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Abstract 

Details of a second-order accurate TVD scheme using the Roe's Riemann solver is 
described for the three-dimensional Euler equation. The differential equations are dis• 
cretized using a finite volume formulation. The ambient boundary condition proposed 
by us is also explained. 

1 . Introduction 

In problems of cosmic gas dynamics, strong shock waves and contact surfaces as 

well as a large gradient of density stratification are expected to occur, so that a robust• 

ness of a scheme is a crucial factor. The recent advance of a class of TVD schemes for 

hyperbolic equations (Harten 1983, Chakravarthy 1986) provides a higher order spatial 

accuracy· and a robustness of the scheme simultaneously. In the three-dimensional as 

well as the two-dimensional calculations of inhomogeneous accretion flow on to a gravi• 

tating compact object (Sawada, Matsuda, Anzer, Bomer & Livio, 1988), we adopt an 

upwind biased finite volume version of the TVD scheme, details of which are described 

in the following sections. 

2 . Basic equations 

We neglect the effect of viscosity in the present calculation so that the Euler equa­

tions written in the inertial frame of reference are solved. They can be written in the 

vector form as 

* Aircraft Engineering Division, Kawasaki Heavy Industries 
* * Department of Aeronautical Engineering 

(2.1) 
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p pu pv 

PU pu2+p puv 

q= pv ,E= puv ,F= pv2+p 

PW puw pvw 

e (e+p)u (e+p)v 

PW 0 

puw -pfx 

G= pvw ,R= -pfy (2.2) 
pw2+p -pfz 

(e+p)w -p(Jxu+ fyv+ fzw) 

where p represents the density, ( u, v, w) the Cartesian velocities, p the pressure, e the 

total energy per unit volume, and fx, J,,, fz are the Cartesian components of an external 

force. The equation of state is given by 

(2.3) 

in which r represents the ratio of the specific heats. 

The equations are made dimensionless using appropriate charactersitic physical 

quantities. 

3. Finite volume formulation 

We adopt the upwind biased finite volume method (cell method) in the present 

method. We integrate the basic equations (2.1) directly in the physical space using the 

divergence theorem over each cell (Jameson, 1982) as 

(3.1) 

where (nu n2, n 3) denote the components of the unit vector outward normal to the cell 

surface. 

If we define the flux function normal to each cell face as 

(3.2) 

then we can consider locally the one-dimensional problem for all cell faces. The numer­

ical flux functions on these faces are determined from the solution of the Riemann prob­

lem in a unified fashion. 

We integrate the equation (3.1) in time by the two-step explicit method as 
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V n+½-v n IJ,kQ tJ,k - iJ,kQ IJ,k 

- f:::. t (S I Hn I - S t Hn t ) 2 l+yJ,k l+yJ,k i-yJ,k i-yJ,k 

- f:::. t ( S t Hn t - S I Hn I ) 2 lJ+y,k IJ+y,k l,J-y,k IJ-y,k 

_l:::.t(S tHn 1-S tHn 1) 2 IJ,k+y IJ,k+y IJ,k-y IJ,k-y 

l:::. t Rn V --2- IJ,k IJ,k • (3.3) 

Vi,J,kQ75.~= V1J,kQ7J,k 
n+• n+I 

- l:::. t(S1+½,MH 1+-½J,k - S1-½J,kH ,-fJ,k) 

f:::.t(S I Hn+½ -S I Hn+½ ) 
- l,J+y,k IJ+½,k l,J-y,k IJ-½,k 

n+• n+ 1 

-!:::. t(S1,J,k+½H,J,!+½- S1J,k-½H1J,!-½) 
n+ I 

- l:::. t R,J.k Vi,J,k, (3.4) 

where ViJ,k denotes the volume of the cell, Si+½J,k ... S,J,k-½ the area of each cell face 

and n denotes the time level. This procedure has a second-order of accuracy in time. 

However, in the actual calculations, we may use the local time stepping method to 

accelerate the convergence. In the local time stepping method, the strict time evolution 

is not followed. 

4. Roe's approximate Riemann solver 

In the cell method, the numerical fluxes at the cell faces are related to the change of 

the averaged values of the conservative variables in the cell. We adopt Roe's approxi­

mate Riemann solver (Roe, 1981) to find similar solutions at the cell faces from which 

we constitute the numerical fluxes there. 

Roe constructed his scheme by linearizing the Riemann problem first. Using spatial­

ly averaged physical quantities, he found the exact solutions to this approximated 

Riemann problem. Let us consider two states Qi+½ and Qi+½ separated by the cell-face 

located at i+½- Using these two states, Roe defined the averaged state as 

Pi+½= apt+½+ bP1+½, 

U1+½=aut+½ + bu1+½, 

Vi+½=avt+½ + bv1+½, 

W1+½ = a wt+½+ b W1+½ , 

(4.1) 
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where a, b are the coefficients defined by 

✓Pi+½ 

respectively and h denotes the total enthalpy defined by 

h (r~I)p +-½-(u'+v'+w'). 

The speed of sound can be derived as 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

We introduce the local Cartesian coordinate in which the x-axis is taken to the 

normal direction of the cell face. The basic equations in the non-conservative form 

using this local Cartesian base can be written as 

q,+ Aq,,+ Bq11+ Cqz=O. (4.6) 

Forming the Jacobian matrices A(=~!), B( =a;;) and c( = ~~ ) by the averaged 

values defined by ( 4 .1 ), Roe found the exact solution of this linearized Riemann prob­

lem. Contributions from the y and z derivative terms can be neglected and thus we 

consider only the second term of the above equation. 

The Jacobian matrix A has real eigenvalues A~ (k=l, 2, ... 5) and a complete set of 

right eigenvectors r"" The flux differences as well as the state differences between these 

two states, Q1+f and Qi+t-, can be expanded using these right eigenvectors as a set of 

base vectors. Denoting the eigenvalues as 

(4.7) 

then we have the right eigenvectors 

1 0 0 

u-c 0 0 

r,= V 'r,= 1 , T3= 0 ' (4.8-1.10) 

w 0 1 

h-cu V w 
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1 1 
u u+c 
V r.= 'rs= V (4.11-4.12) 
w w 

_l_( u2 + v2 + w2) 
2 

h+cu 

It is convenient to define a set of left eigenvectors l, (i = 1, 2 ... 5) orthonormal to the 

right eigenvectors as 

1 

( 
cu+z(r-1)8 

l1= 
2c 2 

l2=(- v, 0, LO, 0), 

l3=(-w, 0, 0, L 0), 

(r-l)u+ c 
2c 2 

(r-l)v 
2c 2 

' 

(r-l)w r-1) 
2c2 ' 2c2 ' 

( 
(r-1)8 il_-l)u (r-l)v (r-l)w _ (r-1)) 

l.= 1 2c2 ' c2 ' c2 ' c2 ' c2 ' 

1 
-(-cu+z(r-1)8 c-(-y-l)u 

ls- ------- --~~-
2c2 2c 2 

(r-l)v 
2c 2 

' 

(r-l)w r-1) 
2c2 ' 2c2 · 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

where 8= u2+ v2+ w2. Using these left eigenvectors, the state changes, 0Q1+t= Q1+f 

- q 1+½ - , can be expressed as 

( 4 .18) 

where 

(k=l,2 ... 5) (4.19) 

In the equation (4.18), a1cr1c (k=l,2 ... 5) corresponds to the state changes across 

each simple wave. The intermediate states can be derived from these relations from 

which we can obtain the flux differences. However, Roe's scheme can give these flux 

differences in compact forms as 

1 
8//=)..1c+a1cr1c=z(;.,1c+ I A1cl )a1cr1c, 

8J1c-=A1c-a1cr1c=½().1c-l A1cl)a1cr1c, 

from which we can determine the numerical flux function at i +½ as 

(4.20) 

(4.21) 

(4.22) 

As pointed out by Roe (1981) and Chakravarthy (1986), Roe's scheme may catch an 



A TVD Scheme using Roe's Flux and the Ambient Boundary Condition 129 

expansion shock as well as the ordinary shocks. This is due to the fact that, at the sonic 

expansion, the expansion fan is replaced by a single transition across a simple wave, and 

no mechanism works to break up this discontinuity. To avoid this situation, numerical 

viscosity is added to each wave field to fix entropy, only at the sonic expansion. We 

follow the procedure developed by Chakravarthy (1986). 

At sonic expansions : 

(,J..11:)i<0<()..11:)1+1> 

A11: + and A11: - in equation ( 4. 20) and ( 4. 21) are replaced by 

A11:+=-½-U11:+ I A11:I )+ ! [(,J..11:)1+1-(,J..J,], 

A1t- =-½-(,J..11:- I A11:I )--¼ [(,J..J1+1-(A11:),]. 

5. Slope limiting procedure 

(4.23) 

(4.24) 

(4.25) 

We adopt the pre-processing approach to attain a higher order of spatial accuracy, 

which is the so-called MUSCL approach. In this approach, appropriate structures of 

dependent variables are introduced in each cell to estimate the face values with a higher­

order of accuracy. Then the upwind scheme is applied to find the numerical fluxes 

there. The resultant scheme attains the second-order of accuracy if the piecewise linear 

distributions are introduced. This spatial accuracy is estimated in the computational 

space, so that a sufficient smoothness of the grid system in the physical space is implicit­

ly assumed for keeping this accuracy. 

Turkel (1985) has shown that a non-uniformity of grid spacings degrades the spatial 

accuracy, and sometimes results in an inconsistent discretization in the physical space. 

In the present study, we incorporate a procedure which accounts for the non-uniformity 

of grid spacings in the estimation of spatial gradients (Sawada & Takanashi, 1987). 

The adopted procedure which accounts for the effects of non-uniform grid spacing 

is as follows (Sawada & Takanashi, 1987): we first assume a piecewise parabolic profile 

of conservative variables for there successive zones to find the averaged slope in the 

central zone. Then, we reassume a piecewise linear profile based on this slope to find 

the values of the dependent variables at the cell faces. 

Let us consider the procedure realizing the above statement. We adopt a dimen­

sionally split procedure so that only one space direction is considered here. Other direc­

tions can be treated in the same way. 

We take the differences 8Q1+½• 8Qi-½ defined by 
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liQ1+{=Q1+1-Q1, 

liQ1-½= Qi- Q1-1 , (5.1) 

where q1 represents the conservative variables. Since the conservative variables satisfy 

we can assume a piecewise parabolic profile : 

q(f)=ae+ bf+ C 

restricted by equation ( 5. 2) and 

where 

The size of the cell length l::,f1 can be determined by an appropriate manner. 

(5.2) 

(5.3) 

(5.4) 

(5.4) 

(5.5) 

Using equation (5.3), we can estimate the averaged slopes of the conservative vari­

ables in the central zone as 

where 

x=6s1+1+6s,+6s1-1, 

liQ1+½ 
µ 

II 

The face values are then estimated as 

Qi+½-= Qi+½ I::, Qi' 

+_ 1 A 
Q1-½ - Q1-2Ll Q1 • 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

In order to attain the non-oscillatory property of the scheme, we modify the above 

procedures as follows (Chakravarthy, 1986). Using the complete set of right eigenvec-
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tors, rt, defined by the cell averaged. conservative variables, q1 , and the unit vector 

pointing toward the averaged normal direction of the cell faces, the differences of con­

servative variables, o'Qi+½ and o'Qt-½, can be written as 

o'Qt+t= 1:°t(aJt+t Tt, 

o'Q1-1= 1:°,.{atlt-½ Tt, 

(5.12) 

(5.13) 

where at is the coefficient of the right eigenvector termed as the state change parameter 

(Chakravarthy, 1986). 

Replacing o'Q1+½ and o'Qt-½ by (aJ1+½ and (aJ,_1 respectively, we can estimate the 

averaged value of at as 

where 

µ' 
D.~1+1+D-~1, 

(aJ,-½ 

(5.14) 

(5.15) 

(5.16) 

In order to preserve the non-oscillatory property of the scheme, we limit the magni-

tude of the state change parameters at as 

( 
_) _ { sign((a,J,)u, if (at)1+1(aJ,_1>0; 
at,-

0, otherwise 
(5.17) 

where 

(5.18) 

The limited values of the conservative variables at the cell faces are thus 

Qi+½-= Q1+ _r',.{at), Tt, 

Q,-f=q,-1:',.(aJ,rt· 

(5.19) 

(5.20) 

Note that the above procedure accounts only for the irregular grid spacings, and the 

skewness of the grid line is still neglected. A multi-dimensional surface fitting, which is 

a direct extension of the present one dimensional case, may improve the spatial accura­

cy. However, the overall spatial accuracy still remains to be first-order if the shape of 

the grid is arbitrarily determined (Roe, 1987). Furthermore, a multi-dimensional surface 

fitting would require a large amount of computations, so that a practical way to attain 

fine solutions may be to improve the quality of the grid system. 
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6 . Ambient boundary conditions 

On the outer numerical boundary, we apply the ambient boundary condition (Sawa­

da et al., 1986) in which we assume fictitious cells located just outside the outer bound­

ary surface. The physical quantities corresponding to the incident gas are specified in 

these fictitious cells. The numerical flux at the outer boundary is determined by solving 

the Riemann problem. Since we solve the Riemann problem by the upwind scheme, it 

does not require any additional work. 

The ambient boundary condition is a neat approach to realize the nonreflecting 

boundary condition. Inflows and outflows occur in quite natural ways according to the 

solution of the Riemann problem at the boundary surface. Influences of various numer­

ical boundaries, including the present one, over the simulation of laboratory free jet 

flows can be found in the reference (Matsuda et al., 1987). A brief description of the 

ambient condition is given in the following (see also Sawada & Takanashi, 1987). 

Let us first consider the system of a linear hyperbolic equations. It can be written 

in a characteristic form as 

(6.1) 

where q represents the charactersitic variables of n components and the Jacobian matrix 

A can be written as 

(6.2) 

where A-, AO and A+ are the diagonal matrices which have negative components of d _ 

X d _, zero components of do X do and positive components of d + X d + dimensions, re­

spectively. 

The upwind difference of equation ( 6 .1) becomes 

q,n+I= qr-;. [A+(q,n- q,_1n)+ A-(Q1+1n_ q,n)], (6.3) 

where A+ and A- are the projected Jacobian matrices as 

(6.4) 
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m whibh p+ and p- are the natural projection operators and )..= t:,. ti l:i.x (Osher & 

Chakravarthy, 1983) 

If the numerical boundary locates at i-½, then q1 and Qi+1 are the interior values, 

while q1_ 1 should be the exterior boundary value. A common treatment of the boundary 

condition is to first determine the values of the dependent variable q1_ 1• Since we use 

characteristic variables, this reduces the relation to 

(6.5) 

However, inserting (6.5) into (6.3), we have 

(6.6) 

This equation implies that only the d + dependent variables are used explicitly and the 

rest are all discarded. Noting then above, we can set 

(6.7) 

for the exterior value. Thus, we can solve the boundary cells with the interior scheme 

of equation (6.3) by assuming equation (6. 7). This is the ambient condition for the 

linear case. It can be said that the exact boundary condition can be given if an upwind 

discretization together with the ambient conditions are employed for linear cases. 

We next consider the nonlinear case. We closely mimic the linear case. A system 

of nonlinear hyperbolic equations can be written in the same from of equation ( 6 .1 ), 

although the Jacobian matrix A is a function of q. The Jacobian matrix A has real 

eigenvalues and a complete set of right eigenvectors. Using these eigenvectors, we can 

find a similar transformation matrix T such as 

(6.8) 

where A is a diagonal matrix whose components are the eigenvalues of A. Then we 

have the characteristic form of equation ( 6 .1) as 

(6.9) 

The interchange between r- 1 and the difference operators may not be valid for the 

nonlinear case, but freezing the Jacobian matrix A as well as r- 1 at the boundary value 

would lead to the same treatment as in the linear case. Defining the projection operators 

in equation (6.4), we can find the boundary values of dependent variables in characteris­

tic form by using equation (6.5). This is the usually adopted boundary treatment of 

non-reflecting boundary conditions (Whitfield & Janus, 1984), although the detailed im-



134 Keisuke SAWADA, Eiji SHIMA and Takuya MATSUDA 

plementations may differ from one case to another. 

In the ambient condition combined with the upwind scheme, almost the same line is 

followed. However, one major point is different from the above procedure : the wave 

system at the boundary is not frozen to the inner one, but has dependence on both sides 

of the physical quantities because the Riemann problem is solved there. As a result of 

this procedure, the direction of the convection velocity, as well as the other flow vari­

ables deciding the numerical fluxes, is regulated by the circumferential conditions. 

In the actual implementation, this ambient condition seems to be the simplest 

among various boundary conditions, since all we have to do is to put the reference state 

in the fictitious cell and keep the value unchanged during the integrations. There is no 

need to incorporate any switches to account for the directions of the characteristics, 

since the upwind scheme adopted in the numerical scheme actually does it. 

References 

Chakravarthy, S. R. 1986 The versatility and reliability of Euler solvers based on high-accuracy 

TVD formulations. A.I.A.A. Paper 86-0243. 

Harten, A. 1983 High resolution schemes for hyperbolic conservation laws J. Comp. Phys. 49, 357. 

Jameson, A. 1982 Transonic aerofoil calculations using the Euler equations. Numerical Methods in 

Aeronautical Fluid Dynamics (ed. P. L. Roe). Academic Press. 

Matsuda, T., Umeda, Y., Ishii, R, Yasuda, A. & Sawada, K. 1987 Numerical and experimental stu­

dies on choked underexpanded jets. AIAA paper, 87-1378. 

Osher, S. & Chakravarthy, S. 1983 Upwind schemes and boundary conditions with applications to 

Euler equations in general geometries. J. Comp. Phys. 50, 447. 

Roe, P. L. 1981 Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comp. 

Phys. 43, 357. 

Roe, P. L. 1987 Error estimates for cell-vertex solutions of the compressible Euler equations. 

I.C.A.S.E. Rep. 87-6. 

Sawada, K., Matsuda, T., Anzer, U., Bomer, G. & Livio, M. 1988 Inhomogeneous wind accretion: 

Comparison between 3D and 2D computations. to be published in Astron. and Astrophys. 

Sawada, K., Shima, E., Matsuda, T. & Inaguchi, T. 1986 The Osher upwind scheme and its applica­

tion to cosmic gas dynamics. Mem. Fae. Eng. Kyoto Univ. 48, 240. 

Sawada. K & Takanashi, S. 1987 A numerical investigation on wing/ nacelle interfaces of USB 

configuration. A.I.A.A. Paper 87-0455. 

Turkel, E. 1985 Accuracy of schemes with nonuniform meshes for compressible fluid flows. 

I.C.A.S.E. Rep. 85-43. 

Whitefield, D. L. & Janus, J.M. 1984 Three-dimensional unsteady Euler equations solution using 

flux vector splitting. A.I.A.A. Paper 84-1552. 




