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Abstract 

Steady gas flows at small Knudsen numbers around arbitrary bodies 
(asymptotic behavior for small Knudsen numbers of the solution of time­
independent boundary value problems of the Boltzmann equation over a general 
domain) are considered when the Reynolds number of the system is of the 
order of unity. The generalized slip flow theory developed for the Boltzmann­
Krook-Welander equation is extended for the standard Boltzmann equation. 
From the result. the effect of gas rarefaction on the flow (the relation between 
Boltzmann and hydrodynamic systems) is clarified, and several features of the 
force on a closed body in the gas are derived. 

I . Introduction 

The relation between the hydrodynamic equation and the Boltzmann equa­

tion has been discussed by various authors_D-9J In this connection the Hilbert and 

the Chapman-Enskog expansions are often mentioned. The expansions, however, 

are not derived in the framework of the boundary-value problem, and the 

hydrodynamic equations derived have some awkward properties in considering 
the boundary-value problem.2i, 3> 

In this paper, taking the time-independent boundary value problem of the 

Boltzmann equation over a general domain, we investigate the asymptotic behav­

ior of the solution for small Knudsen numbers to derive a set of hydrodynamic 

equations and their boundary conditions that covers some effects of the Knudsen 

number (gas rarefaction). From the result, the effect of gas rarefaction on 

velocity and temperature fields is discussed, and several features of the force 

acting on a closed body in a slightly rarefied gas are derived. 

* Department of Aeronautical Engineering 
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II. Asymptotic Solution for Small Knudsen Numbers 

II - 1 . Analysis and Hydrodynamic Systems 
Mach number Ma, Reynolds number Re, and Knudsen number Kn, important 

parameters in characterizing slightly rarefied gas flows, are related as3
> 

Ma~Re Kn. 

This relation is important in considering the asymptotic analysis for small 

Knudsen numbers (Kn« 1 ). The linear theory 4>· 5l, where the quantities of O (Ma2
) 

are neglected, is applicable only for very small Re (Re<<Kn). The standard 

Hilbert expansionD corresponds to the case with Re-H>0. When Re is of the order 

of unity (the case of our interest), we must take into account that Ma is of the 

same order of smallness as Kn. In the present paper, noting that Ma is a 

measure of deviation from an equilibrium state at rest, we investigate the 

asymptotic behavior for Kn« l of the system where the deviation from a 

uniform equilibrium state at rest is of the order of the Knudsen number of the 

system. Owing to limited space, we give only the outline of the analysis. 

We introduce the notations: T0, Po, / 0, and lo are the temperature, the 

pressure, the velocity distribution of gas molecules, and the mean free path of 

our reference equilibrium state at rest; R is the (specific) gas constant; L is the 

characteristic length of our system ; Lx; is the rectangular space coordinates; 

( 2 RT0) ½ (; is the molecular velocity; / 0 ( 1 +¢) is the velocity distribution of gas 

molecules. 

The behavior of the gas ¢ is described by the Boltzmann equation: 

( 2) 

where the standard collision integral]( 1 +¢, 1 +¢) is split into two parts: the 

linearized operator L(¢) and the remainder](¢, ¢). The complete definition of 

the collision operators is not given here, but no confusion will take place. 

On the boundary a condition for the reflected molecules is imposedD, 2>: 

( 3) 
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where n; is the unit normal to the boundary, pointed to the gas, and </Jw is a 
given function or is related with </J (?;;n;< 0 ). 

The asymptotic solution of the boundary-value problem is obtained in the 
form: 

<p=<pH+<pK, 

</JH=</JH1k+</JH2k2+ "·, 
</JK=</JK1k +</JK2k2+ "·, 

( 4) 

( 5) 
( 6) 

where </JH, called hydrodynamic part, represents the overall solution, and </JK, 
Knudsen-layer part, the correction near the boundary. Since we are considering 
the case where the perturbed distribution </J is of the order of k, </JH .. and </JK .. are 
of the order of unity. 

First we determine </JH as a solution of the Boltzmann equation whose length 
scale of variation is of the order of the characteristic length L of the system 
[i}</J I ax;=O(</J)). Substituting Eq. ( 5) in the Boltzmann equation Cl) and 
arr~nging the same order terms of k, we obtain a sequence of integral equations 

for </J-: 

L(</JH .. ) =Inhomogeneous term (</JHm-1,"·, </JHI), ( 7) 

which can in principle be solved from the lowest order. From the solvability 
condition* of Eq. ( 7) with m ~ 2, we get a sequence of partial differential 
equations, called hydrodynamic equations, that govern the component functions 
of the expansions corresponding to Eq. ( 5) of hydrodynamic quantities (veloc­
ity, temperature, etc.). 

Since the hydrodynamic part </JH, obtained without paying attention to the 
boundary condition, cannot in general be made to satisfy the boundary condition 
( 3) [the differential operator is multiplied by the small parameter k in Eq. 
( 1 )), we introduce the Knudsen-layer correction </JK, which is assumed to have 
the length scale of variation normal to the boundary of the order of lo [kn,a</J I ax; 
=O(</J)) and to be appreciable only near the boundary. Substituting Eq. ( 6) 

with </JH previously obtained in Eq. ( 1 ) and arranging the terms with the 
properties of </JK and </JH in mind, we obtain a sequence of (inhomogeneous) one­
dimensional linearized Boltzmann equations. 

• Homogeneous integral equation L(¢) = 0 has the five independent solutions 1, (,. and 
l:l. 
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y arpKl ( ) ~,n, ~ =L <PK1 , ( 8) 

r,n, a:;2 =LC</JK2) + 2]((¢,Hl)o' <PK1) +](<PKI, <PK1) 

-r, c( as1 ) arpKl +( asz ) arpKl ), 
ax, O as1 ax, O as2 ( 9) 

(10) 

where x,.. is the boundary surface, T/ is a stretched coordinate normal to the 

boundary, s 1 and s 2 are (unstretched) coordinates within a parallel surface TJ= 

const., and ( ) 0 denotes that the quantity in ( ) is evaluated at rJ= 0. The 

boundary condition for <PK"' at TJ= 0 is 

(t,n,> 0 ), (11) 

where ¢,..., is defined by 

(12) 

The boundary value of "'""'' which is undetermined, is involved in the boundary 

condition (11). The analysis of the equations under the condition that <PK 

vanishes rapidly away from the boundary gives conditions among the boundary 

values of hydrodynamic parts of hydrodynamic quantities and their 

derivatives6),ioHz) as well as the Knudsen-layer correction </JK, These conditions 

serve as boundary conditions for the hydrodynamic equations and are hereafter 

called slip boundary condition for convenience. 

Here we list the hydrodynamic equations. The non-dimensional hydrody­

namic quantities u,, p, r, and w are introduced: ( 2 RT0) ½ u, is the gas velocity, 

Po( 1 +p) the pressure, To( 1 +r) the temperature, p0(RT0)- 1 
( 1 +w) the density. 

The hydrodynamic quantities are split into H and K parts and expanded in 

power series of k as in Eqs. ( 4 ), ( 5 ), and ( 6 ). (um, PH, <H, and w" are defined 

in <PH by the same formulae as u, etc. in </J (Appendix 2 ), and u,K etc. are defined 

as the remainders.) 

(13) 

au,Hl = 0 
ax, ' 04 a) 
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au;n1 __ _l apll2 + _l a2u;Jfl 
U;nt ax; - 2 ax; 2 ri axJ ' 

ar:m 1 a2r:m 
U;n1 OX; = 2 r2 oxJ ' 

au;112 OWm 
OX; = -U;nJ OX; ' 

1 o c ( au;J/1 au;n1 )J 
+ zr4 OX; <HI OX; + OX; ' 

or:112 ( ) 01:m 2 ap112 
U;n1---::;-- + WmU;n1 +u;112 -

0 
- -5 U;n1-,,-

uX; X; r.JX; 

_ 1 ( au.HI au;n1 ) 2 1 a2 c 1 2 ) 
- 571 OX; + iii: + 2 oxJ r2r:112 + zrsr:HI ' 

(14 b) 

(14 c) 

(15 a) 

(15 b) 

05 c) 

(16) 

where r, are numerical constants related with the collision operators L and J 
(App. 1 ). 

Equations for (u;J/1, r:n1, P112 ) (Eqs. 04 a~c)J are the Navier-Stokes equations 

for an incompressible fluid, and the successive equations for (u,nm, !nm, Pnm+1, m ~ 

2) are the same order differential equations as Eqs. (14 a~c). These sets of 

equations are derived by a systematic small parameter (k) expansion, where no 

assumption is made on the form of the velocity distribution function but special 

attention is paid to the estimate of physical variables so that the analysis may 

cover physically interesting cases with finite Reynolds numbers. Incidentally, in 

the standard Hilbert expansion, sets of the first-order differential equations, 

starting with the Euler equations for an ideal gas, are derived; in the Chapman­

Enskog expansion, the order of the differe:1tial equations, starting also with the 

Euler equations, increases with the progress of approximation. 

The slip boundary conditions for the hydrodynamic equations (13 ~ 15 c) 

take the same form as those for the Boltzmann-Krook-Welander equation except 

for numerical constants. The latter results are given in Ref. 5 for solid bound­

ary where neither evaporation nor condensation takes place and in Ref. 13 for 

interface between gas and its condensed phase where evaporation or condensa­

tion is taking place. (For brevity, the former boundary is hereafter called solid 
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boundary and the latter interface.) The slip boundary conditions are as follows : 

( i ) On the solid boundary 

uiH1 -uwi1 = 0, 
LHl -rw1 = 0, 

d 
arm 

L/12 -rw2 = I -an;, 
:X; 

(ii) On the interface 

Cl 7 a) 

(17 b) 

(18 a) 

(18 b) 

(18 c) 

(19 a) 

(19 b) 

(19 c) 

(20 a) 

(20 b) 

(20 c) 

where l; is the direction cosine of a tangential vector to the boundary ; i IL is 

the mean curvature of the boundary where the sign of each principal curvature 

is taken negative when the corresponding center of curvat!-lre is on the gas side; 

Uu,;m, Lwm, and Pwm are the terms of the expansions of the velocity ( 2 RTo) ½Uw; 

(with Uw;n;= O ), the temperature T 0 ( 1 +rw) of the boundary, and the saturation 

gas pressure Po ( 1 + Pw) at temperature To ( 1 + rw) : 

Uu,;=Uu,;1k +uw;2k2+ ···, 

Tw=Twik +tw2k2+ •••, 

Pw=Pw1k+Pw2k2+···, 

(21 a) 

(21 b) 
(21 c) 
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(uwi, Tw, and Pw correspond to the deviation from our reference equilibrium state 

and thus are of the order of k. The higher order terms of k are retained for the 

convenience of treating the problems where the boundary values are not known 

beforehand.] ; ko, K1, d1, K2, C1, C4*, C6, C1, Cs, C9, C10, d4*, ds, d1, ds, d9, d10 are 

numerical constants. For B-K-W equation, 

C1 = 0.558437, 
C1= - 0.380569, 

d5= 0.330345, 
d9= - 0.223375, 
K1 = - 0.383161. 

c; = - 2.132039. 
Cs= 2.32007 4, 
d1 = 1.302716, 
d1= - 0.131574, 
d10= 0, 
K2= - 0.795186. 

c6 = 0.820853, 
C9= 1.066019, 
dl = - 0.4467 49, 
ds= - 0.0028315, 
ko= - 1.016191. 

Finally, we list the hydrodynamic parts of the stress tensor1>- 2> p0(6;;+ P;;) and 

heat flow vector1>- 2> Po ( 2 RT0) ½ Q; (App. 2 ). The component functions of their 

expansions corresponding to Eq. ( 5 ) are : 

(22) 

5 arHI 
QiH2= - 4 72 ax;' 

5 arH2 5 arHI 1 a2um1 
QiH3= - 4 f2 ax; - 4 75<Hl iJx, + 2 73 ax; . 

(23) 

The last term of P;;Ha (Q,83) is non Navier-Stokes stress (heat flow) and is called 

thermal stress. The term before the last in P,;83 (Q,83) shows the temperature 

dependence of viscosity (thermal conductivity). 

The results of this subsection (Sec. II - 1 ) are the generalization of the 

senior author's work (Ref. 5) developed for B-K-W equation. 

II - 2 . Velocity and Temperature Fields 

The first order hydrodynamic equations (Eqs. (14 a~c)J are the Navier­

Stokes equations for an incompressible fluid. The second order equations (Eqs. 

05 a~c)J combined with Eqs. (14 a~c) differ a little from the Navier-Stokes 

equations of a slightly compressible gas. If ra in the numerical coefficient of 
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{)2,HI/ oxJ in the square brackets of the first term on the right hand side of Eq. 

(15 b) is zero, Eqs. (15 a~c) coincide with the second order equations of the 

Mach number expansion of the Navier-Stokes equations for a compressible gas. 

(Noting that the case Ma=ak with a=O( 1) is under consideration, transform 

the k-expansion to Ma-exp.J The difference is due to the thermal stress in PiiHa• 

This difference, however, can be eliminated by the replacement : 

(24) 

Further, the slip boundary condition (up to the second order of k) does not 

contain p113 (cf. Eqs. (17a) ~ (18c), (19a) ~ (20c)J. Thus, we conclude: 

Proposition 1 : Except for the Knudsen-layer correction, the velocity and the temper­

ature fields of a slightly rarefied gas can be calculated correctly up to the second 

order in the Knudsen number by the slightly compressible Navier-Stokes equations 

with the slip boundary conditions. The effect of gas rarefaction comes in through the 

boundary condition. 

(N. B. In an infinite-domain problem where the pressure is specified at infinity, 

the pressure modified by Eq. (24) should be used. In most physical problems, 

however, o2rHI/ oxJ vanishes at infinity and no correction is necessary.) 

ill. Force and Its Moment on a Closed Body 

Take a closed body Bi in a gas. The gas may or may not be bounded, and 

other bodies may lie in the gas. We will investigate the force and its moment on 

B1• In the following analysis, oBi denotes the boundary of Bi; oBo a closed 

surface that encloses only Bi in the gas ; n, the unit normal of the surface of 

integration under consideration pointed to the region including infinity; dS its 

surface element. 

Theorem 1 : The Knudsen-layer part of the momentum flux does not contribute to 

the force acting on a closed body. 

Proof: Let Po (o,;+ W,;) be momentum flux tensor, where W,;=P,;+ 2 ( 1 +w)u,u;, 

and F, be the force, normalized by -p0L2, acting on a closed body Bi in the gas. 

Then, 

(25) 

Because oW,;/ ox1= O in the gas (App. 3 ), the surface of integration can be 

deformed arbitrarily in the gas. Taking a surface of integration oBo outside the 
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Knudsen layer, we have 

F,= f 'IJf,;Hn;dS, 
8B., 

(26) 

since 'IJf,;x vanishes there. Further, because o'IJf,iH/ ox;= O (App. 3 ), we can 

deform oBo in Eq. (26) arbitralily in the gas. oB0 may be in the Knudsen layer, 

especially on the body oB1• (QED) 

Theorem 2 : The Knudsen-layer part of the momentum flux does not contribute to 

the moment of force acting on a closed body. 

Proof: The moment of force M, around origin, normalized by P0L3, is expressed 
by 

(27) 

where e,;• is Eddington's e. The proof goes parallel to that of Theorem 1 if '1Jf0 

a is replaced by Em.xh'IJfk; because -
0 

e,hkxh'IJf•;= 0 from o'IJf,;/ox;= 0 and W,;=W;,. 
X; 

(QED) 

Corollary: On a solid boundary, F, and M, are calculated correctly up to the k3-order 

only by P,;H on 0B1. 

Proof: From the Knudsen-layer analysis, uiH1n,=u"nn,= 0 on a solid boundary [cf. 

Eqs. (17a) and (18b)). (Incidentally, u,113n, is not necessarily zero.) (QED) 

As in Theorem 1 , we can prove the following theorem with the aid of the 

formulae in Appendix 3. (Proof omitted) 

Theorem 3 : The Knudsen-layer part of mass (energy) flux does not contribute to 

the mass (energy) flow to a closed body. 

We prepare a lemma for Theorem 4 : 
Lemma : Let f (x ,) be a function three times continuously differentiable in a domain 

containing a closed surf ace (say oB0). Then 

(28 a) 

(28 b) 

Proof: Extend f(x,) over the whole region inside oB0 keeping its smoothness and 

apply Gauss theorem. (QED) 

Theorem 4 : The non Navier--Stokes stress in Pm system contributes neither to the 

force nor to the moment of force on a closed body. 
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The non N-S stress in Pm syst. means the thermal stress in P,;HJ modified by the 

replacement (24). 
Proof: Its contributions to F, and M, are, respectively, proportional to: 

(29 a) 

and 

(29 b) 

After deforming aB1 to 8B0, apply the lemma. (QED) 

Combining Theorems 1, 2, 4 with Proposition 1 we find: 

Proposition 2 : Under the condition of Proposition 1 , the force and the moment of 

force on a closed body can be computed correctly up to the k 3-order of F, and M, by 

the classical hydrodynamic procedure based on the Navier-Stokes solution and the 

N -S stress if the slip boundary condition is taken into account. 

The results of this section are the generalization of the senior author's work 

(Ref. 14) developed for the linearized Boltzmann equation. 

Appendix 

1 . Numerical constants r, 
Let A ((2) and B(t2) be the solutions of the integral equations: 

L[t,A (t2
)] = -t,(t2

- ~ ), 

with the subsidiary condition: 

where L [···] is the linearized collision operator (cf. Eq. ( 1 )J and t 2=tl C(t2
), 

D(t2
), and G(t2) are introduced by 
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2] [1;2- ~, l;,A (/;2)] =/;,G(/;2). 

The r, are defined by the integrals of these functions : 

ra=MAB), 

rs=- 6r2+ 2Ia(A) + 2MAG), 

where 

with F=A, B, etc. For B-K-W equation r,= 1. and for the hard sphere model r, 
are1si: 

r1= 1.2700. r2= 1.9223, ra= 1.9479, 

2 . Relations between u,, r, etc. and (jJ 

where 

w= f (j)Edt;, (1 +w)u,= f l;,(/JEdt;, 

~ ( 1 +w) r= f (/;,2- ~ )(j)Edt; - ( 1 +w)ur, 

P.;= 2 f l;,(;(j)Edt;-2( 1 +w) u,u;, 

r4 = 0.63489, 

P=w+r+wr, 

and the integration is carried out over the whole space of /;,. 

3. Conservation equations 

rs= 0.96070. 

Multiplying Eq. ( 1 ) by E, l;,E, or /;,2 E and integrating over the whole space 

of I;,, we have 

a 
ax; [( 1 +w)u;] = 0, 

a ,,-- [2( 1 +w)u,u;+ P,;] = 0, 
UX; 
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These relations also hold with subscript H since hydrodynamic part is a solution 

of Eq. ( l l. 
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