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Abstract 

This paper is concerned with the deformation of a hollow sphere, within 
the theory of finite elastostatics for a particular homogeneous isotropic com
mpressible material, the so-called Blatz-Ko material. The body is subjected to 
uniform pressure, either internal or external. In the case of internal pressure, it 
is found that there is a maximum pressure beyond which there does not exist 
a solution. Under that pressure there exist two sets of solutions. In the case of 
external pressure, the location of the maximum value of the compressive hoop 
stress departs from the inner surface. There exists, howeverc a supremum of 
the location. If the hollow sphere is thinner than the supremum, the maximum 
value of the compressive hoop stress occurs at the outer surface. 

1 . Introduction 

In this paper, we examine the deformation of a hollow sphere subjected to 

uniform internal or external pressure, within the theory of finite elastostatics for 

a particular homogeneous isotropic compressible material, the so-called Blatz-Ko 

materialD_ The constitutive equation of this material is relatively simple, and the 

system of partial differential equations governing the equilibrium equations 

ceases to be elliptic at sufficiently severe strain levels2l. For such reasons, 

recently, Abeyaratne and Horgan3l investigated the problem concerned with the 

plane strain deformation of a circular cavity in an infinite medium. In the case 

of a hollow sphere subjected to the internal pressure, it is found, interestingly, 

that the axisymmetric solutions are not unique. When the ratio of inner and 

outer radius b/a is given, there exists a certain maximum value of pressure Pmax 

for the existence of the solutions. If the internal pressure P is smaller than Pmax, 

there exist two sets of solutions for stress and deformation fields. Consequently, 

as P/µ (µ : the shear modulus) gets sufficiently small, we get another limit, which 
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is diffrent from the result of the infinitesimal theory of elasticity. In the case of 

external pressure, the set of solutions is unique and is valid for an arbitrary 

large pressure. The hoop stress Te is compressive and its maximum value 

I Te I max departs from the inner surface for a sufficiently large pressure. It is 

found, however, that the location of I Te I max has its limitation, and if the hollow 

sphere is thinner than the limitation, I Te I max ocuurs at the outer surface. 

In both cases of internal or external pressure, we also examine the loss of 

ellipticity and the comparison with the infinitesimal theory. 

2. Blatz-Ko material 

Blatz-Ko material is a mathematical model of a particular homogeneous, 

isotropic, compressible elastic material. Within the finite elastic theory developed 

in 1960's, various experiments of rubberlike materials were exercised and their 

strain energy functions were proposed. Blatz-Ko material considered here is one 

of such materials composed of 47 per cent foamed polyurethane rubber, proposed 

by Blatz and Koll. The elastic potential of this material is given by 

representing the strain energy per unit undeformed volume. Here, Ii. I'b Ia denote 

three invariants of the right Cauchy-Green deformation tensor C=PF (F: defor

mation-gradient tensor). Using this elastic potential function, we find that in the 

state of plane-strain uni-axial tension (or compression) parallel to the X1-axis, 

the relations between the principal stretches il1, il2, il3 and the Cauchy stress T 1, T'b 

T3 are 

il3= 1. il2=il1 113
, Tz=O 

T1=µ(1-il;-&!3), T3=µ(1-il;-va). 

As is apparent from these results, the Blatz-Ko material has a property that T1 

(il1) is a monotone increasing function and remains bounded in plane-strain uni 

-axial tension. Another property of this material is that the system of partial 

differential equations governing the equilibrium loses ellipticity at sufficiently 

severe strain levels. 
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3 . Closed-form Solution 

Using a similar method developed by Abeyaratne and Horgan3>, we obtain an 

exact closed-form solution to our problem describing finite deformation. Sup

pose that the region Q0 occupied by the undeformed body is a hollow sphere of 

inner radius a and oute:r radius b, and that the sphere is subjected to uniform 

internal or external pressure. The resulting (spherically symmetric) deformation 

is given by 

R=R(r) >O. 0=0, <D=</>, on Q0 , (2) 

where we have used spherical polar coordinates (r, 0, ¢,) and (R, 8, <D) to describe 

the location of a particle is the underformed and deformed configurations, respec

tively. Unless explicitly stated oterwise, R (r) is assumed to be twice continu

ously differentiable on r>a. 

The spherical components of the deformation gradient tensor F are found, using 

( 2 ), to be 

F = oR(r) F =F = R(r) 
"{}r' 99 ;. r' (3) 

with the remaining components of F being zero. 
Since the Jacobian determinant J=detF is required to be positive for the uniqueness of the 

local deformation, 

R(r)>O for a<r<b, (4) 

where the dot denoted differention with respect to its argument. 

The principal stretches associated with the spherical deformation ( 2) are given 

by 

so that the fundamental scalar invariants are expressed as 

. 2Rz R 4 2R2R2 RzR 4 
l 1=R2+7, l2=7+-r2-• /3=--,x-

~ RR2 

]=/ [3=~- (6) 
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and otherwise zero. 
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(7) 

(8) 

In the absence of body forces, the equilibrium equations divT=O reduce to the 

single equation 

(9) 

Introducing ( 8 ) to ( 9) yields the following nonlinear second-order ordinary 

differential equation for R (r). 

for a<r<b. (10) 

This equation is reduced to a first-order equation on making the substitution 

t= r; ( = 1:) >O. (11) 

Equation (10) then yields 

3r:: +t(t-1)(2t2+2t+5)=0 for a<r<b. (12) 

Equation (12) may be readily integrated to yield 

15 _ Ct9h(t) 
r - Cl-t) 5(2t2+2t+5) 2 ' 

(13) 

where C ( > 0) is a constant of integrartion and we have set 
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(14) 

on the other hand, eqns (11), (12) also geve 

l dR 3 
R dt = (l-t)(2t2+2t+5) ' (15) 

which in turn yields 

R6= D(2t2+2t+5)h(t) 
(l -t) 2 ' 

(16) 

Again, D ( > 0 ) is a constant of integration. 

Eqns (13), (15), (16) provide a parametric exact solution to the differential 

equation (10). 

4 . Thecase of internal pressure 

4 . 1 . Solutions to the boundary conditions 

When a hollow sphere is subjected to internal pressure, the range of the 

parameter t defined in (11) becomes O <t< 1. (The detailed proof is omitted.) 

It is found from (12) that 

dt 
dr >O, 0< t< 1. (17) 

We find from (15), (17) that the deformed and undeformed radial coordinates 

(R, r) increase monotonically with t. Therefore the range of the parameter t 

becomes 

(18) 

where t., tb are the values of t corresponding to r=a, b, which are to be 

determined from (13), i.e., 

al5 

bl5 

Ct!h (t.) 
(1-t.) 5(2f.+2t.+5) 2 

Ct;,h (tb) 

(19) 

(20) 

The components of the Cauchy stress TR, T8 (T~) may also be expressed in terms 

of t on using ( 8 ), (13), (16), (17). This leads to 
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(21) 

(22) 

Finally, we turn to the boundary conditions of the problem. Since the boundary 

conditions are 

TR=-P at r=a 

TR=0 at r=b, 

eqn (21) requires that 

(23) 

(24) 

(25) 

(26) 

From (19), (20) and (25), (26) we obtain simultaneous equations concerning ta 

and tb, i.e., 

a15 (1-ta) 5(2t~+2ta+5) 2 

t!h (ta) 
b15 (1-tb)5(2t~+2tb+5) 2 

{',,h (tb) 
(27) 

(28) 

When the ratio ot the inner and outer radius b/a and the internal pressure P are 

given, if (27), (28) can be solved fro t,,, tb such that 0 < t. < h < 1 , then (19), (25) 

provide the values of the constants C, D (> 1 ), and eqns (13), (14) and (16) give 

the desired solution. 

Here, we observe two auxiliary functions 

(29) 

H (t) + (l -t) 5(2t2+2t+5) 2 

2 t9h (t) 
(30) 

for O < t < 1 . It is easily shown that ii, (t) > O for O < t < 0 , so H1 (t) is a 

continuous monotone increasing function for O S,,tS,, 1. Consequently, consider

ing (18) and (28), P takes its maximum value (P,_)oo with t ........ 0, tb-+ l, namely, 

(P,_)oo /µ-::::. 2.83945. Here, the mark 00 means b/a-+00 • In this paper, however, 

we are concerned with the case when b/a is finite, so the values t,,, tb are limited 
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by (27), and it never happens that ta-... O, lb-+ 1. When a finite ratio b/a is 

given, Pmax, the extreme (maximum) value of P, may be obtained by applying 

Lagrange's method of indeterminate coefficients to (27), (28). We find that P 

takes its maximum at 

(31) 

The relation between b/a and Pmax is shown in Fig. 1. Moreover, we may prove 

that when b/a and P (pm .. ) are given, there exist two sets of solution (t., tb) 

which satisfy (18), (27), (28). (The detailed proof is safely omitted.) We find, 

therefore, that the axisymmetric solutions are not unique for the boundary 

conditions subjected to an internal pressure smaller than Pmax• Also, there exists 

no solution if the internal pressure is larger than Pmax• 

(Pmax)m --------------------

~ 20 
X 
0 
E 

Q_ 

1.0 

10 20 30 40 50 
b/a 

Fig. 1 The relation between the ratio b/a and P max 

4 . 2 . Deformation and stress fields 

Suppose that R. and Rb denote the deformed inner and outer radius of a 

hollow sphere, eqns (16), (19), (25), (26) yield 

R.=at;:vso + P/µ)-V5 

Rb=bt;:v5 

(32) 
(33) 

The relation between P and the ratio of the undeformed and deformed inner 

(outer) radius Raia (Ri/b) is displayed in Fig. 2 (Fig. 3) for a/b= 2, 4, 6. In 

both cases, in the beginning, P increases with the deformation and it takes the 

maximum value Pmax for a certain deformation, and then decreases after that. 
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o•·· Pmax 

Fig. 2 The relation between R .la and P Fig. 3 The relation between R bib and P 

This means that a hollow sphere subjected to an internal pressure indicates an 

instability phenomenon, if the pressure is given by the load-controlled machine 

(hard machine). The values of Pmax are marked with O in Figures 2 and 3. 
It is also interesting to note that the above result agrees well with the 

simple experience that when we inflate a balloon, firstly we have to make the 

pressure larger and larger, and after some level of deformation the balloon is 

inflated easily with a smaller pressure. 

So long as t< 0, ( 4) is always satisfied by (11), so a hollow sphere never 

collapses (i.e. R.<R6) for a given pressure. Also, we note from (27), (28), (32), 

(33) that under the finite ratio of b/a, the deformed radius R. ( <Rb) -+oo occurs 

as tb ( >t.) -+ 0 even with P-+ 0. 
The resulting stress fields are given by (21), (22), (26) 

(34) 

(35) 

for t.<t<t,,. Because of the mototonical increasing character of H 1 (t), TR 

increases monotonically with t (also with r). TR is always compressive, and the 

largest value of I TR I occurs at the inner surface. The distribution of I TR I 
for b/a= 2 is shown in Fig. 4, where it is to be noted that there are two 

distributions of I TR I at a certain value of P. The solid lines indicate the 

distribution in the case of increasing pressure and the dotted lines indicate those 

of decreasing pressure. 
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P<9-1(0.l,0.2) 
1.0 .-----=-=-=--=-.... 7----~=====::.-=_ -==-=--= 

FE.T.(P/µ;O_I 
F.E.T(P/JJ=0.2) 

~ .. 
I-

0 a 

[
FEJ(P/µ=0.1) 
P/µ=0.1 

FET(P/µ=0.2) 
P<<JJ(0.2) 

b 

Fig. 4 The distribution of I TR I (b/a= 2) Fig. 5 The distribution of Te (b/a= 2) 

To examine the character of Te (T-), we consider the auxiliary function 

G(t) =h(t) (2t2+2t+2) 3r 4 for Q:-s;;t:-::;; 1. (36) 

Since G (t) is a monotone decreasing function, Te (T-) decreases monotonically 

with increasing r. Te (T~) is always tensile and reaches its maximum at the 

inner surface. The distribution of Te for b/a= 2 is shown in Fig. 5. 

Now, the limiting case P<<µ is of interest. It is found from (27), (28) that 

this case appears at t.-:::: l, tb-:::: l, or t.-:::: 0 or tb-:::: 0, so that t-:::: l or t-:::: 0 

throughout the body. Linearizing eqns (13), (19), (20), (34), and (35) (expand

ing linearly with respect to t, t., tb), the former case corresponds to the well

known result of the infinitesimal theory of elasticity, 

The latter case yields 

The linearized distribution of Te (T-) is shown with P<<µ in Figures 4 and 5. 
The former case is drawn with solid lines and the latter one is drawn with 



The Finite Deformation of a Hollow Sphele subjected to 
Internal or External Pressure 

171 

dotted lines. (In Fig. 5, the lines of T8 =:::.µ are above the frame.) As P gets 

smaller, the results of the above limiting case become closer to the results of the 

finite elastic theory. 

4 . 3 . Loss of ellipticity 

As stated above, Blatz-Ko material has a character whereby the governing 

partial differential equations of equilibrium lose ellipticity at sufficient strain 

level. Since there may possibly arise non-smooth deformation fields in such 

cases, it may be important to examine when the ellipticity is lost. 

Necessary and sufficient conditions for the ellipticity of Blatz-Ko material are 
very simple, i. e.3l 

2-/3 <t<2+/3. (37) 

Since we have t< 1, ellipticity will be lost when the left hand inequality is 

violated. A hollow sphere loses ellipticity at r=a firstly under the inner pressure 

P.,,.. After that, with the pressure increasing, the non-elliptic region spreads 

gradually, and lastly the non-elliptic region reaches r=b under the pressure P,b

The relations between P .. , P,b, and b/a are shown in Fig. 6. Note that P,b is 

always smaller than P..,. We have (P.,)oo =:::. 0.172582µ and (P,b)oo =:::. 0.408549µ as 

b/a-+oo. The values of P .. are marked with X in Fig. 2. 
In Fig. 2, when b/a is small (approximately when b/a is less than 3 .24104). P .. 

occurs after Pmax• Substituting tb= 2 -/3 into (33), we find that P,b always 

occurs after Pmax at a constant value of P,.lb=:::. 2.20378. 

20~---------------, 

------------=--:.:-:=-:.=.-=------""'i 

10 15 20 
b/a 

Fig. 6 The relation between the ratio b/a and P.,,, P,b 
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5 . The case of external pressure 

5. 1 . Solution to the boundary condtions 

The solution method developed in Chapter 3 can also be applied to the case 

of external pressure. The parameter t is in this case 

dt 
dr < 0, t> 1. (38) 

(Here, again, detailed proof is omitted.) The boundary conditions are given by 

TR=0 at r=a 

T,= -P at r=b. 

(39) 

(40) 

Using (19), (20), (39), and (40), at this time, simultanuous equations (27), (28) 

are replaced by 

a15 (1-t.) 5(2t~+2t.+5) 2 

t';,h (t.) 

where from (38) 

b15(l-tb)5(2tl+2tb+5) 2 

t'IJ,, (tb) 
(41) 

(42) 

(43) 

When the ratio b/a and an external pressure P are given, one may solve these 

equations and find a unique solution Ct •• tb) satisfying (43) unlike the internal 

pressure case. In this case, P max does not exist and so external pressure can be 

applied arbitrarily. 

5. 2. Deformation and stress fields 

The deformed inner and outer radius R., Rb are given by 

R.=at:; 315 

Rb=bt;;315(1 + P/µ)-V5 
(44) 

(45) 

Since t > 0, a hollow sphere does not collapse for an arbitrary external pressure 

(i.e. Rb>R.). We note, however, from (30) that H2 (t) -4e-K as t- 00 , so for a 
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given finite b/a, tb takes a particular finite limit even if t.-00. which means P-+ 
00 by (42) and Rb ( >R.) _. 0 by (44), (45). 
the Cauchy stress field is found to be 

(46) 

(47) 

From (46), one finds that TR is monotonically decreasing with r since il1 (t) > 
0 for t > 1. TR is always compressive and the maximum value of I TR I occurs 
at the outer surface of a hollow sphere. The distribution of I TR I throughout 
the body is shown in Fig. 7 . 

On the other hand, the behavior of Te (T~) given by (47) is more complicated 
than that of TR. It turns out that Te is always compressive, but the maximum 
value of I Te I max does not always occur at the inner surface. The variation of . . 
I Te I depends on the sign of G (t). Here, we introduce lm such as G (t,.) = 0. 

i. e. t,. = ( f2T - 1 ) / 2. Three cases are to be examoned owing to t. t,. t,.. 
(i) When tb<t.st,,. G (t) is monotone increasing, so I Te I monotonical decreas· 
ing with r. I Te I max occurs at the inner surface. 
(ii) When tb<t,.<t., the sign of G (t) varies at t=t,. so Te takes its minimum at 

t=t,.. I Te I max occurs within the body of a hollow sphere. 
(iii) When tbst.<t,,. I Te I is monotone increasing with r, and I Te I max appears 
at the outer surface. 

5.0 

1.0 

o~----------~ a b 
0L------------~ 

a b 

Fig. 7 The distribution of I TR I (b/a= 2) Fig. 8 The distribution of T8 (b/a= 2) 
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The distribution of I T8 I for b/a= 2 is shown in Fig. 8. As the pressure gets 

larger, the location of I T8 I max moves into the body (case (ii)). However, the 

appearance of case (iii) is restricted by the ratio b/a. I T8 I max never appeara at 

the outer surface even though P-+oo, if b/a is larger than the supreme ratio K,,. 

== 1.0853. which is given by substituting tb=t,,. and t0-+oo into (41). The supreme 

location of I TB I max is also sup (r,./a) == 1.0853. 
The relations between b/a and P. (i.e. the pressure when I T8 I max departs from 

inner surface), Pb (i.e. The pressure when I T8 I max appears at the outer surface 

firstly) are shown in Figures 9 and 10. In Fig. 9, (P.)= == 1.64322 as b/a-+00• 

Here, we again consider the case when the applied pressure is sufficiently 

smoll (P<<µ). Eqns (41), (42) show that t.== 1. tb== 1. so t== 1 throughout the 

body. The linearization yields the corresponding infinitesimal elasticity results 

The distribution of linearized TR, T8 are shown in Figures 7 and 8 added with 

P<<µ. 

5. 3. Loss of ellipticity 

In the present case, since t > l I ellipticity is lost when the right hand 

inequality of (37) is violated. A hollow sphere loses ellipticity at an inner 

surface firstly because of (43). Since t,,. == 1. 79 < t,== 3. 73. I TB I max has already 

moved into the body before a non-elliptic region appears at the inner surface. 

15~---------------, 
(P80 )ao -------------------------------

10 

(Palm ---------
Pa 

2 3 
b/a 

Fig. 9 The relation between the ratir b/a and P •. P,. 
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I 
I 
'Peb 

~ a.: 

2.5 

Pa 

1.05 Km 1.10 
Fig. 10 The relation between the ratio b/a and P •. Pb, P .,,, P,b 
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The relations between P .. (i.e. the pressure when the hollow sphere loses the 
ellipticity at r=a firstly), and P,b (i.e. the pressure when the non-elliptic region 
reaches r=b) are shown in Figures 9 and 10. As the pressure gets larger, the 
non-elliptic region spreads. However, whether that region spreads out through
out the body depends on the ratio b/a. The non-elliptic region does not spread 
out throughout the body if b/a is larger than the supreme ratio K,-:::. 1.00929. 
which is obtained by substituting tb=t. and t.-00 into (41). In Fig. 9, (P .. )~ -:::. 

13. 7941. 
For example, when the ratio b/a= 1.03, after the location I T0 I max moves to the 
outer surface, a non-elliptic region develops from the inner surface, but the 
region has a limit even if P-+oo. The distribution of I T0 I for b/a= 1.03 is 
shown in Fig.10. In this figure, the non-elliptic region spreads to the mark 0, 
and the line without the mark O shows that the region has not appeared yet. 
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