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Abstract 

Reduced-order models for dynamic control of power systems are formulated using 
a modal analysis technique, based on the notion of controllability and observability. In 
this technique, an input/ouutput index is used to identify and rank the strongly con­
trollable and observable modes of the system given a particular input/output pair. The 
system state variables that are strongly related to the retained modes are then deter­
mined by analysis of a participation factor martrix. Davison's method of reducing 
linear systems is then applied to formulate the desired reduced order dynamic equiva­
lent. This technique of forming dynamic equivalents is investigated on a single 
machine infinite bus system. Several reduced order model equivalents are formed and 
evaluated on their performance and accuracy. 

1 . INTRODUCTION 

153 

In the mid 1960's, interest began to rise in the area of dynamic equivalents as 

simulations of increasingly larger interconnected power systems were required. By the 

late 1960's, the academic community had proposed various techniques for determining 

dynamic equivalents. From these techniques two successful methods emerged ; modal 

analysis and coherency analysis. Coherency analysis involves the identification of 

machines that swing together and the formation of a composite model of these 

machines. Coherency analysis was mentioned here only for completeness. The rest of 

this discussion will be concerned with modal analysis. 

Modal analysis involves the identification of decoupled modes within the system 

which are present in the states and the outputs of the system. The modes (eigenvalues) 

of the system that have little affect on the states and outputs of interest can be neglected 

yielding reduced order models. As the number of neglected modes increase, the reduced 

order model becomes increasingly stiff and less accurate. Various modal analysis techni-
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ques were proposed by Davison!) , Undrilf·3
J, Altalib and Krause 4J, Kuppurajula and 

Elangovan
5

\ and Perez-Arriaga et. al6
.7J. 

In Davison's proposed method, the eigenvalues of the original system which are 

farthest from the orgin are neglected since they have little affect on the dynamic be­

havior of the system. The method is unique in that it provides a means of retaining the 

dominant eigenvalues of the system identically. Although Davison's method for select­

ing the dominant modes of the system is somewhat crude, the reduction technique itself 

is the basis for almost all modal analysis techniques. 

Undrill, Kuppaurajula and Elangovan applied Davison's method to multimachine 

systems with somewhat successful results. Undrill proposed a criterion for selecting the 

dominant modes of the system based on the right and left eigenvectors of the system, 

while Kuppurajula and Elangovan directly applied Davison's method to the power sys­

tem. 

Kuppurajula and Elangovan also proposed a method of forming dynamic equiva­

lents based on a state variable grouping technique. This technique is based on dividing 

the system variables into groups according to their speeds of response. This method re­

quires a previous knowledge of the approximate time response of the state variables 

and, for this reason, often produced inaccurate reduced order models. 

Perez-Arriaga, Verghese and Schweppe proposed a technique for forming reduced 

order models based on the participation matrix. The technique is very similar to Davi­

son's method, except that the retained modes and state variables are selected by analysis 

of a participation factor matrix. The participation factor matrix measures the relative 

participan of modes in certain state variables and vice versa. They also proposed an 

iterative algorithm for calculating the dominant eigenvalues and the eigenvectors of the 

system with respect to the outputs of interest without performing an eigenvalue analysis 

of the complete system. Although this technique provides a most efficient means of for­

mulating dynamic equivalents, it currently is applicable only to systems whose dynamic 

performance is well understood. Further research is needed to investigate the potential 

of this reduction technique. 

Altalib and Krause investigated the possibility of combining reduced order models 

formulated by Davison's method in a two machine infinite bus system. They were able 

to combine the reduced order models of the single machines and retain the dominant 

eigenvalues of the rotor oscillations accurately. If this technique could be applied to sys­

tems with a larger number of input/output constraints, it would significantly improve 

the efficiency of Davison's method in formulating dynamic equivalents of larger power 

systems. 

In 1980, Castro-Leon
8
J proposed a new modal analysis technique for determining 

dynamic equivalents. He proposed an input/output index to identify and rank the 
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strongly controllable and observable modes of the power system given a particular in­

put/ output pair. He combined the input/output index with Davison's method of sim­

plifying linear systems to formulate the desired reduced order models. From the input­

/ output index it is possible to determine the maximum error of the reduced order mod­

els without performing time consuming simulations. This provides a means of analyzing 

the efficiency versus accuracy of various reduced order models which is a great improve­

ment over all other reduction techniques previously discussed. 

2 _ Dynamic equivalents based on controllability and observability 

In this section modal analysis is used to determine dynamic equivalents of the pow­

er system. The power system is linearized about its operating point, and modem control 

theory techniques are applied to formulate an input/output index based on controllabil­

ity and observability. The input/output index identifies the strongly controllable and 

observable modes of the system and allows them to be ranked accordingly. This pro­

vides a means of selecting the dominant modes of the system for system reduction. A 

participation factor matrix is then used to select the state variables that are strongly re­

lated to the retained modes. These two techniques, combined with Davison's method of 

simplifying linear systems, provide a means of determining reduced order models. 

2. 1 Input/output index 
Assuming the original linearized state space model of the power system is given by 

X=AX=BU(t) 

and the output equation is expressed as 

Y=CX 

where: 

X=state vector (order n) 

A=plant matrix (nXn) 

B=input matrix (nXk) 

U=input vector (order k) 

Y =output vector (order m) 

C=output matrix (mXn) 

(2.1) 

(2.2) 

Assuming the initial state vector is zero and the input to the system is a step function, 

then the time solution of Equation (2.1) is 

X(t) = .fo1

eA<H>d-rBU 

Integrating Equation (2.3) yields 

X(t) =-MA-1 (1-eA1)M-1BU 

where: 

(2.3) 

(2.4) 
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M=right eigenvector matrix 

A =diagonal eigenvalue matrix 

The output vector Y can then be expressed as 

Y (t) = -CMA-1 (l-eA1
) M-1BU 

expanding Equation (2.5) 

i=l, m 

(2.5) 

(2.6) 

From an inspection of Equation (2.6), it is evident that the first summation involves 

the vector products of the output matrix C and the right eigenvector matrix M. It is a 

measure of how observable mode j is in output i. The second summation involves the 

vector products of the input matrix B and the inverse of the eigenvector matrix N. It is 

a measure of how controllable mode j is through input U,. These two concepts are com­

bined to formulate the following input/output index based on controllability and obser­

vability. 

" " Tiil= -[~C;kMk;~N,LBu]/A; 
k=I L=I (2.7) 

Tiil is the input/output index and represents the contribution of mode j to output i from 

input I. The output equation can now be expressed as 

k n 
Y;(t) =~~Tm(l-ei11

) U, i=l, m 
l•IJ•I (2.8) 

Equation (2.8) illustrates that the input/output index is a matrix of the output coef­

ficients. The magnitude of the input/output index can be calculated as 

IT,,, I= [Re (TiJI) 2+ Im (T1n) 2
] 

112 (2.9) 

The modes of the system can now be ranked according to the magnitude of their input­

/ output index. 

2. 2 Participation factor matrix 
In order to utilize Davison's method of simplifying linear systems it is first neces­

sary to select the state variables of the system which are strongly related to the retained 

modes. If these state variables are not chosen adequately, Davison's method will yieled 

inaccurate results. 

In 1982, Perez-Arriaga, Verghese and Schwepp/lproposed and illustrated that there 

exist associations between groups of state variables and groups of natural modes of the 

system, and that these associations could be defined by means of a participation factor 

matrix. The participation factor matrix was shown to yield more precise information re­

garding state variable-mode relationships than did the traditional right eigenvector analy­

sis. The participation matrix P is defined in the following way 

P= [Pk1] =IMkiNkil (2.10) 
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where: 

Mk;=k1h entry of the i1h right eigenvector 

Nk;=k1h entry of the i1h left eigenvector 

The eigenvectors are normalized such that 

N?M1=l if i=j; 0 otherwise 

The elements of P are the magnitudes of the products Mk1 and Nk 1, and are termed parti­

cipation factors of the system. Mk1 measures the activity of Xk in the ith mode, and Nk1 

weighs the contribution of the activity. Therefore, Pk; measures the relative participa­

tion of the kth state variable to the ith mode, and vice versa. 

2. 3 Error analysis 

One of the major advantages of using the input/output index is the ability to deter­

mine the maximum errors of the reduced order models without actually simulating them. 

The system output equation can be expressed as illustrated in Equation (2.8). 

k n 
Yi (t) = ~ ~T iii (l -e'11

) U, 
l•IJ=I 

An approximate response by including modes in set 1 is 

- k 
Y(t) = ~~Tiil(l-e'11

) U, 
l•l/el (2.11) 

The error between the actual response and the approximate response can then be ex­

pressed as 

k 

Lll'ts~~I Tml ll-e'11 l U, 
l=liel 

Thus, the maximum error can be expressed as 

2. 4 Davison's method 

Davison's method will formulate the following reduced order model 

X*=A*X*=B*U (t) 

Y=C*X* 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

where the reduced order A* matrix has the same l eigenvalues retained from the from 

the original system and the correct eigenvectors with respect to these l eigenvalues. The 

new dimensions of matrices A*, B* and C* are (l*l), (l*k) and (m*l) respectively. 
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3. Computational results 

3. 1 System description 

The study system is a single machine connected to an infinite bus. It serves as a 

simple example and provides insight into further possible applications of the reduction 

technique. 

The system's main components consist of a 5th order winding representation of a 

synchronous machine based on Park's equations, a 4th order automatic voltage regulator 

(AVR) and exciter, a 2nd order shaft and a 2nd order turbine governor system, yielding 

a total 13th order model. 

Symbol 

Ra 
RQ 
Ro 
RF 
RL 
XL 
Xmd 
Xm• 
Xia 
X1Q 
Xm 
X11d 

Symbol 

Ka 
Ke 
K, 
K, 
Ta 
Te 
T, 
T, 

Symbol 

M 
D 
T. 
T, 
R 

Table 3.1 Single machine data 

Description Value (p. u.) 

Stator resistance 0.0032 
q-damper winding resistance 0.014 
cl-damper winding resistance 0.011 
Field winding resistance 0.001 
Transmission line resistance 0.02 
Transmission line reactance 0.2 
d-axis magnetizing reactance 1.56 
q-axis magnetizing reactance 1.47 
Stator leakage reactance 0.093 
q-damper leakage reactance 0.032 
cl-damper leakage rectance 0.048 
Field winding leakage reactance 0.086 

Table 3.2 A VR and exciter data 

Description Value (p. u) 

Amplifier gain 50.0 
Exciter gain 13.89 
AVR gain 1.0 
Stabilizer gain 0.057 
Amplifier time constant 0.02s 
Exciter time constant 2.028s 
A VR time constant 0.001s 
Stabilizer time constant 0.45s 

Table 3. 3 Mechanical machine data 

Description 

Inertia constant 

Damping coefficient 

Governor time constant 

Steam-turbine time constant 

Steady-state speed regulation 

Value (p. u.) 

0.014s2 

0.0 

0.25s 

I.Os 

0.5X 120ir 
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Table 3.4 Operating point data 

Symbol Description Value (p. u.) 

VT 
p 

Q 

Vd 
v. 
Id 
1. 
IF 
6 

Kr 
l+sTr 

Terminal voltage 1.14 
Real power 0.8 
Reactive power 0.6 
d-axis voltage -0.9611 

q-axis voltage 1.7248 

d-axis current -1.3880 

q-axis current 0.6180 
Field current 2.5776 
Power angle 36.38° 

Figures 3.1 Single machine infinite bus system. 
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T+"sTo 
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Ko 
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Ke 
I+ sTe 

5th ORDER WIND ING 
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sKs 

Figures 3.2 Single machine infinite bus block diagram. 

all 

a1. 

The system parameters and operating point data are shown in Tables 3.1 through 

3.4 and have been taken from
9
). The one line diagram and block diagram of the system 

are shown in Figs. 3.1 and 3.2 respectively. 

3. 2 Equivalency analysis 
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The A and B matrices of the system were formulated using the system data in 

Tables 3.1 through 3.4. The state vector is [XF= [Id IF ID lq IQ w o V, Vs Va E1d Pm P8] 

The first five columns of A corresponding to the machine winding currents are : 

-0.07178 0.00109 0.02142 -5.45466 -4.54813 

0.02521 -0.00793 0.07298 1. 91607 1.59763 

0.04517 0.00663 -0.09841 3.43296 2.86242 

5. 71353 4.81009 4.81009 -0.07153 0.04225 

-5.59180 -4. 70761 -4. 70761 0.07001 -0.05067 

-9.3E-0.6 -0.00016 -0.00016 -0.00065 -0.00034 

0.0 0.0 0.0 0.0 0.0 

1.82173 1.28671 1.28368 0.91660 0.68950 

0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 

The remaining eight columns of the A matrix corresponding to the A YR/exciter, shaft, 

and turbine-generator components are: 

-3.37033 4.43911 0.0 0.0 0.0 -0.00121 0.0 0.0 

1.18391 -1.55934 0.0 0.0 0.00 0.00880 0.0 0.0 

2 .12116 -2. 79381 0.0 0.0 0.0 -0.00737 0.0 0.0 

4.46814 3.25952 0.0 0.0 0.0 0.0 0.0 0.0 

-4.37295 -3.19008 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.00050 0.0 

1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

1.41875 0.55446 -2.65252 0.0 0.0 0.00018 0.0 0.0 

0.0 0.0 0.0 -0.00589 0.00230 -0.00017 0.0 0.0 

0.0 0.0 6.63130 -6.63130 -0.13260 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.01817 -0.00131 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 -0.00265 0.00265 

- .00005 0.0 0.0 0.0 0.0 0.0 0.0 - .01061 
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(BJT = (0.0 0.0 0.0 0.0 0.0 -0.000503 0.0 0.0 0.0 0.0 0.0 0.0 0.0J 

The outputs of this system were chosen to be Id, lq and ~- The corresponding C matrix 

IS: 

[

1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0] 
0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 

The eigenvalues and input/output index of the system are given in Tables 3.5 and 3.6 re­

spectively. The participation factor matrix is shown in Table 3.7. From analysis of the 

input/output index and the participation matrix, reduced order models were formulated 

Table 3.5 Eigenvalues of the single machine system 

Mode Eigenvalue 

1 -999.998 

2 -27 .053+i376.257 

3 -27 .053-i376.257 

4 -26.280+i39. 754 

5 -26.280-i39. 754 

6 -38.182 

7 -2.940+il3. 762 

8 -2.940-il3. 762 

9 -14.016 

10 -4.000 

11 - 0. 592 + i0. 978 

12 - 0. 592-i0. 978 

13 -1.000 

Table 3.6 Input/output index (lOOths) 

Mode Eigenvalue Id Iq ~ 

1 -999.998 0.000 0.000 0.000 

2 -27. 053+ i376. 257 0.012 0.012 0.000 

3 -27 .053-i376.257 0.012 0.012 0.000 

4 -26.280+i39. 754 0.028 0.003 0.000 

5 -26.280-i39. 754 0.028 0.003 0.000 

6 -38.182 1.278 0.017 0.022 

7 -2.940+il3.762 64 .159 66.405 22.057 

8 -2.940-il3.762 64.159 66 .405 22.057 

9 -14.016 32.354 76.284 7.867 

10 -4.000 0.002 0.000 0.000 

11 -0. 592+ i0.978 32.617 11.171 15.718 

12 -0.592-i0.978 32.617 11.171 15.718 

13 -1.000 0.001 0.000 0.000 
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as shown in Table 3.8. The reduced order models' maximum errors are shown in Table 

3.9. 

Table 3. 7 Participation matrix 

Mode Id Ir Io 1. IQ w 0 v, V, v. Etd Pm P. 
1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 
2 2.87 0.86 1.52 2.73 2.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
3 2.87 0.86 1.52 2.73 2.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
4 0.04 0.17 0.17 0.00 0.00 0.00 0.00 0.00 0.60 0.59 0.01 0.00 0.00 
5 0.04 0.17 0.17 0.00 0.00 0.00 0.00 0.00 0.60 0.59 0.01 0.00 0.00 
6 0.57 1. 73 3.31 0.00 0.00 0.01 0.01 0.00 0.02 0.01 0.02 0.00 0.00 
7 1.07 0.98 0.24 0.87 0.89 0.61 0.61 0.00 0.01 0.00 0.01 0.00 0.00 
8 1.07 0.98 0.24 0.87 0.89 0.61 0.61 0.00 0.01 0.00 0.01 0.00 0.00 
9 0.50 0.56 0.04 4.18 5.58 0.22 0.21 0.00 0.02 0.00 0.02 0.00 0.00 

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 
11 0.98 1.46 0.22 0.03 0.01 0.00 0.00 0.00 0.29 0.00 0.50 0.00 0.00 
12 0.98 1.46 0.22 0.03 0.01 0.00 0.00 0.00 0.29 0.00 0.50 0.00 0.00 
13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 

Table 3.8 Reduced order models of single machine system 

Model order Retained modes Retained state var. Outputs 

2 7,8 Id, o Id, o 
3 7,8,9 Id, 1., o Id, 1., o 
4 7,8, 11, 12 Id, Ir, 1., o Id, o 
5 7, 8, 9, 11, 12 Id, Ir, I., o, E,d Id, I., o 

Table 3.9 Maximum p.u.error (lOOths) LIPL=l % 

Model order Id 1. 0 

2 1.9790 1.9735 0.7865 

3 1. 3319 0.4477 0.6292 

4 0.6743 1.5266 0.1578 

5 0.0272 0.0009 0.0004 

4. Discussion of results 

From Table 3.9 it is observed that as the order of the reduced order models of the 

system decrease the model accuracy also decreases. The only exception is the accuracy 

of output lq when changing from a 4th order model to a 3rd order model. This is due to 
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Figures 3.3 Rotor angle. 
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Figures 3.4 Direct-axis current. 
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Figures 3.5 Quadrature-axis current. 

the large participation of mode 9 in output Iq, as illustrated in Table 3.6, which is ex­

cluded in the 4th order model but included in the 3rd order model. From Table 3.9 it is 

also evident that a 5th order model will yield an almost identical response as compared 

with the complete model. The maximum error of the outputs Id, Iq and o will not ex­

ceed .0272 p. u. times the percent change in PL. Simulations of the reduced order mod­

els in Table 3.8 for a 1 % step change in load power are shown in Figs. 3.3 through 3.5. 

Figure 3.3 depicts the response of the power angle o to a 1 % step change in load 

power. It is observed that the complete model and 5th order model yield an identical 

plot. The transient response of the 4th order model is also similar to the complete mod­

el, yet the steady state error increases slightly due to the neglection of the real mode 9. 

The transient and steady state error increase significantly when the mode pair (11,12) is 

neglected in the 2nd and 3rd order models. This is to be expected since complex mode 

pairs have complex input/output indexes, which in general affect both the transient and 

steady state error. The real part of the input/output index gives an indication of the 

error during the steady state part of the response, while the imaginary part is an indica­

tion of the error during the transient part of the response. 

Figure 3.4 depicts the response of the direct-axis current Id to a 1 % step change in 

load power. The plots of the 5th order and complete model are almost identical. The 
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small steady state error is due to the neglection of the real mode 6. The 2nd order mod­

el transient response is also similar to the complete model, but exhibits some steady 

state error. The addition of modes to form the 3rd and 4th order models results in less 

accurate models than the 2nd order model. This can be somewhat intuitively explained 

by analyzing the real and imaginary parts of the eigenvalues in conjunction with the in­

put/ output index. However, in larger power systems, this type of analysis will not be 

practical, and simulations of the most accurate reduced order models, as suggested by 

the error analysis, may be required in order to select the most accurate and efficient 

model. 

Figure 3.5 depicts the response of the quadrature-axis current Iq to a 1 % step change 

in load power. Here again, as in the o plot, the 5th order model and complete model 

yield an identical response. The transient response of the third order model is also simi­

lar to the complete model, but it exhibits a slight steady state error. Only the 3rd and 

5th order models were considered because neglection of the real mode 9 produced a 

large steady state error in the 2nd and 4th order models, as illustrated in Table 3.9. 

The previous results were obtained using the input/ output index in conjunction 

with the participation factor matrix to identify the retained modes and their related state 

variables for Davison's method of system reduction. The participation matrix accurately 

identified the state variables that were strongly related to the retained modes, so that, 

the desired reduced order modes could be formulated via Davison's method. In all but 

one of the reduced order models formurated in this study system, the retained state vari­

ables could be selected by a computer program which selects a state variable for each 

retained mode by the following algorithm. 

1) First, select a state variable, which has not already been retained, with the largest 

participation factor with respect to the retained mode. 

2) Secondly, compare the value of this participation factor with all the other participa­

tion factors corresponding to the selected state variable and the retained modes. If any 

of the participation factors is larger and is a maximum value with respect to another re­

tained mode, then select a new state variable with the next largest participation factor 

and repeat the above process. 

3) Otherwise, the state variable indentified is retained and the algorithm is applied to 

the next retained mode. 

The only case where the algorithm failed was in formulating the 5th order model. The 

state variables chosen by the algorithm for the 5th order model were Id, lq, IQ, o and I,. 

Application of Davison's method with these retained state variables resulted in the 

formation of an erroneous reduced order model. This outcome is often the result of 

selecting too many similar type variables as suggested by Davison. When IF was re­

placed by Eid in the retained state vector, Davison's method formulated an accurate re-



166 Junya MATSUKI AND M. S. A. A. HAMMAM 

duced order model. The single machine system allowed only the state variable selection 

algorithm to be evaluated on a few simple cases. This algorithm will be further evalu­

ated on a multimachine system, where the need for an efficient state variable selection 

technique becomes increasingly important. 

The single machine system was also analyzed to determine the effects that changes 

in the loading and system parameters would have on the reduction technique. Although 

the study was not exhaustive, the results provided a basis for the following observation. 

The effect of changes in both the system loading and parameters slightly affected 

the participation of certain modes (associated with the sub-assemblies of the system) in 

the system outputs, but did not alter the order of reduction necessary to form accura_te 

reduced models. For example, a faster A VR and exciter subsystem increased the parti­

cipation of the mode pair related to the A VR and exciter in the outputs, but did not 

affect the order of reduction necessary for an accurate reduced model. A 5th order mod­

el was found to be highly accurate regardless of loading or parameter changes. 

The single machine system was also analyzed to investigate the possibility of com­

bining reduced order models of single machines in a multimachine system as suggested 

by Altalib and Krause, and to investigate the possibility of extending the reduction tech­

nique to form a non-linear model. The primary reason the combination of reduced order 

models was considered is due to the large amount of computation involved in the reduc­

tion process. By reducing single machines separately in a multimachine system consider­

able computer time savings could be realized. Also, the calculation of accurate eigenva­

lues and eigenvectors, the basis of the reduction technique, becomes increasingly difficult 

as the size of the system increases. 

To investigate the possibility of combining reduced order models, the single 

machine system was analyzed with the terminal voltage as an input and Id, lq and o as 

outputs. Reduced order models formed in this way could then be coupled to the system 

through the transmission equations. From analysis of the input/output index of this sys­

tem it was evident that the proposed method was not practical. With V d and V q as in­

puts, the single machine system could not be reduced to an acceptable order that still 

maintained accuracy with respect to the complete model. Altalib and Krause were able 

to combine the reduced order models of two machines and retain the dominant eigenva­

lues of the rotor oscillations because the only outputs of interest were the rotor angles. 

The application of the reduction technique to form a non-linear model was also not prac­

tical since the linear portion of the model required for the non-linear swing equation 

could not be reduced to an acceptable level. 

From the previous discussion it is evident that the reduction technique has limited 

applications, especially as the number of input/output constraints increase. It is also evi­

dent that the proposed method of system reduction may be well suited for determining 
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equivalents of an external system, where the number of inputs and outputs will be small 

compared with the size of the system state vector. 

The authors would like to thank Mr John 0. Leana who helped us as a research 

assistant. 
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Nomenclature 
l0 : quadrature-axis current 

Id : direct-axis current 

IQ : quadrature-axis damper winding current 

l0 : direct-axis damper winding current 

Ip : field current 

w : rotor angle frequency 

Eid : output voltage of exciter 

Va : amplifier voltage 

V r : regulator voltage 

Vs : exciter-stabilizer voltage 
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Pm : output power of turbine 

P • : output power of governor 

P, : load power 

o : power angle 

H : inertia constant 
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R : steady-state speed regulation 

T • : governor time constant 

Tr : A VR time constant 

T, : steam-turbine time constant 

Ta : amplifier time constant 

Ts: exciter-stabilizer time constant 

Te : exciter time constant 

Ke : exciter gain 

K,:AVR gain 

Ka : amplifier gain 

Ks : exciter-stabilizer gain 

). : eigenvalue (mode) 

X : state vector 

A : plant matrix 

B : input matrix 

Y : output vector 

C : output matrix 

D : output matrix 

T: input/output index 

P : participation factor matrix 

M : right eigenvector matrix 

N : left eigenvector matrix 

U : input vector 




