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Abstract 

Taking the stability robustness into account in every aspect is a current trend in 
control theory. However, major recent efforts have been focused on the stability 
robustness of linear control systems, and so, results for nonlinear systems seem to be 
few. In this respect, we will make several attempts to cope with stability problems for 
control systems having bounded or unbounded nonlinear gain elements. We consider 
two tpyes of Lyapunov functions: L 2 type functions, i.e., quadratic functions and L 1 

Type ones. The former is used to show the stability of systems with bounded gain 
elements and the latter for systems with unbounded gain characteristics. The existence 
of such functions assures robust stability for these nonlinear systems against perturba
tions in the nonlinear gain elements. 

I Introduction 

253 

Taking the robustness property into account is becoming an indispensable factor in 

developing control theories in these recent years. The central issue in the robustness 

problems is, of course, the stability property. Pertaining to the stability robustness 

problems, there are currently two sorts of problem formulations : robust stability against 

structured uncertainties and that against structured ones. The former deals with systems 

whose uncertainties are known as perturbations of parameters. The latter considers 

systems whose uncertainties are estimated only in size. In general, efforts so far in this 

field have been focused mainly on linear systems and so, results for nonlinear systems 

seem to be few. Looking back at the history of the control theory, however, we find an 

established stability robustness theory for nonlinear systems, that is, absolute stability 
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problems. They were extensively studied in the 60's and 70's by researchers in the US 

and USSR, and are now regarded as settled problems. 

This paper recasts a class of the problems with a viewpoint of recent theoretical 

development on stability robustness issues. Considered are the nonlinear systems with 

bounded nonlinear gain elements and those with elements whose nonlinear characteris

tics are unbounded but lie in the first and the third quadrants on the input-output plane. 

We take two types of functions, each belonging to L1 and L2, as candidates of the 

Lyapunov functions. The existence of these functions assures robust stability for the 

nonlinear systems in question. In the second section, we consider the stability conditions 

for systems with nonlinear bounded gain elements. In section 3, an existence condition 

of a Lyapunov function for systems with unbounded gain characteristics is given. Some 

concluding remarks are included in section 4. We will employ the following symbol 

conventions. For a matrix or a vector, (') denotes the transpose. For X=X' ERnxn, Amin 

(X) and Amax(X) denote the minimum and maximum eigenvalues of X, A;(X), i=l, •··, 

n, respectively. I is used to denote the identity matrix as usual. X> 0 and X < 0 repre

sent the positive definiteness and negative definiteness of X=X', respectively. 

ll Stability of Systems with Bounded Gain Elements 

We consider a control system described by 

dx I dt=Ax+ F(x, t)x, (1) 

where X=(X1, ... , Xn)'ERn, AERnxn is a stable matrix and F(x, t)=(fii(X, t)): RnxR 

-+ Rnxn represents a nonlinear gain matrix satisfying, 

cii,,;;,fii(x,t),,;;,d;;, i,j=l,••·,n. (2) 

Matrices C: = (C;;) and D: = (dii) give bounds for the nonlinear gain entries. In what 

follows, we investigate the asymptotic stability of the system (1) under the nonlinear 

gain perturbations (2). 

From the assumption there exists a positive definite solution matrix P= (Pii) to the 

Lyapunov matrix equation, 

A'P+PA+l=O. (3) 

Using this matrix, we define: 

F'P+PF: =Q= (q;;). (4) 

where the arguments x and t in each entry of the matrix F(x, t) are dropped merely for 

simplicity of notations. The entry Q;; is calculated by 
n n 

Qij= L.Pik/k;+ ".E,f,,;pkj• (5) 
k=I k=I 

We furthermore define a symmetric matrix S= (sii) by 

Sij= L, p;kCk;+ L, Pikdk;+ L, CkiPk;+ L, dkiPkj• (6) 
keXI kEX2 kEX3 keX4 
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where Xl(X2) and X3(X4) are subsets of a natural number up ton such that Ptk~O 

(P,k<O) and Pki~O(Pki<O), respectively. These sets depend upon a specific index i or j, 

but this dependence is not explicitly written for the sake of simplicity. In quite the 

same manner, a symmetric matrix T= (tli) is defined by 

to= L P1kdki+ L P1kck1+ L dk,Pk1+ L ck,PkJ• (7) 
kEXI kEX2 kEX3 kEX4 

The sets Xi, i= 1, 2, 3, 4 are defined similarly. By these definitions we obtain the upper 

and lower bounds for all the entries of matrix Q as 

s,1"'Q'i"'t11 , i~j, i,j=l, •··, n. (8) 

Any matrix whose entries satisfy the above types of inequalities is called an interval 

matrix. That is, interval matrices are those whose entries lie in the given intervals. 

Thus, the matrix Q is a symmetric interval matrix. It is known that any interval matrix 

can be expressed as a convex combination of its extreme matrices. In this case, Q can 

be written as 
I 

rk~o. Lrk=l. (9) 
k=l 

Here, Qk= (qkii) is a matrix defind by 

qkii=S11ortli, i,j=l,•••,n. (10) 

Note that the number, /, of Qk is given by l=2h(h : =n2
). We are now ready to state 

the first main result of this section. 

Theorem 1 

A sufficient condition for the system (1) to be stable for any gain perturbations (2) is 

[-Qk>O, k=l, ···, I. (11) 

For the proof of this theorem, we provide an auxiliary result. 

Lemma 1 (See reference 1)) 

Let X=X'ERnxn and Y= Y'ERnxn_ For a linear combination of these two matrices 

X+kY, kER, we have 

Amin(X) +Amin(kY) "'A1(X +kY) "'Amax(X) +Amax(kY) 

i=l, ···, n. 

(12) 

Proof of Theorem 1 : we take a quadratic function x' Px as a candidate of a Lyapunov 

function using the solution matrix P of the Lyapunov matrix equation (3). Then, the 

negativity of the time derivative of this function along system solutions requires 

(A+F)'P+P(A+F) <0. 
In virtue of (3) and (4), this can be rewritten as 

I-Q>O. 

Since Q has an expression as in (9), (14) leads to 
I 

rk~o. Lrk=l. 
k=l 

(13) 

(14) 

(15) 
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This is nothing but the condition that all the eigenvlues of any convex combination of 

symmetric matrices have a modulus less than unity. Repeated use of Lemma 1 yields 

Amax(LrkQk),;;; LYkAmax(Qk). (16) 
k k 

Considering this inequality and the third equality of (15), we see that 

Amax(Qk) <1, k=l, ···, l (17) 

assure (15). The above relations are equivalent to (11). Conversely, it is obvious that 

the inqualities (17) are necessary conditions for (15). In this way, the condition (11) is 

necessary and sufficient for (14). This completes the proof. 

Q.E.D. 

A drawback of this theorem is the fact that as n increases l grows rapidly and 

becomes a prohibitive number for a large n. We show next that under certain circumst

ances the positive definiteness of only a single matrix needs to be checked. 

Let us assume in (2) CiJ=0, i, j=l, •··, n, namely 

0 ..;;fii(x, t) ..;;d,;, i, j= 1, •··, n. (18) 

We furthermore assume that there exists a positive definite symmetric matrix W such 

that the solution matrix P= (Pii) >0 to the Lyapunov matrix equation, 

A'P+PA+ W=0, 

is a nonnegative matrix, 

Pii~0, i,j=l,•••,n. 

Under these settings, we can obtain the following result. 

Theorem 2 

(19) 

(20) 

The system (1) with nonlinear gains (18) is stable, if for a matrix W such that (19) 

and (20) are met, the inequality, 

Amin(W)-Amax(T) >0, 

is satisfied. 

(21) 

Proof: Under the assumption, S is a null matrix and both Q and T are nonnegative 

matrices. As in the proof of the previous theorem, a sufficient condition for the stability 

of the system is given by 

W-Q>0. (22) 

This condition is met, if 

Amtn(W)-Amax(Q) >0. (23) 

Since Q is a nonnegative matrix, the Perron-Frobenius Theorem is applicable (see refer

ence 2)). The theorem asserts that the spectral radius of a nonnegative matrix increases 

with respect to its entry. As Q is symmetric, the spectral radius of Q is none other than 

Amax(Q). This confirms us that the condition (21) is a necessary and sufficient one for 

(23) to hold for any Q, completing the proof. 

Q.E.D. 
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Thus, we have obtained a scalar sufficient condition (21) under the settings of this 

theorem. This can be further improved with an additional assumption as follows. 

Corollary 1 

In addition to the assumptions of Theorem 2, we assume that all the offdiagonal 

entries of W are nonpositive. Then the system (1) is stable, if 

W-T>O. (24) 

Proof : By the assumptions, the off diagonal entries of W- Q are all nonpositive. In this 

case, the condition (22) is equivalently paraphrazed as the one that W- Q is an M-matrix 

(for details of M-matrices, refer to 3)). Because of the property of this class of matrices, 

(22) is satisfied if and only if the same condition is met for the severest case, viz. Q=T. 
This is what is claimed in (24). 

Q.E.D. 

As to the existence of W satisfying (19) and (20), see reference 4). It is shown there that 

such matrices actually exist without any additional restrictions other than the stability of 

A. Thus, this assumption would not be so restrictive. 

m Stability of Systems with Unbounded Gain Elements 

We have so far considered a control system with bounded nonlinear gain elements. 

In several occasions, however, systems may have nonlinearities whose input-output rela

tions are given by gain characteristics which fall within the first and third guadrants, 

allowing infinite gains. In this section, we will devise a method to cover this case. A 

major difference between the result here and the previous one consists of the type of 

Lyapunov functions employed to show stability. In section 2, a class of L 2 function, a 

quadratic form, is used, while in this section an existence condition for an L1 type 

Lyapunov function is addressed. 

Let us consider a system described by 

dx I dt=Ax+ F(x, t)x, (25) 

where F(x, t)=f;;(X, t)) is a diagonal matrix whose entry f;;(X, t): Rnx (t0, oo)-+Rn is a 

continuous and continuously differentiable function satisfying 

Xj;;(X, t) ;;;,,Q, i= 1, ···, n, t;;;,, to. (26) 

Comparing the above system description with the one in the previous section, we see 

that F(x, t) is restricted to a diagonal matrix with nonlinear entries while infinite gains 

are introduced. For this system, we define a matrix Al= (a1ii), 

I _ { -ali, i=j 
llij- -laol, i~j. 

Then, we have a robust stability criterion for tne system (25). 

Theorem 3 

(27) 
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A sufficient condition for the system (25) to be stable for any nonlinear gain ele

ments with (26) is that the matrix Al is an M-matrix, that is, all the leading principal 

minors of Al are positive. 

Proof : This follows from the results reported in 5). The condition of this theorem is a 

necessary and sufficient one for the existence of a Lyapunov function of the form, 
n 
:Ed,lx,I, d,>O, (28) 
i=l 

for the system (25). This ensures stability of the system. 

Q.E.D 

It should be noted that the negativity of all the diagonal entries of A is required. The 

condition of this theorem implies that these negative diagonal entries dominate the 

offdiagonal ones in a certain sense. It would be interesting to note that the existence 

condition can be pharased in terms of the entries of the system matrix directly. 

IV Concluding Remarks 

Several stability robustness conditions are derived for control systems including 

nonlinear gain elements. If reported in the early stages of modern control theory, these 

results would have been categorized into the absolute stability problems. They can, 

indeed, cope with possible perturbations in nonlinear characteristics. Two classes of 

systems are considered : a system with bounded nonlinear gain elements and one with 

unbounded gain elements. The L 2 Lyapunov function approach is used for the former 

case, while in the latter the existence of an L1 function is assured. An interesting open 

problem is what condition should be imposed on the system matrix for the existence of 

an L2 Lyapunov function in the latter problem formulation. 
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