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Abstract

Steady gas flows at small Knudsen numbers around arbitrary bodies
(asymptotic behavior for small Knudsen numbers of the solution of time-
independent boundary value problems of the Boltzmann equation over a general
domain) are considered when the Reynolds number of the system is of the
order of unity. The generalized slip flow theory developed for the Boltzmann-
Krook-Welander equation is extended for the standard Boltzmann equation.
From the result, the effect of gas rarefaction on the flow (the relation between
Boltzmann and hydrodynamic systems) is clarified, and several features of the -
force on a closed body in the gas are derived.

I. Introduction

The relation between the hydrodynamic equation and the Boltzmann equa-
tion has been discussed by various authors."® In this connection the Hilbert and
the Chapman-Enskog expansions are often mentioned. The expansions, however,
are not derived in the framework of the boundary-value problem, and the
hydrodynamic equations derived have some awkward properties in considering
the boundary-value problem.?®

In this paper, taking the time-independent boundary value problem of the
Boltzmann equation over a general domain, we investigate the asymptotic behav-
ior of the solution for small Knudsen numbers to derive a set of hydrodynamic
equations and their boundary conditions that covers some effects of the Knudsen
number (gas rarefaction). From the result, the effect of gas rarefaction on
velocity and temperature fields is discussed, and several features of the force
acting on a closed body in a slightly rarefied gas are derived.
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II. Asymptotic Solution for Small Knudsen Numbers

I-1. Analysis and Hydrodynamic Systems
Mach number Ma, Reynolds number Re, and Knudsen number Kn, important
parameters in characterizing slightly rarefied gas flows, are related as®

Ma~Re Kn.

This relation is important in considering the asymptotic analysis for small
Knudsen numbers (Kn< 1). The linear theory *®, where the quantities of O (Ma?
are neglected, is applicable only for very small Re (Re<Kn). The standard
Hilbert expansion” corresponds to the case with Re—>c, When Re is of the order
of unity (the case of our interest), we must take into account that Ma is of the
same order of smallness as Kn. In the present paper, noting that Ma is a
measure of deviation from an equilibrium state at rest, we investigate the
asymptotic behavior for Kn<1 of the system where the deviation from a
uniform equilibrium state at rest is of the order of the Knudsen number of the
system. Owing to limited space, we give only the outline of the analysis.

We introduce the notations: Ty, po, fi. and [, are the temperature, the
pressure, the velocity distribution of gas molecules, and the mean free path of
our reference equilibrium state at rest; R is the (specific) gas constant; L is the
characteristic length of our system; Lx, is the rectangular space coordinates;
(2RTy" ¢ is the molecular velocity ; f; (1 +¢) is the velocity distribution of gas
molecules.

The behavior of the gas ¢ is described by the Boltzmann equation:

0 _ 1
{"ax.-_k (L) + J(p )], (D
_ AT bW A
k——2 =75 Kn, (2)

where the standard collision integral J(1 +¢, 1 +¢) is split into two parts: the
linearized operator L{(¢) and the remainder /(¢, ¢). The complete definition of
the collision operators is not given here, but no confusion will take place.

On the boundary a condition for the reflected molecules is imposed”? :

$p=¢., &n>0), (3
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where 7, is the unit normal to the boundafy, pointed to the gas, and ¢, is a
given function or is related with ¢ (&n< ).

The asymptotic solution of the boundary-value problem is obtained in the
form :

P=dut+dx, 4
¢H:¢Hlk+¢ﬂ2k2+"'y (5)
Pe=dak+ kit -, (6)

where ¢4, called hydrodynamic part, represents the overall solution, and ¢x,
Knudsen-layer part, the correction near the boundary. Since we are considering
the case where the perturbed distribution ¢ is of the order of &, ¢u., and ¢«. are
of the order of unity.

First we determine ¢, as a solution of the Boltzmann equation whose length
scale of variation is of the order of the characteristic length L of the system
(0¢ /0x.=0(¢)). Substituting Eq. (5) in the Boltzmann equation (1) and
arrr«:mging the same order terms of k, we obtain a sequence of integral equations
for Gum:

L(¢u) =Inhomogeneous term (@um-1,***» Gum), (1

which can in principle be solved from the lowest order. From the solvability
condition* of Eq. (7) with m= 2, we get a sequence of partial differential
equations, called hydrodynamic equations, that govern the component functions
of the expansions corresponding to Eq. (5) of hydrodynamic quantities (veloc-
ity, temperature, etc.),

Since the hydrodynamic part ¢,, obtained without paying attention to the
boundary condition, cannot in general be made to satisfy the boundary condition
(3) (the differential operator is multiplied by the small parameter k£ in Eq.
(1)), we introduce the Knudsen-layer correction ¢x, which is assumed to have
the length scale of variation normal to the boundary of the order of I, (kn.0¢ /0x;
=0(¢)) and to be appreciable only near the boundary. Substituting Eq. (6)
with ¢, previously obtained in Eq. (1) and arranging the terms with the
properties of ¢x and ¢y in mind, we obtain a sequence of (inhomogeneous) one-
dimensional linearized Boltzmann equations.

* Homogeneous integral equation L(¢) = 0 has the five independent solutions ], ¢, and

&
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tn % ~L(gn), (8)
(fﬂ.- 6;2{2 =L (¢K2) + 2]((¢H1)0 , ¢K1) +](¢K1- ¢Kl)
0. 0Pk 0 0P«
—a (B ), 2 (G ), 2, (9
X =nikn+x. (51, S, am

where x, is the boundary surface, n is a stretched coordinate normal to the
boundary, s; and s, are (unstretched) coordinates within a parallel surface n=
const, and ( ), denotes that the quantity in ( ) is evaluated at = 0. The
boundary condition for ¢x. at =0 is

¢Km :¢wm _¢Hmr (anx> 0 )- (11)

where ¢.» is defined by
¢w :¢wlk +¢w2k2 + e (12)

The boundary value of ¢x., which is undetermined, is involved in the boundary
condition (11). The analysis of the equations under the condition that ¢« l
vanishes rapidly away from the boundary gives conditions among the boundary
values of hydrodynamic parts of hydrodynamic quantities and their
derivatives®'9® as well as the Knudsen-layer correction ¢x. These conditions
serve as boundary conditions for the hydrodynamic equations and are hereafter
called slip boundary condition for convenience.

Here we list the hydrodynamic equations. The non-dimensional hydrody-
namic quantities %, p, t and w are introduced: (2RTy)" u: is the gas velocity,
po(1+p) the pressure, T,( 1 +7) the temperature, p,(RT,) ' (1 +w) the density.
The hydrodynamic quantities are split into H and K parts and expanded in
power series of k£ as in Eqs. (4), (5), and (6). (ww, pu v and wsy are defined
in ¢y by the same formulae as w; etc. in ¢ (Appendix 2), and uy etc. are defined
as the remainders.)

Obm _
P~ 0, (13)
S _ ), 4 (142)

ox;
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- %‘Zl _ % 7 aa;}n ’ (14¢)
ag_;;,z — 65::1’ (15a)
Uim 6;—;}” + (Wt + Ujmn) %—x',"

=- '%aixi (P — % (= 41y -a;—;}“—l + 771%%
U % + (@utm +wm) aarx'j' - %uﬂ"l %1::2
Do —wm + T D =i + T + T 16

where 7: are numerical constants related with the collision operators L and J
(App. 1).

Equations for (uu, i, pw ) (Egs. (14 a~c)) are the Navier-Stokes equations
for an incompressible fluid, and the successive equations for (#um, Thms Pim+1, M=
2) are the same order differential equations as Eqs. (14 a~c). These sets of
equations are derived by a systematic small parameter (k) expansion, where no
assumption is made on the form of the velocity distribution function but special
attention is paid to the estimate of physical variables so that the analysis may -
cover physically interesting cases with finite Reynolds numbers. Incidentally, in
the standard Hilbert expansion, sets of the first-order differential equations,
starting with the Euler equations for an ideal gas, are derived ; in the Chapman-
Enskog expansion, the order of the differential equations, starting also with the
Euler equations, increases with the progress of approximation.

The slip boundary conditions for the hydrodynamic equations (13~ 15¢)
take the same form as those for the Boltzmann-Krook-Welander equation except
for numerical constants. The latter results are given in Ref. 5 for solid bound-
ary where neither evaporation nor condensation takes place and in Ref. 13 for
interface between gas and its condensed phase where evaporation or condensa-
tion is taking place. (For brevity, the former boundary is hereafter called solid
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boundary and the latter interface.) The slip boundary conditions are as follows:
(i) On the solid boundary

Ui — Uwi) — 0, (17 a)
T —Tw = 0, 17b)
(Ui, — )t = — g 6;;’)" + % )nit,- -K, %T;" ’ (18 a)
mni= 0, (18 v
o —tu =d S, (18¢)

(ii) On the interface

(wim—uu)ti= 0, 19a)
lile_'pwl ] —u n-[ Cf} (19b)
Tl — Twl . dai ' 19¢)

(uiHZ_uwiz) t=—Fk ( au'm ag;m )niti )

Otm
ox;

Dm—Dur Ci Ot I:CI]
=U; i + n;
[ T~ Tuz } 't 1:6” } ox: | d,
Ui au;m Cs - G
+( ox, )ninj[ 4 } - 2/culmn,-[ 4

Cuo ] (20 )
dy ' (20)

_K t.+K2t, (ugmn ) (20 a)

C Cy
+ (Uann)? [ds } +Twluifl1nz{ d } + Purlbin?i ‘:
8 9

where t; is the direction cosine of a tangential vector to the boundary; x/L is
the mean curvature of the boundary where the sign of each principal curvature
is taken negative when the corresponding center of curvature is on the gas side;
Uwim, Tum, and p.. are the terms of the expansions of the velocity (2 RTy) "uu
(with uun=0), the temperature 7, (1 +7,) of the boundary, and the saturation
gas pressure p, (1 +p,) at temperature T, (1 +7.):

Ui = Uit + UuinKP+ -+, (21 a)
z'u/’_;‘l--wlkJT_Z.kaZAi»"'y (21 b)
pw:pwlk+pw2k2+”'s (21 C)
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(4wi» Tw. and p,, correspond to the deviation from our reference. equilibrium state
and thus are of the order of & The higher order terms of k& are retained for the
convenience of treating the problems where the boundary values are not known
beforehand.]; ki, K, di. K, Ci, Ci Cs, Ci, Cy Co Cy, dif, ds di, ds, ds dy are
numerical constants. For B-K-W equation,

C= (0.558437, Ci=— 2.132039, Cs= 0.820853,
Cr=— 0.380569, Cs= 2.320074, Cy= 1.066019,
Cw=C{, d,= 1.302716, di=— 0.446749,
ds= 0.330345, d,=— 0.131574, ds=— 0.0028315,
dy=— (.223375, dw=10, ky=— 1016191,
K,=—-0.383161, K,=—0.795186.

Finally, we list the hydrodynamic parts of the stress tensor”? p,(6,+P;) and
heat flow vector™? p, (2RT0% Q:; (App. 2). The component functions of their
expansions corresponding to Eq. (5) are:

au,' 5
Py =Py, Pyn=pmbs—m Wm + % >,
Ou; u; ou
Pun=pm0s—1 gx"z + o - %— 2 ;:12 Y Q22
_ 6uiH1 611,'}11 62'[”1 _ l 621'”1
7"Tm( ox; + ox; >+73 oxi0x; 3 oxd 6”>'
lij
Qum=0, Qun=— %7’2 6?1’

@3
Q- — é aTHZ _ i - aTHl + L 62“1‘1{1
iH3 4 T2 o, 4 T5Tm “ox, 9 73 oxl

The last term of Py (Qun) is non Navier-Stokes stress (heat flow) and is called
thermal stress. The term before the last in Pus (Qus) shows the temperature
dependence of viscosity (thermal conductivity),

The results of this subsection (Sec. II-1) are the generalization of the
senior author's work (Ref. 5) developed for B-K-W equation.

I-2. Velocity and Temperature Fields

The first order hydrodynamic equations (Eqs. (14a~c)) are the Navier-
Stokes equations for an incompressible fluid. The second order equations (Egs.
(15a~c)]) combined with Egs. (14a~c) differ a little from the Navier-Stokes
equations of a slightly compressible gas. If 7; in the numerical coefficient of
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&% / 0x! in the square brackets of the first term on the right hand side of Eq.

(15b) is zero, Eqgs. (1ha~c) coincide with the second order equations of the

Mach number expansion of the Navier-Stokes equations for a compressible gas.

(Noting that the case Ma=ak with a=0(1) is under consideration, transform

the k-expansion to Ma-exp.) The difference is due to the thermal stress in Pi.
This difference, however, can be eliminated by the replacement:

, |
pi=put 21, T2 @

Further, the slip boundary condition (up to the second order of k) does not
contain pu (cf. Egs. (17a) ~ (18¢), (19a) ~ (20¢)). Thus, we conclude:
Proposition 1 : Except for the Knudsen—layer correction, the velocity and the temper-
ature fields of a slightly rarefied gas can be calculated correctly up to the second
order in the Knudsen number by the slightly compressible Navier-Stokes equations
with the slip boundary conditions. The effect of gas rarefaction comes in through the
boundary condition.

(N. B. In an infinite~domain problem where the pressure is specified at infinity,
the pressure modified by Eq. (24) should be used. In most physical problems,
however, 8*tyy /0x! vanishes at infinity and no correction is necessary.)

M. Force and Its Moment on a Closed Body

Take a closed body B, in a gas. The gas may or may not be bounded, and
other bodies may lie in the gas. We will investigate the force and its moment on
B,. In the following analysis, 8B, denotes the boundary of B,; 8B, a closed
surface that encloses only B, in the gas; n, the unit normal of the surface of
integration under consideration pointed to the region including infinity; dS its
surface element.

Theorem 1. The Knudsen-layer part of the momentum flux does not contribute to
the force acting on a closed body.

Proof : Let p, (6;,+¥;) be momentum flux tensor, where ¥,=P,+ 2 (1 +w)uu,
and F; be the force, normalized by —p,L? acting on a closed body B, in the gas.
Then,

F.‘:J‘”‘ W,»,-n,« dS (25)

Because dV;/0x,= (0 in the gas (App. 3), the surface of integration can be
deformed arbitrarily in the gas. Taking a surface of integration 8B, outside the
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Knudsen layer, we have
Fi:f llfifynde, (26)
3B,

since Wy vanishes there. Further, because ¥/ dx;=(0 (App.3), we can
deform 8B, in Eq. (26) arbitralily in the gas. 8B, may be in the Knudsen layer,
especially on the body 6B,. (QED)
Theorem 2 : The Knudsen-layer part of the momentum flux does not contribute to
the moment of force acting on a closed body.

Proof : The moment of force M; around origin, normalized by »,L3 is expressed
by

M:I EineXn wkin;'ds. (27)
8B,

where €, is Eddington’s e. The proof goes parallel to that of Theorem 1 if ¥
is replaced by &,.x, ¥, because 6ix, emXn¥Uy= 0 from o¥;/0x,= (0 and ¥,=V¥,.
(QED)
Corollary : On a solid boundary, F; and M, are calculated correctly up to the k’-order
only by P,y on 0B,
Proof : From the Knudsen-layer analysis, usmm=uumn,= () on a solid boundary [(cf.
Egs. (17a) and (18b)). (Incidentally, uusn; is not necessarily zero.) (QED)
As in Theorem 1, we can prove the following theorem with the aid of the
formulae in Appendix 3. (Proof omitted)
Theorem 3 : The Knudsen-layer part of mass (energy) flux does not contribute to
the mass (energy) flow to a closed body.
We prepare a lemma for Theorem 4 :
Lemma: Let f(x;) be a function three times continuously differentiable in a domain
containing a closed surface (say 0B,). Then

orf _ oY _
fa&( ox;0x;  Ox} 6") n,dS=0, (28 a)
2 2
J‘cm Eims X af,.gx. N gx—{&") ndS= 0. (28 b)

Proof : Extend f(x;) over the whole region inside 6B, keeping its smoothness and
apply Gauss theorem. (QED)
Theorem 4 : The non Navier-Stokes stress in pls system contributes neither to the
force nor to the moment of force on a closed body.
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The non N-S stress in p#; syst. means the thermal stress in Py modified by the
replacement (24).
Proof : Its contributions to F; and M. are, respectively, proportional to:

62'[”1 _ asz
f aB, ( Ox:0x; ox} 6.~,->n,»dS, 29a)
and
627:”1 _ 62'[”]
J’619. Eim X 6x.6x; Gx?,. 6~i>nids. (29 b)
After deforming 6B, to 6B,, apply the lemma. (QED)

Combining Theorems 1, 2, 4 with Proposition 1 we find:
Proposition 2 : Under the condition of Proposition 1, the force and the moment of
force on a closed body can be computed correctly up to the k*-order of F: and M; by
the classical hydrodynamic procedure based on the Navier-Stokes solution and the
N -S stress if the slip boundary condition is taken into account.

The results of this section are the generalization of the senior author’'s work
(Ref. 14) developed for the linearized Boltzmann equation.

Appendix

1. Numerical constants 7;
Let A(¢?) and B(¢? be the solutions of the integral equations:

LIGAGD] =-&(@— gx

LUGE- $0%8) BUD] = -2~ 500,

with the subsidiary condition:
e exp (~¢) de=0,

where L [---] is the linearized collision operator (cf. Eq. (1)) and {?=¢ C(Y,
DY, and G are introduced by

2/ [0~ 3, GEBED) ~65CE) +DEIS,,
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2/ [0- 3, GA@D] =66,

The 7: are defined by the integrals of these functions:
7’1:16(3), 7= 2 I,(A), 1:=1(AB),

r== JnHB) + SLBO, 1= 6t 24(A) + 2LAG),

where

8 « n
LF) =gp = [ CFED exp (=¢7) di;

with F=A, B, etc. For B-K-W equation 7,= 1, and for the hard sphere model 7;
are'¥:

n=1.2700, = 19223, 7= 19479, 7= 063489, 7= 0.96070.

2. Relations between u;, 7, etc. and ¢

w=[¢EdC, (1 +@)u=[G:¢EdL,

%(1 to)r=[ - %)qudC - (1 +w)ul,  p=wtrtog

Py=2 [LLBEAC—2(1 +w) uu,

Q= [6et $BaC— F uw Py~ 3 (1 +wluad,

where

E=1%lexp (—¢D), d§=d,d&ds,

and the integration is carried out over the whole space of ¢.

3. Conservation equations

Multiplying Eq. (1) by E, &E, or {E and integrating over the whole space
of ¢, we have

01 ((l +wu) =0,

’667]_ 201 +wwuw+P;) =0,

6(1 [%uﬁuil’,ﬁ %puﬁ— (1 +w)ufu?+Qj] =0.
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These relations also hold with subscript H since hydrodynamic part is a solution
of Eq. (1),

1)
2)
3)
4)
5)
6)
7)
8)
9)
10
1D
12)

13)
14

19
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