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Abstract 

Referring to the results of the PS-logging performed at the boring site of 
the 150 m-<leep seabed in Osaka Bay, it is found that there exists a relationship 
between the celerity of the transversal wave, v, (m/s), and the depth of soil 
layers, z (m) , as v,= 30 z0·5• Other information obtained from the soil explora­
tion also indicates that the seabed is almost normally consolidated at the site. 
These data show that the shear modulus increases proportionally with depth. 
In this paper, the characteristic function of such a ground is deduced by solving 
the fundamental differential equation, and the procedure of seismic response 
analysis is described. By the numerical calculation for a modeled seabed 
subjected to a simulated irregular seismic excitation at the base ground, it is 
known that, at the mudline, all responses reach their maximum values. In 
particular. the acceleration response attains as high as 4. 7 times the input 
ground motion. 

1 . Introduction 

The seabed of Osaka Bay consists of soil layers: an alluvial marine layer, a 

terrace deposit and a series of diluvial layers where marine deposits are num­

bered as Ma 12, Ma 11. ----, Ma O from the top to the bottom layer. However, 

the general aspect of the offshore seabed in Osaka Bay is characterized by its 

clay-rich constitution compared to the inland area. Sometimes, the designers of 

civil engineering structures face severe soil conditions of lacking sand/gravel 

layers upon which the foundations of heavy structures should be supported. In 

addition to such a feature, the seabed is almost normally consolidated at the site, 

which is predicted by a small overconsolidation ratio in the upper diluviumsD. 

Some data of PS-logging2l show that there ~xists a linear correlation between the 

celerity of the transversal wave and the square root of depth. This means that 
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the dynamic shear modulus of the seabed ground increases proportionally with 

depth. 

At present, we have several big civil engineering projects in and around 

Osaka Bay. In such projects are involved not only the land reclamation along 

the bay, such as Kobe Port Island (436 ha) and Osaka South Port (930 ha), but 

also the construction of the Kansai International Airport (to be opened in 1993). 
This is a marine airport constructed on a man-made island (511 ha) located 

about 5 km off the sea coast (Senshu--oki), around which the water depth is 16 
m to 19 m. The island is to be connected with the main land by a 3 . 8 km~long 

double deck bridge for road and railway. It is inevitable for designers, therefore, 

to consider the seismic behavior of such large-scale offshore structures. 

2. Interpretation of PS-logging Data 

Fig. 1 shows an example of the results of the suspension-type PS-logging of 

the .150 m-deep seabed in Osaka Bay. The interpretation of this logging data is 
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Fig. 1 Result of PS-logging at the boring site 
of Senshu-oki in Osaka Bay 



190 Koichi AKAi AND Takeshi TAMURA 

as follows. 

1) There exists a relationship between the celerity of the transversal wave, v. 
(m/s), and the depth, z (m), as well as between the shear modulus of soil 

layers, G (tf/rrf) and the depth, z: 

v,=30z05 (i. e., z=l00m; v.=300m/s)} 

G=90Qoz 

2) A similar correlation can be obtained between the celerity of the longitudinal 

wave, Vp (m/s), and the depth, z. Namely, vp= 1400 m/s at z= 0 m (mudline) 

and it increases proportionally with depth. At z= 100 m, Vp= 1550 m/s. 

3 ) The only exceptional phenomenon can be seen in the so-called upper diluvial 

clay strata, Ma 12-Ma 10. The celerity observed, v,= 150-300 m/s, is larger 

than the value of Eq. ( 1 ). 

4) Generally speaking, v. in the sand/gravel layers is much larger than that in 

the clay layers. Therefore, Eq. ( 1) is not applicable to coarse grained soils. It 

can be said, however, that Eq. ( 1 ) is still appropriate for the seabed in Osaka 

Bay, because the clay layers are predominant in this offshore area as described 

earlier. 

3. Chracteristics of Ground Vibration with Depth-Proportional Shear Modulus 

The equation of motion for the vibration of a semi-infinite layer subjected to 

a horizontal seismic motion, Ug, at the base (see Fig. 2 ) is 

.i!:!..__(O t)=O 
dz ' Surface 

N 

j_ u(z,t) 

:c 
N -T..,, 

Base 
u. ( t) 

Fig. 2 Cross section and boundary conditions 
of a semi-infinite soil layer subjected to 
a horizontal seismic motion at its base 
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a2u au a [ au J a2u p(z)-+c(z)--- G(z)- = -p(z)~ af- at az az af-

where p(z) denotes the mass density at a depth z, c(z) the viscous damping 
coefficient, G(z) the shear modulus and u(z, t) the relative displacement at time, 
t. Assuming p and c are independent of depth, z, in the present case, we obtain 
from Eq. ( 1) 

G=Kz Cl)' 

Hence Eq. ( 2 ) becomes 

(3) 

Let us consider the homogeneous equation of Eq. ( 3) in order to investigate 
the dynamic characteristics of such a ground. Applying the variable separation 
method with the complex circular frequency w, 

u(z, t) =v(z) • w(t) =v(z) • e""' (4) 

Substituting this expression into Eq. ( 3 ), we obtain the following ordinary 
differential equation for v(z) : 

(5) 

Transforming z in a new variable l;=az0 with a= 1 / 2, a= 2 j (pw 2-ciw) /K, 

leads to the Bessel differential equation of order zero. Thus, the solution 
satisfying the boundary conditions that v is finite at the ground surface, z= 0 
(/;= 0 ), and v= 0 at the base, z=H, is expressed by the following Bessel 
function of the first kind of order zero. 

( j pw
2
-ciw ) ~ ( /z ) v=Jo(t)=Jo 2 K z =Jo(2).Jz)=Jo VHKo (6) 

where ). denotes the eigenvalue of vibration and the individual value of ,r,0 ; 

(7) 

is determined by the roots of Jo(t;) = 0 . 
From the boundary condition at the base, z=H, the general solution of Eq. 

( 2 ) is expressed as : 
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u (z, t) =e -at f <a. sin /3. t + b. cos /3. t) · fo(2)../z) 
•-I 

(8) 

where 
_ ...£ /3 _ ✓~--c~2-+-4,o~K=).-. 

a- '2p' .- '2p 

It can be recognized from Eq. ( 8 ) that the time-dependent term consists of 

the product of two components; namely, a uniform damping e-a, and an individ­

ual trigonometric function (a normal vibration) {sin 13

13
• t}. The depth-dependent 

cos • t 

term (i.e., the modal solution), on the other hand, is expressed by the Bessel 

function of the square root of depth, z. This is the characteristic function of 

ground vibration where the shear modulus increases proportionally with depth. 

The mode of such a ground is indicated in Fig. 3 . 
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Fig. 3 Mode of ground vibration 
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4. Seismic Response of the Ground with Depth-Proportional Shear Modulus 

Idriss and Seed3) proposed some models to analyze the responses during 

earthquakes of soil layers with a depth-dependent shear modulus. They solved 

the following fundamental equation: 

fJ2u + au a (K ,. au )- .. 
P iJt2 cat-iii z iii - -pug (9) 

They noted however that the analytical method is effective for m ~ l / 2 . It 

means that when m > l / 2, a solution in terms of Bessel functions cannot be 

obtained. In their paper, therefore, comparisons for m= 0 (constant elasticity) 

and m = l / 3 are made between the closed-form solution and the numerical 

solution with a lumped-mass representation. 

As described earlier, seabed grounds are almost normally consolidated at 

their site and, therefore, the shear modulus of soil layers, G, is approximately 

proportional to the depth, z. This means that the power m in Eq. ( 9) equals 

unity (i.e., m > l/ 2 ). Our present effort is oriented to obtain the closed-form 

solution of the seismic responses in such situations. 

As a step to the solution of Eq. ( 3 ), we first analyze an equation: 

a2u au a ( au ) p-+c--- Kz- = -p. o(t) 
iJt2 iJt oz oz (10) 

where o(t) denotes the delta function. This corresponds to the case where an 

external force of unit pulse is applied to a vibratory system which is at rest at 

t= 0. 
Let it be assumed that an exernal force, f (unit pulse), is applied for a very 

short time, e, to a body with mass, m, at rest at t= 0, as illustrated in Fig. 4. 

o' (t) 

0 t 

Fig. 4 Unit pulse 
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Namely, 

Then, 

mx=f=_l_ 
E 
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mi=_J_ · mi= 1 at t=e 
E ' 

t2 E 
mx=Ze; mx=2 at t=e 

Hence, if e-+ O, mx-+ O. It means that a unit pulse produces a change in the 

velocity of mass as 1 /m. 
Thus, the problem of Eq. (10) can be reduced to solving the following 

equation: 

(10)' 

under the initial condition, 

u=0. u=-l at t=0 

Using the result of 3. and considering the initial condition for Eq. ( 8) ; u= 0 
at t= 0, then we get b.= 0. Therefore, 

u(z, t) =e~at fa. sin /3. t · Jo(2)../z) 
n=l 

Another initial condition: 

leads to 

au =-l at t=0 at 

= 
L •./3.Jo(2)..,z) = -1 

n=l 

Putting x-+ 2 ,z and a-+ 2 Jl in the well-known formula, 
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u9 (t)dt 

0 'C t 

Fig. 5 Superposition of unit pulse 

we then have 

~ 1 
-~1 .1i..lHJ1 C2.1i..Jll) JoC2.1i..li) = 1 

. 1 
. . a.= - /3 • .1i..JHJ1(2.1i.. lH) 

Thus, Eq. ( 8 )' is finally written as: 

u(z, t) = _ !- e•' i sin /3.t ]0(2)..,i~) (11) 
,H •-I /3. .1i..f1 (2).. -1H) 

Comparing the original problem (Eq. ( 3)) with Eq. (10), we have to replace 

-p-o(t) by -pu.(r)dr. Therefore, referring to Fig. 5, 

( t) _ _ 1 -a<1-rl ; sin /3. t fo(2.1i.. ii) .. ( )d 
u z, - r=He .... /3 , J (2, ,H) Ug r r 

,/ n=l n 11.n 1 /1.nv 
(12) 

By summing up the effect of vibration during the time r= 0 ~r, the displace­

ment response of ground under the input acceleration ug(t) is given by the 

following Duhamel integral. 

u(z, t) = - L i _l_ fo(Z.1i..iz) f: e-•<t-rl sin /3.(t-r)ug(r)dr (13) 
,H n-1 /3 • .1i..f1 (2.1i.. -1H) 

Differentiating the above equation by the time, t, once or twice, we obtain the 

velocity response, u, and the absolute acceleration response, i.i, +ug, respectively, 

as follows: 
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X s: e-a(H) cos W.(t-r) +r.}ug(r)dr 

u(z, t) +ug(t) = K _l_ ~ AJo(2)../z) 
P Ill.-, f3J, (2)../ll) 

where, from Eqs. ( 7) and ( 8 ), 

], (2 , ff!) 0, C /3 J4,oK)..-c
1 

-t -1( a ) 
0 lln./fl = a=<ji;• n '2JJ , r.- an f3n 

(14) 

(15) 

The shear strain of ground is expressed as the differentiation of Eq. (13) with 

respect to z, whereas the shear stress can be obtained by multiplying the strain 

by G=Kz. 

5. Results of Numerical Calculation 

Eqs. (13) ~ (15) are numerically calculated by decomposing the seismic data, 

iig (t), into the Fourier series through the Fast Fourier Transformation. 

5 . 1 Mechanical soil parameters 

( 1 ) Density p (t/ m') 

As the average value of soil densities for alluvial and diluvial clay strata in 

Osaka Bay, we take p= 1.70 t/m'. 

( 2) Proportional constant K (t/m'-s2) 

As mentioned earlier, there exists a correlation expressed by Eq. ( 1) ; G= 

900pz (t/m•s2). Therefore, we should take K= 900 x 1.70 = 1530 t/m'-s2• However, 

taking the strain-dependency of the dynamic shear modulus during the seismic 

vibration into account here, we multiply it by 2 / 3 to modify the value K. 

Thus, K = 2/ 3 x 1530 = 1020 t/ m'-s2
• 

(3) Damping coefficient c (t/s•m') 

Utilizing the field data of the PS-logging and referring to the laboratory 

result of the triaxial forced vibration test for alluvial clay specimen4>, we use c= 

3. 58 t/s• m'. 

5. 2 Seismic data 

( 1 ) Input seismic wave 

The accelerogram of Tokachi-oki earthquake (May 16. 1968) observed at 
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Maxiaua input acceleration: 203.3gal 
Fig. 6 Acceleration record used in analysis (E-W component, 

1968 Tokachi-oki earthquake) 
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t(s) 

Hachinohe, Aomori Prefecture (E-W component with maximum acceleration 203. 
3 gal5l, see Fig. 6 ), is used as the input seismic wave. 

( 2) Input seismic base 

According to the boring data obtained at the construction site of the Kansai 

International Airport in Osaka Bay, it was found that there existed a remarkable 

unconformity at the depth of H= 97. 3 m below mudline at the boring site, No. 56 
-2. Therefore, the sand/gravel layer overlying Ma 3 beneath the unconformity 

is chosen as the input seismic base where the dynamic impedance of ground 

varies extremely. 

5 . 3 Analytical results 

The analytical results for the above input data are shown in Fig. 7 (a) -

(e), which correspond to the maximum absolute acceleration response (u+ug)max, 

the maximum velocity response Umax, the maximum displacement response Umax, 

the maximum shear strain Tmax and the maximum shear stress 'max, respectively. 

It is known from these figures that, at the mudline, z= 0, all responses reach 

their maximum values along the vertical direction; namely, 16. 6 cm in displace­

ment, 78. 4 kine in velocity and 959 gal in absolute acceleration. The last one is 

as high as 4. 7 times the input ground motion (ug= 203. 3 gal). Such a response 

amplification is very remarkable in the soil layer near the surface of the seabed. 

Fig. 8 (a) - (c) illustrates the time-responses at the mudline of absolute 

acceleration, relative velocity and relative displacement, respectively. It can be 

understood that the peak values of responses have some time lags, when com­

pared with the original input data shown in Fig. 6 . 
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Max. acceleration response (gal) Max. velocity response (kine) Max. displaceoent response (c■) 
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Fig. 7 Results of dynamic response analysis for a model of Senshu- oki seabed 

6. Conclusions 

In the present paper, an analytical method to obtain the seismic response of 

offshore seabed with a depth- proportional shear modulus, Gocz, has been 

described in some detail. 

The result of the PS-logging of the seabed in Osaka Bay leads to a funda­

mental equation of motion for the vibration of a semi-infinite layer subjected to 

a horizontal seismic motion at its base. It has been found out that the charac­

teristics of motions are expressed as the product of three components; namely, a 

uniform damping, a normal vibration and a Bessel function of order zero in 
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Fig. 8 Surface response of layer with depth-proportional shear modulus 
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terms of the square root of depth. Then, the closed-form solution of seismic 

responses in the form of the Duhamel integral has been deduced analytically for 

acceleration, velocity and displacement, as well as shear strain and shear stress 

in the ground. 

By the numerical calculation for a modeled seabed subjected to a simulated 

irregular seismic excitation at tl)e base ground, it is known that, at the mudline, 

all responses reach their maximum values. In particular, the acceleration re­

sponse indicates as high as 4 . 7 times the input ground motion. 

The analytical solution presented here is .expected to give an appropriate 

result for actual seabed grounds, although the much more rigorous response 

analysis could be obtained by the numerical approach such as the lumped-mass 

solution or the finite element method. 

The authors are grateful to Messrs. I. Maekawa and T. Tsuji, graduate stu­

dents of Kyoto University, for their assistance in numerical calculations. 
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