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Abstract 

Some classes of interval matrices for which a necessary and sufficient condition can 
be obtained in a simple form are indicated. A few sufficient conditions are also derived 
to assure convergence of interval matrices. Some of these results are discussed in as
sociation with their polynomial counterparts. 

I. Introduction 
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In analyzing or implementing a physical system with perturbed parameters, 

it may be assumed that the upper and lower bounds for the parameters can be 

somehow estimated. A matrix(polynomial) is called an interval matrix(interval 

polynomial), if these two-sided bounds are specified for each element (coefficient) 

of the matrix (polynomial). In relation to robust stability, in these days con

siderable attention is being given to the stability property of interval matrices or 

interval polynomials.1
- 9J However, the stability property here means mainly the 

Hurwitz property for continuous systems, and the results for discrete systems seem 

to be few. 

In this paper, we will indicate several classes of convergent interval matrices 

and also give a few sufficient conditions assuring the convergence of interval matrices. 

Some of these results have corresponding interval polynomial counterparts. To 

begin with, the symbol conventions used throughout the paper are summarized 

below. Let ( '), I be the transpose and the unit matrix, respectively. Interval 

matrices are defined as a set form as follows: 

( 1 ) 

where the inequality ( <,) between matrices is meant to hold elementwise, namely, 
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( 2 ) 

where B = {h;;} and C = {c;;}. The usual inequality between two symmetric 

matrices X and Y, X~Y, implies X-Y~O (positive semidefinite). Strict in

equalities are understood to be defined in the same way. For a matrix X ER"x", 

A;(X) denote the eigenvalues of X and Amax(X) the maximum of these when they 

are real. u(X) is the spectral norm of X defined by u(X) £ {lmax(X' X)}112• I XI 

is used to denote the matrix X where each element is replaced by its absolute 

value. For a nonnegative matrix X, i.e., X~,O, p(X) denotes the Perron root of X. 

2. Main Results 

It is pointed out in 8) that for convergence of any matrix in M, the same pro

perty of 2"'(m£n2
) matrices corresponding to all the combinations of the end points 

of each interval is not sufficient. Then, a question arises: What condition is 

sufficient for the convergence property of interval matrices? In answer to this 

question partly, we wili present some sufficient conditions and a few classes ofinterval 

matrices whose exact covergence condition can be obtained in a simple form. 

Let us first define a non-negative matrix D in the following way. 

Then we have: 

[Theorem I] 

If Dis a convergent matrix, so is any matrix in M. 
This theorem is a direct consequence of Lemma I below. 

[Lemma I] 11> 

Let FER"xn be an irreducible non-negative matrix and assume that 

IXl~,F (4) 

holds for some matrix XER"x". Then we have 

I A;(X) I ~p(F) ' i =I,, .. , n. ( 5) 

Note that the assumption on the irreducibility of the above lemma can be sub

stantially dispensed with by considering simultaneous appropriate permutation of 

the corresponding rows and columns in X and F. Theorem I would be apparent 

from the facts that the Perron root is the largest eigenvalue in absolute value and 

that IAI ~.Dis satisfied for any A in M. 

Lemma I also gives some classes of interval matrices whose necessary and 
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sufficient condition for the convergence is extremely simple. 

[Theorem 2] 
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If B~.IC I ~.O(C-::;;.,-IBl-::;;.,o) are satisfied in (1), the necessary and sufficient 

condition for the convergence of interval matrices is that the matrix B(C) is con

vergent. 

A special case of Theorem 2 is summarized in a corollary. 

[ Corollary l] 

If c1;=-h;;-::;;.O, i, j=l, •··, n in (2), the necessary and sufficient condition 

for the convergence of interval matrices is that the non-negative matrix B is con

vergent, i.e., p(B) < 1. 

We consider now the polynomial counterpart of the above results. Consider 

an interval plynomial given by 

( 6) 

where 

i = 1, •··, n. (7) 

Polynomial (6) can be linked with matrices through its companion form, 

0 1 0 •.. 0 

0 0 1 ••• 0 

0 ..• 0 ( 8) 

0 0 0 •.. l 

and polynomial (6) is convergent if and only if the matrix (8) is convergent. 

Therefore we can immediately obtain the polynomial counterparts of Theorems 

l, 2 and Corollary 1. 

[Theorem 3] 

Let d1 be given by d1 £ max ( I c1 I, I b;I). Then the interval polynomials (6) 

and (7) are convergent, if polynomial (6) with a;= -d1 is convergent. 

[Theorem 4] 

If c,-::;;.-1 bd -::;;.O(O-::;;, I cd -::;;.b1), i= 1, •··, n in (7), the necessary and sufficient 

condition (sufficient condition) for the convergence of interval polynomials (6) and 

(7) is that the polynomial (6) with a1=c1(a1= -b1) is convergent. 

[Corollary 2] 

If c1=-b,-::;;.O, i=l, •··, n in (7), the convergence property of the interval 

matrices (6) and (7) is equivalent to that of (6) with a1=c1• 
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This last result has been already derived via another approach7> and it has 

been shown that the condition for that is simply given by 

Also, the assumption of Theorem 3 can be expressed succinctly by the above 

inequality where b; is replaced by d;, Note that when led 5:,b; we can only obtain 

a sufficient condition in Theorem 4. This shows asymmetry in the polynomial 

case in contrast to the matrix case with respect to the sign of the coefficients or the 

elements. This is caused by l's appearing in every row of (8) except the n-th. 

We now turn back to interval matrices. Theorem 1 is very concise and useful 

for checking the convergence of interval matrices. However, one of its drawbacks 

is that it abandons information on the sign of the elements. We will devise a method 

which covers this point and makes the most of the information given to the matrices. 

Let us define matrices N and E1 by 

N £ (B+C)/2 ( 9) 

and 

(IO) 

It is obvious that M can be restated as 

( 11) 

and that A can be written as 

A=N+E (12) 

where 

(13) 

Since the convergence of N is necessary for that of interval matrices, we can assume 

that the Lyapunov matrix equation, 

P-N'PN = 1/2, (14) 

has a positive definite solution P=P'. We are now in position to state a sufficient 

condition for the convergence of interval matrices in terms of P and E 1• 

[Theorem 5] 

If the following inequality, 

a(P) +2a(Ef IP I E1) > 1 , holds, (15) 
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then any matrix in M is convergent. 

Proof: It is enough to show that 

P-(N+E)'P(N+E)>0. 

To do this, we make use of the relation, 

(X+Y)'L(X+Y) ~2X'LX+2Y'LY, 
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(16) 

(17) 

which is valid for any X, Y and L=L'~0. This comes from the fact that sub

tracting the left hand side from the right yields 

(X-Y)'L(X-Y)~0. 

By (14) and (17), we get 

P-(N+E)'P(N+E)~P-2N'PN-2E'PE = I-P-2E'PE. (18) 

The necessary and sufficient condition for the right hand side of (18) to be positive 

definite is that 

a(P+2E'PE) >l . 

A sufficient condition for the above is 

a(P)+2a(E'PE)<l. 

Using in (20) the following inequality which is due to Lemma 1, 

we arrive at the conclusion. This completes the proof. 

(19) 

(20) 

(21) 

Q.E.D. 

In some cases, we can get another sufficient condition without resorting to 

the Lyapunov matrix equation. 

[Theorem 6] 

If 

(22) 

is satisfied, then the interval matrices are convergent. 

Proof: For the Lyapunov equation (14), the following bound has been known10>. 

a(P)~2(1-~1 (N))' 

if a(N)< 1. 

(23) 
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We note that a sufficient condition for (20) is that 

a(P ){I +2a(E' E)} < I . 

Using a(E'E)-::;.p(EfE1)=a(EfE1) and (23) in (24) leads to the result. 

(24) 

Q.E.D. 

Theorems 5 and 6 assert that for the convergence of interval matrices the size 

of the perturbation should be sufficiently small in comparison with the stability 

margin of the matrix N. 

3. Example 

Let us consider the 2nd order interval matrix (1) where 

[ 
0 

c-
-1/4 

O] and 
1/4 

In this case we have 

The solution to (14) is given by 

p = [1/02 0 "] 
17/24 . 

From these matrices, we obtain 

a(P) = 17/24 = 0.7083 .. . 

a(EflP IE1) = 0.1068 .. . 

a(N) = 0.5590 ... 

a(Ef E1) = 0.1636 .... 

[ 
0 

B-
1/4 

1/4] 
1/4 

1/2]. 
3/4 

and D- [ 
0 

- 1/4 
1/2]. 
3/4 

(25) 

We can readily see that both Theorems 5 and 6 assure the convergence of interval 

matrix (25). It can also be confirmed that Theorem I leads to the same conclusion. 

4. Concluding Remarks 

Several classes of interval matrices for which the necessary and sufficient 

condition for the convergence is found to be a simple form are presented. Some 

sufficient conditions are also derived to assure their convergence property. The 

results are related to those for interval polynomials. It may be true that for 
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stability of interval matrices or interval polynomials, information of all the extreme 

points of the intervals is not required as in the case of the Hurwitz property for 

interval polynomials1>. Indeed, as shown in this paper, in several specific situa• 

tions, only limited information is enough to ensure the convergence of interval 

matrices. The question: "When does this redundancy occur?," and also the 

improvement of the sufficient conditions are topics for further research. 

Acknowledgement 

A part of this study was supported by Grant-in-Aid C for General Scientific 

Research of the Ministry of Education, Science and Culture. 

References 

1) Kharitonov, V .L., "Asymtotic stability of an equilibrium position of a family of systems oflinear 
differential equations", Differencjalnyje Uravnenija, 1978, vol. 14, pp. 2086--2088. 

2) Bialas, S., "A necessary and sufficient condition for the stability of interval matrices", Int. J. 
Control, 1983, vol. 37, pp. 717-722. 

3) Barmish, B.R. & Hollot, C.V., "Counterexample to a recent result on the stability of interval 
matrices by Bialas", Int.J. Control, 1984, vol. 39, pp. 1103-1104. 

4) Karl, W.C., Greschak, J.P. & Verghese, G.C., "Comments on "A necessary and sufficient 
condition for the stability of interval matrices"", Int.J. Control, 1984, vol. 39, pp. 849-851. 

5) Yedavalli, R.K., "Improved measures of stability robustness for linear state space models", 
IEEE Trans. Automat. Contr., 1985, vol. AC-30, pp. 577-579. 

6) Yedavalli, R.K., "Stability analysis of interval matrices: another sufficient condition", Int. J. 
Control, 1986, vol. 43, pp. 767-772. 

7) Mori, T. & H. Kokame, "A necessary and sufficient condition for stability of linear discrete 
systems with parameter-variation", J. of the Franklin Institute, 1986, vol. 321, pp. 135-138. 

8) Mori, T. & H. Kokame, "Convergence property of interval matrices and interval polynomials", 
Int. J. Control, 1987, vol. 45, pp. 481-484. 

9) Hollot, C.V. & Bartlett, A.C., "Some discrete-time counterparts to Kharitonov's stability 
criterion for uncertain systems", IEEE Trans. Automat. Contr., 1986, vol. AC-31, pp. 355-356. 

10) Yasuda, K. & Hirai, K., "Upper and lower bounds on the solution of the algebraic Riccati 
equation", IEEE Trans. Automat. Contr., 1979, vol. AC-24, pp. 483-487. 

11) Berman, A. & Plemmons, R.J., "Nonnegative Matrices in the Mathematical Science", Aca
demic, 1979, NY, p. 31. 




