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Abstract 

A set of all solution curves in the phase space for ordinary differential equations is 
called the phase portrait. Phase portraits provide global qualitative information about 
how dynamical systems behave under different initial conditions. 

In this paper, we present a program called PSX that automatically analyzes topolo­
gical structure of phase portraits for two dimensional piecewise linear differential equa­
tions. PSX has several novel features that have not been achieved before: (a) PSX 
possesses procedures for recognizing instances of abstract concepts defined in dynamic­
al systems theory. PSX does not only build a memory structure for instances of 
abstract concepts but it also directs the search process and constructively proves that 
what it has found is in fact an instance of the concept. (b) Though limited to two­
dimensional phase spaces, PSX is applicable to complex flows in Non-Euclidean phase 
spaces as well as those in Euclidean phase spaces. (c) The architecture of PSX enables 
qualitative analysis and quantitative analysis to interact in a cooperative manner. Qual­
itative analysis guides the overall analysis process. When it gets stuck due to ambigui­
ty, qualitative analysis submits a question to the quantitative analysis and the quantita­
tive analysis provides an answer. 

PSX has been implemented using Common Lisp and tested against several exam­
ples. 

1 _ Introduction 

311 

Analysis of nonlinear differential equations is inherently difficult. No complete analytic­

al method is known by which an explicit form of solution is produced. Hence, a numeri­

cal method is usually called for to draw approximate information. Various tools based 

on sophisticated numerical algorithms have been developed and put to practical use. 

However, it should be noted that those numerical tools are passive since those tools do 

not solve any problem by themselves. In order to draw potential power of those tools, 
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human experts have to carefully prepare plans for analysis and interpret the results. 

The goal of this resecrch is to build a program which autonomously explores the 

behavior of nonlinear dynamical systems by simulating the intellectual process carried 

out by human experts. In order to plan what to analyze and interpret the result of 

analysis, the program has to possess abstract concepts concerning the behavior of dyna­

mical systems such as equilibrium state or periodic solution. In addition, it is widely 

believed that planning and interpretation are driven by qualitative understanding of 

behavior. 

As a first step towards the goal, we have developed a program PSX
1 

which takes as 

input two-dimensional piecewise linear differential equations and produces as output 

qualitative description of all possible behaviors. 

PSX has several novel features that have not been achieved before : (a) PSX pos­

seses procedures for recognizing instances of abstract concept defined in the dynamical 

systems theory. PSX does not only build a memory structure for instances of abstract 

concepts but it also directs the search process and constructively proves that what it has 

found is in fact an instance of the concept. (b) Though limited to two-dimensional 

phase spaces, PSX is applicable to complex flows in Non-Euclidean phase spaces as well 

as those in Euclidean phase spaces. (c) The architecture of PSX enables qualitative 

analysis and quantitative analysis to interact in a cooperative manner. Qualitative analy­

sis guides the overall analysis process. When it gets stuck due to ambiguity, qualitative 

analysis submits a question to the quantitative analysis and the quantitative analysis 

provides an answer. 

2 . Glimpse of PSX 

The input to PSX is two-dimensional piecewise linear differential equations of form : 

{R,: <P,(x) lx=/;(x)>} lsism,xER2 (1) 

where, p, (x) is a conjunction of linear inequalities which specifies the range of linear 

region R,, and /;(x) is a linear formula of x which specifies the flow in the linear region 

R,. 

PSX has an inventory of basic concepts for understanding a phase portrait, a collec­

tion of all solution curves. For example, PSX 'understands' attracting limit cycles
2 

in the 

sense that it has a procedure to recognize an instance of attracting limit cycles from the 

phase portrait specified by (1). 

1 PSX stands for Phase Space eXplorer. 
2 Informally, an attracting limit cycle is a solution curve correspoding to a closed loop in the 

phase spece which nearby solution curves approach as t -+ oo. For formal definition, see text­
books of dynamical systems theory such as [3]. 
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Consider, for example, a Van der Pol's equation: 

. y-(x3 -x) 

{

X= 

y=-X C O<c<l 

313 

(2) 

By approximating the nonlinear term of the first formula by a collection of three linear 

terms, we obtain a piecewise linear differential equation : 

{R . ( _!_~ I._ -2x+y+2 . __ ) 
+ • 2 X X- C , Y- X 

. ( 1 1 I . 2x+y . ) Ro. --~x~- x=-- y=-x 
2 2 C ' 

R . ( <-_!_I·= -2x+y-2 ·=- )} - • X_ 
2 

X C , y X 

1. asymptotic destinations : 
((A TTRACTING-BOO-3 (ENTRANCE. 1-71) 

(HULL (DEPARTS 1-33 LCl LCl-MINF L-17) 
(DEPARTS 1-58 LCl L-18 L-11) 
(ARRIVES 1-60 LC2 L-25 L-14) 
(DEPARTS 1-63 LC2 L-25 L-14) 
(ARRIVES 1-66 LC2 L-16 L-27) 
(ARRIVES 1-71 LCl L-28 L-29)))) 

2. local coordinates: LCl : base: (-1/2 0), orientation: (0 1) 

3. intervals : 
(1-71 (LOCAL-COORDINATE. LCl) (FROM. L-28) (TO. L-29) (DEPTH. 5) 

(BACKWARD-MAPPERS (BOO-INTERV AL-11 1-68)) 
(MAPPED-FROM (NIL 1-68 (NIL 1-63 (NIL 1-58 (NIL 1-33))))) 
(LOCKED . T) (LOCKED-DUE-TO . ENTRANCE-TO-ATTRACTING-BOO) 
(ATTRACTING-BOO. ATTRACTING-BOO-3) (SUCCESSOR-IS. 1-122)) 

4. landmarks : 
(L-28 (BELONGS-TO. LCl) (LOWER-BOUND. MINF) 

(UPPER-BOUND. 0.1464466S0) (TYPE. INDEFINITE)) 
(L-29 (BELONGS-TO. LCl) (LOWER-BOUND. MINF) 

(UPPER-BOUND. 0.1464466S0) (TYPE. INDEFINITE)) 
(L-6 (BELONGS-TO. LCl) (LOWER-BOUND. 0.1464466S0) 

(UPPER-BOUND. 0.1464466S0) (TYPE. DEFINITE)) 

5. landmark-ordering : 
(LCl LCl-MINF L-31 L-30 L-78 L-28 L-29 L-68 L-69 L-32 L-35 L-36 L-17 L-60 

L-61 L-4 L-6 L-7 L-9 L-20 L-21 L-19 L-62 L-63 L-18 L-37 L-38 L-39 L-70 
L-71 L-40 L-43 L-79 L-42 L-41 L-11 L-12 LCl-lNF) 

Figure 1 : Portion of Memory Structure PSX Constructed For a Piecewise Linear 
Approximation (3) of Van der Pol's Equation (2) 

(3) 
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Figure 1 illustrates what PSX has created in memory after analyzing (3). The memory 

structure explicitly indicates that there exists an attracting bundle of orbits in the phase 

portrait. The approximate location of the attracting bundle of orbits can be seen from 

the 'HULL' attribute which indicates the sequence of intervals {I-33, I-58, I-60, I-63, 

I-66, 1-71} it passes transversely. Each interval, in turn, is indicated by a couple of 

landmarks that delimit the interval. Location of some landmarks such as L-6 is given as 

numerical values, while it is not so for others such as L-28 and L-29, though at least 

the total ordering of landmarks is given for each local coordinate. Although PSX does 

not always produce quantitative information about what it has found, PSX does con­

struct a logical specification of its findings in memory, which enables a numerical 

method to compute numerical values from those specifications
3

• What is emphasized 

here is that it is qualitative analysis that guides quantitative methods on what to com• 

pute and that interprets what is computed. 

3 . Dynamical Systems Theory 

3. 1 The Framework 

PSX is based on the Dynamical Systems Theory (DST for short) (3, 2). This enables, 

for example, to draw qualitative information about solution, even though a precise form 

of solution is not available. 

Consider an ordinary differential equation 

x=f(x) (4) 

where, xis a vector of state variables (xi, ...... , Xn) each of which gives some value in R 

as a function of tE R. An n-dimensional space spanned by {x;} is called the phase space. 

For each point c= (c1, ...... , Cn) in the phase space, formula (4) specifies the rate and the 

orientation of state change: ilx=c= ( ~ 1 
, •·····, ~n )lx=c• In other words, formula (4) 

defines a vector field in the phase space. A specific solution corresponding to the initial 

state a= (a,, •·····, an) is a curve such that it passes on the point corresponding to a in 

the phase space and it is tangential to the vectors specified bv the vector field at each 

point. Such a curve is called a solution curve, a trajectory, or an orbit. Theoretically, 

we can think of an orbit passing on XE Uc Rn as a mapping <f>x(t) : R - V which maps 

x to yE Ve Rn as a function of tER. We can also think of a differential equation (4) as 

specifying a "flow" <P(x, t) =</>x(t) : Ux R - V. If uniqueness of solution to differential 

equation holds, orbits never intersect with others nor with themselves (the non-intersec­

tion constraint). The collection of all orbits in the phase space is called the phase 

3 This feature has not been implemented. 



PSX: A Program that Explores Phase Portraits of Two-dimensional 315 
Piecewise Linear Differential Equations 

portrait. 

There is obvious correspondence between geometric properties of orbits and aspects 

of dynamical behavior. For example, points in the phase space at which the right-hand 

side of the formula (4) is zero are called fixed points, and they correspond to equilibrium 

states which will not evolve for ever. Fixed points are further classified into sinks, 

sources, saddles, and so on. Orbits near a sink arbitrarily approach the sink as t-+ oo, 

while orbits near a source do so when t-+ -oo. Orbits near saddles are first attracted to 

and then repelled from the saddles 
4

• Closed orbits correspond to periodic behaviors. 

DST is particularly interested in asymptotic behaviors of dynamical systems as t-+ 

± oo. In DST, it is proved that solution curves in two dimensional phase space either 

(1) diverge for place at infinity, (2) approach a fixed point, or (3) approach a closed orbit 

(called a limit cycle), as t-+ ± oo_ Informally, an orbit which attracts nearby orbits as t 

-+ oo is called an attractor. Similarly, an orbit which attracts nearby orbits as t-+ - oo 

is called a repbllor. Attractors and repellors play an important role in qualitative analy­

sis of phase portrait. {yl 3 tn(-+oo)[limq>,.(x)=y]}, a set of points which an orbit pas-

sing a point x in the phase space approachs as t-+ oo, is called an w-limit set of x. 

Although an w-limit set becomes empty if the orbit diverges for a place at infinity as t 
-+ oo, we regard a place at infinity as a special kind of place and allow an w-limit set to 

contain a place at infinity. An w-limit set extended in this way is called an asymptotic 

destination. Similar extension to an a-limit set defined in the case t-+ oo is called an 

asymptotic source. 

3. 2 Two Dimensional Piecewise Linear Equations and their Properties 

PSX takes as input a normal form of piecewise linear differential equations : 

{R;: <P,(x) I .r=fi(x))} 1 sism, xER2 (5) 

Constituents delimited by angular brackets are called linear regions. Each linear region 

may be given a unique label R;. p,(x) given as a logical combination of linear inequali­

ties specifies a condition for the linear approximation R; to be effective. / 1(x) given as a 

linear formula of xER2 defines the local flow in linear region R1• 

If the following two conditions : 

1. the collection of linear regions covers R2 without overlap5, and 

2. the vector flows of adjacent linear regions are identical at both sides of the bound-

ary 

hold, then the solution is uniquely determined, the phase space is Euclidean (i. e., R2
), 

and the flow is C' (i. e., the curve itself and its derivative are continuous). In other 

words, if the two conditions hold, whenever an orbit leaves (enters) a linear region, the 

4 These are not definitions but properties. For definition see [3) for example. 
5 Boundaries of linear regions are allowed to overlap. 
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next (previous) linear region is uniquely determined and transition at the boundary of 

linear regions is continuous. 

If the above two conditions do not hold, the behavior of differential equation may 

not be well-defined; the state transition may run into undefined status, cause several 

variables to change discontinuously, or fail to specify the next state uniquely. Our 

algorithm presented in this paper can handle both cases, though the algorithm becomes 

faster if we can assume uniqueness of the solution. 

Two dimensional linear differential equations dominating each linear region are 

written as: 

x=Ax+b 
where, 

x=[x']. A=[ou 012], b=[b']. 
X2 ' 021 022 b2 

As is obvious from the above, linear systems have only one fixed point at -A-1bER2 

when det(A) ,;,06• Then, by translating the coordinate to the fixed point by v<--x+A-1b, 
the above formula can be rewritten as 

v=Av. 
Property of two-dimensional linear flows is simple. It can be classified into several 

categories by computing eigenvalues and eigenvectors of coefficient matrix A. In par­

ticular, we can grasp the asymptotic behavior of orbits from eigenvalues and eigenvec­

tors. When eigenvalues are real, the flow is usuall/ divided into four independent sub­

flows by two invariant manifolds
8 

spanned by the eigenvectors. When eigenvalues are 

complex (i. e. o ± i • b where b * 0), the flow can be categorized into three subclasses: 

spiral sink, center, and spiral source, depending on the sign of the real part o. If o is 

negative, then the flow is called a spiral sink, if zero then a center, and if positive then a 

spiral source. The orbit is left-turning, if the coefficient of the imaginary part b is 

positive; right-turning, if it is negative. 

Orbits of linear flow do not have any point of inflection. Hence, each orbit other 

than a fixed point is either right-turning, left-turning, or straight. The way a given orbit 

turns can determined by examining the sign of 

[xxxJ,=x, · x2-x, · i-2 
at some point on it. The orbit is right-turning if the sign is negative; straight if the sign 

6 Since this is almost always the case, we assume this throughout this paper. 
7 as far as the two eigenvalues are different from each other 
8 One dimensional region (i.e., straight line) spanned by eigenvectors originated at the fixed 

point. Orbits on invariant manifold are isolated from orbits elsewhere; orbits on an invariant 
manifold never leave the manifold and orbits elsewhere never come in the manifold. 
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is zero; and left-turning if the sign is positive. 

4. Reasoning about Phase Portraits 

We need to resolve several engineering problems to make DST computational. In 

particular, it is crucial to represent orbits so that reasoning about the phase portrait can 

be made effectively. PSX is based on the integration of several novel ideas. 

• we focus on bundle of orbits rather than single orbits, thereby deriving useful 

conclusions which cannot be made about single orbits. 

• we abstract each bundle of orbits a sequence of mappings between locally defined 

(n-1)-dimensional hyperplanes. This enables us to make qualitatively important 

distinctions about bundle of orbits, without committing ourselves to the hard 

problem of inventing a general framework for representing gemetric objects. 

• we can grasp global behavior by examining the structure of mappings corres­

ponding to bundles of orbits. 

estrong constraints of two-dimensional phase portraits enable us to generate map­

pings representing flows. Qualitative reasoning with a simple class of numerical 

computation allows us to enumerate all possible mappings. Sometimes, flow can 

be uniquely translated into mappings. Even if this not the case, the qualitative 

analysis identifies what should be computed by a more complex class of numeric­

al computation to resolve ambiguity. 

In the description below, we attempt to generalize these ideas to n-dimensional phase 

space as far as possible, for most of them are applicable to n-dimensional phase space. 

4. 1 Reasoning about Bundle of Orbits 

By examining the properties of bundles of orbits, we can derive conclusions that 

connot be derived for individual orbits. Suppose, for example, we have found in the 

given phase portrait a pattern as shown in Figure 2, in which bundle of orbits <p is 

transverse to regions I and / on the same hypersurface such that Jc I. This pattern is 

Figure 2 : Contracting Recursive Bundle of Orbit Intervals 
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¢ 

,,P1 
0 

f lmit cycles 
/ ,' k 

------,.:._ / , attracting 
/ bundle of orbits 

-------J 

Figure 3: Circumstance in which Existence of Attracting Limit Cycle is Predicted 

called a contracting recursive bundle of orbit intervals, and all orbits transverse to I are 

also transverse to ], and never leave the region occupied by </). If the phase space is 

two-dimensional, region J is finitely bounded, and region / and J do not share boundary, 

then</> contains one or more limit cycle {a1, ...... , ak} as shown in Figure 3. In addition, 

all orbits transverse to / - J approach one of those limit cycles as t --+ oo. 

In order to make this approach computationally feasible, we start from smaller 

pieces called bundles of orbit intervals. A bundle of orbit intervals is defined as a set of 

intervals of orbits </> such that 

1. no fixed point is involved in the interior of the region occupied by </> 

2. for any point p in the interior of the region occupied by </>, there exists a 

hypersurface s which is transverse to the region occupied by </> at region a that 

contains p and 

(a) all intervals of orbits that belong to </> are transverse to s once and only once. 

(b) for any point q in a, there exists an interval of orbit involved in </> which is 

, 
I 

I 
I 
I 
I 
I 
I 
I 
I ~---r-------r----s-~ 
I /+;---,, 
I 

' cross section 

Figure 4 : Bundle of Orbit Intervals and its Cross Section 
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transverse to s at q. 

The hypersurcace s in the above definition is called a cross section of if>. Intuitively, the 

first condition and the former half of the second require the uniformness of intervals 

involved in </>, and the latter half of the second condition requests the density and 

continuity of orbit intervals in </>. See Figure 4. In local analysis, a collection of bundles 

of orbit intervals is generated and their property is examined individually. In global 

analysis, the result of local analysis is put together and global information is derived. 

The remaining problem is how to find such recursive bundle of orbit intervals as 

above and how to represent it. We will address the problem in the following subsec­

tions. 

4. 2 Representing Bundle of Orbits as Mapping between Hyperplanes 
We introduce several (n-1) -dimensional hyperplanes, called sampling hyperplanes, 

m the n-dimensional phase space to "sample" data about bundles of orbit intervals. 

When n=2, the sampling hyperplanes are straight lines, which we call sampling lines. 

Consider a bundle of orbit intervals </> that intersects sampling hyperplanes P1 and P2 
at r1 and r2, respectively (see Figure 5). An interval </>o of </> delimited by r1 and r2 

continuously maps points of r1 to r2. We represent this as </>o: r1-+ r2. 

Although it is hard to find an effective representation for r1 and r2 in n-dimensional 

space, we can currently put aside this problem since we limit our concern to the two­

dimensional phase space. In the two-dimensional phase space, r1 and r2 are line seg­

ments which can be completely specified by the location of the two end points. 

local coordinate lp 2 

Pl 

local coordinate lp, 

Figure 5 : Representing Bundle of Orbits as Mapping between Hyperplanes 
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The sampling line lk is represented as a pair (b, o), where b= (b1, b2) ER2, called 

the base, is a point on lk, and o= (o1, o2) ER 2 is the orientation of lk. By this convention, 

the location x of a point p on lk can be represented as 'x= (b1, b3) +u • (o1, 02)'. We call 

this system of locating points local coordinate ck associated with lk, and we use a 

denotation 'lac (P) = u wrt ct' which reads the location of p is u with respect to ck. 

Likewise we mean by '(u, v) wrt ct' an open interval pq bounded by two points p and q, 
such that loc(P)=u wrt ck and loc(q)=v wrt ck. If loc(P)=u wrt ck and loc(q)=v wrt ck 

and u<v for two points p and q on lk, we say that pis smaller than q with respect to ck, 

and denote it as P-<,.q. 
The sampling line lk= (b, o) divides the phase space into two disjoint regions: the 

right side defined as {x I D,.(x) >0}, where 

D,.(x)=[ox (x-b)]z 

=01 • (X2-b2)-02 • (X1-b1). 

In general, points on the sampling line that delimits intervals are called landmarks. 

It should be noted that the exact address of landmarks is not necessary for qualitative 

analysis. Instead, only the total ordering of landmarks on a sampling line is needed. In 

two-dimensional phase spaces, mapping </>o is order-preserving, namely the order of 

landmarks is preserved in the mapping from r1 to r2. 

4. 3 Grasping Global Behavior By Examining the Structure of Mappings for Bun-

dle of Orbits 

We can grasp the global characteristics of phase portraits by constructing in turn com­

positions of mappings representing bundle of orbit intervals. In particular, asymptotic 

behavior of orbits can be captured by constructing a finite number of compositions. 

Formally, given a couple of bundles of orbit intervals </>1 : /---+ J and </>2 : J---+ K, 

composition </>2°</>1 of </>1 and </>2 is defined as follows: 

</>2°</>1(X) =</>2(</>1(X)) =y iff 3 z[</>1(X) =z, </>2(Z) =y] 

</>2°</>1 is continuous if </>1 and </>2 are continuous. </>2°</>1 is order-preserving if </>1 and </>2 

are order-preserving. Mapping <Pm O .. • 0 </>1 is called a contracting recursive mapping, if its 

range is a subset of its domain, namely, 

</>mo••• o <f>1 (/) C /. 

Similarly, </>m O .. • 0 </>1 is called an extending recursive mapping, if 

</>mo•••o</>1(/) ~/. 

If a contracting recursive mapping is found, it entails the existence of an attracting 

bundle of orbits. Similarly, the existence of an extending recursive mapping entails the 

existence of a repelling bundle of orbits. 

Since the algorithm underlying PSX produces only a finite number of primitive 

mappings for the bundle of orbit intervals, PSX can identify all possible asymptotic 

sources and destinations in the phase space. Furthermore, PSX classify the bundle of 



PSX: A Program that Explores Phase Portraits of Two-dimensional 321 
Piecewise Linear Differential Equations 

orbits into those comprising a region containing an asymptotic source or destination and 

others which comprise transient states. For transient regions, PSX can identify the 

asymptotic source and destination which the orbits passing there approach as t-+ -oo 

and t-+ oo, respectively. In sum, PSX can draw a qualitative map of the phase portrait. 

All this can be done by a finite amount of computation, though it should be noted that 

the result may often ambiguous and an extensive numerical computation, though quite 

limited in frequency, is needed to resolve ambiguity. 

4. 4 Generating Mappings by Local Analysis 

In order for an approach based on the about idea to be computationally feasible, we 

should be able to develop 

• a procedure for finding sampling hyperplanes that are useful in grasping global 

behavior and 

• a procedure for abstracting flow as mapping between sampling hyperplanes. 

These requirements are not easy to achieve in general, even for two dimensional flows. 

However, as we will show in the next section, we can in fact meet the above require­

ments if we further constrain the input to two-dimensional piecewise linear differential 

equations. Our method is 

• to divide the phase space into convex regions called cells by invariant manifolds 

and boundaries between linear regions 

• to constrain the local flow in each cell into a finite number of candidates, by 

examining the property of flow on the boundary of the cell. Only a finite number 

of computation consisting of four basic arithmetic and square root is required for 

this. Although a more complex class of computation is needed to resolve ambi­

guity, qualitative analysis uncovers what to compute. 

5 _ Properties of Local Flow 

In this section, we examine properties of local flow in cells. Formally, let us call a 

convex region of the phase space a cell, if it is bounded by polygon or a polyline, it has 

no fixed point or invariant manifold in its interior region, and it is dominated by a single 

linear flow. Fixed points are allowed to be only on the boundary of cells. Thus, all 

orbits in a cell come from somewhere at boundary and leave for somewhere at boundary 

either in a finite or infinite amount of time. Geometrically, a cell consists of the interior 

region and the boundary. Each line segment comprising the boundary is called a bound­

ary edge. Each couple of adjacent boundary edges is delimited by a vertex. A cell is 

either closed or open. 

5. 1 Flow at the Boundary of Cells 

Let c be a cell with local flow specified by a linear differential equation x=Ax+c, p 
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be a point on the boundary of c that is not a vertex, lk : (b, o) = <(b1, b2), (01, 02)) be a 

sampling line passing p, and Ct be a local coordinate associated with lk. We can see how 

flow in c intersects with lk, by evaluating the z-component of the cross product ox i: 
[OX X],= [o X (Ax+c)], 

where, 

=01 • (a21(b1+u • 01)+a22(b2+u • 02)+c2) 

-02 • (au(b1+u • 01)+al2(b2+u • 02)+c1) 

=(of· a21 + (a22-au)o102-a12o~)u 

+ ((a21b1 +a22h2+c2)01-(aub1 +a12h2+c,)02) 

=Pu+q 

P=of • a21+(a22-au)o102-a120: 

q= (a2,b1 +a22b2+c2)01- (aub, +a,2b2+c1)02 

(6) 

We say that the flow is transverse-right (transverse-left) to the sampling line l if the sign 

of [ox x], is negative (positive). The flow is inward if the interior of the cell is in the 

right side of the sampling line and the flow is transverse-right to the sampling line or if 

the interior of the cell is in the left side of the sampling line and the flow is transverse­

left to the sampling line. Such a point on the boundary is called an entrance to the cell. 

A source on the boundary is also regarded as an entrance. Maximally continuous seg­

ments of boundary at which orbits transversely enter the cell are called entrance seg­

ments. An entrance segment is a point on the boundary if it is a source; otherwise, it is 

an open polyline segment consisting of one or more boundary edges. Likewise we define 

exits and exit segments for outgoing flow. Exit segments include sinks located on the 

boundary as a special case. 

Of particular importance are boundary sections at which flow is tangential to the 

( I ) convex node segments 

( 1-b) a closed interval 

~ 
(2) a concave node 

( 1-c) two closed intervols con­
nected by o saddle node 

--~ saddle node 

Figure 6 : Geometric Configuration of Singular Segments 



PSX: A Program that Explores Phase Portraits of Two-dimensional 323 
Piecewise Linear Differential Equations 

boundary and no orbit leaves or enters. A point on the boundary of a cell is celled a 

singular node if the flow is tangential to the boundary at the point. A sigular segment is 

a maximal aggregation of continuous singular nodes. From the definition (6) there is 

only one singular point at - ! wrt lk if P-=l=-0. Singular segments are either an isolated 

point, a closed interval, or two closed intervals sharing a saddle node, as shown in 

Figure 6. In general, a singular segment is a polyline segment if the boundary edge is 

on an invariant manifold ; otherwise it is an islated point. When a singular segment 

consists of a single point, we call it a singular node. 

The orbit passing through a singular node lies in the same side of the boundary 

immediately before and after passing the singular segment, for orbits of linear flow do 

not have any point of inflection. If the orbit lies outside the boundary immediately 

before and after passing the singular segment, we call the singular segment a convex 

node segment, or a convex node if it consists of a single point. Due to the properties of 

linear flows, a singular segment other than convex node segments consists of a single 

point, which we call a concave node. By definition, an orbit passing a concave node lies 

inside of the cell just before and after passing it. 

The type of singular segment is determined by the curvature of orbit at the singular 

segment, the side in which the orbit lies immediately before and after the visit, and the 

relationship between the orientation of the flow at the tangential point and that of the 

sampling line associated with the edge. Table 1 shows a set of rules for determining the 

type of a singular node when the orientation of the flow conforms to that of the edge at 

the tangential point. In what follows, entrance segments, exit segments and singular 

segments are generally referred to as boundary segments. 

Table 1 : Rules for Determining the Type of Singular Node - when the flow at the 

tangential point is oriented in the same direction as that of the sampling line 

associated with the edge 

which side of the bounday the cell exists 

right side left side 

how the orbit turns right-turning concave node convex node 

left-turning convex node concave node 

Since liner flows have strong constaints as to the geometry of orbits, we can obtain 

useful clues about the flow of a cell, by a simple class of computation. In particular, a 

given cell has at most one concave node at the boundary, we can uniquely identify the 

flow pattern inside the cell. Even though it is not the case, the number of possibilities is 

finite and specification of a numerical computation for resolving ambiguity is synthesized 
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from what is obtained by qualitative analysis. 

Since the flow in closed cells is more regular than that in open cells, we first 

describe the properties of local flow in closed cells, then we extend the analysis to open 

cells. 

5. 2 Properties of Local Flow in Closed Cells 

Orbits in closed cells originate from entrance segments and tend towards exit seg­

ments. The following properties are important in identifying the flow pattern in a 

closed cell. 

Property 1 Let the number of convex node segments and concave nodes be n. and 

nc, respectively. Then, 

nv=nc+2. (7) 

Property 2 If at least one concave node is involved on the boundary of a cell, there 

exist a sequence of three consecutive convex node segments that have no concave node 

in-between. The center of such convex node sements is called the center segment. 

Property 3 If a concave node c is involved in the boundary, then the orbit passing 

on c intersects each of the two sequences of the boundary segments between c and the 

center segment. 

Property 4 The orbit passing on c does not intersect boundary segments adjacent to c. 

Let us call a sequence of all boundary segments ordered clockwise from the center 

segment a left-cyclic boundary segment list. Boundary segment s of a cell is said to be 

to the right (left) of boundary segment p of the same cell if s appears after (before) P in 

the left-cyclic boundary segment list. An orbit is said to pass through a cell from left to 

right if the boundary segment through which the orbit leaves the cell is to the right of 

the boundary segment through which the orbit enters the cell. Orbits that pass through 

a cell from right to left are similarly defined. The following property holds : 

Property 5 For all cells, one of the folloming conditions holds: 

• all orbits that pass through the cell from left to right (left-right flow) 

eall orbits that pass through the cell from right to left (right-left flow) 

It is easy to see whether a local flow is left-right or vice versa, For example, one might 

see the orientation of the flow at the boundary segment immediately to the right of the 

center segment. 

Property 6 It follows from the non-intersection constraint of orbits and property 3 

that all orbits inside a cell are nested around the center segment. 

Now let us illustrate a couple of examples. Consider the flow in a cell shown in 

Figure 7. Since no concave node segment is involved in the boundary, the local flow 

inside this cell is uniquely characterized as inter-boundnry segment mapping : cda --+ abc. 
In order to characterize the local flow to more detail as inter-boundary edge mapping, 

however, ambiguity arises unless more information is available. There are three possibi-
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C 

Figure 7: Example of Local Flow in a Closed Cell (1) 

lities: 

1. da-+ aq,(d), q,- 1(b)d-+ q,(d)b, eq,- 1(b)-+ be 

2. da-+ ab, ed-+ be 

3. q,-1(b)a-+ ab, dq,-1(b)-+ bq,(d), ed-+ q,(d)e 

where, q,(d) is an image of d by q,, and q,- 1(b) is a point on the boundary that is mapped 

to b by <f,. We can resolve ambiguity if we can determine, for example, which boundary 

entity the orbit passing on vertex d intersects on leave. In general, this requires an 

extensive numerical computation. 

...____..., g 

ltg 

h 

~gh 

o: concave node 

• : convex node segment 

®: the center segment 

\ : invariant manifold 

Figure 8 : Example of Local Flow in a Closed Cell (2) 

Consider the flow in another cell shown in Figure 8. Since this case contains three 

concave nodes on the boundary, we can think of eleven possible ways of qualitatively 

different patterns of local flow in this cell (at the inter-boundary segment level), as shown 

in Figure 9. In order to identify which is the case, one may call for extensive numerical 

computation to see which boundary segment or vertex the orbit passing the node f 

intersects. 

How many qualitatively different patterns of flow do we have at the inter-boundary 

segment mapping level? Let Pc(n) be the number of qualitatively different patterns of 

flow in a call with n concave nodes. First, let us consider the case in which no single 
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Figure 9: Eleven Possible Ways of Qualitatively Different Patterns of Local Flow for the Cell 

shown in Figure 8. 
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orbit passes more than one concave node and let the number of possibilities in that case 

be P% (n). P% (n) is recursively defined as follows: 

P% (0) =1 

P%(1) =1 
n 

P% (n) = L.P% (i- l)P% (n-i) n~2 
t=I 

The values of pg (n) for small n are as follows: 

pg (2) =2, pg (3) =5, pg (4) = 14, pg (5) =42, pg (6) = 132, pg (7) =429, ... 

Using pg (n) as defined above, Pc(n) is defined as follows: 

Pc(O)=l 

Pc(l)=l 
n-1 h-1 

Pc(n)=L. L. O::.Pc(k)Pc(i,-k-1)) 
P=ll:li!<l2<•••<i1:ln-l k=O 

x (Ilf=1'Pc(i;+1-i1-l)) 

xPc(n-ip-l) 
n-1 

+ L.Pc(5)Pc(n-i-1) where, n~2. 
t=O 

The values of P c(n) for small n are : 

Pc(2)=3, Pc(3)=11, Pc(4)=45, Pc(5)=197, Pc(6)=903, Pc(7)=4279, ··· 

5. 3 Properties of Local Flow in Open Cells 
We can reduce the problem of analyzing local flow in open cells to that of closed 

cells, by extending the set of boundary segments with additional virtual boundary en­

tities such as points at infinity or an edge at infinity and giving them appropriate attri­

butes so that the following conditions may be satisfied: 

1. the number of convex segment nodes is that of concave nodes plus two 

2. there is at least one entrance segment and exit segment in the extended set of 

boundary segments 

3. flow at the both sides of every singular segment is converse with respect to the 

orientation relative to the boundary; if the flow is inward at one side, the flow 

should be outward at the other side. 

Before going into details, let us examine several examples. First, consider an open 

cell shown in Figure 10. This cell has three real boundary edges. Two of them are part 

of invariant manifolds. The remaining one is an exit segment. Three additional virtual 

boundary entities, two points at infinity and an edge at infinity, are introduced. The 

constraint on the number of concave nodes and convex node segments is already sa­

tisfied. But as there is no entrance segment, we regard the edge at infinity as an 

entrance segment. This interpretation conforms to the fact that all of the orbits crossing 

the real exit segment diverges to the direction delimited by the two invariant manifolds 
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Figure 10: Example of Local Flow in Open Cell (1) 

. 
\" infinity-I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

\ exit segment: edge at infinity-2 
I 

'\, -------_,, -point at infinity 
/.,.,,.✓ ..... ________________ _ 

one convex node segment 

Figure 11 : Example of Local Flow in Open Cell (2) 

Consider now the flow in an open cell shown in Figure 11. Two boundary edges 

comprising the boundary of the cell are both portions of invariant manifolds connected 

by a saddle node. All of these boundary entities are viewed as one convex node seg­

ment. Three additional virtual boundary entities are introduced as before. In this case, 

there is no entrance segment nor an exit segment on the boundary. In order to satisfy 

the constraints on boundary entities, we have to divide the edge at infinity into two and 

view them as an entrance segment and an exit segment. 
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Figure 12: Example of Local Flow in Open Cell (3) 
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Finally consider a local flow in an open cell shown in Figure 12, which has a 

concave node a on the bounday. Although both entrance segments and exit segments 

exist on the boundary, the number of convex node segments is one less than required. 

Hence, we regard the edge at infinity a convex node segment. In this case, the local 

flow in this cell at the inter-boundary segment level is uniquely characterized as the 

following set of mappings: 
-- -
11.-.. a-+ 12,-.. ¢,(a), c-+ ab, c-+ ¢,(a)d 

Now we are in order to describe the set of rules for assigning attributes to the edge 

at infinity e .. and two points of infinity p .. ,1 and p .. ,2. Let the number of "real" concave 

node and convex node segments be nc and n,, respectively. 

1. if n,=nc+2, then 

(a) if the open cell has no entrance segment, then e.. is an entrance segment 

(b) if the open cell has no exit segment, then e .. is an exit segment 

( c) otherwise, e .. is a convex node segment or its portion 

2. if n,=nc+l, then 

(a) if the cell has both an entrance segment and an exit segment, then e .. 1s a 

convex node segment 

(b) if the cell has an entrance segment but no exit segment, then e .. is an exit 

segment. 

(c) similarly, if the cell has an exit segment but no entrance segment, then e .. is 

an entrance segment. 

(cl) otherwise (i. e., the cell has no entrance segment nor exit segment), then 

divide e.. into two by introducing a new virtual vertex and regard the two 

sub-segments resulting from subdivision as an entrance segment and an exit 

segment, respectively. The sign of eigenvalue associated with the adjacent 

invariant manifold is examined to determine the type of the two boundary 

segments: the boundary segment adjacent to an unstable manifold (an in­

variant manifold associated with a positive eigenvalue) is regarded as an exit 
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segment, and the one adjacent to the stable manifold (an invariant manifold 

associate with a negative eigenvalue) is regarded as an entrance segment. 

3. if nv=nc, then 

(a) if the cell has an entrance segment but no exit segment, then e® is an exit 

segment. 

(b) similarly, if the cell has an exit segment but no entrance segment, then e® is 

an entrance segment. 

( c) otherwise, regard P®.1 and P®.2 as convex nodes, and regard e® as an entrance 

segment (exit) if the boundary segment on the other side of a point at infinity is 

an exit (entrance) segment9. 

The types of points of infinity p®, if not determined in the above, is deterrnind based on 

the type of adjacent boundary segments : 

1. if the type of the two adjacent boundary segments of p® are the same, so is the 

type of p® 
2. if one of the adjacent boundary segments of p® is a singular segment, so is p® 
3. otherwise, p® is a convex node segment or its portion. 

Edges and points at infinity with attributes assigned as above have the following prop­

erties: 

• when the edge of infinity is regarded as an entrance segment, there are orbits 

which diverge to the corresponding direction as t-+ -oo 

ewhen the edge of infinity is regarded as an exit segment, there are orbits which 

diverge to the corresponding direction as t-+ oo 

• when the edge of infinity is regarded as a singular segment, no orbit diverges to 

the corresponding direction as t-+ ± oo 

6. Implementing the Idea 

PSX has been implemented based on the ideas and observation presented above. 

This section surveys implementation issues about PSX, Figure 13 shows an overview of 

the flow of processing which PSX performs. A document on the details of implementa­

tion is in preparation [4]. 

6. 1 Dividing the Phase Space into Cells 

We take a simple strategy for generating cells
10

• We divide the phase space by 

• boundaries between linear regions 

• invariant manifolds in each linear region. 

9 The result does not depend on which one of the two points of infinity is chosen. 
10 Extensive evaluation of adequacy of this strategy is left for future work. 
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1. divide the phase space into cells 

2. local analysis 

(a) instantiate boundary segments 

(b) generate inter-boundary segment mappings 

( c) generate inter-boundary edge mappings 

(d) generate local mappings 

3. global analysis 

(a) inittialize annotations to intervals 

(b) extend local mappings 

Figure 13 : Flow of PSX 

2-dimensional regions resulting from the division are used as cells if they satisfy the 

specification of some linear region. Since linear regions can overlap, there may be a cell 

shared by several linear rigions. Sufficient number of copies may be made for such cells 

so that different copies are used for different linear regions. 

The region manager maintains information about regions resulting from phase 

space division. For each linear region, a record is maintained which provides 

• specification of linear flow 

ethe names of i-dimensional regions (i= 1, 2, 3) involved in the region 

• the names of sampling lines and associated local coordinates. 

These entities are annotated with geometric or topological information. Each sampling 

line with local coordinate is associated with the location of base, orientation, list of 

landmarks (0-dimensional region), property of local flow there, and other miscellaneous 

information. Each i-dimensional region is given such attributes as : 

x-address, y-address, delimited-intervals (for 0-dimensional regions); 

associated-sampling-line, upper-limit, lower-limit, right-side, left-side (for I-dimen­

sional regions); 

subcategorization-of-the-region, boundary-type, set-of-boundary-entities, number-of­

concave-nodes, number-of-convex-nodes, number-of-entrance-segments, number-of 

exit-segments, the-center-segment, orientation-of-flow-in-the-cell, left-cyclic-segment­

list (for 2-dimensional regions>11. 

Some of those attributes are specified at this stage, while others will be specified later. 

Given a new sampling line, the region manager updates the records so that the division 

by the new line can be correctly reflected in the data structure. 

6. 2 Local Analysis 

In local analysis, the properties of local fl.ow in each cell are examined individually, 

and the result is produced as a set of mappings between sampling lines for each cell. 

11 Some of the labels of these attributes are slightly different from the actual implementation. 
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6. 2. Instantiating Boundary Segments 

We use a four-pass algorithm. The first two passes, pass 1 and pass 2, are for 

processing closed cells, and the remaining two, pass 3 and pass 4, are for open cells. 

Pass 1 generates annotations about flow at the boundary edges and vertices whose type 

can be determined by local information. Some boundary segments, such as concave 

nodes or sinks or sources, which consist of a single point and can be determined solely 

by local information, are determined at this point, while others such as convex node 

segments consisting of more than one boundary edge are only partially specified. Pass 2 

determines the type of those remaining boundary segments based on the annotation to 

the adjacent boundary entities. At the same time, a sequence of boundary entities of the 

same type is aggregated into a single boundary segments. Record is kept on how each 

boundary segment is made up from boundary entities. The record will be referred to 

later to produce inter-boundary edge mappings from inter-boundary segment mappings. 

If the cell is closed, the instantiation is complete at this point ; otherwise further two 

passes will be applied. 

Pass 3 assigns the type to edges and points at infinity, if it can be determined from 

local information. Pass 4 is actually the same as pass 2, which determines the type of 

remaining (virtual) boundary entities based on that of adjacent boundary entities as well 

as aggregating adjacent boundary entities of the same type. 

The algorithm for instantiating boundary segments is relatively straightforward. 

See [4] for more details. 

6. 2. 2 Generating Inter-boundary Segment Mappings 

We encode inter-boundary segment mapping as a set of following tuples: 

(/, a, r) 

where, / and r are the name of boundary segments which the orbit passing a concave 

node a is transverse to on entrace to or on leave from the cell, and I is to the left of a 

which in tum is to the left of r. For example, a flow pattern (1) shown in Figure 8 can 

be represented as follows : 

{<lab, d, /;a), (Ide,/, l;a), (/Jg, h, l;a)} 

We call this data structure landmark orbit specification, LOS for shot. 

An algorithm for generating an LOS uses the following set of sequences : 

L= {······, It, •·····} where, /;= (······, /;;, •·····) 

where, /; is a list of boundary segments, indicating that no orbit which separates bound­

ary segments into two groups is registered yet. R is a variable in which the resulting 

tuples are accumulated. An algorithm for generating an LOS is this : 

1. initialize L : let the initial value of L be the left-cyclic .boundary segment list less 

all convex nodes 

2. choose a concave node /;; from L nonderterministically 
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3. find nondeterministically a couple of segment l1p and [1q in /1 such that l;p, l;qE l,, 

1 spsj-2, and j+2 sq; divide /, by l,p and l,q, and let the result be l,= (a, l1p, /3, 
11;, r, l;q, o) where, a, /3, r, and, o are (possibly null) sequence of boundary seg­

ments (type of l1p and l;q should be chosen properly to match the orientation of 

the flow in the cell ; for example, l,p must not be an exit segment if the flow in 

the cell is left-right.) 

4. add (l,p, Iii, l,q) to R 

5. remove l, from L, and add the following: 

• if l1p is a concave node, then /3 ; otherwise, l,p • /3, where x • y means that item 

x is added to the head of list y. If a concave node is not involved in /3, the 

addition is canceled. 

• if l;q is a concave node, then r ; otherwise, r with ltq added in tail. If a concave 

node is not involved in r, the addition is canceled. 

• a list resulting from appending a and o. If the list does not contain any con­

cave node, addition is canceled. When l;p or l,9 are not concave nodes, l;p 

or/and /,9 are added in advance in the tail of a or to the top of o, respectively. 

The above algorithm is non-deterministic, for steps 2 and 3 contain arbitrary choice. 

Discussion about nondeterminacy will made below in section 6. 4. 

An example. When applied to the cell shown in Figure 8, the above algorithm will 

produce the following LOS : 

{ {(lab, d, l;a), Ode, J, l;a), 0 ta, h, l,a)}, 

{(lab, d, let), (lab, J, l,a), Ota, g, l;a) }, 

{<J, d, l,a), (l,a,J, d), Ota, h, l,a)}, 

{ (lab, d, l;a), (Ide, J, Lah), (Ide, h, l;a)}, 

{(lab, d, f>, (d, /, h), <J, h, l,a)} } 

Note that the above description conforms to the eleven possible flow patterns shown in 

Figure 9. 

Let us represent an inter-boundary segment mapping as: ((s, e), (¢,(e), ¢,(s))) 

which means that the part of a boundary segment delimited by s and e is mapped to the 

part of another boundary segment delimited by ¢,(e) and ¢,(s) by a local flow inside the 

cell. 

It is relatively easy to translate LOS into inter-boundary segment mappings. We 

use as working memory stack s (a) associated with each entrance or exit segment a. 

The result will be put into the variable m, whose initial value is an empty set { } . The 

algorithm for translating LOS into the above representation of inter-boundary segment 

mappings is this: 

1. reorder elements of given LOS so that (/1, a1, r1) may appear after (/1, a,, r1) in 
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the resulting list if a; is to the right of a; according to the left-cyclic bomdary 

segment list. 

2. for each tuple (/, a, r) in the list obtained in the previous step, do the following: 

(a) if / is an entrance segment or an exit segment, create a new cut and a name 

standing for it; and push the name into s(l) 

(b) do similarly if r is an entrance segment or an exit segment, except that the 

new name is pushed to s(r) 

3. for each entrance segment i, do the following: 

(a) let s+ (i) be s (i) with the names of two adjacent singular node segments 

added to the top and in the tail, respectively 

(b) for each consecutive element l;,I and l;,I+I of s+(i), compute the image </J(l;,1), 

<P (l;,;+1) based on the data contained in LOS ( <P (x) denotes a point on the 

boundary, either a cut or a concave node, which the orbit passing on x goes 

through when it arrives or leaves the cell) ; 

add ((/;,;, l;.J+l), <<PU1,1+1), </J(l;,;))) tom 

6. 2. 3 Generating Inter-boundary Edge Mappings 

In order to obtain inter-boundary edge mappings the inter-boundary segment map­

pmg 

((s, e), (</J(e), </J(s))) 

will be further subdivided into 

m concave 
nodes 

vertices 

PM(m,n) 
possibilities 

Figure 14 : Determining the Qualitative Location of Cuts of Landmark Orbits 
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where {a, b} = {c, d} 

if a boundary segment denoted by (s, e) or another denoted by (</J(e), </J(s)> consists of 

more than one boundary edge. In the above definition, intervals denoted by <ha, l;,6) or 

(</J(li.,), </J(/;,,)) must be on a single sampling line. In addition, local address of li.a and 

</J(/;,,) should be smaller than that of l;,b and </J(/;,,), respectively. 

Generation of inter-boundary edge mapping is performed in two stages. First, loca­

tion of cuts of landmark orbits that pass concave nodes is qualitatively determined (that 

is, a boundary edge of vertex on which the cut is located is determined). Then, the 

location of cuts of orbits passing on vertices is qualitatively determined. 

Determining the qualitative location of cuts of landmark orbits. Constraints on 

locations of cuts are : 

• the ordering of cuts should be preserved 

• arbitrary number of cuts can be located on a boundary edge 

• at most one cut can be located on a vertex. 

See Figure 14. 

Let the number of vertices and the number of cuts involved in the entrance segment 

or the exit segment s be m and n, respectively. And let the number of possibilities for n 

cuts to be on m vertices and m+l bundary edges be PM(m, n). 

Then, 

entrance segment 
with m vertices / 

exit segment 
with n vertices 

PM (m,n) 
possibilities 

Figure 15 : Determining the Qualitative Location of Cuts of Orbits Passing on Vertices 
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PM(m, n)=P;(m, n) 

+ L L L T(i,, ······, ip ;j, ...... ,jp) (8) 
P=l, ... ,min(m,n) l:iiiit< ... <i,:iin l:iiit< ... <J,:iim 

where, 

P;(m, n) =m+nCn (9) 

T(i,, ...... , ip; j1, ...... , jp) =P;(i,- l, i1 -1) (10) 

X (JI:::f P;(ia+l-ia-l, ia+i-ja-l) 

xP;(m-ip, n-jp) 

Determining the location of cuts of orbits passing on vertices. We can use a simple 

nondeterministic list merge algorithm to enumerate possible qualitative locations of cuts 

of orbits that pass on vertices involved in entrance or exit segments. As shown in 

Figure 15, there are again, PM (m, n) possibilities arising for an inter-boundary edge 

mapping <(s, e), <<!>(e), </)(s))), if there are m vertices in <s, e) and n vertices in <<!>(e), 

</>(s)). 

6. 2 . 4 Generating Local Mappings 

Now it is trivial to produce local mappings 

{fk : Ik -+ ]k} (11) 

from inter-boundary-segment mappings. Besides this, information which PSX actually 

produces involves : 

• polarity of local mapping ; whether a sequence of landmarks is mapped in the 

same order ( +) or in the reverse order ( - ) 

e list of asymptotic sources corresponding to sources at boundary 

e list of asymptotic sinks corresponding to sinks at boundary 

Since local analysis is performed independently for each cell, landmarks and intervals on 

the physically same sampling line may be produced without being co-related with each 

other. For example, consider a situation illustrated in Figure 16, where cell a has 

interval a 1a4 as part of the boundary, cell b has interval bibs as part of the boundary, and 

a,a. and bibs are defined on the common sampling line lk with an associated local 

cell o 

b5 lk: sampling line in common 

cell b 

Figure 16: Two Overlapping Sequences of Landmarks and Intervals Defined on 

the Same Sampling Line 
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coordinate ck. Suppose that we only know a1 -<ct b1 -<ct 04 -<ct bs, a1 -<ct 02 -<c. a3 -<ct 
a. and b1 -<c• b2 -<c• b3 -<c• b• -<c• bs about those landmarks. Since global analysis 

requires landmarks on a sampling line to be totally ordered, the two sequences {a;} and 

{b1} of landmarks are merged so that the above constraints may be satisfied and such a 

sequence as (a1, b1, a2, b2, o3, b3, b., 04, bs) may be constructed. This can be done by a 

simple nondeterministic list merge algorithm. 

6. 3 Global Analysis 

The purpose of global analysis is to examine the structure of compositions of local 

mappings obtained in local analysis. 

6. 3 . 1 Problems and Requirements to Global Analysis 

The complexity of global analysis significantly differs, depending on whether uniqueness 

of solution is the case. If uniqueness of the solution holds, it is relatively easy to 

implement an effective algorithm for global analysis. 

Unfortunately, uniqueness of the solution does not hold in general for our subject. 

If some linear regions overlap as shown in Figure 17, orbits may branch or merge at the 

boundary. We take each branching as representing nondeterministic evolution of state. 

I 
I 

' •------
' 
!Jump 
I 
I 

~ 

0 

branch 
' I 

: 

Figure 17 : Merge and Branch of Orbits in Complex Phase Space 

When uniqueness of solution does not hold, the analysis of phase portrait becomes 

harder, for orbits can tangle in an arbitrarily complex manner. See orbits in Figure 18 

for illustration of such a situation. There, bundle of orbit intervals </>1 and </>2 merge 

together to connect to </>3, part of which in turn merges with </>s to connect to if>,. There 

is a loop structure consisting of </>4, </>6, and part of </>8• This is not a contracting recursive 

bundle of orbits in a strict sense, for it contains a nondeterministic branch to </>1. But it is 

useful to recognize these loops as kinds of recursive mappings and use them as a clue 

for finding recursive mappings in a strict sense. 
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We have developed two algorithms for global analysis: one that assumes the un­

iqueness of solution and another that does not assume that. Since the latter is more 

general, we will only present the latter. Before that, let us describe basic issues under­

lying the algorithm. 

ls Ls.I 
\ 
I 

~ 
I 
\ 
\ 

l4,3 :' ,/ 
,I . ,' \ , . \ 

4,5: 

l4,s 
'¢a~" 

Figure 18: Collection of Bundle of Orbit Intervals with Complex Connectivity 

6. 3. 2 Propagation of Split 

Suppose <f> : /---+ ], ¢ : K---+ L, and J n K * { } , but J * K. In this case, although we 

cannot construct ¢ 0 </>, we can split] or/and Kand construct a composition ¢ 0 </>: <1>-1(fn 

K)---+ ¢(f n K). This may cause intervals/ and K to be split. This kind of split will be 

propagated in tum to the rest of the intervals. This is a potential cause of preventing 

the global analysis from termination. This problem is avoided by bringing in a breadth 

first feature to global analysis. 

6. 3. 3 Coincidence Patterns and their Interpretation 

In the process of constructing composition of mappings, we say that coincidence 

occurs if a mapping is constructed such that <f>m O • • • • • • 
0 </>1 : I-+ J and In J =I=- { } • Let ck 

be a local coordinate associated with sampling line lk, and (s1, e1) and (s1, e1) be inter­

vals corresponding to / and ], respectively. We can classify pattens of coincidence as in 

Table 2. 
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Table 2 : Coincidence Patterns 

name definition 

left e1<sr 

left-touching e,=sr 

right er<s, 

right-touching er=s, 

absorbed sr<s,<e,<er 

absorbed-left-touching Sr=s,<e,<er 

absorbed-right-touching sr<s,<e,=e, 

identical sr=s,<e,=er 

absorbing s1<sr<e,<e1 

absorbing -left-touching s,=sr<er<e, 

absorbing-right-touching s1<s,<er=e1 

overlapping-left s1<sr<e1<e, 

overlapping-right sr<s,<er<e, 

Although 'left', 'left-touching', 'right', 'right-touching' are 

not coincidental, they are included in the table for com­

pleteness of classification. 

(I) -co<s 1 <e 1 < 00 

J : second visit 
I: first visit 

(2) s1 = -00< sJ < eJ <e 1 <oo 
J: second visit 
I: first visit----;...---..... --

s, • -00 

SJ eJ e1 

(3)- 00 < s, < SJ < eJ <e, • 00 

J : second visit 

I : first visit 

e1 • oo 

I k 

(4) s1 • sJ •-OO<eJ <e1<oo 

J: second visit 

I: first visit 

(5)-oo<s1 <sJ<e 1 •e 1 =OO 

J : second vlsi t 

I : first visit 

S1 SJ 

Figure 19: Subcategorization of Coincidence Patten 'absorbed' 
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Below we show typical cases and their interpretation. 

'absorbed' 

First, let us assume that the uniqueness of solution holds. Type 'absorbed' can be 

further classified into five subclasses as shown in Figure 19. 

If -oo <s1, e1 < oo (which corresponds to type (1)-(3) in Figure 19), we can make 

the following conclusions : 

1. there exists one or more limit cycles {a1, •·····, ak} which pass interval J of local 

coodinate ck; set {a1, ...... , ak} is called an attracting bundle of orbits 

2. all orbits transverse to J asymptotically approach one of {a1, ...... , ak} ; interval J 
is called an entrance to the attracting bundle of orbits. 

Although it is hard to see how many limit cycles are there by a qualitative or 

quantitative method, it may not matter in application as far as the range of its existence 

(s1, e1) is precise enough. We simply regard {a1, ...... , ak} as a single destination. 

If s1=s,= -oo, e1=e1= oo (which corresponds to types (4) and (5) in Figure 19), we 

cannot predict the existence of an attracting bundle of orbits, since there is a possibility 

that orbits diverge to infinity. PSX simply suggests the possibility of existence of an 

attracting bundle of orbits. 

When a uniqueness of solution is not confirmed, we should be more careful about 

prediction. For example, we cannot predict the existence of an attracting bundle of 

orbits from the facts Jc I and - oo < s1, e1 < oo, for one of nondeterministic branch of 

orbit may have a branch which breaks the recurrence. Such nondeterministic cycle of 

bundle of orbit intervals is called an attracting bundle of orbits in a weaker sense and is 

distinguished from real attracting bundle of orbits (or attracting bundle of orbits in a 

stronger sense). We cannot make the prediction unless we have checked for all possible 

branches of orbits. 

Interpretation of coincidence patterns 'absorbed-left-touching' and 'absorbed-right­

touching' is similar, except that the predicted attracting bundle of orbits may be a point 

as well as a limit cycle. The interpretation of coincidence patterns 'absorbing', 

'absorbing-left-touching' and 'absorbing-right-touching' is similar, too, except replacing t 
by - t (going backward to the past) and "attracting" by "repelling". Pattern 'equivalent' 

can be viewed as a special case of 'absorbed' and 'absorbing'. 

'overlapping-left' 

First let us assume that the solution is unique. Two qualitatively distinct interpreta-

tions are possible as shown in Figure 20. 

interpretation-I there is a limit cycle c between s1 and e1, and all orbits transverse 

to interval (e1, e1) of Ck asymptotically approach c as t--+ oo, and all orbits trans­

verse to interval (s1, s1) asymptotically approach c as t-+ -oo. 

interpretation-2 unlike interpretation-1, there is no limit cycle and all orbits trans-
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(I) with o limit cycle (2) no limit cycle 

Figure 20: Two Possible Interpretations of Coincidence Pattern 'overlapping-left' 

verse to interval (e1, e,) of ck arrive at somewhere in (s1, s1) in a finite amount of 

time. 

It is difficult to distinguish the two even by a quantitative method. Suppose we trace 

down the orbit passing on e1. If the trace reaches (s1, s1 ), we can say that 

interpretation-2 is the case. Otherwise, however, we cannot distinguish between the 

two interpretations. When the ambiguity is not resolved, PSX exploits each possibility 

separately. 

The interpretation is made more deliberately when the uniqueness of the solution is 

not known. 

6. 3. 4 Algorithm for Global Analysis 
The basic idea behind the algorithm is this : 

1. annotate each interval with historical information specifying the known source 

which is mapped to the interval and known destination to which the interval is 

mapped 

2. repeat extending historical information in an incremental manner ; asymptotic 

properties of the whole phase portrait is found in this cycle. Intervals may be 

subdivided in this phase. 

In order to cope with complex branching and merging of orbits, we distinguish two 

sides of an interval ; one side at which orbits arrive, and another side from which orbits 

depart. We call the former the arriving side and the latter the departing side. Annota­

tion of each interval consists of one to the departing side and another to the arriving 

side. Annotation to the departing side is given as a tree structure each pass of which 

represents a known possible sequence of intervals the orbits are transverse to. Figure 21 

shows an example. Each branch of the tree conforms to branching of orbits. Annota­

tion to the arriving side is similarly made except that each sequence represents a pas­

sage back to the past, rather than to the future. In this case, each branch of the tree 

conforms to merging of orbits. 
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le,3l e,4 

departing interval: 14 ,2 14 ,3 
4>s -

-~-•11,3 l 7,4 

Figure 21: Tree Structure For Representing History of Interval 

At the beginning of global analysis, annotations to the departing and arriving sides 

of each interval are initialized to trees of depth one which reflect information obtained in 

local analysis. These trees of historical information are grown in an incremental fashion 

in the succeeding stages of global analysis. 

Global analysis is implemented as a concurrent process using a prioritized task 

queue called an agenda. The structure of the agenda is 

(• .... •(priority, process;)"•) 

where items of the agenda are sorted in a descending order of priority,. The name and 

function of several major agenda processes are given below. 

econnect-forward [J] attempts to construct a composition of a mapping <p with I as 

range and a mapping c/J with interval J such that Jnf =1=- {} as domain. 

If there is another mapping <p' whose range is also I, composition is not made. 

Instead, aganda process merge-arriving-intervals is created which will merge <p 
and </)'. After the merge, connect-forwad will be put on agenda again. 

If there is another mapping </)" whose range is not equal to I but is overlapping 

with I, composition is not made either. Agenda process split-arriving-intervals is 

created which will divide JUI' into Inf', J-Jnl', I'-Inl'. Composition will 

be tried later for mapping resulting from the above division. See Figure 22 for 

the arriving side of 
interval-I ..... -......... __ ..... _ 

the arriving side 'of 
interval-2 

I 
I 
I 
I 

split 

Figure 22 : Dividing Overlapping Arriving Sides of an Interval 
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the illustration of this process. 

Similarly, if there is mapping cfl : ]-+ K such that l-=¢:. J, Inf* { }, composition is 

not made. Agenda process split-departing-interval will be created which will 

divide JU] into Inf, I-Inf, ]-In]. 

Otherwise, composition is possible and agenda process connect-consecutive-inter­

vals will be created which will actually construct the composition. 

Agenda process connect-backward performs the similar processing. 

• split-arriving-interval U, L] divides the arriving side of J by a sequence of land­

marks L. When this is done, agenda process map-intervals-backward will be 

created which will merge resulting landmarks with those that already exist in / 

such that <p : /-+]. 

Process split-departing-interval [/, L] similarly divides the departing side of I by 

L. 
• map-intervals-backward [], D, [J propagates division D of the arriving side of 

interval J back to the departing side of interval /, and merges the resulting land­

marks with those that are already involved in /. As a side effect of dividing 

interval /, interval J may again be divided. 

If / and J contain n1 and n1 landmarks respectively, then, there are PM(n1, n1) 

different ways
12 

of possibilities arising here (see Figure 23). PSX either proceeds 

nondeterministically or calls for numerical computation to resolve ambiguity, as 

we will describe in section 6. 4. 

map-landmarks-forward [/, D, J] similarly propagates division D of I such that 

</> : /-+ J forward to ]. 

J 
PM(m,n) 
possibilities 

Figure 23 : Backward Propagation of Division of the Arriving Side of Interval by a Sequence 

of Landmarks 

12 See (8) for definition of PM(X, y). 
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connect 

0 

====> 

1 

1 

propagating backward the historical 

information associated with Id 

propagating forward the historical 

information associated with 10 

Figure 24 : Forward and Backward Propagation of Historical Information 

• merge-arriving-intervals [a1, a2] merges arriving sides a, and a2. Similarly, merge­

departing-intervals [d1, d2] merges departing sides d1 and d2. 

• connect-consecutive-intervals Ua, Id] merges historical information associated with 

the arriving side Ia and the departing side Id of interval /, and constructs an 

annotation reflecting more global information obtained from the compositions of 

mappings with Ia as range and mappings with Id as domain. In addition, it 

updates annotations to intervals related to the composition. See Figure 24 for 

illustration. 

For example, historical information associated with the departing side Id is prop­

agated backward and is added historical information associated with the depart­

ing side Id of each interval /' which is mapped to Ia by mapping </>. (backward 

propagation of historical information of the departing side Id)- This operation 

corresponds to synthesizing historical information about ¢ 0 </>, where </> is a map­

ping from Id to Ia and ¢ is a mapping with Id as domain. 

Similar processing is performed to the arriving side I;' of each interval /" to 

which the departing side Id is mapped (forward propagation of historical informa­

tion of the arriving side la). 

After this processing is complete, agenda process check-for-coincidence Ua, Id] 

will be created which will check for coincidence as a result of composition. 

• check-for-coincidence Ua, Id] uses historical information associated with the arriv­

ing side Ia and the departing side Id of interval / to seek for a pair </>- 1
(/) and 
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¢(/) such that ,p-1
(/) n ¢(/) -=fr. { }. Existence of such a pair entails the existence 

of coincidence. If this is the case, the coincidence pattern is examined and an 

appropriate process for handling coincidence will be created. 

6. 4 About Nondeterminacy 

As we have seen so far, nondeterminacy arises at various points of the algorithm. 

This is a trade-off resulting from computing with incomplete information using a simpler 

class of numerical calculus. We have two versions of PSX, one enumerates all possibili­

ties (as far as computing resource is available) and the other calls for extensive numeric­

al calculus to resolve ambiguity. Note that both algorithms work completely the same 

way as far as computation with a limited class of numerical calculus can uniquely 

determine the qualitative properties of flow. 

7. Example 

7. Analysis of Van der Pol's Equation 

Consider again the piecewise linear approximation 

{R . ( _!_< I . _ -2x+y+2 . __ ) 
+ • 2 _X X- C , Y- X 

< 1 1 I . 2x+y . ) Ro: - 2 ::;;x::;; 2 x=--c-, y=-x 

R-: ( x:5:-+ Ii= -2x;y-2, iJ=-x)} 

of Van der Pol's equation that we cited in the beginning of this paper. 

the way PSX analyzes this form in more detaii1
3

• 

Dividing the Phase Space into Cells 

(12) 

Now we describe 

PSX first divides R2 by straight lines x= -1 / 2 and x= 1 / 2 which are boundaries 

between the three linear regions. PSX then divides each linear region by invariant 

manifolds if any. 

The linear region R+ has a fixed point (sink) at (0, -2). The coefficient matrix of 

linear flow in this region has as eigenvalues A1, A2 and eigenvectors v,, V2 

-1+~ ['-JI=<] A1= V1= C 
C 

1 

-1-/I=c [ 1+/I=c l A2= V2= C 
C 

1 

13 Although parameter c should be replaced by some specific real number, we will leave c as a 
symbolic parameter to demonstrate the process of computation. 
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a 

d 

e 

-1/2 

C 

y + Ro 
I 
I 
I 

f I .. 
. .-t"2 

-I ..... 

g I.·: . 
: ·: -2 

I 
I 
I 
I 

R+ 

1/2 _____________________ _,... 

h X 

Cs 

la 

Figure 25 : Dividing the Phase Spase for Piecewise Linear Differential Approximation (12) of 

Van der Pol's Equation 
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where, 

Piecewise Linear Differential Equations 

c. : <Pi : S1--+ al1,w 

C2 : <P2 : s2 --+ ba 

Ca : <Pa : 11,-wC--+ cb 

C, : <Pu : sa --+ de 

{p4,2 : c/ l,w --+ {p4 ( C) /2,w 

<P•.3: S3--+ h(p,(C) 

Cs : <Ps : Sa --+ ed 

c. : <P• : S3 --+ ih 

C1 : <P1.1 : S3 --+ ji 

<P7,2 : /2,-wJ--+ /1,-w{p7(.J) 

<P1,3: S3--+ <P1(.J)e 
- -

Cs : <Ps : il2,w --+ kj 

c. : <Po : s, --+ lk 

C10 : <Pio : Ss--+ 12,-wl 

S1 : source located in the region delimited by sampling lines /1, la. 

S2 : source located in the region delimited by sampling lines la, I,. 

Sa : source located at the origin of the phase space 

s, : source located in the region delimited by sampling lines 11, ls. 

Ss : source located in the region delizmited by sampling lines ls, /2. 

and 

h-<,, <P,(c) -<c, /2,w 

li,-w -<ci <P1<i) -<c1 e 
Figure 26 : Local Analysis of Piecewise Linear Approximation (12) of 

Van der Pol's equation 

Thus, this region has two invariant manifolds, both stable, corresponding to two eigen­

spaces. So PSX divides R+ by two straight lines corresponding to these invariant man­

ifolds that pass on (0, -2) and are oriented to V1 and V2, respectively. PSX divides the 

other two linear regions in a similar fashion, resulting in ten cells as shown in Figure 25. 

Let us denote the local coordinate associated with sampling line /; as C;, and local 

flow in cell C; as </>J. The result of local analysis is a set of fourteen local mappings as 

shown in Figure 26. Figure 27 visualizes it. 

In global analysis, PSX extends in turn annotations to each interval, attempting to 

grasp global and asymptotic behavior. During this process, PSX extends the annotation 

to the departing side of interval 12,-~j. This interval is mapped to interval l1,-~</>1(j) by 

flow </>1 in cell C1. This mapping cannot be extended immediately, for there is no 

interval whose domain is equal to l1.-~</>1(j). PSX finds that a mapping </>3 has a domain 

which overlaps l1.-~</>1U) and divides l1,-~</>1U) into two intervals l1,-~</>1U) and </>1U)c 
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d Ro 
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f L •• 
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I 
I 
I 
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~=bundle of orbit interva Is ~=landmark orbits 

R+ 

Ca 

_____________ _., 

X 

Figure 'fl : Visualizing the Result of Local Analysis shown in Figure 26 for Piecewise Linear 

Approximation (12) of Van der Pol's Equation 
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Figure 28: Global Analysis of Piecewise Linear Approximation (12) of Van der Pol's Equation 
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with if>,, (J) as a landmark. This also causes decomposition of </>3 into 

</>3,1: 11.-«-</>1(})--> <f>3•</>1(J)b, q>3,2: </>1(J)c--> C</>3•</>1(}). 

Now comprsition q>3.1 • </>1,2 is defined and PSX updates the annotation to the departing 

side of interval 12,-"'j to 

_!!::..11.-"'</>1(}) ~ <f>3•</>1(J)b. 

By repeating extension of annotations this way, PSX eventually finds out a contracting 

recursive mapping, which entails the existence of an attracting limit cycle. The annota-

tion to the departing side of interval 12,-"'j is : 

_!!::..12.-«-</>1(}) ~ <f>3•</>1(J)b~ </>,•<f>3•</>1(J)</>,(b) ~ </>s•</>,(b)</>s•</>,•</>3•<f>1(J) 

where, 

12.-«- -<c, ··· -<cz k -<c, </>s•</>,(b) -<c, </>s•</>,•<f>3•<f>1(J) -<c, </>s•</>,(c) -<c,j -<c, ··· -<cz 12,"' 
and, 

11.-"' -<c </>1(}) -<ci e -<c, ··· -<c, l1,"' 
PSX goes further, ending up in finding that all orbits except the origin eventually 

pass over interval </>s•</>,(b)</>s•</>,•</>3•</>1(j) in a finite amount of time, and "absorbed" into 

the attracting limit cycle found above. Figure 28 illustrates this. 

7. 2 Analysis of Behavior of Unstable Multivibrator 

Consider an unstable multivibrator shown in Figure 29. We obtain the circuit equation: 

{R < < I · _ Vcc-X · _ -Vcc+Vu-Y > 
l,O; X_Vq X- C1R2 , Y- C2R, , 

(13) 

if we model the two transistors as ideal switching elements, where variables x and y 

denote voltage across capacitors C1 and C2, respectively. As for other parameters, 

Vu=0.7, Vcc=5, {Ci, C2, R1, R2, R3, R,} >0. 

For simplicity, let us assume that we have only two linear regions : R1.o and Ro,1, R1.o 

Figure 29 : Unstable Multivibrator 
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stands for a state in which TR1 is ON and TR2 is OFF. Ro,1 stands for a state in which 

the activation pattern of the two transistors are exactly the converse of that in R1,0 . 

Unlike the piecewise linear approximation of Van der Pol's equation in the previous 

example, these two linear regions do overlap and hence the uniqueness of the solution 

does not bold. 

PSX first divides linear regions R1.o and Ro.1 into cells, as shown in Figure 30. Local 

analysis identifies local fl.ow in each cell, as shown in Figure 31. During global analysis, 

PSX finds the following contracting recursive mappmg 

• C 
12 - -~------i------1 

--------------------r-
. 0 : 

: 
i 
I 
I 
I 

' I 

0 

b 

· c 

y t 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I '0 

---,-------1-, -,--------- 12 
I ------------ -oT-
' I 

I 
I 
I 

I 
I 
I 
I 
I 

·: · 
I 
I 
I 

I 

l4 l 1 

Ro,1 

Figure 30 : Dividing the Phase Space for Piecewise Linear Differential Equation (13) for an 

Unstable Multivibrator, into Cells 

l2'===i===·~C~~======$~0 
. ' ----------------~-

0 i 
: 
I 

i Ro,1 

Unstable Multivibrator 
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<f;5,2 •</J2 : 12,-~a---+ <p5(b)acl2,-~a. 

This convinces PSX of the existence of an attracting bundle of orbits (in weaker sense) 

that is transverse to <f;5(b)a where, 

12.-~ -<" c-<c, <f;5(b) -<c, a -<" 12.~-
Furthermore, PSX finds out that all orbits except those originated from sources S1 and 

S6 that are located in place at infinity will eventually be absorbed into the attracting 

bundle of orbits found above. Figure 32 illustrates global analysis by PSX. The analy­

sis correctly captures the qualitative behavior of the unstable multivibrator. 

R 1.0 

Figure 32: Global Analysis of (13) by PSX 

8 . Related Work 

In general, there would be two extremes in the spectrum of approaches to qualita­

tive phase space analysis. One extreme is to heavily rely on numerical computation: 

running a numerical simulator and interpreting the result in an intelligent way. Know­

ledge about dynamical systems is used to guide the search. Techniques from computer 

vision and computational geometry are used to interpret phase portraits partly drawn by 

a numerical simulator. Several authors took this approach. Yip [7] took this approach 

to analyze discrete systems and Sacks [6] presented a method for analyzing continuous 
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systems. Abelson [1] provides a survey on activities at MIT. The advantage of this 

approach is that it is applicable to a wide variety of nonlinear systems. On the other 

hand, this approach has two disadvantages. First, controlling the search process is not 

easy because it is hard to derive clues about orbits from unrestricted nonlinear systems. 

Second, it is likey that numerical error is accumulated. 

The other extreme is to rely more on analytical methods. The disadvantage is that 

we have to limit the class of problems since no universal method is known about the 

unirestricted class of nonlinear systems. In return, however, we can strongly guide the 

search process and the result is less likely to be affected by numerical errors. 

The approach we have taken in this paper is closer to the second extreme. Work 

by Sacks [5] is also based on the same spirit. The general procedure employed in the 

two is similar: proceed from local analysis to global analysis. Our method of dividing 

phase space into linear region is more general that Sacks' : we allowed division by any 

polyline while Sacks allowed division only by straight lines that are parallel to x- or y­

ax1s. 

A more essential difference is the internal representation used for analysis. Sacks 

used transition graphs as an internal representation. With transition graphs alone, it is 

(a) spiral sink 

S1 

a 

S2 

( b) center ( c) spiral 

S1 S1 

a=a 
I 

,' 

S2 S2 

Figure 33 : Spiral Sink, Spiral Source, and Center 

Figure 34: Transition Graph Representation of Behaviors 

Shown in Figure 33 

(a) f such that f(Oa) c Oa 

(b) f such that f(Oa) = Oa 
- -

(c) /such that/(Oa)~Oa 

Figure 35 :_Representing the Behavior in Figure 33 as a 

Collection of Mappings 

source 
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impossible to make an important distinction among spiral sinks, spiral sources, and 

centers, as shown in Figure 33. All of them reduce to a single transition graph as shown 

in Figure 34. In contrast, it is possible to distinguish the three by the mapping repre­

sentation employed in this paper, as shown in Figure 35 (a) through (c). The final 

advantage of the representation used here is that it guides numerical computation. It is 

straightforward to derive information for further quantitative computation from our 

representation. It is not so in transition graphs. 

9. Concluding Remark 

In this paper, we have presented a program PSX that explores phase portraits of 

two-dimensional piecewise linear differential equations. The program is based on four 

simple ideas : focusing on bundle of orbits rather than single orbits, abstracting orbits as 

mapping between local coordinates, inferring the local flow in a given cell by only 

looking at the type and location of singular segments on the boundary, and extending 

mappings defined for local flow to derive information about global behavior. We have 

described details of algorithms in which qualitative and quantitative analysis interact in a 

cooperative fashion. We have estimated the number of ambiguities arising in qualitative 

analysis. 

Although the application area of PSX is currently limited, we believe the presented 

method provides insights about more complex phase portraits. 
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