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Abstract 

The recent rapid progress of large scale super-computers enables us to solve Euler 
equations and even Navier-Stokes equations numerically. Almost all methods of solution 
adopt finite difference calculations and, therefore, the generation technique of compu
tational mesh largely affects the stability and convergence of the solutions. In this paper, 
an analytic method is applied for the generation of a 3D mesh system for Navier-Stokes 
equations around ATP (Propfan}. One of the advantages of this method is that the 
mesh lines have strong differentiabilities. The differential equation used is the Poisson 
type, and the right hand side is called the control function because it is able to control 
the degree of mesh line clustering. Here, the form of the control function was contrived 
to cluster near the solid surfaces. By this method, several mesh lines are laid in the 
boundary layer above the blade surfaces. 

1. Introduction 
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Due to the very rapid progress of large scale super-computers, the non-linear 

partial-differential equations in fluid dynamics, e.g .. Euler equations and Navier

Stokes equations, can now be solved numerically. Almost all methods of solutions 

adopt finite difference calculations in which the flow field is divided into many 

polyhedrons for three-dimensional cases. Also, the differential equations are 

transformed into difference equations. Accordingly, the method of division of the 

flow field is very important, since generated computational mesh largely affects 

the stability and convergence of the solutions. Moreover, the physical quantities 

solved change their values depending on whether the mesh is good or bad. 

We can find many papers1- 7> about the mesh generation techniques cited in 

the references. These techniques are divided into two groups as follows: 

(i) Algebraic generation method. 

(ii) Analytic generation method. 

• Department of Aeronautical Engineering. 
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By method (i), all grid points and coordinate curves can be determined arbitrarily, 

while the curves are determined by the solutions of elliptic or hyperbolic differential 

equations in method (ii). Therefore, the location of the coordinate curves can be 

done easily. Moreover, the normality condition upon the boundaries and the 

spacing control of the mesh points in the specified region are easily done. Compared 

to method (i), the analytic method does not so easily control the mesh lines. 

However, the strong differentiability can be kept along the mesh lines. 

In this paper, 3D computational meshes around ATP are generated. The 

Poisson equation ( elliptic equation) is used for this purpose. The right hand side 

of this equation, called the control function, controls the mesh line locations. 

2. Basic Equations 

Let us try to map the physical space between two blades of an ATP in the 

computational space as shown in Fig. 1. The physical space, xyz-space, is sur

rounded by two blades, nacelle, outer boundary, inflow and outflow boundaries. 

The computational space, e11C-space, is a rectangular parallelpiped. This is divided 

into Ni X N~ X Nr, small parallelpipedes with each length as .Je, and .d(. The 

mapping of this computational space in the boundary fitted mesh lines in the physical 

space is performed. 

The elliptic differential equation is applied for the governing equation, and 

the mapping is completed by solving a boundary value problem. 

(1) 

where e1=e, e2=11 and e3=C 
Eq. (1) is a Laplace equation. However, the following Poisson equation is more 

useful for this purpose. 

Y2 e1 = P1, i = 1, 2, 3 (2) 

where P1 is called the control function, and the coordinate curves are able to be 

controlled by this value. For negative P1, a constant e1 surface in the physical 

space is attracted to the smaller value of x1, where x1=x, x2=y and x3=z and vice 

versa. In a word, the mesh lines can be dense or coarse due to the negative or 

positive values of the right hand side of Eq. (2). 

Changing the dependent and independent variables with each other, Eq. (2) 

is rewritten as follows: 
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Fig. 1. Space around ATP. 

(3) 

where 

Moreover, put 
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pl= l' SP' (4) 

Eq. (3) is written as follows: 

(5) 

3. Method of Solution 

As described in the previous section, the desired mesh is obtained by solving 

the boundary value problem of Eq. (5). It is needless to say that the method of 

solution for Eq. (5) is numerical. Then, the space differentiation is expressed by 

the finite difference. The central difference with a second accuracy is used herein, 

1.e. 

ax 
ae 

x(i+l,j, k)-x(i-1,j, k) 
ue 

82x = x(i+l,j, k)-2x(i,j, k)+x(i-1,j, k) 
a2e .1e2 

~ = x(i+l,j+l, k)-x(i-1,j+l, k)-x(i+l,j-l,k)+x(i-l,j-1,k) 
aea~ 4.te.t~ 

Substituting these expressions into Eq. (5), x(i,j, k) is solved as follows: 

x(i,j, k) = _l_ (d1+di+da+d,+ds+t4 
2CID 

where 

+gll Xt f.P+g22 x.,, Q+g33 Xs $_) 

11 

d1 = L {x(i+l,j, k)-x(i-1,j,k)} 
.1ez 

22 

di= L {x(i,j+l, k)+x(i,j-1,k)} 
J~2 

d8 = g33 {x(i,j, k+l)+x(i,j,k-1)} 
.1,2 

d, = d12(iz+g21) 

ds = d1a(g13+f1) 

t4 = 4(t3+t2) 

etc. (6) 

(7) 

(7a) 
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and 

o1x 

d12 = aeaTJ = 4.4e.4TJ 

x {x(i+l,j+I, k)-x(i+l,j-1, k)-x(i-1,j+l, k)+x(i-1,j-I, k)} 
82x 1 

dia = aeac = 4.4e.4C 

x {x(i+I,j, k+I)-x(i+l,j, k-1)-x(i-I,j, k+l)+x(i-I,j, k-1)} 
o2x I 

d2a=--=---
01JoC 4.4TJ.4C 

x {x(i,j+I, k+l)-x(i,j+I, k-I)-x(i,j-I, k+I)+x(i,j-1, k-1)} 
_ gll g22 g33 

c,,, - ,e• + .41/1 + ,cz 
(7b) 

In order to obtain the converged x(i, j, k), we used the iteration method with re

laxation, i.e. x* (i, j, k) is calculated by using the n-th value x(i, j, k) by Eq. (7). 

Thus, .4x is obtained by 

.4x = x*(i,j, k)-x(i,j, k) (8) 

Then, the ( n + 1 )-th value of x is obtained as follows: 

•+1(. • k) •(. . k) " x t,J, = x i,J, +w.ux (9) 

where o, is the relaxation coefficient which makes the convergence speed faster and 

the solution to be stable. The above process should be continued until .4x becomes 

smaller than the preassigned value. 

4. Control Function 

As described above, mesh lines can be controlled by the control function P1 

(or P, Q, !R). The purpose of this paper is to generate the mesh system which is 

applied for the Navier-Stokes computational code around ATP. Therefore, the 

control function is used for the mesh line clustering near the solid surface where the 

boundary layer is developing. Since the solid surfaces locate along the (-constant 

plane, we can put 

(10) 

Then, lR is given by 

( 11) 
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u: 

where 
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1.0 I/: :~I <I 0 
1[1-1 ln+l L 1 

Fig. 2. Control functions 

a= (C-C1)(C-CN) a' 
(CN-C1)2 

b=--1-b' 
cN-c1 

f =fi·fi 

:~I 
M1 M 

j 

(12) 

In the above equation,! controls the mesh line location along the t and 1J directions 

by second order curves, i.e. Ji and fz determine the density along the t 
and 1/ directions respectively, as shown in Fig. 2. Moreover, a' and b' are deter

mined by trial and error. 

In order to determine the degree of clustering of the mesh lines, we must estimate 

the thickness of the boundary layer. Since we put only a thin-layer assumption 

upon the blade surfaces for the solution of the Navier-Stokes equation, several 

mesh lines may be laid in the boundary layer. Since the thickness of the turbulent 

boundary layer is proportional to Re-112, Bt:=: 10-3 in the case of Re::=: 106
• Ac

cordingly, 10-4 is enough for the duration of the two neighboring mesh lines. 

5. Mesh System for Rotating Blades 

Applying the above mentioned method to the space between two neighboring 

blades, we try to generate a computational mesh system around a propeller. By 

this mesh system, we aim to solve Navier-Stokes equations where a thin boundary 

layer is assumed on the blade surfaces, while the flow slips on the nacelle surface, 

i.e. the viscous terms are neglected. Then, the governing equations are Euler ones 

on the nacelle surface. 

The numbers of the mesh lines are 45, 18 and 21 along the x,y and z-directions 

respectively, and we put a' and b' in Eq. (12) as 

a'= 1.5 X 103 

b' = l.25x 10 

The initial mesh system was generated appropriately by an algebraic method. 
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(a) i; - CONSTANT PLANE 

(b) n - CONSTANT PLANE 
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I 
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(c) ,; - CONSTANT PLANE 

Fig. 3. Mesh system around SR-3 ATP. 
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Fig. 4. Meshes on the surfaces ofSR-3 ATP. 

Using this system, we started the iteration. An example of mesh after 20 iterations 

is illustrated in Fig. 3. Fig. 4 shows mesh lines on the solid surfaces. The clustering 

of mesh lines near the blade surfaces is depicted in these figures. 

6. Conclusion 

In order to solve Navier-Stokes equations numerically around ATP, it is 

necessary to generate a computational mesh system suitable for the calculations. 

In this paper, an analytic method in which the elliptic differential equation is 

solved is applied for the generation of the 3D mesh system. One of the advantages 

of this method is that mesh lines have strong differentiabilities. The differential 

equation used is the Poisson type, and the right hand side is called the control 

function because it is able to control the degree of mesh line clustering. Here, the 

form of the control function was contrived to cluster near the solid surfaces. By 

this method, several mesh lines are laid in the boundary layer above the blade 

surfaces. 
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