation 

In order to clearly separate propagation through constraints and change which 
requires the consumption of dt = + , the algorithm is divided into two phases; static 
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propagation and dynamic change. The former is the propagation of signs among 
variables which does not consume dt = + , while the latter is the change from a 
state to the other state. 

4.1 The algorithm 
The transient state (as opposed to the stationary state) of a variable is defined as the 
state in which some level of the state will be changed because of the non-zero of the 
higher derivatives. For example, Q = - , dQ/dt = +, d 2Q/dt 2 = + (or 0) is the 
transient state, since Q will become zero in some lag time. The variable whose 
qualitative value must become zero earlier (this occurs by the heuristic (3) below) 
than the other transient state is also the transient state. 

In order to determine which variable reaches the specific point first for variables 
in transient state, we use another constraint which is obtained from the original 
model by the model selection heuristic (a). 

Heuristics used to specify which variable in a transient state changes first, are as 
follows: 

(1) (d"- 1 x/dt"- 1
, d"x/dt") = (0, +) or (0, - ) then it must change to ( +, +) or 

( - , - ). This is the instant change rule [ 4]. 
(2) (d"- 1 x/dt"- 1, d"x/dt", d"+ 1 x/dt"+ 1) = (x, y, z) where x = + or - , y = - x 

and z = 0 or y (transient state), then it must change to (0, y, z) under the condition 
that z (and hence y) does not change before that change. This heuristics comes 
from the value continuity rule stated in [ 4]. 

(3) Gien y = F(x), both x and y heading towards zero at time t0 , and sgn(F(0)) 

= - sgn(y(t0 ))
2 then y must reach zero before x, since it must change sign before x 

reaches zero. 
(4) If there is a relation dx/dt = kx where k I= 0 then any of x, 

dx/dt, ... , d"x/dt" cannot be zero unless all of them are zero. 
The heuristics of (1) must be applied before (2) and (3). (1) must be applied 

whenever it becomes applicable after applying (2) or (3). If there are many variables 
which are approaching zero (or other specific points), then they are ranked by (3) 
considering which reaches 0 (the specific points) earlier. When both X and Y are 
approaching zero, then another constraint is used by introducing a new variable R 

=X/Y. 
Rule (3) corresponds to the confiict avoidance rule and value continuity rule 

[4]. 

Example 4.1. Let us consider the mass-spring system with friction [ 4] whose 
model is of the form : 

2 sgn(x) denotes the sign of x. 
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X 

Fig. 2 Mass-spring system with a dashpot 

(4---1) dx/dt = v 

(4---2) dv/dt = - kx - fv where k and fare positive constants. 

(4---2) is the original form containing the built-in causality whereas (4---1) is the 
definition of v. The qualitative simulation for all possible initial sign assignment 
produces the four qualitatively different modes, which are all and the only possible 
modes for this system. In order to specify which variable reaches zero first among 
variables approaching zero, another constraint must be used by the model selection 
heuristic (a): 

(4---3) dR/dt = - R 2 
- f R - k where R = v/x 

The right hand side of (4---3) can be written as - (R - A. 1)(R - A-2 ) when f 2 

- 4k ~ 0 > where O > A. 1 ~ A.2 . This relation is equivalent to the equations (4---1) 
and (4---2) through the relation R = v/x. It should be noted that the equation (4---3) 
and equations (4---1) and (4---2) provide qualitatively different constraints although 
they are equal in the quantitative world. The introduction of the constraint (4---3) 
with the landmark values A. 1 and A.2 has the smae effect in terms of filtering spurious 
states as that of using the topological condition that the trajectory in the phase 
space (x, v) does not cross the tw.o lines; v = A. 1 x and v = A.2x (as used in [8, 9]). 

Tables 2-1-2-III show the simulations starting from all the possible initial 
patterns. These four patterns are all and the only qualitatively different patterns 
that are possible on the dynamical model (4---1) and (4---2). In the right most 
column, heuristics which are used to derive the change are indicated. Case I shows 
a deceasing oscillation (It is oscillation, because the final sign pattern is opposite to 
the initial sign pattern.) 

As for the sign pattern ( + - + -) (case III), all of x, v, dv/dt and d2 v/dt 2 are 
approaching zero. Among them, x = 0 must precede other variables being zero by 
(3). Since x is not known to be a transient state, two cases, i.e. x = 0 (case III-1) 
and x =IO (case 111-2) are split. In case 11-1 *, x cannot be zero, since R - A. 1 = 0 
must precede x = 0 (3) where R - A. 1 cannot be zero by (4), although x might be zero 
only by the qualitative information of (4---1) and (4---2). In case III-1 **, again x 
cannot be zero by rules (3) and (4) although the sign pattern is the .opposite pattern 
of the initial patterns where x becomes zero in the next step. 
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Table 2. The qualitative simulation for the mass-spring system 

Case I Case 11-2 
initial sign pattern (x, v, dvldt)=( + - -) initial sign pattern (x, v, dvldt)=( + + -) 

X V dvldt d 2vldt2 
X V dvldt d 2vldt 2 

+ - - + + + 
+ - 0 + (3) (2) + + 0 (3) (2) 

+ - + + (1) + + + (1) 
0 - + + (3) (2) 
- - + + (1) 

The same patterns as that of case 11-1 follow. 

- - + 0 (3) (2) 
- - + - (1) 
- 0 + - (3) (2) 
- + + - (1) 

Case 11-1 
initial sign pattern (x, v, dvldt)=( + + -) 

X V dvldt d 2vldt2 R-A1 dR/dt 

+ + - + + -
+ 0 - + (3) (2) + -
+ - - + (1) + -

+ - 0 + (3) (2) + -
+ - + + (1) + -
+ - + 0 (3) (2) + -
+ - + - + - (3) (4) • 

Case III-1 
initial sign pattern (x, v, dvldt)=( + - +) case split (x becomes 0) 

X V dvldt d 2vldt2 R-A1 R-).2 dR/dt 

+ - + - - - -
0 - + - (3) - - -
- - + - (1) + + -
- 0 + - (3) (2) + + -
- + + - (1) + + -

- + 0 - (3) (2) + + -

- + - - (1) + + -

- + - 0 (3) (2) + + -
- + - + + + - (3) (4) •• 

Case III-2 
initial sign pattern (x, v, dv I dt) = ( + - +) case split (x does not become 0) 

X V dvldt d 2vldt2 R-A1 R-A2 dR/dt 

+ - + -

I 

- + -

+ - + - (3) - + -
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In order to investigate another qualitative aspect of whether or not the oscillation 
will converge, diverge or stay just periodical, we must cut the relations (4-1), (4-2) 
through the other hyperplane by the model selecting heuristic (b), i.e. E = x 2 

+ (1/k)v2 thne dE/dt = - f v2 follows. This relation indicates that E and hence x 
will eventually become zero as long as f > 0. However, the construction of such 
variables as E is ad hoc. We have shown that the qualitative stability can be 
checked only by the sign structure of the qualitative model [7]. 

5 Conclusion 

We defined causality in physical systems by making time explicit. Since the 
causality is built in the dynamical model, a qualitative modeling process is 
skipped. Two other dynamical models are introduced; one for specifying which 
reaches a specific point first, and the other for investigating the convergence of 
variables. 

It is shown that the method proposed here can simulate five qualitatively 
different modes for a mass-spring system with friction. 
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